ConstantFold.cpp revision 0e488b3d1c9293bbf2d64d0ecc4d6339f9100351
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include "llvm/Support/MathExtras.h"
33#include <limits>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37//                ConstantFold*Instruction Implementations
38//===----------------------------------------------------------------------===//
39
40/// BitCastConstantVector - Convert the specified ConstantVector node to the
41/// specified vector type.  At this point, we know that the elements of the
42/// input vector constant are all simple integer or FP values.
43static Constant *BitCastConstantVector(ConstantVector *CV,
44                                       const VectorType *DstTy) {
45  // If this cast changes element count then we can't handle it here:
46  // doing so requires endianness information.  This should be handled by
47  // Analysis/ConstantFolding.cpp
48  unsigned NumElts = DstTy->getNumElements();
49  if (NumElts != CV->getNumOperands())
50    return 0;
51
52  // Check to verify that all elements of the input are simple.
53  for (unsigned i = 0; i != NumElts; ++i) {
54    if (!isa<ConstantInt>(CV->getOperand(i)) &&
55        !isa<ConstantFP>(CV->getOperand(i)))
56      return 0;
57  }
58
59  // Bitcast each element now.
60  std::vector<Constant*> Result;
61  const Type *DstEltTy = DstTy->getElementType();
62  for (unsigned i = 0; i != NumElts; ++i)
63    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
64                                                    DstEltTy));
65  return ConstantVector::get(Result);
66}
67
68/// This function determines which opcode to use to fold two constant cast
69/// expressions together. It uses CastInst::isEliminableCastPair to determine
70/// the opcode. Consequently its just a wrapper around that function.
71/// @brief Determine if it is valid to fold a cast of a cast
72static unsigned
73foldConstantCastPair(
74  unsigned opc,          ///< opcode of the second cast constant expression
75  ConstantExpr *Op,      ///< the first cast constant expression
76  const Type *DstTy      ///< desintation type of the first cast
77) {
78  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
79  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
80  assert(CastInst::isCast(opc) && "Invalid cast opcode");
81
82  // The the types and opcodes for the two Cast constant expressions
83  const Type *SrcTy = Op->getOperand(0)->getType();
84  const Type *MidTy = Op->getType();
85  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
86  Instruction::CastOps secondOp = Instruction::CastOps(opc);
87
88  // Let CastInst::isEliminableCastPair do the heavy lifting.
89  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
90                                        Type::getInt64Ty(DstTy->getContext()));
91}
92
93static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
94  const Type *SrcTy = V->getType();
95  if (SrcTy == DestTy)
96    return V; // no-op cast
97
98  // Check to see if we are casting a pointer to an aggregate to a pointer to
99  // the first element.  If so, return the appropriate GEP instruction.
100  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
101    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
102      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
103        SmallVector<Value*, 8> IdxList;
104        Value *Zero =
105          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
106        IdxList.push_back(Zero);
107        const Type *ElTy = PTy->getElementType();
108        while (ElTy != DPTy->getElementType()) {
109          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
110            if (STy->getNumElements() == 0) break;
111            ElTy = STy->getElementType(0);
112            IdxList.push_back(Zero);
113          } else if (const SequentialType *STy =
114                     dyn_cast<SequentialType>(ElTy)) {
115            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
116            ElTy = STy->getElementType();
117            IdxList.push_back(Zero);
118          } else {
119            break;
120          }
121        }
122
123        if (ElTy == DPTy->getElementType())
124          // This GEP is inbounds because all indices are zero.
125          return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
126                                                        IdxList.size());
127      }
128
129  // Handle casts from one vector constant to another.  We know that the src
130  // and dest type have the same size (otherwise its an illegal cast).
131  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
132    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
133      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
134             "Not cast between same sized vectors!");
135      SrcTy = NULL;
136      // First, check for null.  Undef is already handled.
137      if (isa<ConstantAggregateZero>(V))
138        return Constant::getNullValue(DestTy);
139
140      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
141        return BitCastConstantVector(CV, DestPTy);
142    }
143
144    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
145    // This allows for other simplifications (although some of them
146    // can only be handled by Analysis/ConstantFolding.cpp).
147    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
148      return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
149  }
150
151  // Finally, implement bitcast folding now.   The code below doesn't handle
152  // bitcast right.
153  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
154    return ConstantPointerNull::get(cast<PointerType>(DestTy));
155
156  // Handle integral constant input.
157  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158    if (DestTy->isIntegerTy())
159      // Integral -> Integral. This is a no-op because the bit widths must
160      // be the same. Consequently, we just fold to V.
161      return V;
162
163    if (DestTy->isFloatingPointTy())
164      return ConstantFP::get(DestTy->getContext(),
165                             APFloat(CI->getValue(),
166                                     !DestTy->isPPC_FP128Ty()));
167
168    // Otherwise, can't fold this (vector?)
169    return 0;
170  }
171
172  // Handle ConstantFP input: FP -> Integral.
173  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
174    return ConstantInt::get(FP->getContext(),
175                            FP->getValueAPF().bitcastToAPInt());
176
177  return 0;
178}
179
180
181/// ExtractConstantBytes - V is an integer constant which only has a subset of
182/// its bytes used.  The bytes used are indicated by ByteStart (which is the
183/// first byte used, counting from the least significant byte) and ByteSize,
184/// which is the number of bytes used.
185///
186/// This function analyzes the specified constant to see if the specified byte
187/// range can be returned as a simplified constant.  If so, the constant is
188/// returned, otherwise null is returned.
189///
190static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
191                                      unsigned ByteSize) {
192  assert(C->getType()->isIntegerTy() &&
193         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
194         "Non-byte sized integer input");
195  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
196  assert(ByteSize && "Must be accessing some piece");
197  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
198  assert(ByteSize != CSize && "Should not extract everything");
199
200  // Constant Integers are simple.
201  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
202    APInt V = CI->getValue();
203    if (ByteStart)
204      V = V.lshr(ByteStart*8);
205    V.trunc(ByteSize*8);
206    return ConstantInt::get(CI->getContext(), V);
207  }
208
209  // In the input is a constant expr, we might be able to recursively simplify.
210  // If not, we definitely can't do anything.
211  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
212  if (CE == 0) return 0;
213
214  switch (CE->getOpcode()) {
215  default: return 0;
216  case Instruction::Or: {
217    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
218    if (RHS == 0)
219      return 0;
220
221    // X | -1 -> -1.
222    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
223      if (RHSC->isAllOnesValue())
224        return RHSC;
225
226    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
227    if (LHS == 0)
228      return 0;
229    return ConstantExpr::getOr(LHS, RHS);
230  }
231  case Instruction::And: {
232    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
233    if (RHS == 0)
234      return 0;
235
236    // X & 0 -> 0.
237    if (RHS->isNullValue())
238      return RHS;
239
240    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
241    if (LHS == 0)
242      return 0;
243    return ConstantExpr::getAnd(LHS, RHS);
244  }
245  case Instruction::LShr: {
246    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
247    if (Amt == 0)
248      return 0;
249    unsigned ShAmt = Amt->getZExtValue();
250    // Cannot analyze non-byte shifts.
251    if ((ShAmt & 7) != 0)
252      return 0;
253    ShAmt >>= 3;
254
255    // If the extract is known to be all zeros, return zero.
256    if (ByteStart >= CSize-ShAmt)
257      return Constant::getNullValue(IntegerType::get(CE->getContext(),
258                                                     ByteSize*8));
259    // If the extract is known to be fully in the input, extract it.
260    if (ByteStart+ByteSize+ShAmt <= CSize)
261      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
262
263    // TODO: Handle the 'partially zero' case.
264    return 0;
265  }
266
267  case Instruction::Shl: {
268    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269    if (Amt == 0)
270      return 0;
271    unsigned ShAmt = Amt->getZExtValue();
272    // Cannot analyze non-byte shifts.
273    if ((ShAmt & 7) != 0)
274      return 0;
275    ShAmt >>= 3;
276
277    // If the extract is known to be all zeros, return zero.
278    if (ByteStart+ByteSize <= ShAmt)
279      return Constant::getNullValue(IntegerType::get(CE->getContext(),
280                                                     ByteSize*8));
281    // If the extract is known to be fully in the input, extract it.
282    if (ByteStart >= ShAmt)
283      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
284
285    // TODO: Handle the 'partially zero' case.
286    return 0;
287  }
288
289  case Instruction::ZExt: {
290    unsigned SrcBitSize =
291      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
292
293    // If extracting something that is completely zero, return 0.
294    if (ByteStart*8 >= SrcBitSize)
295      return Constant::getNullValue(IntegerType::get(CE->getContext(),
296                                                     ByteSize*8));
297
298    // If exactly extracting the input, return it.
299    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
300      return CE->getOperand(0);
301
302    // If extracting something completely in the input, if if the input is a
303    // multiple of 8 bits, recurse.
304    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
305      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
306
307    // Otherwise, if extracting a subset of the input, which is not multiple of
308    // 8 bits, do a shift and trunc to get the bits.
309    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
310      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
311      Constant *Res = CE->getOperand(0);
312      if (ByteStart)
313        Res = ConstantExpr::getLShr(Res,
314                                 ConstantInt::get(Res->getType(), ByteStart*8));
315      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
316                                                          ByteSize*8));
317    }
318
319    // TODO: Handle the 'partially zero' case.
320    return 0;
321  }
322  }
323}
324
325/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
326/// on Ty, with any known factors factored out. If Folded is false,
327/// return null if no factoring was possible, to avoid endlessly
328/// bouncing an unfoldable expression back into the top-level folder.
329///
330static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy,
331                                 bool Folded) {
332  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
333    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
334    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
335    return ConstantExpr::getNUWMul(E, N);
336  }
337  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
338    Constant *N = ConstantInt::get(DestTy, VTy->getNumElements());
339    Constant *E = getFoldedSizeOf(VTy->getElementType(), DestTy, true);
340    return ConstantExpr::getNUWMul(E, N);
341  }
342  if (const StructType *STy = dyn_cast<StructType>(Ty))
343    if (!STy->isPacked()) {
344      unsigned NumElems = STy->getNumElements();
345      // An empty struct has size zero.
346      if (NumElems == 0)
347        return ConstantExpr::getNullValue(DestTy);
348      // Check for a struct with all members having the same size.
349      Constant *MemberSize =
350        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
351      bool AllSame = true;
352      for (unsigned i = 1; i != NumElems; ++i)
353        if (MemberSize !=
354            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
355          AllSame = false;
356          break;
357        }
358      if (AllSame) {
359        Constant *N = ConstantInt::get(DestTy, NumElems);
360        return ConstantExpr::getNUWMul(MemberSize, N);
361      }
362    }
363
364  // Pointer size doesn't depend on the pointee type, so canonicalize them
365  // to an arbitrary pointee.
366  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
367    if (!PTy->getElementType()->isIntegerTy(1))
368      return
369        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
370                                         PTy->getAddressSpace()),
371                        DestTy, true);
372
373  // If there's no interesting folding happening, bail so that we don't create
374  // a constant that looks like it needs folding but really doesn't.
375  if (!Folded)
376    return 0;
377
378  // Base case: Get a regular sizeof expression.
379  Constant *C = ConstantExpr::getSizeOf(Ty);
380  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
381                                                    DestTy, false),
382                            C, DestTy);
383  return C;
384}
385
386/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
387/// on Ty, with any known factors factored out. If Folded is false,
388/// return null if no factoring was possible, to avoid endlessly
389/// bouncing an unfoldable expression back into the top-level folder.
390///
391static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy,
392                                  bool Folded) {
393  // The alignment of an array is equal to the alignment of the
394  // array element. Note that this is not always true for vectors.
395  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
396    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
397    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
398                                                      DestTy,
399                                                      false),
400                              C, DestTy);
401    return C;
402  }
403
404  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
405    // Packed structs always have an alignment of 1.
406    if (STy->isPacked())
407      return ConstantInt::get(DestTy, 1);
408
409    // Otherwise, struct alignment is the maximum alignment of any member.
410    // Without target data, we can't compare much, but we can check to see
411    // if all the members have the same alignment.
412    unsigned NumElems = STy->getNumElements();
413    // An empty struct has minimal alignment.
414    if (NumElems == 0)
415      return ConstantInt::get(DestTy, 1);
416    // Check for a struct with all members having the same alignment.
417    Constant *MemberAlign =
418      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
419    bool AllSame = true;
420    for (unsigned i = 1; i != NumElems; ++i)
421      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
422        AllSame = false;
423        break;
424      }
425    if (AllSame)
426      return MemberAlign;
427  }
428
429  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
430  // to an arbitrary pointee.
431  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
432    if (!PTy->getElementType()->isIntegerTy(1))
433      return
434        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
435                                                           1),
436                                          PTy->getAddressSpace()),
437                         DestTy, true);
438
439  // If there's no interesting folding happening, bail so that we don't create
440  // a constant that looks like it needs folding but really doesn't.
441  if (!Folded)
442    return 0;
443
444  // Base case: Get a regular alignof expression.
445  Constant *C = ConstantExpr::getAlignOf(Ty);
446  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
447                                                    DestTy, false),
448                            C, DestTy);
449  return C;
450}
451
452/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
453/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
454/// return null if no factoring was possible, to avoid endlessly
455/// bouncing an unfoldable expression back into the top-level folder.
456///
457static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo,
458                                   const Type *DestTy,
459                                   bool Folded) {
460  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
461    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
462                                                                DestTy, false),
463                                        FieldNo, DestTy);
464    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
465    return ConstantExpr::getNUWMul(E, N);
466  }
467  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
468    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
469                                                                DestTy, false),
470                                        FieldNo, DestTy);
471    Constant *E = getFoldedSizeOf(VTy->getElementType(), DestTy, true);
472    return ConstantExpr::getNUWMul(E, N);
473  }
474  if (const StructType *STy = dyn_cast<StructType>(Ty))
475    if (!STy->isPacked()) {
476      unsigned NumElems = STy->getNumElements();
477      // An empty struct has no members.
478      if (NumElems == 0)
479        return 0;
480      // Check for a struct with all members having the same size.
481      Constant *MemberSize =
482        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
483      bool AllSame = true;
484      for (unsigned i = 1; i != NumElems; ++i)
485        if (MemberSize !=
486            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
487          AllSame = false;
488          break;
489        }
490      if (AllSame) {
491        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
492                                                                    false,
493                                                                    DestTy,
494                                                                    false),
495                                            FieldNo, DestTy);
496        return ConstantExpr::getNUWMul(MemberSize, N);
497      }
498    }
499
500  // If there's no interesting folding happening, bail so that we don't create
501  // a constant that looks like it needs folding but really doesn't.
502  if (!Folded)
503    return 0;
504
505  // Base case: Get a regular offsetof expression.
506  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
507  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
508                                                    DestTy, false),
509                            C, DestTy);
510  return C;
511}
512
513Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
514                                            const Type *DestTy) {
515  if (isa<UndefValue>(V)) {
516    // zext(undef) = 0, because the top bits will be zero.
517    // sext(undef) = 0, because the top bits will all be the same.
518    // [us]itofp(undef) = 0, because the result value is bounded.
519    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
520        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
521      return Constant::getNullValue(DestTy);
522    return UndefValue::get(DestTy);
523  }
524  // No compile-time operations on this type yet.
525  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
526    return 0;
527
528  // If the cast operand is a constant expression, there's a few things we can
529  // do to try to simplify it.
530  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
531    if (CE->isCast()) {
532      // Try hard to fold cast of cast because they are often eliminable.
533      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
534        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
535    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
536      // If all of the indexes in the GEP are null values, there is no pointer
537      // adjustment going on.  We might as well cast the source pointer.
538      bool isAllNull = true;
539      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
540        if (!CE->getOperand(i)->isNullValue()) {
541          isAllNull = false;
542          break;
543        }
544      if (isAllNull)
545        // This is casting one pointer type to another, always BitCast
546        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
547    }
548  }
549
550  // If the cast operand is a constant vector, perform the cast by
551  // operating on each element. In the cast of bitcasts, the element
552  // count may be mismatched; don't attempt to handle that here.
553  if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
554    if (DestTy->isVectorTy() &&
555        cast<VectorType>(DestTy)->getNumElements() ==
556        CV->getType()->getNumElements()) {
557      std::vector<Constant*> res;
558      const VectorType *DestVecTy = cast<VectorType>(DestTy);
559      const Type *DstEltTy = DestVecTy->getElementType();
560      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
561        res.push_back(ConstantExpr::getCast(opc,
562                                            CV->getOperand(i), DstEltTy));
563      return ConstantVector::get(DestVecTy, res);
564    }
565
566  // We actually have to do a cast now. Perform the cast according to the
567  // opcode specified.
568  switch (opc) {
569  default:
570    llvm_unreachable("Failed to cast constant expression");
571  case Instruction::FPTrunc:
572  case Instruction::FPExt:
573    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
574      bool ignored;
575      APFloat Val = FPC->getValueAPF();
576      Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
577                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
578                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
579                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
580                  APFloat::Bogus,
581                  APFloat::rmNearestTiesToEven, &ignored);
582      return ConstantFP::get(V->getContext(), Val);
583    }
584    return 0; // Can't fold.
585  case Instruction::FPToUI:
586  case Instruction::FPToSI:
587    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
588      const APFloat &V = FPC->getValueAPF();
589      bool ignored;
590      uint64_t x[2];
591      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
592      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
593                                APFloat::rmTowardZero, &ignored);
594      APInt Val(DestBitWidth, 2, x);
595      return ConstantInt::get(FPC->getContext(), Val);
596    }
597    return 0; // Can't fold.
598  case Instruction::IntToPtr:   //always treated as unsigned
599    if (V->isNullValue())       // Is it an integral null value?
600      return ConstantPointerNull::get(cast<PointerType>(DestTy));
601    return 0;                   // Other pointer types cannot be casted
602  case Instruction::PtrToInt:   // always treated as unsigned
603    // Is it a null pointer value?
604    if (V->isNullValue())
605      return ConstantInt::get(DestTy, 0);
606    // If this is a sizeof-like expression, pull out multiplications by
607    // known factors to expose them to subsequent folding. If it's an
608    // alignof-like expression, factor out known factors.
609    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
610      if (CE->getOpcode() == Instruction::GetElementPtr &&
611          CE->getOperand(0)->isNullValue()) {
612        const Type *Ty =
613          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
614        if (CE->getNumOperands() == 2) {
615          // Handle a sizeof-like expression.
616          Constant *Idx = CE->getOperand(1);
617          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
618          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
619            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
620                                                                DestTy, false),
621                                        Idx, DestTy);
622            return ConstantExpr::getMul(C, Idx);
623          }
624        } else if (CE->getNumOperands() == 3 &&
625                   CE->getOperand(1)->isNullValue()) {
626          // Handle an alignof-like expression.
627          if (const StructType *STy = dyn_cast<StructType>(Ty))
628            if (!STy->isPacked()) {
629              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
630              if (CI->isOne() &&
631                  STy->getNumElements() == 2 &&
632                  STy->getElementType(0)->isIntegerTy(1)) {
633                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
634              }
635            }
636          // Handle an offsetof-like expression.
637          if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()){
638            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
639                                                DestTy, false))
640              return C;
641          }
642        }
643      }
644    // Other pointer types cannot be casted
645    return 0;
646  case Instruction::UIToFP:
647  case Instruction::SIToFP:
648    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
649      APInt api = CI->getValue();
650      const uint64_t zero[] = {0, 0};
651      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
652                                  2, zero));
653      (void)apf.convertFromAPInt(api,
654                                 opc==Instruction::SIToFP,
655                                 APFloat::rmNearestTiesToEven);
656      return ConstantFP::get(V->getContext(), apf);
657    }
658    return 0;
659  case Instruction::ZExt:
660    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
661      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
662      APInt Result(CI->getValue());
663      Result.zext(BitWidth);
664      return ConstantInt::get(V->getContext(), Result);
665    }
666    return 0;
667  case Instruction::SExt:
668    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
669      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
670      APInt Result(CI->getValue());
671      Result.sext(BitWidth);
672      return ConstantInt::get(V->getContext(), Result);
673    }
674    return 0;
675  case Instruction::Trunc: {
676    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
677    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
678      APInt Result(CI->getValue());
679      Result.trunc(DestBitWidth);
680      return ConstantInt::get(V->getContext(), Result);
681    }
682
683    // The input must be a constantexpr.  See if we can simplify this based on
684    // the bytes we are demanding.  Only do this if the source and dest are an
685    // even multiple of a byte.
686    if ((DestBitWidth & 7) == 0 &&
687        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
688      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
689        return Res;
690
691    return 0;
692  }
693  case Instruction::BitCast:
694    return FoldBitCast(V, DestTy);
695  }
696}
697
698Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
699                                              Constant *V1, Constant *V2) {
700  if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
701    return CB->getZExtValue() ? V1 : V2;
702
703  if (isa<UndefValue>(V1)) return V2;
704  if (isa<UndefValue>(V2)) return V1;
705  if (isa<UndefValue>(Cond)) return V1;
706  if (V1 == V2) return V1;
707  return 0;
708}
709
710Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
711                                                      Constant *Idx) {
712  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
713    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
714  if (Val->isNullValue())  // ee(zero, x) -> zero
715    return Constant::getNullValue(
716                          cast<VectorType>(Val->getType())->getElementType());
717
718  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
719    if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
720      return CVal->getOperand(CIdx->getZExtValue());
721    } else if (isa<UndefValue>(Idx)) {
722      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
723      return CVal->getOperand(0);
724    }
725  }
726  return 0;
727}
728
729Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
730                                                     Constant *Elt,
731                                                     Constant *Idx) {
732  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
733  if (!CIdx) return 0;
734  APInt idxVal = CIdx->getValue();
735  if (isa<UndefValue>(Val)) {
736    // Insertion of scalar constant into vector undef
737    // Optimize away insertion of undef
738    if (isa<UndefValue>(Elt))
739      return Val;
740    // Otherwise break the aggregate undef into multiple undefs and do
741    // the insertion
742    unsigned numOps =
743      cast<VectorType>(Val->getType())->getNumElements();
744    std::vector<Constant*> Ops;
745    Ops.reserve(numOps);
746    for (unsigned i = 0; i < numOps; ++i) {
747      Constant *Op =
748        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
749      Ops.push_back(Op);
750    }
751    return ConstantVector::get(Ops);
752  }
753  if (isa<ConstantAggregateZero>(Val)) {
754    // Insertion of scalar constant into vector aggregate zero
755    // Optimize away insertion of zero
756    if (Elt->isNullValue())
757      return Val;
758    // Otherwise break the aggregate zero into multiple zeros and do
759    // the insertion
760    unsigned numOps =
761      cast<VectorType>(Val->getType())->getNumElements();
762    std::vector<Constant*> Ops;
763    Ops.reserve(numOps);
764    for (unsigned i = 0; i < numOps; ++i) {
765      Constant *Op =
766        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
767      Ops.push_back(Op);
768    }
769    return ConstantVector::get(Ops);
770  }
771  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
772    // Insertion of scalar constant into vector constant
773    std::vector<Constant*> Ops;
774    Ops.reserve(CVal->getNumOperands());
775    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
776      Constant *Op =
777        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
778      Ops.push_back(Op);
779    }
780    return ConstantVector::get(Ops);
781  }
782
783  return 0;
784}
785
786/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
787/// return the specified element value.  Otherwise return null.
788static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
789  if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
790    return CV->getOperand(EltNo);
791
792  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
793  if (isa<ConstantAggregateZero>(C))
794    return Constant::getNullValue(EltTy);
795  if (isa<UndefValue>(C))
796    return UndefValue::get(EltTy);
797  return 0;
798}
799
800Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
801                                                     Constant *V2,
802                                                     Constant *Mask) {
803  // Undefined shuffle mask -> undefined value.
804  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
805
806  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
807  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
808  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
809
810  // Loop over the shuffle mask, evaluating each element.
811  SmallVector<Constant*, 32> Result;
812  for (unsigned i = 0; i != MaskNumElts; ++i) {
813    Constant *InElt = GetVectorElement(Mask, i);
814    if (InElt == 0) return 0;
815
816    if (isa<UndefValue>(InElt))
817      InElt = UndefValue::get(EltTy);
818    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
819      unsigned Elt = CI->getZExtValue();
820      if (Elt >= SrcNumElts*2)
821        InElt = UndefValue::get(EltTy);
822      else if (Elt >= SrcNumElts)
823        InElt = GetVectorElement(V2, Elt - SrcNumElts);
824      else
825        InElt = GetVectorElement(V1, Elt);
826      if (InElt == 0) return 0;
827    } else {
828      // Unknown value.
829      return 0;
830    }
831    Result.push_back(InElt);
832  }
833
834  return ConstantVector::get(&Result[0], Result.size());
835}
836
837Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
838                                                    const unsigned *Idxs,
839                                                    unsigned NumIdx) {
840  // Base case: no indices, so return the entire value.
841  if (NumIdx == 0)
842    return Agg;
843
844  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
845    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
846                                                            Idxs,
847                                                            Idxs + NumIdx));
848
849  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
850    return
851      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
852                                                              Idxs,
853                                                              Idxs + NumIdx));
854
855  // Otherwise recurse.
856  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
857    return ConstantFoldExtractValueInstruction(CS->getOperand(*Idxs),
858                                               Idxs+1, NumIdx-1);
859
860  if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
861    return ConstantFoldExtractValueInstruction(CA->getOperand(*Idxs),
862                                               Idxs+1, NumIdx-1);
863  ConstantVector *CV = cast<ConstantVector>(Agg);
864  return ConstantFoldExtractValueInstruction(CV->getOperand(*Idxs),
865                                             Idxs+1, NumIdx-1);
866}
867
868Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
869                                                   Constant *Val,
870                                                   const unsigned *Idxs,
871                                                   unsigned NumIdx) {
872  // Base case: no indices, so replace the entire value.
873  if (NumIdx == 0)
874    return Val;
875
876  if (isa<UndefValue>(Agg)) {
877    // Insertion of constant into aggregate undef
878    // Optimize away insertion of undef.
879    if (isa<UndefValue>(Val))
880      return Agg;
881
882    // Otherwise break the aggregate undef into multiple undefs and do
883    // the insertion.
884    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
885    unsigned numOps;
886    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
887      numOps = AR->getNumElements();
888    else if (AggTy->isUnionTy())
889      numOps = 1;
890    else
891      numOps = cast<StructType>(AggTy)->getNumElements();
892
893    std::vector<Constant*> Ops(numOps);
894    for (unsigned i = 0; i < numOps; ++i) {
895      const Type *MemberTy = AggTy->getTypeAtIndex(i);
896      Constant *Op =
897        (*Idxs == i) ?
898        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
899                                           Val, Idxs+1, NumIdx-1) :
900        UndefValue::get(MemberTy);
901      Ops[i] = Op;
902    }
903
904    if (const StructType* ST = dyn_cast<StructType>(AggTy))
905      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
906    if (const UnionType* UT = dyn_cast<UnionType>(AggTy)) {
907      assert(Ops.size() == 1 && "Union can only contain a single value!");
908      return ConstantUnion::get(UT, Ops[0]);
909    }
910    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
911  }
912
913  if (isa<ConstantAggregateZero>(Agg)) {
914    // Insertion of constant into aggregate zero
915    // Optimize away insertion of zero.
916    if (Val->isNullValue())
917      return Agg;
918
919    // Otherwise break the aggregate zero into multiple zeros and do
920    // the insertion.
921    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
922    unsigned numOps;
923    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
924      numOps = AR->getNumElements();
925    else
926      numOps = cast<StructType>(AggTy)->getNumElements();
927
928    std::vector<Constant*> Ops(numOps);
929    for (unsigned i = 0; i < numOps; ++i) {
930      const Type *MemberTy = AggTy->getTypeAtIndex(i);
931      Constant *Op =
932        (*Idxs == i) ?
933        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
934                                           Val, Idxs+1, NumIdx-1) :
935        Constant::getNullValue(MemberTy);
936      Ops[i] = Op;
937    }
938
939    if (const StructType *ST = dyn_cast<StructType>(AggTy))
940      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
941    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
942  }
943
944  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
945    // Insertion of constant into aggregate constant.
946    std::vector<Constant*> Ops(Agg->getNumOperands());
947    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
948      Constant *Op = cast<Constant>(Agg->getOperand(i));
949      if (*Idxs == i)
950        Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs+1, NumIdx-1);
951      Ops[i] = Op;
952    }
953
954    if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
955      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
956    return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
957  }
958
959  return 0;
960}
961
962
963Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
964                                              Constant *C1, Constant *C2) {
965  // No compile-time operations on this type yet.
966  if (C1->getType()->isPPC_FP128Ty())
967    return 0;
968
969  // Handle UndefValue up front.
970  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
971    switch (Opcode) {
972    case Instruction::Xor:
973      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
974        // Handle undef ^ undef -> 0 special case. This is a common
975        // idiom (misuse).
976        return Constant::getNullValue(C1->getType());
977      // Fallthrough
978    case Instruction::Add:
979    case Instruction::Sub:
980      return UndefValue::get(C1->getType());
981    case Instruction::Mul:
982    case Instruction::And:
983      return Constant::getNullValue(C1->getType());
984    case Instruction::UDiv:
985    case Instruction::SDiv:
986    case Instruction::URem:
987    case Instruction::SRem:
988      if (!isa<UndefValue>(C2))                    // undef / X -> 0
989        return Constant::getNullValue(C1->getType());
990      return C2;                                   // X / undef -> undef
991    case Instruction::Or:                          // X | undef -> -1
992      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
993        return Constant::getAllOnesValue(PTy);
994      return Constant::getAllOnesValue(C1->getType());
995    case Instruction::LShr:
996      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
997        return C1;                                  // undef lshr undef -> undef
998      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
999                                                    // undef lshr X -> 0
1000    case Instruction::AShr:
1001      if (!isa<UndefValue>(C2))
1002        return C1;                                  // undef ashr X --> undef
1003      else if (isa<UndefValue>(C1))
1004        return C1;                                  // undef ashr undef -> undef
1005      else
1006        return C1;                                  // X ashr undef --> X
1007    case Instruction::Shl:
1008      // undef << X -> 0   or   X << undef -> 0
1009      return Constant::getNullValue(C1->getType());
1010    }
1011  }
1012
1013  // Handle simplifications when the RHS is a constant int.
1014  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1015    switch (Opcode) {
1016    case Instruction::Add:
1017      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1018      break;
1019    case Instruction::Sub:
1020      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1021      break;
1022    case Instruction::Mul:
1023      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1024      if (CI2->equalsInt(1))
1025        return C1;                                              // X * 1 == X
1026      break;
1027    case Instruction::UDiv:
1028    case Instruction::SDiv:
1029      if (CI2->equalsInt(1))
1030        return C1;                                            // X / 1 == X
1031      if (CI2->equalsInt(0))
1032        return UndefValue::get(CI2->getType());               // X / 0 == undef
1033      break;
1034    case Instruction::URem:
1035    case Instruction::SRem:
1036      if (CI2->equalsInt(1))
1037        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1038      if (CI2->equalsInt(0))
1039        return UndefValue::get(CI2->getType());               // X % 0 == undef
1040      break;
1041    case Instruction::And:
1042      if (CI2->isZero()) return C2;                           // X & 0 == 0
1043      if (CI2->isAllOnesValue())
1044        return C1;                                            // X & -1 == X
1045
1046      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1047        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1048        if (CE1->getOpcode() == Instruction::ZExt) {
1049          unsigned DstWidth = CI2->getType()->getBitWidth();
1050          unsigned SrcWidth =
1051            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1052          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1053          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1054            return C1;
1055        }
1056
1057        // If and'ing the address of a global with a constant, fold it.
1058        if (CE1->getOpcode() == Instruction::PtrToInt &&
1059            isa<GlobalValue>(CE1->getOperand(0))) {
1060          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1061
1062          // Functions are at least 4-byte aligned.
1063          unsigned GVAlign = GV->getAlignment();
1064          if (isa<Function>(GV))
1065            GVAlign = std::max(GVAlign, 4U);
1066
1067          if (GVAlign > 1) {
1068            unsigned DstWidth = CI2->getType()->getBitWidth();
1069            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1070            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1071
1072            // If checking bits we know are clear, return zero.
1073            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1074              return Constant::getNullValue(CI2->getType());
1075          }
1076        }
1077      }
1078      break;
1079    case Instruction::Or:
1080      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1081      if (CI2->isAllOnesValue())
1082        return C2;                         // X | -1 == -1
1083      break;
1084    case Instruction::Xor:
1085      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1086
1087      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1088        switch (CE1->getOpcode()) {
1089        default: break;
1090        case Instruction::ICmp:
1091        case Instruction::FCmp:
1092          // cmp pred ^ true -> cmp !pred
1093          assert(CI2->equalsInt(1));
1094          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1095          pred = CmpInst::getInversePredicate(pred);
1096          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1097                                          CE1->getOperand(1));
1098        }
1099      }
1100      break;
1101    case Instruction::AShr:
1102      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1103      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1104        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1105          return ConstantExpr::getLShr(C1, C2);
1106      break;
1107    }
1108  } else if (isa<ConstantInt>(C1)) {
1109    // If C1 is a ConstantInt and C2 is not, swap the operands.
1110    if (Instruction::isCommutative(Opcode))
1111      return ConstantExpr::get(Opcode, C2, C1);
1112  }
1113
1114  // At this point we know neither constant is an UndefValue.
1115  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1116    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1117      using namespace APIntOps;
1118      const APInt &C1V = CI1->getValue();
1119      const APInt &C2V = CI2->getValue();
1120      switch (Opcode) {
1121      default:
1122        break;
1123      case Instruction::Add:
1124        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1125      case Instruction::Sub:
1126        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1127      case Instruction::Mul:
1128        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1129      case Instruction::UDiv:
1130        assert(!CI2->isNullValue() && "Div by zero handled above");
1131        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1132      case Instruction::SDiv:
1133        assert(!CI2->isNullValue() && "Div by zero handled above");
1134        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1135          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1136        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1137      case Instruction::URem:
1138        assert(!CI2->isNullValue() && "Div by zero handled above");
1139        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1140      case Instruction::SRem:
1141        assert(!CI2->isNullValue() && "Div by zero handled above");
1142        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1143          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1144        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1145      case Instruction::And:
1146        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1147      case Instruction::Or:
1148        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1149      case Instruction::Xor:
1150        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1151      case Instruction::Shl: {
1152        uint32_t shiftAmt = C2V.getZExtValue();
1153        if (shiftAmt < C1V.getBitWidth())
1154          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1155        else
1156          return UndefValue::get(C1->getType()); // too big shift is undef
1157      }
1158      case Instruction::LShr: {
1159        uint32_t shiftAmt = C2V.getZExtValue();
1160        if (shiftAmt < C1V.getBitWidth())
1161          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1162        else
1163          return UndefValue::get(C1->getType()); // too big shift is undef
1164      }
1165      case Instruction::AShr: {
1166        uint32_t shiftAmt = C2V.getZExtValue();
1167        if (shiftAmt < C1V.getBitWidth())
1168          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1169        else
1170          return UndefValue::get(C1->getType()); // too big shift is undef
1171      }
1172      }
1173    }
1174
1175    switch (Opcode) {
1176    case Instruction::SDiv:
1177    case Instruction::UDiv:
1178    case Instruction::URem:
1179    case Instruction::SRem:
1180    case Instruction::LShr:
1181    case Instruction::AShr:
1182    case Instruction::Shl:
1183      if (CI1->equalsInt(0)) return C1;
1184      break;
1185    default:
1186      break;
1187    }
1188  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1189    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1190      APFloat C1V = CFP1->getValueAPF();
1191      APFloat C2V = CFP2->getValueAPF();
1192      APFloat C3V = C1V;  // copy for modification
1193      switch (Opcode) {
1194      default:
1195        break;
1196      case Instruction::FAdd:
1197        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1198        return ConstantFP::get(C1->getContext(), C3V);
1199      case Instruction::FSub:
1200        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1201        return ConstantFP::get(C1->getContext(), C3V);
1202      case Instruction::FMul:
1203        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1204        return ConstantFP::get(C1->getContext(), C3V);
1205      case Instruction::FDiv:
1206        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1207        return ConstantFP::get(C1->getContext(), C3V);
1208      case Instruction::FRem:
1209        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1210        return ConstantFP::get(C1->getContext(), C3V);
1211      }
1212    }
1213  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1214    ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1215    ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1216    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1217        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1218      std::vector<Constant*> Res;
1219      const Type* EltTy = VTy->getElementType();
1220      Constant *C1 = 0;
1221      Constant *C2 = 0;
1222      switch (Opcode) {
1223      default:
1224        break;
1225      case Instruction::Add:
1226        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1227          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1228          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1229          Res.push_back(ConstantExpr::getAdd(C1, C2));
1230        }
1231        return ConstantVector::get(Res);
1232      case Instruction::FAdd:
1233        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1234          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1235          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1236          Res.push_back(ConstantExpr::getFAdd(C1, C2));
1237        }
1238        return ConstantVector::get(Res);
1239      case Instruction::Sub:
1240        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1241          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1242          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1243          Res.push_back(ConstantExpr::getSub(C1, C2));
1244        }
1245        return ConstantVector::get(Res);
1246      case Instruction::FSub:
1247        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1248          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1249          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1250          Res.push_back(ConstantExpr::getFSub(C1, C2));
1251        }
1252        return ConstantVector::get(Res);
1253      case Instruction::Mul:
1254        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1255          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1256          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1257          Res.push_back(ConstantExpr::getMul(C1, C2));
1258        }
1259        return ConstantVector::get(Res);
1260      case Instruction::FMul:
1261        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1262          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1263          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1264          Res.push_back(ConstantExpr::getFMul(C1, C2));
1265        }
1266        return ConstantVector::get(Res);
1267      case Instruction::UDiv:
1268        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1269          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1270          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1271          Res.push_back(ConstantExpr::getUDiv(C1, C2));
1272        }
1273        return ConstantVector::get(Res);
1274      case Instruction::SDiv:
1275        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1276          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1277          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1278          Res.push_back(ConstantExpr::getSDiv(C1, C2));
1279        }
1280        return ConstantVector::get(Res);
1281      case Instruction::FDiv:
1282        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1283          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1284          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1285          Res.push_back(ConstantExpr::getFDiv(C1, C2));
1286        }
1287        return ConstantVector::get(Res);
1288      case Instruction::URem:
1289        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1290          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1291          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1292          Res.push_back(ConstantExpr::getURem(C1, C2));
1293        }
1294        return ConstantVector::get(Res);
1295      case Instruction::SRem:
1296        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1297          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1298          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1299          Res.push_back(ConstantExpr::getSRem(C1, C2));
1300        }
1301        return ConstantVector::get(Res);
1302      case Instruction::FRem:
1303        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1304          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1305          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1306          Res.push_back(ConstantExpr::getFRem(C1, C2));
1307        }
1308        return ConstantVector::get(Res);
1309      case Instruction::And:
1310        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1311          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1312          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1313          Res.push_back(ConstantExpr::getAnd(C1, C2));
1314        }
1315        return ConstantVector::get(Res);
1316      case Instruction::Or:
1317        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1318          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1319          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1320          Res.push_back(ConstantExpr::getOr(C1, C2));
1321        }
1322        return ConstantVector::get(Res);
1323      case Instruction::Xor:
1324        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1325          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1326          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1327          Res.push_back(ConstantExpr::getXor(C1, C2));
1328        }
1329        return ConstantVector::get(Res);
1330      case Instruction::LShr:
1331        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1332          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1333          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1334          Res.push_back(ConstantExpr::getLShr(C1, C2));
1335        }
1336        return ConstantVector::get(Res);
1337      case Instruction::AShr:
1338        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1339          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1340          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1341          Res.push_back(ConstantExpr::getAShr(C1, C2));
1342        }
1343        return ConstantVector::get(Res);
1344      case Instruction::Shl:
1345        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1346          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1347          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1348          Res.push_back(ConstantExpr::getShl(C1, C2));
1349        }
1350        return ConstantVector::get(Res);
1351      }
1352    }
1353  }
1354
1355  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1356    // There are many possible foldings we could do here.  We should probably
1357    // at least fold add of a pointer with an integer into the appropriate
1358    // getelementptr.  This will improve alias analysis a bit.
1359
1360    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1361    // (a + (b + c)).
1362    if (Instruction::isAssociative(Opcode, C1->getType()) &&
1363        CE1->getOpcode() == Opcode) {
1364      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1365      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1366        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1367    }
1368  } else if (isa<ConstantExpr>(C2)) {
1369    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1370    // other way if possible.
1371    if (Instruction::isCommutative(Opcode))
1372      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1373  }
1374
1375  // i1 can be simplified in many cases.
1376  if (C1->getType()->isIntegerTy(1)) {
1377    switch (Opcode) {
1378    case Instruction::Add:
1379    case Instruction::Sub:
1380      return ConstantExpr::getXor(C1, C2);
1381    case Instruction::Mul:
1382      return ConstantExpr::getAnd(C1, C2);
1383    case Instruction::Shl:
1384    case Instruction::LShr:
1385    case Instruction::AShr:
1386      // We can assume that C2 == 0.  If it were one the result would be
1387      // undefined because the shift value is as large as the bitwidth.
1388      return C1;
1389    case Instruction::SDiv:
1390    case Instruction::UDiv:
1391      // We can assume that C2 == 1.  If it were zero the result would be
1392      // undefined through division by zero.
1393      return C1;
1394    case Instruction::URem:
1395    case Instruction::SRem:
1396      // We can assume that C2 == 1.  If it were zero the result would be
1397      // undefined through division by zero.
1398      return ConstantInt::getFalse(C1->getContext());
1399    default:
1400      break;
1401    }
1402  }
1403
1404  // We don't know how to fold this.
1405  return 0;
1406}
1407
1408/// isZeroSizedType - This type is zero sized if its an array or structure of
1409/// zero sized types.  The only leaf zero sized type is an empty structure.
1410static bool isMaybeZeroSizedType(const Type *Ty) {
1411  if (Ty->isOpaqueTy()) return true;  // Can't say.
1412  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1413
1414    // If all of elements have zero size, this does too.
1415    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1416      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1417    return true;
1418
1419  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1420    return isMaybeZeroSizedType(ATy->getElementType());
1421  }
1422  return false;
1423}
1424
1425/// IdxCompare - Compare the two constants as though they were getelementptr
1426/// indices.  This allows coersion of the types to be the same thing.
1427///
1428/// If the two constants are the "same" (after coersion), return 0.  If the
1429/// first is less than the second, return -1, if the second is less than the
1430/// first, return 1.  If the constants are not integral, return -2.
1431///
1432static int IdxCompare(Constant *C1, Constant *C2,  const Type *ElTy) {
1433  if (C1 == C2) return 0;
1434
1435  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1436  // anything with them.
1437  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1438    return -2; // don't know!
1439
1440  // Ok, we have two differing integer indices.  Sign extend them to be the same
1441  // type.  Long is always big enough, so we use it.
1442  if (!C1->getType()->isIntegerTy(64))
1443    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1444
1445  if (!C2->getType()->isIntegerTy(64))
1446    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1447
1448  if (C1 == C2) return 0;  // They are equal
1449
1450  // If the type being indexed over is really just a zero sized type, there is
1451  // no pointer difference being made here.
1452  if (isMaybeZeroSizedType(ElTy))
1453    return -2; // dunno.
1454
1455  // If they are really different, now that they are the same type, then we
1456  // found a difference!
1457  if (cast<ConstantInt>(C1)->getSExtValue() <
1458      cast<ConstantInt>(C2)->getSExtValue())
1459    return -1;
1460  else
1461    return 1;
1462}
1463
1464/// evaluateFCmpRelation - This function determines if there is anything we can
1465/// decide about the two constants provided.  This doesn't need to handle simple
1466/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1467/// If we can determine that the two constants have a particular relation to
1468/// each other, we should return the corresponding FCmpInst predicate,
1469/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1470/// ConstantFoldCompareInstruction.
1471///
1472/// To simplify this code we canonicalize the relation so that the first
1473/// operand is always the most "complex" of the two.  We consider ConstantFP
1474/// to be the simplest, and ConstantExprs to be the most complex.
1475static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1476  assert(V1->getType() == V2->getType() &&
1477         "Cannot compare values of different types!");
1478
1479  // No compile-time operations on this type yet.
1480  if (V1->getType()->isPPC_FP128Ty())
1481    return FCmpInst::BAD_FCMP_PREDICATE;
1482
1483  // Handle degenerate case quickly
1484  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1485
1486  if (!isa<ConstantExpr>(V1)) {
1487    if (!isa<ConstantExpr>(V2)) {
1488      // We distilled thisUse the standard constant folder for a few cases
1489      ConstantInt *R = 0;
1490      R = dyn_cast<ConstantInt>(
1491                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1492      if (R && !R->isZero())
1493        return FCmpInst::FCMP_OEQ;
1494      R = dyn_cast<ConstantInt>(
1495                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1496      if (R && !R->isZero())
1497        return FCmpInst::FCMP_OLT;
1498      R = dyn_cast<ConstantInt>(
1499                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1500      if (R && !R->isZero())
1501        return FCmpInst::FCMP_OGT;
1502
1503      // Nothing more we can do
1504      return FCmpInst::BAD_FCMP_PREDICATE;
1505    }
1506
1507    // If the first operand is simple and second is ConstantExpr, swap operands.
1508    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1509    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1510      return FCmpInst::getSwappedPredicate(SwappedRelation);
1511  } else {
1512    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1513    // constantexpr or a simple constant.
1514    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1515    switch (CE1->getOpcode()) {
1516    case Instruction::FPTrunc:
1517    case Instruction::FPExt:
1518    case Instruction::UIToFP:
1519    case Instruction::SIToFP:
1520      // We might be able to do something with these but we don't right now.
1521      break;
1522    default:
1523      break;
1524    }
1525  }
1526  // There are MANY other foldings that we could perform here.  They will
1527  // probably be added on demand, as they seem needed.
1528  return FCmpInst::BAD_FCMP_PREDICATE;
1529}
1530
1531/// evaluateICmpRelation - This function determines if there is anything we can
1532/// decide about the two constants provided.  This doesn't need to handle simple
1533/// things like integer comparisons, but should instead handle ConstantExprs
1534/// and GlobalValues.  If we can determine that the two constants have a
1535/// particular relation to each other, we should return the corresponding ICmp
1536/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1537///
1538/// To simplify this code we canonicalize the relation so that the first
1539/// operand is always the most "complex" of the two.  We consider simple
1540/// constants (like ConstantInt) to be the simplest, followed by
1541/// GlobalValues, followed by ConstantExpr's (the most complex).
1542///
1543static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1544                                                bool isSigned) {
1545  assert(V1->getType() == V2->getType() &&
1546         "Cannot compare different types of values!");
1547  if (V1 == V2) return ICmpInst::ICMP_EQ;
1548
1549  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1550      !isa<BlockAddress>(V1)) {
1551    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1552        !isa<BlockAddress>(V2)) {
1553      // We distilled this down to a simple case, use the standard constant
1554      // folder.
1555      ConstantInt *R = 0;
1556      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1557      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1558      if (R && !R->isZero())
1559        return pred;
1560      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1561      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1562      if (R && !R->isZero())
1563        return pred;
1564      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1565      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1566      if (R && !R->isZero())
1567        return pred;
1568
1569      // If we couldn't figure it out, bail.
1570      return ICmpInst::BAD_ICMP_PREDICATE;
1571    }
1572
1573    // If the first operand is simple, swap operands.
1574    ICmpInst::Predicate SwappedRelation =
1575      evaluateICmpRelation(V2, V1, isSigned);
1576    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1577      return ICmpInst::getSwappedPredicate(SwappedRelation);
1578
1579  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1580    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1581      ICmpInst::Predicate SwappedRelation =
1582        evaluateICmpRelation(V2, V1, isSigned);
1583      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1584        return ICmpInst::getSwappedPredicate(SwappedRelation);
1585      return ICmpInst::BAD_ICMP_PREDICATE;
1586    }
1587
1588    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1589    // constant (which, since the types must match, means that it's a
1590    // ConstantPointerNull).
1591    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1592      // Don't try to decide equality of aliases.
1593      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1594        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1595          return ICmpInst::ICMP_NE;
1596    } else if (isa<BlockAddress>(V2)) {
1597      return ICmpInst::ICMP_NE; // Globals never equal labels.
1598    } else {
1599      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1600      // GlobalVals can never be null unless they have external weak linkage.
1601      // We don't try to evaluate aliases here.
1602      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1603        return ICmpInst::ICMP_NE;
1604    }
1605  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1606    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1607      ICmpInst::Predicate SwappedRelation =
1608        evaluateICmpRelation(V2, V1, isSigned);
1609      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1610        return ICmpInst::getSwappedPredicate(SwappedRelation);
1611      return ICmpInst::BAD_ICMP_PREDICATE;
1612    }
1613
1614    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1615    // constant (which, since the types must match, means that it is a
1616    // ConstantPointerNull).
1617    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1618      // Block address in another function can't equal this one, but block
1619      // addresses in the current function might be the same if blocks are
1620      // empty.
1621      if (BA2->getFunction() != BA->getFunction())
1622        return ICmpInst::ICMP_NE;
1623    } else {
1624      // Block addresses aren't null, don't equal the address of globals.
1625      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1626             "Canonicalization guarantee!");
1627      return ICmpInst::ICMP_NE;
1628    }
1629  } else {
1630    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1631    // constantexpr, a global, block address, or a simple constant.
1632    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1633    Constant *CE1Op0 = CE1->getOperand(0);
1634
1635    switch (CE1->getOpcode()) {
1636    case Instruction::Trunc:
1637    case Instruction::FPTrunc:
1638    case Instruction::FPExt:
1639    case Instruction::FPToUI:
1640    case Instruction::FPToSI:
1641      break; // We can't evaluate floating point casts or truncations.
1642
1643    case Instruction::UIToFP:
1644    case Instruction::SIToFP:
1645    case Instruction::BitCast:
1646    case Instruction::ZExt:
1647    case Instruction::SExt:
1648      // If the cast is not actually changing bits, and the second operand is a
1649      // null pointer, do the comparison with the pre-casted value.
1650      if (V2->isNullValue() &&
1651          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1652        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1653        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1654        return evaluateICmpRelation(CE1Op0,
1655                                    Constant::getNullValue(CE1Op0->getType()),
1656                                    isSigned);
1657      }
1658      break;
1659
1660    case Instruction::GetElementPtr:
1661      // Ok, since this is a getelementptr, we know that the constant has a
1662      // pointer type.  Check the various cases.
1663      if (isa<ConstantPointerNull>(V2)) {
1664        // If we are comparing a GEP to a null pointer, check to see if the base
1665        // of the GEP equals the null pointer.
1666        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1667          if (GV->hasExternalWeakLinkage())
1668            // Weak linkage GVals could be zero or not. We're comparing that
1669            // to null pointer so its greater-or-equal
1670            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1671          else
1672            // If its not weak linkage, the GVal must have a non-zero address
1673            // so the result is greater-than
1674            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1675        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1676          // If we are indexing from a null pointer, check to see if we have any
1677          // non-zero indices.
1678          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1679            if (!CE1->getOperand(i)->isNullValue())
1680              // Offsetting from null, must not be equal.
1681              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1682          // Only zero indexes from null, must still be zero.
1683          return ICmpInst::ICMP_EQ;
1684        }
1685        // Otherwise, we can't really say if the first operand is null or not.
1686      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1687        if (isa<ConstantPointerNull>(CE1Op0)) {
1688          if (GV2->hasExternalWeakLinkage())
1689            // Weak linkage GVals could be zero or not. We're comparing it to
1690            // a null pointer, so its less-or-equal
1691            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1692          else
1693            // If its not weak linkage, the GVal must have a non-zero address
1694            // so the result is less-than
1695            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1696        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1697          if (GV == GV2) {
1698            // If this is a getelementptr of the same global, then it must be
1699            // different.  Because the types must match, the getelementptr could
1700            // only have at most one index, and because we fold getelementptr's
1701            // with a single zero index, it must be nonzero.
1702            assert(CE1->getNumOperands() == 2 &&
1703                   !CE1->getOperand(1)->isNullValue() &&
1704                   "Suprising getelementptr!");
1705            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1706          } else {
1707            // If they are different globals, we don't know what the value is,
1708            // but they can't be equal.
1709            return ICmpInst::ICMP_NE;
1710          }
1711        }
1712      } else {
1713        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1714        Constant *CE2Op0 = CE2->getOperand(0);
1715
1716        // There are MANY other foldings that we could perform here.  They will
1717        // probably be added on demand, as they seem needed.
1718        switch (CE2->getOpcode()) {
1719        default: break;
1720        case Instruction::GetElementPtr:
1721          // By far the most common case to handle is when the base pointers are
1722          // obviously to the same or different globals.
1723          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1724            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1725              return ICmpInst::ICMP_NE;
1726            // Ok, we know that both getelementptr instructions are based on the
1727            // same global.  From this, we can precisely determine the relative
1728            // ordering of the resultant pointers.
1729            unsigned i = 1;
1730
1731            // The logic below assumes that the result of the comparison
1732            // can be determined by finding the first index that differs.
1733            // This doesn't work if there is over-indexing in any
1734            // subsequent indices, so check for that case first.
1735            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1736                !CE2->isGEPWithNoNotionalOverIndexing())
1737               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1738
1739            // Compare all of the operands the GEP's have in common.
1740            gep_type_iterator GTI = gep_type_begin(CE1);
1741            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1742                 ++i, ++GTI)
1743              switch (IdxCompare(CE1->getOperand(i),
1744                                 CE2->getOperand(i), GTI.getIndexedType())) {
1745              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1746              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1747              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1748              }
1749
1750            // Ok, we ran out of things they have in common.  If any leftovers
1751            // are non-zero then we have a difference, otherwise we are equal.
1752            for (; i < CE1->getNumOperands(); ++i)
1753              if (!CE1->getOperand(i)->isNullValue()) {
1754                if (isa<ConstantInt>(CE1->getOperand(i)))
1755                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1756                else
1757                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1758              }
1759
1760            for (; i < CE2->getNumOperands(); ++i)
1761              if (!CE2->getOperand(i)->isNullValue()) {
1762                if (isa<ConstantInt>(CE2->getOperand(i)))
1763                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1764                else
1765                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1766              }
1767            return ICmpInst::ICMP_EQ;
1768          }
1769        }
1770      }
1771    default:
1772      break;
1773    }
1774  }
1775
1776  return ICmpInst::BAD_ICMP_PREDICATE;
1777}
1778
1779Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1780                                               Constant *C1, Constant *C2) {
1781  const Type *ResultTy;
1782  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1783    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1784                               VT->getNumElements());
1785  else
1786    ResultTy = Type::getInt1Ty(C1->getContext());
1787
1788  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1789  if (pred == FCmpInst::FCMP_FALSE)
1790    return Constant::getNullValue(ResultTy);
1791
1792  if (pred == FCmpInst::FCMP_TRUE)
1793    return Constant::getAllOnesValue(ResultTy);
1794
1795  // Handle some degenerate cases first
1796  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1797    return UndefValue::get(ResultTy);
1798
1799  // No compile-time operations on this type yet.
1800  if (C1->getType()->isPPC_FP128Ty())
1801    return 0;
1802
1803  // icmp eq/ne(null,GV) -> false/true
1804  if (C1->isNullValue()) {
1805    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1806      // Don't try to evaluate aliases.  External weak GV can be null.
1807      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1808        if (pred == ICmpInst::ICMP_EQ)
1809          return ConstantInt::getFalse(C1->getContext());
1810        else if (pred == ICmpInst::ICMP_NE)
1811          return ConstantInt::getTrue(C1->getContext());
1812      }
1813  // icmp eq/ne(GV,null) -> false/true
1814  } else if (C2->isNullValue()) {
1815    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1816      // Don't try to evaluate aliases.  External weak GV can be null.
1817      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1818        if (pred == ICmpInst::ICMP_EQ)
1819          return ConstantInt::getFalse(C1->getContext());
1820        else if (pred == ICmpInst::ICMP_NE)
1821          return ConstantInt::getTrue(C1->getContext());
1822      }
1823  }
1824
1825  // If the comparison is a comparison between two i1's, simplify it.
1826  if (C1->getType()->isIntegerTy(1)) {
1827    switch(pred) {
1828    case ICmpInst::ICMP_EQ:
1829      if (isa<ConstantInt>(C2))
1830        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1831      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1832    case ICmpInst::ICMP_NE:
1833      return ConstantExpr::getXor(C1, C2);
1834    default:
1835      break;
1836    }
1837  }
1838
1839  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1840    APInt V1 = cast<ConstantInt>(C1)->getValue();
1841    APInt V2 = cast<ConstantInt>(C2)->getValue();
1842    switch (pred) {
1843    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1844    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1845    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1846    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1847    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1848    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1849    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1850    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1851    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1852    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1853    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1854    }
1855  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1856    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1857    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1858    APFloat::cmpResult R = C1V.compare(C2V);
1859    switch (pred) {
1860    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1861    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1862    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1863    case FCmpInst::FCMP_UNO:
1864      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1865    case FCmpInst::FCMP_ORD:
1866      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1867    case FCmpInst::FCMP_UEQ:
1868      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1869                                        R==APFloat::cmpEqual);
1870    case FCmpInst::FCMP_OEQ:
1871      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1872    case FCmpInst::FCMP_UNE:
1873      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1874    case FCmpInst::FCMP_ONE:
1875      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1876                                        R==APFloat::cmpGreaterThan);
1877    case FCmpInst::FCMP_ULT:
1878      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1879                                        R==APFloat::cmpLessThan);
1880    case FCmpInst::FCMP_OLT:
1881      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1882    case FCmpInst::FCMP_UGT:
1883      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1884                                        R==APFloat::cmpGreaterThan);
1885    case FCmpInst::FCMP_OGT:
1886      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1887    case FCmpInst::FCMP_ULE:
1888      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1889    case FCmpInst::FCMP_OLE:
1890      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1891                                        R==APFloat::cmpEqual);
1892    case FCmpInst::FCMP_UGE:
1893      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1894    case FCmpInst::FCMP_OGE:
1895      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1896                                        R==APFloat::cmpEqual);
1897    }
1898  } else if (C1->getType()->isVectorTy()) {
1899    SmallVector<Constant*, 16> C1Elts, C2Elts;
1900    C1->getVectorElements(C1Elts);
1901    C2->getVectorElements(C2Elts);
1902    if (C1Elts.empty() || C2Elts.empty())
1903      return 0;
1904
1905    // If we can constant fold the comparison of each element, constant fold
1906    // the whole vector comparison.
1907    SmallVector<Constant*, 4> ResElts;
1908    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1909      // Compare the elements, producing an i1 result or constant expr.
1910      ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1911    }
1912    return ConstantVector::get(&ResElts[0], ResElts.size());
1913  }
1914
1915  if (C1->getType()->isFloatingPointTy()) {
1916    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1917    switch (evaluateFCmpRelation(C1, C2)) {
1918    default: llvm_unreachable("Unknown relation!");
1919    case FCmpInst::FCMP_UNO:
1920    case FCmpInst::FCMP_ORD:
1921    case FCmpInst::FCMP_UEQ:
1922    case FCmpInst::FCMP_UNE:
1923    case FCmpInst::FCMP_ULT:
1924    case FCmpInst::FCMP_UGT:
1925    case FCmpInst::FCMP_ULE:
1926    case FCmpInst::FCMP_UGE:
1927    case FCmpInst::FCMP_TRUE:
1928    case FCmpInst::FCMP_FALSE:
1929    case FCmpInst::BAD_FCMP_PREDICATE:
1930      break; // Couldn't determine anything about these constants.
1931    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1932      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1933                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1934                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1935      break;
1936    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1937      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1938                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1939                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1940      break;
1941    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1942      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1943                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1944                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1945      break;
1946    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1947      // We can only partially decide this relation.
1948      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1949        Result = 0;
1950      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1951        Result = 1;
1952      break;
1953    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1954      // We can only partially decide this relation.
1955      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1956        Result = 0;
1957      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1958        Result = 1;
1959      break;
1960    case ICmpInst::ICMP_NE: // We know that C1 != C2
1961      // We can only partially decide this relation.
1962      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1963        Result = 0;
1964      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1965        Result = 1;
1966      break;
1967    }
1968
1969    // If we evaluated the result, return it now.
1970    if (Result != -1)
1971      return ConstantInt::get(ResultTy, Result);
1972
1973  } else {
1974    // Evaluate the relation between the two constants, per the predicate.
1975    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1976    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1977    default: llvm_unreachable("Unknown relational!");
1978    case ICmpInst::BAD_ICMP_PREDICATE:
1979      break;  // Couldn't determine anything about these constants.
1980    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1981      // If we know the constants are equal, we can decide the result of this
1982      // computation precisely.
1983      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1984      break;
1985    case ICmpInst::ICMP_ULT:
1986      switch (pred) {
1987      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1988        Result = 1; break;
1989      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1990        Result = 0; break;
1991      }
1992      break;
1993    case ICmpInst::ICMP_SLT:
1994      switch (pred) {
1995      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1996        Result = 1; break;
1997      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1998        Result = 0; break;
1999      }
2000      break;
2001    case ICmpInst::ICMP_UGT:
2002      switch (pred) {
2003      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2004        Result = 1; break;
2005      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2006        Result = 0; break;
2007      }
2008      break;
2009    case ICmpInst::ICMP_SGT:
2010      switch (pred) {
2011      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2012        Result = 1; break;
2013      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2014        Result = 0; break;
2015      }
2016      break;
2017    case ICmpInst::ICMP_ULE:
2018      if (pred == ICmpInst::ICMP_UGT) Result = 0;
2019      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2020      break;
2021    case ICmpInst::ICMP_SLE:
2022      if (pred == ICmpInst::ICMP_SGT) Result = 0;
2023      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2024      break;
2025    case ICmpInst::ICMP_UGE:
2026      if (pred == ICmpInst::ICMP_ULT) Result = 0;
2027      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2028      break;
2029    case ICmpInst::ICMP_SGE:
2030      if (pred == ICmpInst::ICMP_SLT) Result = 0;
2031      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2032      break;
2033    case ICmpInst::ICMP_NE:
2034      if (pred == ICmpInst::ICMP_EQ) Result = 0;
2035      if (pred == ICmpInst::ICMP_NE) Result = 1;
2036      break;
2037    }
2038
2039    // If we evaluated the result, return it now.
2040    if (Result != -1)
2041      return ConstantInt::get(ResultTy, Result);
2042
2043    // If the right hand side is a bitcast, try using its inverse to simplify
2044    // it by moving it to the left hand side.  We can't do this if it would turn
2045    // a vector compare into a scalar compare or visa versa.
2046    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2047      Constant *CE2Op0 = CE2->getOperand(0);
2048      if (CE2->getOpcode() == Instruction::BitCast &&
2049          CE2->getType()->isVectorTy()==CE2Op0->getType()->isVectorTy()) {
2050        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2051        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2052      }
2053    }
2054
2055    // If the left hand side is an extension, try eliminating it.
2056    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2057      if (CE1->getOpcode() == Instruction::SExt ||
2058          CE1->getOpcode() == Instruction::ZExt) {
2059        Constant *CE1Op0 = CE1->getOperand(0);
2060        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2061        if (CE1Inverse == CE1Op0) {
2062          // Check whether we can safely truncate the right hand side.
2063          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2064          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2065            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2066          }
2067        }
2068      }
2069    }
2070
2071    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2072        (C1->isNullValue() && !C2->isNullValue())) {
2073      // If C2 is a constant expr and C1 isn't, flip them around and fold the
2074      // other way if possible.
2075      // Also, if C1 is null and C2 isn't, flip them around.
2076      switch (pred) {
2077      case ICmpInst::ICMP_EQ:
2078      case ICmpInst::ICMP_NE:
2079        // No change of predicate required.
2080        return ConstantExpr::getICmp(pred, C2, C1);
2081
2082      case ICmpInst::ICMP_ULT:
2083      case ICmpInst::ICMP_SLT:
2084      case ICmpInst::ICMP_UGT:
2085      case ICmpInst::ICMP_SGT:
2086      case ICmpInst::ICMP_ULE:
2087      case ICmpInst::ICMP_SLE:
2088      case ICmpInst::ICMP_UGE:
2089      case ICmpInst::ICMP_SGE:
2090        // Change the predicate as necessary to swap the operands.
2091        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2092        return ConstantExpr::getICmp(pred, C2, C1);
2093
2094      default:  // These predicates cannot be flopped around.
2095        break;
2096      }
2097    }
2098  }
2099  return 0;
2100}
2101
2102/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2103/// is "inbounds".
2104static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) {
2105  // No indices means nothing that could be out of bounds.
2106  if (NumIdx == 0) return true;
2107
2108  // If the first index is zero, it's in bounds.
2109  if (Idxs[0]->isNullValue()) return true;
2110
2111  // If the first index is one and all the rest are zero, it's in bounds,
2112  // by the one-past-the-end rule.
2113  if (!cast<ConstantInt>(Idxs[0])->isOne())
2114    return false;
2115  for (unsigned i = 1, e = NumIdx; i != e; ++i)
2116    if (!Idxs[i]->isNullValue())
2117      return false;
2118  return true;
2119}
2120
2121Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2122                                          bool inBounds,
2123                                          Constant* const *Idxs,
2124                                          unsigned NumIdx) {
2125  if (NumIdx == 0 ||
2126      (NumIdx == 1 && Idxs[0]->isNullValue()))
2127    return C;
2128
2129  if (isa<UndefValue>(C)) {
2130    const PointerType *Ptr = cast<PointerType>(C->getType());
2131    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
2132                                                       (Value **)Idxs,
2133                                                       (Value **)Idxs+NumIdx);
2134    assert(Ty != 0 && "Invalid indices for GEP!");
2135    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2136  }
2137
2138  Constant *Idx0 = Idxs[0];
2139  if (C->isNullValue()) {
2140    bool isNull = true;
2141    for (unsigned i = 0, e = NumIdx; i != e; ++i)
2142      if (!Idxs[i]->isNullValue()) {
2143        isNull = false;
2144        break;
2145      }
2146    if (isNull) {
2147      const PointerType *Ptr = cast<PointerType>(C->getType());
2148      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
2149                                                         (Value**)Idxs,
2150                                                         (Value**)Idxs+NumIdx);
2151      assert(Ty != 0 && "Invalid indices for GEP!");
2152      return  ConstantPointerNull::get(
2153                            PointerType::get(Ty,Ptr->getAddressSpace()));
2154    }
2155  }
2156
2157  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2158    // Combine Indices - If the source pointer to this getelementptr instruction
2159    // is a getelementptr instruction, combine the indices of the two
2160    // getelementptr instructions into a single instruction.
2161    //
2162    if (CE->getOpcode() == Instruction::GetElementPtr) {
2163      const Type *LastTy = 0;
2164      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2165           I != E; ++I)
2166        LastTy = *I;
2167
2168      if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) {
2169        SmallVector<Value*, 16> NewIndices;
2170        NewIndices.reserve(NumIdx + CE->getNumOperands());
2171        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2172          NewIndices.push_back(CE->getOperand(i));
2173
2174        // Add the last index of the source with the first index of the new GEP.
2175        // Make sure to handle the case when they are actually different types.
2176        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2177        // Otherwise it must be an array.
2178        if (!Idx0->isNullValue()) {
2179          const Type *IdxTy = Combined->getType();
2180          if (IdxTy != Idx0->getType()) {
2181            const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2182            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2183            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2184            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2185          } else {
2186            Combined =
2187              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2188          }
2189        }
2190
2191        NewIndices.push_back(Combined);
2192        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
2193        return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
2194          ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
2195                                                 &NewIndices[0],
2196                                                 NewIndices.size()) :
2197          ConstantExpr::getGetElementPtr(CE->getOperand(0),
2198                                         &NewIndices[0],
2199                                         NewIndices.size());
2200      }
2201    }
2202
2203    // Implement folding of:
2204    //    int* getelementptr ([2 x int]* bitcast ([3 x int]* %X to [2 x int]*),
2205    //                        long 0, long 0)
2206    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
2207    //
2208    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
2209      if (const PointerType *SPT =
2210          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2211        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2212          if (const ArrayType *CAT =
2213        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2214            if (CAT->getElementType() == SAT->getElementType())
2215              return inBounds ?
2216                ConstantExpr::getInBoundsGetElementPtr(
2217                      (Constant*)CE->getOperand(0), Idxs, NumIdx) :
2218                ConstantExpr::getGetElementPtr(
2219                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
2220    }
2221  }
2222
2223  // Check to see if any array indices are not within the corresponding
2224  // notional array bounds. If so, try to determine if they can be factored
2225  // out into preceding dimensions.
2226  bool Unknown = false;
2227  SmallVector<Constant *, 8> NewIdxs;
2228  const Type *Ty = C->getType();
2229  const Type *Prev = 0;
2230  for (unsigned i = 0; i != NumIdx;
2231       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2232    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2233      if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2234        if (ATy->getNumElements() <= INT64_MAX &&
2235            ATy->getNumElements() != 0 &&
2236            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2237          if (isa<SequentialType>(Prev)) {
2238            // It's out of range, but we can factor it into the prior
2239            // dimension.
2240            NewIdxs.resize(NumIdx);
2241            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2242                                                   ATy->getNumElements());
2243            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2244
2245            Constant *PrevIdx = Idxs[i-1];
2246            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2247
2248            // Before adding, extend both operands to i64 to avoid
2249            // overflow trouble.
2250            if (!PrevIdx->getType()->isIntegerTy(64))
2251              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2252                                           Type::getInt64Ty(Div->getContext()));
2253            if (!Div->getType()->isIntegerTy(64))
2254              Div = ConstantExpr::getSExt(Div,
2255                                          Type::getInt64Ty(Div->getContext()));
2256
2257            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2258          } else {
2259            // It's out of range, but the prior dimension is a struct
2260            // so we can't do anything about it.
2261            Unknown = true;
2262          }
2263        }
2264    } else {
2265      // We don't know if it's in range or not.
2266      Unknown = true;
2267    }
2268  }
2269
2270  // If we did any factoring, start over with the adjusted indices.
2271  if (!NewIdxs.empty()) {
2272    for (unsigned i = 0; i != NumIdx; ++i)
2273      if (!NewIdxs[i]) NewIdxs[i] = Idxs[i];
2274    return inBounds ?
2275      ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
2276                                             NewIdxs.size()) :
2277      ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
2278  }
2279
2280  // If all indices are known integers and normalized, we can do a simple
2281  // check for the "inbounds" property.
2282  if (!Unknown && !inBounds &&
2283      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
2284    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
2285
2286  return 0;
2287}
2288