ConstantFold.cpp revision 3bfbc4587a7e79f08f8c126a9e62c3475fb90f8b
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified ConstantVector node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(LLVMContext &Context, ConstantVector *CV,
45                                       const VectorType *DstTy) {
46  // If this cast changes element count then we can't handle it here:
47  // doing so requires endianness information.  This should be handled by
48  // Analysis/ConstantFolding.cpp
49  unsigned NumElts = DstTy->getNumElements();
50  if (NumElts != CV->getNumOperands())
51    return 0;
52
53  // Check to verify that all elements of the input are simple.
54  for (unsigned i = 0; i != NumElts; ++i) {
55    if (!isa<ConstantInt>(CV->getOperand(i)) &&
56        !isa<ConstantFP>(CV->getOperand(i)))
57      return 0;
58  }
59
60  // Bitcast each element now.
61  std::vector<Constant*> Result;
62  const Type *DstEltTy = DstTy->getElementType();
63  for (unsigned i = 0; i != NumElts; ++i)
64    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
65                                                    DstEltTy));
66  return ConstantVector::get(Result);
67}
68
69/// This function determines which opcode to use to fold two constant cast
70/// expressions together. It uses CastInst::isEliminableCastPair to determine
71/// the opcode. Consequently its just a wrapper around that function.
72/// @brief Determine if it is valid to fold a cast of a cast
73static unsigned
74foldConstantCastPair(
75  unsigned opc,          ///< opcode of the second cast constant expression
76  const ConstantExpr*Op, ///< the first cast constant expression
77  const Type *DstTy      ///< desintation type of the first cast
78) {
79  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
80  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
81  assert(CastInst::isCast(opc) && "Invalid cast opcode");
82
83  // The the types and opcodes for the two Cast constant expressions
84  const Type *SrcTy = Op->getOperand(0)->getType();
85  const Type *MidTy = Op->getType();
86  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
87  Instruction::CastOps secondOp = Instruction::CastOps(opc);
88
89  // Let CastInst::isEliminableCastPair do the heavy lifting.
90  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
91                                        Type::getInt64Ty(DstTy->getContext()));
92}
93
94static Constant *FoldBitCast(LLVMContext &Context,
95                             Constant *V, const Type *DestTy) {
96  const Type *SrcTy = V->getType();
97  if (SrcTy == DestTy)
98    return V; // no-op cast
99
100  // Check to see if we are casting a pointer to an aggregate to a pointer to
101  // the first element.  If so, return the appropriate GEP instruction.
102  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
103    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
104      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
105        SmallVector<Value*, 8> IdxList;
106        Value *Zero = Constant::getNullValue(Type::getInt32Ty(Context));
107        IdxList.push_back(Zero);
108        const Type *ElTy = PTy->getElementType();
109        while (ElTy != DPTy->getElementType()) {
110          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
111            if (STy->getNumElements() == 0) break;
112            ElTy = STy->getElementType(0);
113            IdxList.push_back(Zero);
114          } else if (const SequentialType *STy =
115                     dyn_cast<SequentialType>(ElTy)) {
116            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
117            ElTy = STy->getElementType();
118            IdxList.push_back(Zero);
119          } else {
120            break;
121          }
122        }
123
124        if (ElTy == DPTy->getElementType())
125          // This GEP is inbounds because all indices are zero.
126          return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
127                                                        IdxList.size());
128      }
129
130  // Handle casts from one vector constant to another.  We know that the src
131  // and dest type have the same size (otherwise its an illegal cast).
132  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
133    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
134      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
135             "Not cast between same sized vectors!");
136      SrcTy = NULL;
137      // First, check for null.  Undef is already handled.
138      if (isa<ConstantAggregateZero>(V))
139        return Constant::getNullValue(DestTy);
140
141      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
142        return BitCastConstantVector(Context, CV, DestPTy);
143    }
144
145    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
146    // This allows for other simplifications (although some of them
147    // can only be handled by Analysis/ConstantFolding.cpp).
148    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
149      return ConstantExpr::getBitCast(
150                                     ConstantVector::get(&V, 1), DestPTy);
151  }
152
153  // Finally, implement bitcast folding now.   The code below doesn't handle
154  // bitcast right.
155  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
156    return ConstantPointerNull::get(cast<PointerType>(DestTy));
157
158  // Handle integral constant input.
159  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
160    if (DestTy->isInteger())
161      // Integral -> Integral. This is a no-op because the bit widths must
162      // be the same. Consequently, we just fold to V.
163      return V;
164
165    if (DestTy->isFloatingPoint())
166      return ConstantFP::get(Context, APFloat(CI->getValue(),
167                                     DestTy != Type::getPPC_FP128Ty(Context)));
168
169    // Otherwise, can't fold this (vector?)
170    return 0;
171  }
172
173  // Handle ConstantFP input.
174  if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
175    // FP -> Integral.
176    return ConstantInt::get(Context, FP->getValueAPF().bitcastToAPInt());
177
178  return 0;
179}
180
181
182Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
183                                            unsigned opc, const Constant *V,
184                                            const Type *DestTy) {
185  if (isa<UndefValue>(V)) {
186    // zext(undef) = 0, because the top bits will be zero.
187    // sext(undef) = 0, because the top bits will all be the same.
188    // [us]itofp(undef) = 0, because the result value is bounded.
189    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
190        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
191      return Constant::getNullValue(DestTy);
192    return UndefValue::get(DestTy);
193  }
194  // No compile-time operations on this type yet.
195  if (V->getType() == Type::getPPC_FP128Ty(Context) || DestTy == Type::getPPC_FP128Ty(Context))
196    return 0;
197
198  // If the cast operand is a constant expression, there's a few things we can
199  // do to try to simplify it.
200  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
201    if (CE->isCast()) {
202      // Try hard to fold cast of cast because they are often eliminable.
203      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
204        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
205    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
206      // If all of the indexes in the GEP are null values, there is no pointer
207      // adjustment going on.  We might as well cast the source pointer.
208      bool isAllNull = true;
209      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
210        if (!CE->getOperand(i)->isNullValue()) {
211          isAllNull = false;
212          break;
213        }
214      if (isAllNull)
215        // This is casting one pointer type to another, always BitCast
216        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
217    }
218  }
219
220  // If the cast operand is a constant vector, perform the cast by
221  // operating on each element. In the cast of bitcasts, the element
222  // count may be mismatched; don't attempt to handle that here.
223  if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
224    if (isa<VectorType>(DestTy) &&
225        cast<VectorType>(DestTy)->getNumElements() ==
226        CV->getType()->getNumElements()) {
227      std::vector<Constant*> res;
228      const VectorType *DestVecTy = cast<VectorType>(DestTy);
229      const Type *DstEltTy = DestVecTy->getElementType();
230      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
231        res.push_back(ConstantExpr::getCast(opc,
232                                            CV->getOperand(i), DstEltTy));
233      return ConstantVector::get(DestVecTy, res);
234    }
235
236  // We actually have to do a cast now. Perform the cast according to the
237  // opcode specified.
238  switch (opc) {
239  case Instruction::FPTrunc:
240  case Instruction::FPExt:
241    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
242      bool ignored;
243      APFloat Val = FPC->getValueAPF();
244      Val.convert(DestTy == Type::getFloatTy(Context) ? APFloat::IEEEsingle :
245                  DestTy == Type::getDoubleTy(Context) ? APFloat::IEEEdouble :
246                  DestTy == Type::getX86_FP80Ty(Context) ? APFloat::x87DoubleExtended :
247                  DestTy == Type::getFP128Ty(Context) ? APFloat::IEEEquad :
248                  APFloat::Bogus,
249                  APFloat::rmNearestTiesToEven, &ignored);
250      return ConstantFP::get(Context, Val);
251    }
252    return 0; // Can't fold.
253  case Instruction::FPToUI:
254  case Instruction::FPToSI:
255    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
256      const APFloat &V = FPC->getValueAPF();
257      bool ignored;
258      uint64_t x[2];
259      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
260      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
261                                APFloat::rmTowardZero, &ignored);
262      APInt Val(DestBitWidth, 2, x);
263      return ConstantInt::get(Context, Val);
264    }
265    return 0; // Can't fold.
266  case Instruction::IntToPtr:   //always treated as unsigned
267    if (V->isNullValue())       // Is it an integral null value?
268      return ConstantPointerNull::get(cast<PointerType>(DestTy));
269    return 0;                   // Other pointer types cannot be casted
270  case Instruction::PtrToInt:   // always treated as unsigned
271    if (V->isNullValue())       // is it a null pointer value?
272      return ConstantInt::get(DestTy, 0);
273    return 0;                   // Other pointer types cannot be casted
274  case Instruction::UIToFP:
275  case Instruction::SIToFP:
276    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
277      APInt api = CI->getValue();
278      const uint64_t zero[] = {0, 0};
279      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
280                                  2, zero));
281      (void)apf.convertFromAPInt(api,
282                                 opc==Instruction::SIToFP,
283                                 APFloat::rmNearestTiesToEven);
284      return ConstantFP::get(Context, apf);
285    }
286    return 0;
287  case Instruction::ZExt:
288    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
289      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
290      APInt Result(CI->getValue());
291      Result.zext(BitWidth);
292      return ConstantInt::get(Context, Result);
293    }
294    return 0;
295  case Instruction::SExt:
296    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
297      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
298      APInt Result(CI->getValue());
299      Result.sext(BitWidth);
300      return ConstantInt::get(Context, Result);
301    }
302    return 0;
303  case Instruction::Trunc:
304    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
305      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
306      APInt Result(CI->getValue());
307      Result.trunc(BitWidth);
308      return ConstantInt::get(Context, Result);
309    }
310    return 0;
311  case Instruction::BitCast:
312    return FoldBitCast(Context, const_cast<Constant*>(V), DestTy);
313  default:
314    assert(!"Invalid CE CastInst opcode");
315    break;
316  }
317
318  llvm_unreachable("Failed to cast constant expression");
319  return 0;
320}
321
322Constant *llvm::ConstantFoldSelectInstruction(LLVMContext&,
323                                              const Constant *Cond,
324                                              const Constant *V1,
325                                              const Constant *V2) {
326  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
327    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
328
329  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
330  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
331  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
332  if (V1 == V2) return const_cast<Constant*>(V1);
333  return 0;
334}
335
336Constant *llvm::ConstantFoldExtractElementInstruction(LLVMContext &Context,
337                                                      const Constant *Val,
338                                                      const Constant *Idx) {
339  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
340    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
341  if (Val->isNullValue())  // ee(zero, x) -> zero
342    return Constant::getNullValue(
343                          cast<VectorType>(Val->getType())->getElementType());
344
345  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
346    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
347      return CVal->getOperand(CIdx->getZExtValue());
348    } else if (isa<UndefValue>(Idx)) {
349      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
350      return CVal->getOperand(0);
351    }
352  }
353  return 0;
354}
355
356Constant *llvm::ConstantFoldInsertElementInstruction(LLVMContext &Context,
357                                                     const Constant *Val,
358                                                     const Constant *Elt,
359                                                     const Constant *Idx) {
360  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
361  if (!CIdx) return 0;
362  APInt idxVal = CIdx->getValue();
363  if (isa<UndefValue>(Val)) {
364    // Insertion of scalar constant into vector undef
365    // Optimize away insertion of undef
366    if (isa<UndefValue>(Elt))
367      return const_cast<Constant*>(Val);
368    // Otherwise break the aggregate undef into multiple undefs and do
369    // the insertion
370    unsigned numOps =
371      cast<VectorType>(Val->getType())->getNumElements();
372    std::vector<Constant*> Ops;
373    Ops.reserve(numOps);
374    for (unsigned i = 0; i < numOps; ++i) {
375      const Constant *Op =
376        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
377      Ops.push_back(const_cast<Constant*>(Op));
378    }
379    return ConstantVector::get(Ops);
380  }
381  if (isa<ConstantAggregateZero>(Val)) {
382    // Insertion of scalar constant into vector aggregate zero
383    // Optimize away insertion of zero
384    if (Elt->isNullValue())
385      return const_cast<Constant*>(Val);
386    // Otherwise break the aggregate zero into multiple zeros and do
387    // the insertion
388    unsigned numOps =
389      cast<VectorType>(Val->getType())->getNumElements();
390    std::vector<Constant*> Ops;
391    Ops.reserve(numOps);
392    for (unsigned i = 0; i < numOps; ++i) {
393      const Constant *Op =
394        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
395      Ops.push_back(const_cast<Constant*>(Op));
396    }
397    return ConstantVector::get(Ops);
398  }
399  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
400    // Insertion of scalar constant into vector constant
401    std::vector<Constant*> Ops;
402    Ops.reserve(CVal->getNumOperands());
403    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
404      const Constant *Op =
405        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
406      Ops.push_back(const_cast<Constant*>(Op));
407    }
408    return ConstantVector::get(Ops);
409  }
410
411  return 0;
412}
413
414/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
415/// return the specified element value.  Otherwise return null.
416static Constant *GetVectorElement(LLVMContext &Context, const Constant *C,
417                                  unsigned EltNo) {
418  if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
419    return CV->getOperand(EltNo);
420
421  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
422  if (isa<ConstantAggregateZero>(C))
423    return Constant::getNullValue(EltTy);
424  if (isa<UndefValue>(C))
425    return UndefValue::get(EltTy);
426  return 0;
427}
428
429Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
430                                                     const Constant *V1,
431                                                     const Constant *V2,
432                                                     const Constant *Mask) {
433  // Undefined shuffle mask -> undefined value.
434  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
435
436  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
437  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
438  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
439
440  // Loop over the shuffle mask, evaluating each element.
441  SmallVector<Constant*, 32> Result;
442  for (unsigned i = 0; i != MaskNumElts; ++i) {
443    Constant *InElt = GetVectorElement(Context, Mask, i);
444    if (InElt == 0) return 0;
445
446    if (isa<UndefValue>(InElt))
447      InElt = UndefValue::get(EltTy);
448    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
449      unsigned Elt = CI->getZExtValue();
450      if (Elt >= SrcNumElts*2)
451        InElt = UndefValue::get(EltTy);
452      else if (Elt >= SrcNumElts)
453        InElt = GetVectorElement(Context, V2, Elt - SrcNumElts);
454      else
455        InElt = GetVectorElement(Context, V1, Elt);
456      if (InElt == 0) return 0;
457    } else {
458      // Unknown value.
459      return 0;
460    }
461    Result.push_back(InElt);
462  }
463
464  return ConstantVector::get(&Result[0], Result.size());
465}
466
467Constant *llvm::ConstantFoldExtractValueInstruction(LLVMContext &Context,
468                                                    const Constant *Agg,
469                                                    const unsigned *Idxs,
470                                                    unsigned NumIdx) {
471  // Base case: no indices, so return the entire value.
472  if (NumIdx == 0)
473    return const_cast<Constant *>(Agg);
474
475  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
476    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
477                                                            Idxs,
478                                                            Idxs + NumIdx));
479
480  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
481    return
482      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
483                                                              Idxs,
484                                                              Idxs + NumIdx));
485
486  // Otherwise recurse.
487  return ConstantFoldExtractValueInstruction(Context, Agg->getOperand(*Idxs),
488                                             Idxs+1, NumIdx-1);
489}
490
491Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
492                                                   const Constant *Agg,
493                                                   const Constant *Val,
494                                                   const unsigned *Idxs,
495                                                   unsigned NumIdx) {
496  // Base case: no indices, so replace the entire value.
497  if (NumIdx == 0)
498    return const_cast<Constant *>(Val);
499
500  if (isa<UndefValue>(Agg)) {
501    // Insertion of constant into aggregate undef
502    // Optimize away insertion of undef
503    if (isa<UndefValue>(Val))
504      return const_cast<Constant*>(Agg);
505    // Otherwise break the aggregate undef into multiple undefs and do
506    // the insertion
507    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
508    unsigned numOps;
509    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
510      numOps = AR->getNumElements();
511    else
512      numOps = cast<StructType>(AggTy)->getNumElements();
513    std::vector<Constant*> Ops(numOps);
514    for (unsigned i = 0; i < numOps; ++i) {
515      const Type *MemberTy = AggTy->getTypeAtIndex(i);
516      const Constant *Op =
517        (*Idxs == i) ?
518        ConstantFoldInsertValueInstruction(Context, UndefValue::get(MemberTy),
519                                           Val, Idxs+1, NumIdx-1) :
520        UndefValue::get(MemberTy);
521      Ops[i] = const_cast<Constant*>(Op);
522    }
523    if (isa<StructType>(AggTy))
524      return ConstantStruct::get(Context, Ops);
525    else
526      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
527  }
528  if (isa<ConstantAggregateZero>(Agg)) {
529    // Insertion of constant into aggregate zero
530    // Optimize away insertion of zero
531    if (Val->isNullValue())
532      return const_cast<Constant*>(Agg);
533    // Otherwise break the aggregate zero into multiple zeros and do
534    // the insertion
535    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
536    unsigned numOps;
537    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
538      numOps = AR->getNumElements();
539    else
540      numOps = cast<StructType>(AggTy)->getNumElements();
541    std::vector<Constant*> Ops(numOps);
542    for (unsigned i = 0; i < numOps; ++i) {
543      const Type *MemberTy = AggTy->getTypeAtIndex(i);
544      const Constant *Op =
545        (*Idxs == i) ?
546        ConstantFoldInsertValueInstruction(Context,
547                                           Constant::getNullValue(MemberTy),
548                                           Val, Idxs+1, NumIdx-1) :
549        Constant::getNullValue(MemberTy);
550      Ops[i] = const_cast<Constant*>(Op);
551    }
552    if (isa<StructType>(AggTy))
553      return ConstantStruct::get(Context, Ops);
554    else
555      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
556  }
557  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
558    // Insertion of constant into aggregate constant
559    std::vector<Constant*> Ops(Agg->getNumOperands());
560    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
561      const Constant *Op =
562        (*Idxs == i) ?
563        ConstantFoldInsertValueInstruction(Context, Agg->getOperand(i),
564                                           Val, Idxs+1, NumIdx-1) :
565        Agg->getOperand(i);
566      Ops[i] = const_cast<Constant*>(Op);
567    }
568    Constant *C;
569    if (isa<StructType>(Agg->getType()))
570      C = ConstantStruct::get(Context, Ops);
571    else
572      C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
573    return C;
574  }
575
576  return 0;
577}
578
579
580Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
581                                              unsigned Opcode,
582                                              const Constant *C1,
583                                              const Constant *C2) {
584  // No compile-time operations on this type yet.
585  if (C1->getType() == Type::getPPC_FP128Ty(Context))
586    return 0;
587
588  // Handle UndefValue up front
589  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
590    switch (Opcode) {
591    case Instruction::Xor:
592      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
593        // Handle undef ^ undef -> 0 special case. This is a common
594        // idiom (misuse).
595        return Constant::getNullValue(C1->getType());
596      // Fallthrough
597    case Instruction::Add:
598    case Instruction::Sub:
599      return UndefValue::get(C1->getType());
600    case Instruction::Mul:
601    case Instruction::And:
602      return Constant::getNullValue(C1->getType());
603    case Instruction::UDiv:
604    case Instruction::SDiv:
605    case Instruction::URem:
606    case Instruction::SRem:
607      if (!isa<UndefValue>(C2))                    // undef / X -> 0
608        return Constant::getNullValue(C1->getType());
609      return const_cast<Constant*>(C2);            // X / undef -> undef
610    case Instruction::Or:                          // X | undef -> -1
611      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
612        return Constant::getAllOnesValue(PTy);
613      return Constant::getAllOnesValue(C1->getType());
614    case Instruction::LShr:
615      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
616        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
617      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
618                                                    // undef lshr X -> 0
619    case Instruction::AShr:
620      if (!isa<UndefValue>(C2))
621        return const_cast<Constant*>(C1);           // undef ashr X --> undef
622      else if (isa<UndefValue>(C1))
623        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
624      else
625        return const_cast<Constant*>(C1);           // X ashr undef --> X
626    case Instruction::Shl:
627      // undef << X -> 0   or   X << undef -> 0
628      return Constant::getNullValue(C1->getType());
629    }
630  }
631
632  // Handle simplifications when the RHS is a constant int.
633  if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
634    switch (Opcode) {
635    case Instruction::Add:
636      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X + 0 == X
637      break;
638    case Instruction::Sub:
639      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X - 0 == X
640      break;
641    case Instruction::Mul:
642      if (CI2->equalsInt(0)) return const_cast<Constant*>(C2);  // X * 0 == 0
643      if (CI2->equalsInt(1))
644        return const_cast<Constant*>(C1);                       // X * 1 == X
645      break;
646    case Instruction::UDiv:
647    case Instruction::SDiv:
648      if (CI2->equalsInt(1))
649        return const_cast<Constant*>(C1);                     // X / 1 == X
650      if (CI2->equalsInt(0))
651        return UndefValue::get(CI2->getType());               // X / 0 == undef
652      break;
653    case Instruction::URem:
654    case Instruction::SRem:
655      if (CI2->equalsInt(1))
656        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
657      if (CI2->equalsInt(0))
658        return UndefValue::get(CI2->getType());               // X % 0 == undef
659      break;
660    case Instruction::And:
661      if (CI2->isZero()) return const_cast<Constant*>(C2);    // X & 0 == 0
662      if (CI2->isAllOnesValue())
663        return const_cast<Constant*>(C1);                     // X & -1 == X
664
665      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
666        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
667        if (CE1->getOpcode() == Instruction::ZExt) {
668          unsigned DstWidth = CI2->getType()->getBitWidth();
669          unsigned SrcWidth =
670            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
671          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
672          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
673            return const_cast<Constant*>(C1);
674        }
675
676        // If and'ing the address of a global with a constant, fold it.
677        if (CE1->getOpcode() == Instruction::PtrToInt &&
678            isa<GlobalValue>(CE1->getOperand(0))) {
679          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
680
681          // Functions are at least 4-byte aligned.
682          unsigned GVAlign = GV->getAlignment();
683          if (isa<Function>(GV))
684            GVAlign = std::max(GVAlign, 4U);
685
686          if (GVAlign > 1) {
687            unsigned DstWidth = CI2->getType()->getBitWidth();
688            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
689            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
690
691            // If checking bits we know are clear, return zero.
692            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
693              return Constant::getNullValue(CI2->getType());
694          }
695        }
696      }
697      break;
698    case Instruction::Or:
699      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X | 0 == X
700      if (CI2->isAllOnesValue())
701        return const_cast<Constant*>(C2);  // X | -1 == -1
702      break;
703    case Instruction::Xor:
704      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X ^ 0 == X
705      break;
706    case Instruction::AShr:
707      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
708      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
709        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
710          return ConstantExpr::getLShr(const_cast<Constant*>(C1),
711                                             const_cast<Constant*>(C2));
712      break;
713    }
714  }
715
716  // At this point we know neither constant is an UndefValue.
717  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
718    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
719      using namespace APIntOps;
720      const APInt &C1V = CI1->getValue();
721      const APInt &C2V = CI2->getValue();
722      switch (Opcode) {
723      default:
724        break;
725      case Instruction::Add:
726        return ConstantInt::get(Context, C1V + C2V);
727      case Instruction::Sub:
728        return ConstantInt::get(Context, C1V - C2V);
729      case Instruction::Mul:
730        return ConstantInt::get(Context, C1V * C2V);
731      case Instruction::UDiv:
732        assert(!CI2->isNullValue() && "Div by zero handled above");
733        return ConstantInt::get(Context, C1V.udiv(C2V));
734      case Instruction::SDiv:
735        assert(!CI2->isNullValue() && "Div by zero handled above");
736        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
737          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
738        return ConstantInt::get(Context, C1V.sdiv(C2V));
739      case Instruction::URem:
740        assert(!CI2->isNullValue() && "Div by zero handled above");
741        return ConstantInt::get(Context, C1V.urem(C2V));
742      case Instruction::SRem:
743        assert(!CI2->isNullValue() && "Div by zero handled above");
744        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
745          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
746        return ConstantInt::get(Context, C1V.srem(C2V));
747      case Instruction::And:
748        return ConstantInt::get(Context, C1V & C2V);
749      case Instruction::Or:
750        return ConstantInt::get(Context, C1V | C2V);
751      case Instruction::Xor:
752        return ConstantInt::get(Context, C1V ^ C2V);
753      case Instruction::Shl: {
754        uint32_t shiftAmt = C2V.getZExtValue();
755        if (shiftAmt < C1V.getBitWidth())
756          return ConstantInt::get(Context, C1V.shl(shiftAmt));
757        else
758          return UndefValue::get(C1->getType()); // too big shift is undef
759      }
760      case Instruction::LShr: {
761        uint32_t shiftAmt = C2V.getZExtValue();
762        if (shiftAmt < C1V.getBitWidth())
763          return ConstantInt::get(Context, C1V.lshr(shiftAmt));
764        else
765          return UndefValue::get(C1->getType()); // too big shift is undef
766      }
767      case Instruction::AShr: {
768        uint32_t shiftAmt = C2V.getZExtValue();
769        if (shiftAmt < C1V.getBitWidth())
770          return ConstantInt::get(Context, C1V.ashr(shiftAmt));
771        else
772          return UndefValue::get(C1->getType()); // too big shift is undef
773      }
774      }
775    }
776
777    switch (Opcode) {
778    case Instruction::SDiv:
779    case Instruction::UDiv:
780    case Instruction::URem:
781    case Instruction::SRem:
782    case Instruction::LShr:
783    case Instruction::AShr:
784    case Instruction::Shl:
785      if (CI1->equalsInt(0)) return const_cast<Constant*>(C1);
786      break;
787    default:
788      break;
789    }
790  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
791    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
792      APFloat C1V = CFP1->getValueAPF();
793      APFloat C2V = CFP2->getValueAPF();
794      APFloat C3V = C1V;  // copy for modification
795      switch (Opcode) {
796      default:
797        break;
798      case Instruction::FAdd:
799        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
800        return ConstantFP::get(Context, C3V);
801      case Instruction::FSub:
802        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
803        return ConstantFP::get(Context, C3V);
804      case Instruction::FMul:
805        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
806        return ConstantFP::get(Context, C3V);
807      case Instruction::FDiv:
808        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
809        return ConstantFP::get(Context, C3V);
810      case Instruction::FRem:
811        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
812        return ConstantFP::get(Context, C3V);
813      }
814    }
815  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
816    const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
817    const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
818    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
819        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
820      std::vector<Constant*> Res;
821      const Type* EltTy = VTy->getElementType();
822      const Constant *C1 = 0;
823      const Constant *C2 = 0;
824      switch (Opcode) {
825      default:
826        break;
827      case Instruction::Add:
828        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
829          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
830          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
831          Res.push_back(ConstantExpr::getAdd(const_cast<Constant*>(C1),
832                                                   const_cast<Constant*>(C2)));
833        }
834        return ConstantVector::get(Res);
835      case Instruction::FAdd:
836        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
837          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
838          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
839          Res.push_back(ConstantExpr::getFAdd(const_cast<Constant*>(C1),
840                                                    const_cast<Constant*>(C2)));
841        }
842        return ConstantVector::get(Res);
843      case Instruction::Sub:
844        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
845          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
846          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
847          Res.push_back(ConstantExpr::getSub(const_cast<Constant*>(C1),
848                                                   const_cast<Constant*>(C2)));
849        }
850        return ConstantVector::get(Res);
851      case Instruction::FSub:
852        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
853          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
854          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
855          Res.push_back(ConstantExpr::getFSub(const_cast<Constant*>(C1),
856                                                    const_cast<Constant*>(C2)));
857        }
858        return ConstantVector::get(Res);
859      case Instruction::Mul:
860        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
861          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
862          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
863          Res.push_back(ConstantExpr::getMul(const_cast<Constant*>(C1),
864                                                   const_cast<Constant*>(C2)));
865        }
866        return ConstantVector::get(Res);
867      case Instruction::FMul:
868        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
869          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
870          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
871          Res.push_back(ConstantExpr::getFMul(const_cast<Constant*>(C1),
872                                                    const_cast<Constant*>(C2)));
873        }
874        return ConstantVector::get(Res);
875      case Instruction::UDiv:
876        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
877          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
878          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
879          Res.push_back(ConstantExpr::getUDiv(const_cast<Constant*>(C1),
880                                                    const_cast<Constant*>(C2)));
881        }
882        return ConstantVector::get(Res);
883      case Instruction::SDiv:
884        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
885          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
886          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
887          Res.push_back(ConstantExpr::getSDiv(const_cast<Constant*>(C1),
888                                                    const_cast<Constant*>(C2)));
889        }
890        return ConstantVector::get(Res);
891      case Instruction::FDiv:
892        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
893          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
894          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
895          Res.push_back(ConstantExpr::getFDiv(const_cast<Constant*>(C1),
896                                                    const_cast<Constant*>(C2)));
897        }
898        return ConstantVector::get(Res);
899      case Instruction::URem:
900        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
901          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
902          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
903          Res.push_back(ConstantExpr::getURem(const_cast<Constant*>(C1),
904                                                    const_cast<Constant*>(C2)));
905        }
906        return ConstantVector::get(Res);
907      case Instruction::SRem:
908        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
909          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
910          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
911          Res.push_back(ConstantExpr::getSRem(const_cast<Constant*>(C1),
912                                                    const_cast<Constant*>(C2)));
913        }
914        return ConstantVector::get(Res);
915      case Instruction::FRem:
916        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
917          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
918          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
919          Res.push_back(ConstantExpr::getFRem(const_cast<Constant*>(C1),
920                                                    const_cast<Constant*>(C2)));
921        }
922        return ConstantVector::get(Res);
923      case Instruction::And:
924        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
925          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
926          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
927          Res.push_back(ConstantExpr::getAnd(const_cast<Constant*>(C1),
928                                                   const_cast<Constant*>(C2)));
929        }
930        return ConstantVector::get(Res);
931      case Instruction::Or:
932        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
933          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
934          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
935          Res.push_back(ConstantExpr::getOr(const_cast<Constant*>(C1),
936                                                  const_cast<Constant*>(C2)));
937        }
938        return ConstantVector::get(Res);
939      case Instruction::Xor:
940        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
941          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
942          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
943          Res.push_back(ConstantExpr::getXor(const_cast<Constant*>(C1),
944                                                   const_cast<Constant*>(C2)));
945        }
946        return ConstantVector::get(Res);
947      case Instruction::LShr:
948        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
949          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
950          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
951          Res.push_back(ConstantExpr::getLShr(const_cast<Constant*>(C1),
952                                                    const_cast<Constant*>(C2)));
953        }
954        return ConstantVector::get(Res);
955      case Instruction::AShr:
956        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
957          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
958          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
959          Res.push_back(ConstantExpr::getAShr(const_cast<Constant*>(C1),
960                                                    const_cast<Constant*>(C2)));
961        }
962        return ConstantVector::get(Res);
963      case Instruction::Shl:
964        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
965          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
966          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
967          Res.push_back(ConstantExpr::getShl(const_cast<Constant*>(C1),
968                                                   const_cast<Constant*>(C2)));
969        }
970        return ConstantVector::get(Res);
971      }
972    }
973  }
974
975  if (isa<ConstantExpr>(C1)) {
976    // There are many possible foldings we could do here.  We should probably
977    // at least fold add of a pointer with an integer into the appropriate
978    // getelementptr.  This will improve alias analysis a bit.
979  } else if (isa<ConstantExpr>(C2)) {
980    // If C2 is a constant expr and C1 isn't, flop them around and fold the
981    // other way if possible.
982    switch (Opcode) {
983    case Instruction::Add:
984    case Instruction::FAdd:
985    case Instruction::Mul:
986    case Instruction::FMul:
987    case Instruction::And:
988    case Instruction::Or:
989    case Instruction::Xor:
990      // No change of opcode required.
991      return ConstantFoldBinaryInstruction(Context, Opcode, C2, C1);
992
993    case Instruction::Shl:
994    case Instruction::LShr:
995    case Instruction::AShr:
996    case Instruction::Sub:
997    case Instruction::FSub:
998    case Instruction::SDiv:
999    case Instruction::UDiv:
1000    case Instruction::FDiv:
1001    case Instruction::URem:
1002    case Instruction::SRem:
1003    case Instruction::FRem:
1004    default:  // These instructions cannot be flopped around.
1005      break;
1006    }
1007  }
1008
1009  // We don't know how to fold this.
1010  return 0;
1011}
1012
1013/// isZeroSizedType - This type is zero sized if its an array or structure of
1014/// zero sized types.  The only leaf zero sized type is an empty structure.
1015static bool isMaybeZeroSizedType(const Type *Ty) {
1016  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
1017  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1018
1019    // If all of elements have zero size, this does too.
1020    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1021      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1022    return true;
1023
1024  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1025    return isMaybeZeroSizedType(ATy->getElementType());
1026  }
1027  return false;
1028}
1029
1030/// IdxCompare - Compare the two constants as though they were getelementptr
1031/// indices.  This allows coersion of the types to be the same thing.
1032///
1033/// If the two constants are the "same" (after coersion), return 0.  If the
1034/// first is less than the second, return -1, if the second is less than the
1035/// first, return 1.  If the constants are not integral, return -2.
1036///
1037static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
1038                      const Type *ElTy) {
1039  if (C1 == C2) return 0;
1040
1041  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1042  // anything with them.
1043  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1044    return -2; // don't know!
1045
1046  // Ok, we have two differing integer indices.  Sign extend them to be the same
1047  // type.  Long is always big enough, so we use it.
1048  if (C1->getType() != Type::getInt64Ty(Context))
1049    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
1050
1051  if (C2->getType() != Type::getInt64Ty(Context))
1052    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
1053
1054  if (C1 == C2) return 0;  // They are equal
1055
1056  // If the type being indexed over is really just a zero sized type, there is
1057  // no pointer difference being made here.
1058  if (isMaybeZeroSizedType(ElTy))
1059    return -2; // dunno.
1060
1061  // If they are really different, now that they are the same type, then we
1062  // found a difference!
1063  if (cast<ConstantInt>(C1)->getSExtValue() <
1064      cast<ConstantInt>(C2)->getSExtValue())
1065    return -1;
1066  else
1067    return 1;
1068}
1069
1070/// evaluateFCmpRelation - This function determines if there is anything we can
1071/// decide about the two constants provided.  This doesn't need to handle simple
1072/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1073/// If we can determine that the two constants have a particular relation to
1074/// each other, we should return the corresponding FCmpInst predicate,
1075/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1076/// ConstantFoldCompareInstruction.
1077///
1078/// To simplify this code we canonicalize the relation so that the first
1079/// operand is always the most "complex" of the two.  We consider ConstantFP
1080/// to be the simplest, and ConstantExprs to be the most complex.
1081static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
1082                                                const Constant *V1,
1083                                                const Constant *V2) {
1084  assert(V1->getType() == V2->getType() &&
1085         "Cannot compare values of different types!");
1086
1087  // No compile-time operations on this type yet.
1088  if (V1->getType() == Type::getPPC_FP128Ty(Context))
1089    return FCmpInst::BAD_FCMP_PREDICATE;
1090
1091  // Handle degenerate case quickly
1092  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1093
1094  if (!isa<ConstantExpr>(V1)) {
1095    if (!isa<ConstantExpr>(V2)) {
1096      // We distilled thisUse the standard constant folder for a few cases
1097      ConstantInt *R = 0;
1098      Constant *C1 = const_cast<Constant*>(V1);
1099      Constant *C2 = const_cast<Constant*>(V2);
1100      R = dyn_cast<ConstantInt>(
1101                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
1102      if (R && !R->isZero())
1103        return FCmpInst::FCMP_OEQ;
1104      R = dyn_cast<ConstantInt>(
1105                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
1106      if (R && !R->isZero())
1107        return FCmpInst::FCMP_OLT;
1108      R = dyn_cast<ConstantInt>(
1109                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
1110      if (R && !R->isZero())
1111        return FCmpInst::FCMP_OGT;
1112
1113      // Nothing more we can do
1114      return FCmpInst::BAD_FCMP_PREDICATE;
1115    }
1116
1117    // If the first operand is simple and second is ConstantExpr, swap operands.
1118    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(Context, V2, V1);
1119    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1120      return FCmpInst::getSwappedPredicate(SwappedRelation);
1121  } else {
1122    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1123    // constantexpr or a simple constant.
1124    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1125    switch (CE1->getOpcode()) {
1126    case Instruction::FPTrunc:
1127    case Instruction::FPExt:
1128    case Instruction::UIToFP:
1129    case Instruction::SIToFP:
1130      // We might be able to do something with these but we don't right now.
1131      break;
1132    default:
1133      break;
1134    }
1135  }
1136  // There are MANY other foldings that we could perform here.  They will
1137  // probably be added on demand, as they seem needed.
1138  return FCmpInst::BAD_FCMP_PREDICATE;
1139}
1140
1141/// evaluateICmpRelation - This function determines if there is anything we can
1142/// decide about the two constants provided.  This doesn't need to handle simple
1143/// things like integer comparisons, but should instead handle ConstantExprs
1144/// and GlobalValues.  If we can determine that the two constants have a
1145/// particular relation to each other, we should return the corresponding ICmp
1146/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1147///
1148/// To simplify this code we canonicalize the relation so that the first
1149/// operand is always the most "complex" of the two.  We consider simple
1150/// constants (like ConstantInt) to be the simplest, followed by
1151/// GlobalValues, followed by ConstantExpr's (the most complex).
1152///
1153static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
1154                                                const Constant *V1,
1155                                                const Constant *V2,
1156                                                bool isSigned) {
1157  assert(V1->getType() == V2->getType() &&
1158         "Cannot compare different types of values!");
1159  if (V1 == V2) return ICmpInst::ICMP_EQ;
1160
1161  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1162    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1163      // We distilled this down to a simple case, use the standard constant
1164      // folder.
1165      ConstantInt *R = 0;
1166      Constant *C1 = const_cast<Constant*>(V1);
1167      Constant *C2 = const_cast<Constant*>(V2);
1168      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1169      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1170      if (R && !R->isZero())
1171        return pred;
1172      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1173      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1174      if (R && !R->isZero())
1175        return pred;
1176      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1177      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1178      if (R && !R->isZero())
1179        return pred;
1180
1181      // If we couldn't figure it out, bail.
1182      return ICmpInst::BAD_ICMP_PREDICATE;
1183    }
1184
1185    // If the first operand is simple, swap operands.
1186    ICmpInst::Predicate SwappedRelation =
1187      evaluateICmpRelation(Context, V2, V1, isSigned);
1188    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1189      return ICmpInst::getSwappedPredicate(SwappedRelation);
1190
1191  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1192    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1193      ICmpInst::Predicate SwappedRelation =
1194        evaluateICmpRelation(Context, V2, V1, isSigned);
1195      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1196        return ICmpInst::getSwappedPredicate(SwappedRelation);
1197      else
1198        return ICmpInst::BAD_ICMP_PREDICATE;
1199    }
1200
1201    // Now we know that the RHS is a GlobalValue or simple constant,
1202    // which (since the types must match) means that it's a ConstantPointerNull.
1203    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1204      // Don't try to decide equality of aliases.
1205      if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
1206        if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
1207          return ICmpInst::ICMP_NE;
1208    } else {
1209      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1210      // GlobalVals can never be null.  Don't try to evaluate aliases.
1211      if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
1212        return ICmpInst::ICMP_NE;
1213    }
1214  } else {
1215    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1216    // constantexpr, a CPR, or a simple constant.
1217    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1218    const Constant *CE1Op0 = CE1->getOperand(0);
1219
1220    switch (CE1->getOpcode()) {
1221    case Instruction::Trunc:
1222    case Instruction::FPTrunc:
1223    case Instruction::FPExt:
1224    case Instruction::FPToUI:
1225    case Instruction::FPToSI:
1226      break; // We can't evaluate floating point casts or truncations.
1227
1228    case Instruction::UIToFP:
1229    case Instruction::SIToFP:
1230    case Instruction::BitCast:
1231    case Instruction::ZExt:
1232    case Instruction::SExt:
1233      // If the cast is not actually changing bits, and the second operand is a
1234      // null pointer, do the comparison with the pre-casted value.
1235      if (V2->isNullValue() &&
1236          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1237        bool sgnd = isSigned;
1238        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1239        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1240        return evaluateICmpRelation(Context, CE1Op0,
1241                                    Constant::getNullValue(CE1Op0->getType()),
1242                                    sgnd);
1243      }
1244
1245      // If the dest type is a pointer type, and the RHS is a constantexpr cast
1246      // from the same type as the src of the LHS, evaluate the inputs.  This is
1247      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1248      // which happens a lot in compilers with tagged integers.
1249      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1250        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1251            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1252            CE1->getOperand(0)->getType()->isInteger()) {
1253          bool sgnd = isSigned;
1254          if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1255          if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1256          return evaluateICmpRelation(Context, CE1->getOperand(0),
1257                                      CE2->getOperand(0), sgnd);
1258        }
1259      break;
1260
1261    case Instruction::GetElementPtr:
1262      // Ok, since this is a getelementptr, we know that the constant has a
1263      // pointer type.  Check the various cases.
1264      if (isa<ConstantPointerNull>(V2)) {
1265        // If we are comparing a GEP to a null pointer, check to see if the base
1266        // of the GEP equals the null pointer.
1267        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1268          if (GV->hasExternalWeakLinkage())
1269            // Weak linkage GVals could be zero or not. We're comparing that
1270            // to null pointer so its greater-or-equal
1271            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1272          else
1273            // If its not weak linkage, the GVal must have a non-zero address
1274            // so the result is greater-than
1275            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
1276        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1277          // If we are indexing from a null pointer, check to see if we have any
1278          // non-zero indices.
1279          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1280            if (!CE1->getOperand(i)->isNullValue())
1281              // Offsetting from null, must not be equal.
1282              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1283          // Only zero indexes from null, must still be zero.
1284          return ICmpInst::ICMP_EQ;
1285        }
1286        // Otherwise, we can't really say if the first operand is null or not.
1287      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1288        if (isa<ConstantPointerNull>(CE1Op0)) {
1289          if (CPR2->hasExternalWeakLinkage())
1290            // Weak linkage GVals could be zero or not. We're comparing it to
1291            // a null pointer, so its less-or-equal
1292            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1293          else
1294            // If its not weak linkage, the GVal must have a non-zero address
1295            // so the result is less-than
1296            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1297        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1298          if (CPR1 == CPR2) {
1299            // If this is a getelementptr of the same global, then it must be
1300            // different.  Because the types must match, the getelementptr could
1301            // only have at most one index, and because we fold getelementptr's
1302            // with a single zero index, it must be nonzero.
1303            assert(CE1->getNumOperands() == 2 &&
1304                   !CE1->getOperand(1)->isNullValue() &&
1305                   "Suprising getelementptr!");
1306            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1307          } else {
1308            // If they are different globals, we don't know what the value is,
1309            // but they can't be equal.
1310            return ICmpInst::ICMP_NE;
1311          }
1312        }
1313      } else {
1314        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1315        const Constant *CE2Op0 = CE2->getOperand(0);
1316
1317        // There are MANY other foldings that we could perform here.  They will
1318        // probably be added on demand, as they seem needed.
1319        switch (CE2->getOpcode()) {
1320        default: break;
1321        case Instruction::GetElementPtr:
1322          // By far the most common case to handle is when the base pointers are
1323          // obviously to the same or different globals.
1324          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1325            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1326              return ICmpInst::ICMP_NE;
1327            // Ok, we know that both getelementptr instructions are based on the
1328            // same global.  From this, we can precisely determine the relative
1329            // ordering of the resultant pointers.
1330            unsigned i = 1;
1331
1332            // The logic below assumes that the result of the comparison
1333            // can be determined by finding the first index that differs.
1334            // This doesn't work if there is over-indexing in any
1335            // subsequent indices, so check for that case first.
1336            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1337                !CE2->isGEPWithNoNotionalOverIndexing())
1338               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1339
1340            // Compare all of the operands the GEP's have in common.
1341            gep_type_iterator GTI = gep_type_begin(CE1);
1342            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1343                 ++i, ++GTI)
1344              switch (IdxCompare(Context, CE1->getOperand(i),
1345                                 CE2->getOperand(i), GTI.getIndexedType())) {
1346              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1347              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1348              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1349              }
1350
1351            // Ok, we ran out of things they have in common.  If any leftovers
1352            // are non-zero then we have a difference, otherwise we are equal.
1353            for (; i < CE1->getNumOperands(); ++i)
1354              if (!CE1->getOperand(i)->isNullValue()) {
1355                if (isa<ConstantInt>(CE1->getOperand(i)))
1356                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1357                else
1358                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1359              }
1360
1361            for (; i < CE2->getNumOperands(); ++i)
1362              if (!CE2->getOperand(i)->isNullValue()) {
1363                if (isa<ConstantInt>(CE2->getOperand(i)))
1364                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1365                else
1366                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1367              }
1368            return ICmpInst::ICMP_EQ;
1369          }
1370        }
1371      }
1372    default:
1373      break;
1374    }
1375  }
1376
1377  return ICmpInst::BAD_ICMP_PREDICATE;
1378}
1379
1380Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
1381                                               unsigned short pred,
1382                                               const Constant *C1,
1383                                               const Constant *C2) {
1384  const Type *ResultTy;
1385  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1386    ResultTy = VectorType::get(Type::getInt1Ty(Context), VT->getNumElements());
1387  else
1388    ResultTy = Type::getInt1Ty(Context);
1389
1390  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1391  if (pred == FCmpInst::FCMP_FALSE)
1392    return Constant::getNullValue(ResultTy);
1393
1394  if (pred == FCmpInst::FCMP_TRUE)
1395    return Constant::getAllOnesValue(ResultTy);
1396
1397  // Handle some degenerate cases first
1398  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1399    return UndefValue::get(ResultTy);
1400
1401  // No compile-time operations on this type yet.
1402  if (C1->getType() == Type::getPPC_FP128Ty(Context))
1403    return 0;
1404
1405  // icmp eq/ne(null,GV) -> false/true
1406  if (C1->isNullValue()) {
1407    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1408      // Don't try to evaluate aliases.  External weak GV can be null.
1409      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1410        if (pred == ICmpInst::ICMP_EQ)
1411          return ConstantInt::getFalse(Context);
1412        else if (pred == ICmpInst::ICMP_NE)
1413          return ConstantInt::getTrue(Context);
1414      }
1415  // icmp eq/ne(GV,null) -> false/true
1416  } else if (C2->isNullValue()) {
1417    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1418      // Don't try to evaluate aliases.  External weak GV can be null.
1419      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1420        if (pred == ICmpInst::ICMP_EQ)
1421          return ConstantInt::getFalse(Context);
1422        else if (pred == ICmpInst::ICMP_NE)
1423          return ConstantInt::getTrue(Context);
1424      }
1425  }
1426
1427  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1428    APInt V1 = cast<ConstantInt>(C1)->getValue();
1429    APInt V2 = cast<ConstantInt>(C2)->getValue();
1430    switch (pred) {
1431    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1432    case ICmpInst::ICMP_EQ:
1433      return ConstantInt::get(Type::getInt1Ty(Context), V1 == V2);
1434    case ICmpInst::ICMP_NE:
1435      return ConstantInt::get(Type::getInt1Ty(Context), V1 != V2);
1436    case ICmpInst::ICMP_SLT:
1437      return ConstantInt::get(Type::getInt1Ty(Context), V1.slt(V2));
1438    case ICmpInst::ICMP_SGT:
1439      return ConstantInt::get(Type::getInt1Ty(Context), V1.sgt(V2));
1440    case ICmpInst::ICMP_SLE:
1441      return ConstantInt::get(Type::getInt1Ty(Context), V1.sle(V2));
1442    case ICmpInst::ICMP_SGE:
1443      return ConstantInt::get(Type::getInt1Ty(Context), V1.sge(V2));
1444    case ICmpInst::ICMP_ULT:
1445      return ConstantInt::get(Type::getInt1Ty(Context), V1.ult(V2));
1446    case ICmpInst::ICMP_UGT:
1447      return ConstantInt::get(Type::getInt1Ty(Context), V1.ugt(V2));
1448    case ICmpInst::ICMP_ULE:
1449      return ConstantInt::get(Type::getInt1Ty(Context), V1.ule(V2));
1450    case ICmpInst::ICMP_UGE:
1451      return ConstantInt::get(Type::getInt1Ty(Context), V1.uge(V2));
1452    }
1453  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1454    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1455    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1456    APFloat::cmpResult R = C1V.compare(C2V);
1457    switch (pred) {
1458    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1459    case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse(Context);
1460    case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue(Context);
1461    case FCmpInst::FCMP_UNO:
1462      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered);
1463    case FCmpInst::FCMP_ORD:
1464      return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpUnordered);
1465    case FCmpInst::FCMP_UEQ:
1466      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
1467                                            R==APFloat::cmpEqual);
1468    case FCmpInst::FCMP_OEQ:
1469      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpEqual);
1470    case FCmpInst::FCMP_UNE:
1471      return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpEqual);
1472    case FCmpInst::FCMP_ONE:
1473      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
1474                                            R==APFloat::cmpGreaterThan);
1475    case FCmpInst::FCMP_ULT:
1476      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
1477                                            R==APFloat::cmpLessThan);
1478    case FCmpInst::FCMP_OLT:
1479      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan);
1480    case FCmpInst::FCMP_UGT:
1481      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
1482                                            R==APFloat::cmpGreaterThan);
1483    case FCmpInst::FCMP_OGT:
1484      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan);
1485    case FCmpInst::FCMP_ULE:
1486      return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpGreaterThan);
1487    case FCmpInst::FCMP_OLE:
1488      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
1489                                            R==APFloat::cmpEqual);
1490    case FCmpInst::FCMP_UGE:
1491      return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpLessThan);
1492    case FCmpInst::FCMP_OGE:
1493      return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan ||
1494                                            R==APFloat::cmpEqual);
1495    }
1496  } else if (isa<VectorType>(C1->getType())) {
1497    SmallVector<Constant*, 16> C1Elts, C2Elts;
1498    C1->getVectorElements(Context, C1Elts);
1499    C2->getVectorElements(Context, C2Elts);
1500
1501    // If we can constant fold the comparison of each element, constant fold
1502    // the whole vector comparison.
1503    SmallVector<Constant*, 4> ResElts;
1504    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1505      // Compare the elements, producing an i1 result or constant expr.
1506      ResElts.push_back(
1507                    ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1508    }
1509    return ConstantVector::get(&ResElts[0], ResElts.size());
1510  }
1511
1512  if (C1->getType()->isFloatingPoint()) {
1513    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1514    switch (evaluateFCmpRelation(Context, C1, C2)) {
1515    default: llvm_unreachable("Unknown relation!");
1516    case FCmpInst::FCMP_UNO:
1517    case FCmpInst::FCMP_ORD:
1518    case FCmpInst::FCMP_UEQ:
1519    case FCmpInst::FCMP_UNE:
1520    case FCmpInst::FCMP_ULT:
1521    case FCmpInst::FCMP_UGT:
1522    case FCmpInst::FCMP_ULE:
1523    case FCmpInst::FCMP_UGE:
1524    case FCmpInst::FCMP_TRUE:
1525    case FCmpInst::FCMP_FALSE:
1526    case FCmpInst::BAD_FCMP_PREDICATE:
1527      break; // Couldn't determine anything about these constants.
1528    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1529      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1530                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1531                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1532      break;
1533    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1534      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1535                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1536                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1537      break;
1538    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1539      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1540                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1541                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1542      break;
1543    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1544      // We can only partially decide this relation.
1545      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1546        Result = 0;
1547      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1548        Result = 1;
1549      break;
1550    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1551      // We can only partially decide this relation.
1552      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1553        Result = 0;
1554      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1555        Result = 1;
1556      break;
1557    case ICmpInst::ICMP_NE: // We know that C1 != C2
1558      // We can only partially decide this relation.
1559      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1560        Result = 0;
1561      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1562        Result = 1;
1563      break;
1564    }
1565
1566    // If we evaluated the result, return it now.
1567    if (Result != -1)
1568      return ConstantInt::get(Type::getInt1Ty(Context), Result);
1569
1570  } else {
1571    // Evaluate the relation between the two constants, per the predicate.
1572    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1573    switch (evaluateICmpRelation(Context, C1, C2, CmpInst::isSigned(pred))) {
1574    default: llvm_unreachable("Unknown relational!");
1575    case ICmpInst::BAD_ICMP_PREDICATE:
1576      break;  // Couldn't determine anything about these constants.
1577    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1578      // If we know the constants are equal, we can decide the result of this
1579      // computation precisely.
1580      Result = (pred == ICmpInst::ICMP_EQ  ||
1581                pred == ICmpInst::ICMP_ULE ||
1582                pred == ICmpInst::ICMP_SLE ||
1583                pred == ICmpInst::ICMP_UGE ||
1584                pred == ICmpInst::ICMP_SGE);
1585      break;
1586    case ICmpInst::ICMP_ULT:
1587      // If we know that C1 < C2, we can decide the result of this computation
1588      // precisely.
1589      Result = (pred == ICmpInst::ICMP_ULT ||
1590                pred == ICmpInst::ICMP_NE  ||
1591                pred == ICmpInst::ICMP_ULE);
1592      break;
1593    case ICmpInst::ICMP_SLT:
1594      // If we know that C1 < C2, we can decide the result of this computation
1595      // precisely.
1596      Result = (pred == ICmpInst::ICMP_SLT ||
1597                pred == ICmpInst::ICMP_NE  ||
1598                pred == ICmpInst::ICMP_SLE);
1599      break;
1600    case ICmpInst::ICMP_UGT:
1601      // If we know that C1 > C2, we can decide the result of this computation
1602      // precisely.
1603      Result = (pred == ICmpInst::ICMP_UGT ||
1604                pred == ICmpInst::ICMP_NE  ||
1605                pred == ICmpInst::ICMP_UGE);
1606      break;
1607    case ICmpInst::ICMP_SGT:
1608      // If we know that C1 > C2, we can decide the result of this computation
1609      // precisely.
1610      Result = (pred == ICmpInst::ICMP_SGT ||
1611                pred == ICmpInst::ICMP_NE  ||
1612                pred == ICmpInst::ICMP_SGE);
1613      break;
1614    case ICmpInst::ICMP_ULE:
1615      // If we know that C1 <= C2, we can only partially decide this relation.
1616      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1617      if (pred == ICmpInst::ICMP_ULT) Result = 1;
1618      break;
1619    case ICmpInst::ICMP_SLE:
1620      // If we know that C1 <= C2, we can only partially decide this relation.
1621      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1622      if (pred == ICmpInst::ICMP_SLT) Result = 1;
1623      break;
1624
1625    case ICmpInst::ICMP_UGE:
1626      // If we know that C1 >= C2, we can only partially decide this relation.
1627      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1628      if (pred == ICmpInst::ICMP_UGT) Result = 1;
1629      break;
1630    case ICmpInst::ICMP_SGE:
1631      // If we know that C1 >= C2, we can only partially decide this relation.
1632      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1633      if (pred == ICmpInst::ICMP_SGT) Result = 1;
1634      break;
1635
1636    case ICmpInst::ICMP_NE:
1637      // If we know that C1 != C2, we can only partially decide this relation.
1638      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1639      if (pred == ICmpInst::ICMP_NE) Result = 1;
1640      break;
1641    }
1642
1643    // If we evaluated the result, return it now.
1644    if (Result != -1)
1645      return ConstantInt::get(Type::getInt1Ty(Context), Result);
1646
1647    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1648      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1649      // other way if possible.
1650      switch (pred) {
1651      case ICmpInst::ICMP_EQ:
1652      case ICmpInst::ICMP_NE:
1653        // No change of predicate required.
1654        return ConstantFoldCompareInstruction(Context, pred, C2, C1);
1655
1656      case ICmpInst::ICMP_ULT:
1657      case ICmpInst::ICMP_SLT:
1658      case ICmpInst::ICMP_UGT:
1659      case ICmpInst::ICMP_SGT:
1660      case ICmpInst::ICMP_ULE:
1661      case ICmpInst::ICMP_SLE:
1662      case ICmpInst::ICMP_UGE:
1663      case ICmpInst::ICMP_SGE:
1664        // Change the predicate as necessary to swap the operands.
1665        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1666        return ConstantFoldCompareInstruction(Context, pred, C2, C1);
1667
1668      default:  // These predicates cannot be flopped around.
1669        break;
1670      }
1671    }
1672  }
1673  return 0;
1674}
1675
1676/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
1677/// is "inbounds".
1678static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) {
1679  // No indices means nothing that could be out of bounds.
1680  if (NumIdx == 0) return true;
1681
1682  // If the first index is zero, it's in bounds.
1683  if (Idxs[0]->isNullValue()) return true;
1684
1685  // If the first index is one and all the rest are zero, it's in bounds,
1686  // by the one-past-the-end rule.
1687  if (!cast<ConstantInt>(Idxs[0])->isOne())
1688    return false;
1689  for (unsigned i = 1, e = NumIdx; i != e; ++i)
1690    if (!Idxs[i]->isNullValue())
1691      return false;
1692  return true;
1693}
1694
1695Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
1696                                          const Constant *C,
1697                                          bool inBounds,
1698                                          Constant* const *Idxs,
1699                                          unsigned NumIdx) {
1700  if (NumIdx == 0 ||
1701      (NumIdx == 1 && Idxs[0]->isNullValue()))
1702    return const_cast<Constant*>(C);
1703
1704  if (isa<UndefValue>(C)) {
1705    const PointerType *Ptr = cast<PointerType>(C->getType());
1706    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1707                                                       (Value **)Idxs,
1708                                                       (Value **)Idxs+NumIdx);
1709    assert(Ty != 0 && "Invalid indices for GEP!");
1710    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1711  }
1712
1713  Constant *Idx0 = Idxs[0];
1714  if (C->isNullValue()) {
1715    bool isNull = true;
1716    for (unsigned i = 0, e = NumIdx; i != e; ++i)
1717      if (!Idxs[i]->isNullValue()) {
1718        isNull = false;
1719        break;
1720      }
1721    if (isNull) {
1722      const PointerType *Ptr = cast<PointerType>(C->getType());
1723      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1724                                                         (Value**)Idxs,
1725                                                         (Value**)Idxs+NumIdx);
1726      assert(Ty != 0 && "Invalid indices for GEP!");
1727      return  ConstantPointerNull::get(
1728                            PointerType::get(Ty,Ptr->getAddressSpace()));
1729    }
1730  }
1731
1732  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1733    // Combine Indices - If the source pointer to this getelementptr instruction
1734    // is a getelementptr instruction, combine the indices of the two
1735    // getelementptr instructions into a single instruction.
1736    //
1737    if (CE->getOpcode() == Instruction::GetElementPtr) {
1738      const Type *LastTy = 0;
1739      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1740           I != E; ++I)
1741        LastTy = *I;
1742
1743      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1744        SmallVector<Value*, 16> NewIndices;
1745        NewIndices.reserve(NumIdx + CE->getNumOperands());
1746        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1747          NewIndices.push_back(CE->getOperand(i));
1748
1749        // Add the last index of the source with the first index of the new GEP.
1750        // Make sure to handle the case when they are actually different types.
1751        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1752        // Otherwise it must be an array.
1753        if (!Idx0->isNullValue()) {
1754          const Type *IdxTy = Combined->getType();
1755          if (IdxTy != Idx0->getType()) {
1756            Constant *C1 =
1757              ConstantExpr::getSExtOrBitCast(Idx0, Type::getInt64Ty(Context));
1758            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1759                                                          Type::getInt64Ty(Context));
1760            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1761          } else {
1762            Combined =
1763              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1764          }
1765        }
1766
1767        NewIndices.push_back(Combined);
1768        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1769        return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
1770          ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
1771                                                 &NewIndices[0],
1772                                                 NewIndices.size()) :
1773          ConstantExpr::getGetElementPtr(CE->getOperand(0),
1774                                         &NewIndices[0],
1775                                         NewIndices.size());
1776      }
1777    }
1778
1779    // Implement folding of:
1780    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1781    //                        long 0, long 0)
1782    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1783    //
1784    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1785      if (const PointerType *SPT =
1786          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1787        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1788          if (const ArrayType *CAT =
1789        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1790            if (CAT->getElementType() == SAT->getElementType())
1791              return inBounds ?
1792                ConstantExpr::getInBoundsGetElementPtr(
1793                      (Constant*)CE->getOperand(0), Idxs, NumIdx) :
1794                ConstantExpr::getGetElementPtr(
1795                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
1796    }
1797
1798    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1799    // Into: inttoptr (i64 0 to i8*)
1800    // This happens with pointers to member functions in C++.
1801    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1802        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1803        cast<PointerType>(CE->getType())->getElementType() == Type::getInt8Ty(Context)) {
1804      Constant *Base = CE->getOperand(0);
1805      Constant *Offset = Idxs[0];
1806
1807      // Convert the smaller integer to the larger type.
1808      if (Offset->getType()->getPrimitiveSizeInBits() <
1809          Base->getType()->getPrimitiveSizeInBits())
1810        Offset = ConstantExpr::getSExt(Offset, Base->getType());
1811      else if (Base->getType()->getPrimitiveSizeInBits() <
1812               Offset->getType()->getPrimitiveSizeInBits())
1813        Base = ConstantExpr::getZExt(Base, Offset->getType());
1814
1815      Base = ConstantExpr::getAdd(Base, Offset);
1816      return ConstantExpr::getIntToPtr(Base, CE->getType());
1817    }
1818  }
1819
1820  // Check to see if any array indices are not within the corresponding
1821  // notional array bounds. If so, try to determine if they can be factored
1822  // out into preceding dimensions.
1823  bool Unknown = false;
1824  SmallVector<Constant *, 8> NewIdxs;
1825  const Type *Ty = C->getType();
1826  const Type *Prev = 0;
1827  for (unsigned i = 0; i != NumIdx;
1828       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
1829    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
1830      if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
1831        if (ATy->getNumElements() <= INT64_MAX &&
1832            ATy->getNumElements() != 0 &&
1833            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
1834          if (isa<SequentialType>(Prev)) {
1835            // It's out of range, but we can factor it into the prior
1836            // dimension.
1837            NewIdxs.resize(NumIdx);
1838            ConstantInt *Factor = ConstantInt::get(CI->getType(),
1839                                                   ATy->getNumElements());
1840            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
1841
1842            Constant *PrevIdx = Idxs[i-1];
1843            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
1844
1845            // Before adding, extend both operands to i64 to avoid
1846            // overflow trouble.
1847            if (PrevIdx->getType() != Type::getInt64Ty(Context))
1848              PrevIdx = ConstantExpr::getSExt(PrevIdx,
1849                                              Type::getInt64Ty(Context));
1850            if (Div->getType() != Type::getInt64Ty(Context))
1851              Div = ConstantExpr::getSExt(Div,
1852                                          Type::getInt64Ty(Context));
1853
1854            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
1855          } else {
1856            // It's out of range, but the prior dimension is a struct
1857            // so we can't do anything about it.
1858            Unknown = true;
1859          }
1860        }
1861    } else {
1862      // We don't know if it's in range or not.
1863      Unknown = true;
1864    }
1865  }
1866
1867  // If we did any factoring, start over with the adjusted indices.
1868  if (!NewIdxs.empty()) {
1869    for (unsigned i = 0; i != NumIdx; ++i)
1870      if (!NewIdxs[i]) NewIdxs[i] = Idxs[i];
1871    return inBounds ?
1872      ConstantExpr::getGetElementPtr(const_cast<Constant*>(C),
1873                                     NewIdxs.data(), NewIdxs.size()) :
1874      ConstantExpr::getInBoundsGetElementPtr(const_cast<Constant*>(C),
1875                                             NewIdxs.data(), NewIdxs.size());
1876  }
1877
1878  // If all indices are known integers and normalized, we can do a simple
1879  // check for the "inbounds" property.
1880  if (!Unknown && !inBounds &&
1881      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
1882    return ConstantExpr::getInBoundsGetElementPtr(const_cast<Constant*>(C),
1883                                                  Idxs, NumIdx);
1884
1885  return 0;
1886}
1887