ConstantFold.cpp revision 3e5d1d8d0839e98ee203aa3e3c4fe84ef71eba2c
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
19//===----------------------------------------------------------------------===//
20
21#include "ConstantFold.h"
22#include "llvm/Constants.h"
23#include "llvm/Instructions.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalAlias.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/Support/ManagedStatic.h"
31#include "llvm/Support/MathExtras.h"
32#include <limits>
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36//                ConstantFold*Instruction Implementations
37//===----------------------------------------------------------------------===//
38
39/// BitCastConstantVector - Convert the specified ConstantVector node to the
40/// specified vector type.  At this point, we know that the elements of the
41/// input vector constant are all simple integer or FP values.
42static Constant *BitCastConstantVector(ConstantVector *CV,
43                                       const VectorType *DstTy) {
44  // If this cast changes element count then we can't handle it here:
45  // doing so requires endianness information.  This should be handled by
46  // Analysis/ConstantFolding.cpp
47  unsigned NumElts = DstTy->getNumElements();
48  if (NumElts != CV->getNumOperands())
49    return 0;
50
51  // Check to verify that all elements of the input are simple.
52  for (unsigned i = 0; i != NumElts; ++i) {
53    if (!isa<ConstantInt>(CV->getOperand(i)) &&
54        !isa<ConstantFP>(CV->getOperand(i)))
55      return 0;
56  }
57
58  // Bitcast each element now.
59  std::vector<Constant*> Result;
60  const Type *DstEltTy = DstTy->getElementType();
61  for (unsigned i = 0; i != NumElts; ++i)
62    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
63  return ConstantVector::get(Result);
64}
65
66/// This function determines which opcode to use to fold two constant cast
67/// expressions together. It uses CastInst::isEliminableCastPair to determine
68/// the opcode. Consequently its just a wrapper around that function.
69/// @brief Determine if it is valid to fold a cast of a cast
70static unsigned
71foldConstantCastPair(
72  unsigned opc,          ///< opcode of the second cast constant expression
73  const ConstantExpr*Op, ///< the first cast constant expression
74  const Type *DstTy      ///< desintation type of the first cast
75) {
76  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
77  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
78  assert(CastInst::isCast(opc) && "Invalid cast opcode");
79
80  // The the types and opcodes for the two Cast constant expressions
81  const Type *SrcTy = Op->getOperand(0)->getType();
82  const Type *MidTy = Op->getType();
83  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
84  Instruction::CastOps secondOp = Instruction::CastOps(opc);
85
86  // Let CastInst::isEliminableCastPair do the heavy lifting.
87  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
88                                        Type::Int64Ty);
89}
90
91static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
92  const Type *SrcTy = V->getType();
93  if (SrcTy == DestTy)
94    return V; // no-op cast
95
96  // Check to see if we are casting a pointer to an aggregate to a pointer to
97  // the first element.  If so, return the appropriate GEP instruction.
98  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
99    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
100      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
101        SmallVector<Value*, 8> IdxList;
102        IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
103        const Type *ElTy = PTy->getElementType();
104        while (ElTy != DPTy->getElementType()) {
105          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
106            if (STy->getNumElements() == 0) break;
107            ElTy = STy->getElementType(0);
108            IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
109          } else if (const SequentialType *STy =
110                     dyn_cast<SequentialType>(ElTy)) {
111            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
112            ElTy = STy->getElementType();
113            IdxList.push_back(IdxList[0]);
114          } else {
115            break;
116          }
117        }
118
119        if (ElTy == DPTy->getElementType())
120          return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
121      }
122
123  // Handle casts from one vector constant to another.  We know that the src
124  // and dest type have the same size (otherwise its an illegal cast).
125  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
126    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
127      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
128             "Not cast between same sized vectors!");
129      // First, check for null.  Undef is already handled.
130      if (isa<ConstantAggregateZero>(V))
131        return Constant::getNullValue(DestTy);
132
133      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
134        return BitCastConstantVector(CV, DestPTy);
135    }
136  }
137
138  // Finally, implement bitcast folding now.   The code below doesn't handle
139  // bitcast right.
140  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
141    return ConstantPointerNull::get(cast<PointerType>(DestTy));
142
143  // Handle integral constant input.
144  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
145    if (DestTy->isInteger())
146      // Integral -> Integral. This is a no-op because the bit widths must
147      // be the same. Consequently, we just fold to V.
148      return V;
149
150    if (DestTy->isFloatingPoint()) {
151      assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) &&
152             "Unknown FP type!");
153      return ConstantFP::get(APFloat(CI->getValue()));
154    }
155    // Otherwise, can't fold this (vector?)
156    return 0;
157  }
158
159  // Handle ConstantFP input.
160  if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
161    // FP -> Integral.
162    if (DestTy == Type::Int32Ty) {
163      return ConstantInt::get(FP->getValueAPF().convertToAPInt());
164    } else {
165      assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
166      return ConstantInt::get(FP->getValueAPF().convertToAPInt());
167    }
168  }
169  return 0;
170}
171
172
173Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
174                                            const Type *DestTy) {
175  if (isa<UndefValue>(V)) {
176    // zext(undef) = 0, because the top bits will be zero.
177    // sext(undef) = 0, because the top bits will all be the same.
178    // [us]itofp(undef) = 0, because the result value is bounded.
179    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
180        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
181      return Constant::getNullValue(DestTy);
182    return UndefValue::get(DestTy);
183  }
184  // No compile-time operations on this type yet.
185  if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
186    return 0;
187
188  // If the cast operand is a constant expression, there's a few things we can
189  // do to try to simplify it.
190  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
191    if (CE->isCast()) {
192      // Try hard to fold cast of cast because they are often eliminable.
193      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
194        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
195    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
196      // If all of the indexes in the GEP are null values, there is no pointer
197      // adjustment going on.  We might as well cast the source pointer.
198      bool isAllNull = true;
199      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
200        if (!CE->getOperand(i)->isNullValue()) {
201          isAllNull = false;
202          break;
203        }
204      if (isAllNull)
205        // This is casting one pointer type to another, always BitCast
206        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
207    }
208  }
209
210  // We actually have to do a cast now. Perform the cast according to the
211  // opcode specified.
212  switch (opc) {
213  case Instruction::FPTrunc:
214  case Instruction::FPExt:
215    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
216      APFloat Val = FPC->getValueAPF();
217      Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
218                  DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
219                  DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
220                  DestTy == Type::FP128Ty ? APFloat::IEEEquad :
221                  APFloat::Bogus,
222                  APFloat::rmNearestTiesToEven);
223      return ConstantFP::get(Val);
224    }
225    return 0; // Can't fold.
226  case Instruction::FPToUI:
227  case Instruction::FPToSI:
228    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
229      const APFloat &V = FPC->getValueAPF();
230      uint64_t x[2];
231      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
232      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
233                                APFloat::rmTowardZero);
234      APInt Val(DestBitWidth, 2, x);
235      return ConstantInt::get(Val);
236    }
237    if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
238      std::vector<Constant*> res;
239      const VectorType *DestVecTy = cast<VectorType>(DestTy);
240      const Type *DstEltTy = DestVecTy->getElementType();
241      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
242        res.push_back(ConstantFoldCastInstruction(opc, V->getOperand(i),
243                                                  DstEltTy));
244      return ConstantVector::get(DestVecTy, res);
245    }
246    return 0; // Can't fold.
247  case Instruction::IntToPtr:   //always treated as unsigned
248    if (V->isNullValue())       // Is it an integral null value?
249      return ConstantPointerNull::get(cast<PointerType>(DestTy));
250    return 0;                   // Other pointer types cannot be casted
251  case Instruction::PtrToInt:   // always treated as unsigned
252    if (V->isNullValue())       // is it a null pointer value?
253      return ConstantInt::get(DestTy, 0);
254    return 0;                   // Other pointer types cannot be casted
255  case Instruction::UIToFP:
256  case Instruction::SIToFP:
257    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
258      APInt api = CI->getValue();
259      const uint64_t zero[] = {0, 0};
260      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
261                                  2, zero));
262      (void)apf.convertFromAPInt(api,
263                                 opc==Instruction::SIToFP,
264                                 APFloat::rmNearestTiesToEven);
265      return ConstantFP::get(apf);
266    }
267    if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
268      std::vector<Constant*> res;
269      const VectorType *DestVecTy = cast<VectorType>(DestTy);
270      const Type *DstEltTy = DestVecTy->getElementType();
271      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
272        res.push_back(ConstantFoldCastInstruction(opc, V->getOperand(i),
273                                                  DstEltTy));
274      return ConstantVector::get(DestVecTy, res);
275    }
276    return 0;
277  case Instruction::ZExt:
278    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
279      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
280      APInt Result(CI->getValue());
281      Result.zext(BitWidth);
282      return ConstantInt::get(Result);
283    }
284    return 0;
285  case Instruction::SExt:
286    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
287      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
288      APInt Result(CI->getValue());
289      Result.sext(BitWidth);
290      return ConstantInt::get(Result);
291    }
292    return 0;
293  case Instruction::Trunc:
294    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
295      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
296      APInt Result(CI->getValue());
297      Result.trunc(BitWidth);
298      return ConstantInt::get(Result);
299    }
300    return 0;
301  case Instruction::BitCast:
302    return FoldBitCast(const_cast<Constant*>(V), DestTy);
303  default:
304    assert(!"Invalid CE CastInst opcode");
305    break;
306  }
307
308  assert(0 && "Failed to cast constant expression");
309  return 0;
310}
311
312Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
313                                              const Constant *V1,
314                                              const Constant *V2) {
315  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
316    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
317
318  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
319  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
320  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
321  if (V1 == V2) return const_cast<Constant*>(V1);
322  return 0;
323}
324
325Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
326                                                      const Constant *Idx) {
327  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
328    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
329  if (Val->isNullValue())  // ee(zero, x) -> zero
330    return Constant::getNullValue(
331                          cast<VectorType>(Val->getType())->getElementType());
332
333  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
334    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
335      return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
336    } else if (isa<UndefValue>(Idx)) {
337      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
338      return const_cast<Constant*>(CVal->getOperand(0));
339    }
340  }
341  return 0;
342}
343
344Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
345                                                     const Constant *Elt,
346                                                     const Constant *Idx) {
347  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
348  if (!CIdx) return 0;
349  APInt idxVal = CIdx->getValue();
350  if (isa<UndefValue>(Val)) {
351    // Insertion of scalar constant into vector undef
352    // Optimize away insertion of undef
353    if (isa<UndefValue>(Elt))
354      return const_cast<Constant*>(Val);
355    // Otherwise break the aggregate undef into multiple undefs and do
356    // the insertion
357    unsigned numOps =
358      cast<VectorType>(Val->getType())->getNumElements();
359    std::vector<Constant*> Ops;
360    Ops.reserve(numOps);
361    for (unsigned i = 0; i < numOps; ++i) {
362      const Constant *Op =
363        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
364      Ops.push_back(const_cast<Constant*>(Op));
365    }
366    return ConstantVector::get(Ops);
367  }
368  if (isa<ConstantAggregateZero>(Val)) {
369    // Insertion of scalar constant into vector aggregate zero
370    // Optimize away insertion of zero
371    if (Elt->isNullValue())
372      return const_cast<Constant*>(Val);
373    // Otherwise break the aggregate zero into multiple zeros and do
374    // the insertion
375    unsigned numOps =
376      cast<VectorType>(Val->getType())->getNumElements();
377    std::vector<Constant*> Ops;
378    Ops.reserve(numOps);
379    for (unsigned i = 0; i < numOps; ++i) {
380      const Constant *Op =
381        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
382      Ops.push_back(const_cast<Constant*>(Op));
383    }
384    return ConstantVector::get(Ops);
385  }
386  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
387    // Insertion of scalar constant into vector constant
388    std::vector<Constant*> Ops;
389    Ops.reserve(CVal->getNumOperands());
390    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
391      const Constant *Op =
392        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
393      Ops.push_back(const_cast<Constant*>(Op));
394    }
395    return ConstantVector::get(Ops);
396  }
397  return 0;
398}
399
400/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
401/// return the specified element value.  Otherwise return null.
402static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
403  if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
404    return const_cast<Constant*>(CV->getOperand(EltNo));
405
406  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
407  if (isa<ConstantAggregateZero>(C))
408    return Constant::getNullValue(EltTy);
409  if (isa<UndefValue>(C))
410    return UndefValue::get(EltTy);
411  return 0;
412}
413
414Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
415                                                     const Constant *V2,
416                                                     const Constant *Mask) {
417  // Undefined shuffle mask -> undefined value.
418  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
419
420  unsigned NumElts = cast<VectorType>(V1->getType())->getNumElements();
421  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
422
423  // Loop over the shuffle mask, evaluating each element.
424  SmallVector<Constant*, 32> Result;
425  for (unsigned i = 0; i != NumElts; ++i) {
426    Constant *InElt = GetVectorElement(Mask, i);
427    if (InElt == 0) return 0;
428
429    if (isa<UndefValue>(InElt))
430      InElt = UndefValue::get(EltTy);
431    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
432      unsigned Elt = CI->getZExtValue();
433      if (Elt >= NumElts*2)
434        InElt = UndefValue::get(EltTy);
435      else if (Elt >= NumElts)
436        InElt = GetVectorElement(V2, Elt-NumElts);
437      else
438        InElt = GetVectorElement(V1, Elt);
439      if (InElt == 0) return 0;
440    } else {
441      // Unknown value.
442      return 0;
443    }
444    Result.push_back(InElt);
445  }
446
447  return ConstantVector::get(&Result[0], Result.size());
448}
449
450/// EvalVectorOp - Given two vector constants and a function pointer, apply the
451/// function pointer to each element pair, producing a new ConstantVector
452/// constant. Either or both of V1 and V2 may be NULL, meaning a
453/// ConstantAggregateZero operand.
454static Constant *EvalVectorOp(const ConstantVector *V1,
455                              const ConstantVector *V2,
456                              const VectorType *VTy,
457                              Constant *(*FP)(Constant*, Constant*)) {
458  std::vector<Constant*> Res;
459  const Type *EltTy = VTy->getElementType();
460  for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
461    const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
462    const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
463    Res.push_back(FP(const_cast<Constant*>(C1),
464                     const_cast<Constant*>(C2)));
465  }
466  return ConstantVector::get(Res);
467}
468
469Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
470                                              const Constant *C1,
471                                              const Constant *C2) {
472  // No compile-time operations on this type yet.
473  if (C1->getType() == Type::PPC_FP128Ty)
474    return 0;
475
476  // Handle UndefValue up front
477  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
478    switch (Opcode) {
479    case Instruction::Xor:
480      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
481        // Handle undef ^ undef -> 0 special case. This is a common
482        // idiom (misuse).
483        return Constant::getNullValue(C1->getType());
484      // Fallthrough
485    case Instruction::Add:
486    case Instruction::Sub:
487      return UndefValue::get(C1->getType());
488    case Instruction::Mul:
489    case Instruction::And:
490      return Constant::getNullValue(C1->getType());
491    case Instruction::UDiv:
492    case Instruction::SDiv:
493    case Instruction::FDiv:
494    case Instruction::URem:
495    case Instruction::SRem:
496    case Instruction::FRem:
497      if (!isa<UndefValue>(C2))                    // undef / X -> 0
498        return Constant::getNullValue(C1->getType());
499      return const_cast<Constant*>(C2);            // X / undef -> undef
500    case Instruction::Or:                          // X | undef -> -1
501      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
502        return ConstantVector::getAllOnesValue(PTy);
503      return ConstantInt::getAllOnesValue(C1->getType());
504    case Instruction::LShr:
505      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
506        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
507      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
508                                                    // undef lshr X -> 0
509    case Instruction::AShr:
510      if (!isa<UndefValue>(C2))
511        return const_cast<Constant*>(C1);           // undef ashr X --> undef
512      else if (isa<UndefValue>(C1))
513        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
514      else
515        return const_cast<Constant*>(C1);           // X ashr undef --> X
516    case Instruction::Shl:
517      // undef << X -> 0   or   X << undef -> 0
518      return Constant::getNullValue(C1->getType());
519    }
520  }
521
522  // Handle simplifications of the RHS when a constant int.
523  if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
524    switch (Opcode) {
525    case Instruction::Add:
526      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X + 0 == X
527      break;
528    case Instruction::Sub:
529      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X - 0 == X
530      break;
531    case Instruction::Mul:
532      if (CI2->equalsInt(0)) return const_cast<Constant*>(C2);  // X * 0 == 0
533      if (CI2->equalsInt(1))
534        return const_cast<Constant*>(C1);                       // X * 1 == X
535      break;
536    case Instruction::UDiv:
537    case Instruction::SDiv:
538      if (CI2->equalsInt(1))
539        return const_cast<Constant*>(C1);                     // X / 1 == X
540      break;
541    case Instruction::URem:
542    case Instruction::SRem:
543      if (CI2->equalsInt(1))
544        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
545      break;
546    case Instruction::And:
547      if (CI2->isZero()) return const_cast<Constant*>(C2);    // X & 0 == 0
548      if (CI2->isAllOnesValue())
549        return const_cast<Constant*>(C1);                     // X & -1 == X
550
551      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
552        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
553        if (CE1->getOpcode() == Instruction::ZExt) {
554          unsigned DstWidth = CI2->getType()->getBitWidth();
555          unsigned SrcWidth =
556            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
557          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
558          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
559            return const_cast<Constant*>(C1);
560        }
561
562        // If and'ing the address of a global with a constant, fold it.
563        if (CE1->getOpcode() == Instruction::PtrToInt &&
564            isa<GlobalValue>(CE1->getOperand(0))) {
565          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
566
567          // Functions are at least 4-byte aligned.
568          unsigned GVAlign = GV->getAlignment();
569          if (isa<Function>(GV))
570            GVAlign = std::max(GVAlign, 4U);
571
572          if (GVAlign > 1) {
573            unsigned DstWidth = CI2->getType()->getBitWidth();
574            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
575            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
576
577            // If checking bits we know are clear, return zero.
578            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
579              return Constant::getNullValue(CI2->getType());
580          }
581        }
582      }
583      break;
584    case Instruction::Or:
585      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X | 0 == X
586      if (CI2->isAllOnesValue())
587        return const_cast<Constant*>(C2);  // X | -1 == -1
588      break;
589    case Instruction::Xor:
590      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X ^ 0 == X
591      break;
592    case Instruction::AShr:
593      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
594      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
595        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
596          return ConstantExpr::getLShr(const_cast<Constant*>(C1),
597                                       const_cast<Constant*>(C2));
598      break;
599    }
600  }
601
602  // At this point we know neither constant is an UndefValue.
603  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
604    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
605      using namespace APIntOps;
606      const APInt &C1V = CI1->getValue();
607      const APInt &C2V = CI2->getValue();
608      switch (Opcode) {
609      default:
610        break;
611      case Instruction::Add:
612        return ConstantInt::get(C1V + C2V);
613      case Instruction::Sub:
614        return ConstantInt::get(C1V - C2V);
615      case Instruction::Mul:
616        return ConstantInt::get(C1V * C2V);
617      case Instruction::UDiv:
618        if (CI2->isNullValue())
619          return 0;        // X / 0 -> can't fold
620        return ConstantInt::get(C1V.udiv(C2V));
621      case Instruction::SDiv:
622        if (CI2->isNullValue())
623          return 0;        // X / 0 -> can't fold
624        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
625          return 0;        // MIN_INT / -1 -> overflow
626        return ConstantInt::get(C1V.sdiv(C2V));
627      case Instruction::URem:
628        if (C2->isNullValue())
629          return 0;        // X / 0 -> can't fold
630        return ConstantInt::get(C1V.urem(C2V));
631      case Instruction::SRem:
632        if (CI2->isNullValue())
633          return 0;        // X % 0 -> can't fold
634        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
635          return 0;        // MIN_INT % -1 -> overflow
636        return ConstantInt::get(C1V.srem(C2V));
637      case Instruction::And:
638        return ConstantInt::get(C1V & C2V);
639      case Instruction::Or:
640        return ConstantInt::get(C1V | C2V);
641      case Instruction::Xor:
642        return ConstantInt::get(C1V ^ C2V);
643      case Instruction::Shl: {
644        uint32_t shiftAmt = C2V.getZExtValue();
645        if (shiftAmt < C1V.getBitWidth())
646          return ConstantInt::get(C1V.shl(shiftAmt));
647        else
648          return UndefValue::get(C1->getType()); // too big shift is undef
649      }
650      case Instruction::LShr: {
651        uint32_t shiftAmt = C2V.getZExtValue();
652        if (shiftAmt < C1V.getBitWidth())
653          return ConstantInt::get(C1V.lshr(shiftAmt));
654        else
655          return UndefValue::get(C1->getType()); // too big shift is undef
656      }
657      case Instruction::AShr: {
658        uint32_t shiftAmt = C2V.getZExtValue();
659        if (shiftAmt < C1V.getBitWidth())
660          return ConstantInt::get(C1V.ashr(shiftAmt));
661        else
662          return UndefValue::get(C1->getType()); // too big shift is undef
663      }
664      }
665    }
666  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
667    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
668      APFloat C1V = CFP1->getValueAPF();
669      APFloat C2V = CFP2->getValueAPF();
670      APFloat C3V = C1V;  // copy for modification
671      switch (Opcode) {
672      default:
673        break;
674      case Instruction::Add:
675        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
676        return ConstantFP::get(C3V);
677      case Instruction::Sub:
678        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
679        return ConstantFP::get(C3V);
680      case Instruction::Mul:
681        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
682        return ConstantFP::get(C3V);
683      case Instruction::FDiv:
684        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
685        return ConstantFP::get(C3V);
686      case Instruction::FRem:
687        if (C2V.isZero()) {
688          // IEEE 754, Section 7.1, #5
689          if (CFP1->getType() == Type::DoubleTy)
690            return ConstantFP::get(APFloat(std::numeric_limits<double>::
691                                           quiet_NaN()));
692          if (CFP1->getType() == Type::FloatTy)
693            return ConstantFP::get(APFloat(std::numeric_limits<float>::
694                                           quiet_NaN()));
695          break;
696        }
697        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
698        return ConstantFP::get(C3V);
699      }
700    }
701  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
702    const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
703    const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
704    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
705        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
706      switch (Opcode) {
707      default:
708        break;
709      case Instruction::Add:
710        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd);
711      case Instruction::Sub:
712        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub);
713      case Instruction::Mul:
714        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul);
715      case Instruction::UDiv:
716        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv);
717      case Instruction::SDiv:
718        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv);
719      case Instruction::FDiv:
720        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv);
721      case Instruction::URem:
722        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem);
723      case Instruction::SRem:
724        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem);
725      case Instruction::FRem:
726        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem);
727      case Instruction::And:
728        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd);
729      case Instruction::Or:
730        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr);
731      case Instruction::Xor:
732        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor);
733      }
734    }
735  }
736
737  if (isa<ConstantExpr>(C1)) {
738    // There are many possible foldings we could do here.  We should probably
739    // at least fold add of a pointer with an integer into the appropriate
740    // getelementptr.  This will improve alias analysis a bit.
741  } else if (isa<ConstantExpr>(C2)) {
742    // If C2 is a constant expr and C1 isn't, flop them around and fold the
743    // other way if possible.
744    switch (Opcode) {
745    case Instruction::Add:
746    case Instruction::Mul:
747    case Instruction::And:
748    case Instruction::Or:
749    case Instruction::Xor:
750      // No change of opcode required.
751      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
752
753    case Instruction::Shl:
754    case Instruction::LShr:
755    case Instruction::AShr:
756    case Instruction::Sub:
757    case Instruction::SDiv:
758    case Instruction::UDiv:
759    case Instruction::FDiv:
760    case Instruction::URem:
761    case Instruction::SRem:
762    case Instruction::FRem:
763    default:  // These instructions cannot be flopped around.
764      break;
765    }
766  }
767
768  // We don't know how to fold this.
769  return 0;
770}
771
772/// isZeroSizedType - This type is zero sized if its an array or structure of
773/// zero sized types.  The only leaf zero sized type is an empty structure.
774static bool isMaybeZeroSizedType(const Type *Ty) {
775  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
776  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
777
778    // If all of elements have zero size, this does too.
779    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
780      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
781    return true;
782
783  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
784    return isMaybeZeroSizedType(ATy->getElementType());
785  }
786  return false;
787}
788
789/// IdxCompare - Compare the two constants as though they were getelementptr
790/// indices.  This allows coersion of the types to be the same thing.
791///
792/// If the two constants are the "same" (after coersion), return 0.  If the
793/// first is less than the second, return -1, if the second is less than the
794/// first, return 1.  If the constants are not integral, return -2.
795///
796static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
797  if (C1 == C2) return 0;
798
799  // Ok, we found a different index.  If they are not ConstantInt, we can't do
800  // anything with them.
801  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
802    return -2; // don't know!
803
804  // Ok, we have two differing integer indices.  Sign extend them to be the same
805  // type.  Long is always big enough, so we use it.
806  if (C1->getType() != Type::Int64Ty)
807    C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
808
809  if (C2->getType() != Type::Int64Ty)
810    C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
811
812  if (C1 == C2) return 0;  // They are equal
813
814  // If the type being indexed over is really just a zero sized type, there is
815  // no pointer difference being made here.
816  if (isMaybeZeroSizedType(ElTy))
817    return -2; // dunno.
818
819  // If they are really different, now that they are the same type, then we
820  // found a difference!
821  if (cast<ConstantInt>(C1)->getSExtValue() <
822      cast<ConstantInt>(C2)->getSExtValue())
823    return -1;
824  else
825    return 1;
826}
827
828/// evaluateFCmpRelation - This function determines if there is anything we can
829/// decide about the two constants provided.  This doesn't need to handle simple
830/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
831/// If we can determine that the two constants have a particular relation to
832/// each other, we should return the corresponding FCmpInst predicate,
833/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
834/// ConstantFoldCompareInstruction.
835///
836/// To simplify this code we canonicalize the relation so that the first
837/// operand is always the most "complex" of the two.  We consider ConstantFP
838/// to be the simplest, and ConstantExprs to be the most complex.
839static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
840                                                const Constant *V2) {
841  assert(V1->getType() == V2->getType() &&
842         "Cannot compare values of different types!");
843
844  // No compile-time operations on this type yet.
845  if (V1->getType() == Type::PPC_FP128Ty)
846    return FCmpInst::BAD_FCMP_PREDICATE;
847
848  // Handle degenerate case quickly
849  if (V1 == V2) return FCmpInst::FCMP_OEQ;
850
851  if (!isa<ConstantExpr>(V1)) {
852    if (!isa<ConstantExpr>(V2)) {
853      // We distilled thisUse the standard constant folder for a few cases
854      ConstantInt *R = 0;
855      Constant *C1 = const_cast<Constant*>(V1);
856      Constant *C2 = const_cast<Constant*>(V2);
857      R = dyn_cast<ConstantInt>(
858                             ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
859      if (R && !R->isZero())
860        return FCmpInst::FCMP_OEQ;
861      R = dyn_cast<ConstantInt>(
862                             ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
863      if (R && !R->isZero())
864        return FCmpInst::FCMP_OLT;
865      R = dyn_cast<ConstantInt>(
866                             ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
867      if (R && !R->isZero())
868        return FCmpInst::FCMP_OGT;
869
870      // Nothing more we can do
871      return FCmpInst::BAD_FCMP_PREDICATE;
872    }
873
874    // If the first operand is simple and second is ConstantExpr, swap operands.
875    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
876    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
877      return FCmpInst::getSwappedPredicate(SwappedRelation);
878  } else {
879    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
880    // constantexpr or a simple constant.
881    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
882    switch (CE1->getOpcode()) {
883    case Instruction::FPTrunc:
884    case Instruction::FPExt:
885    case Instruction::UIToFP:
886    case Instruction::SIToFP:
887      // We might be able to do something with these but we don't right now.
888      break;
889    default:
890      break;
891    }
892  }
893  // There are MANY other foldings that we could perform here.  They will
894  // probably be added on demand, as they seem needed.
895  return FCmpInst::BAD_FCMP_PREDICATE;
896}
897
898/// evaluateICmpRelation - This function determines if there is anything we can
899/// decide about the two constants provided.  This doesn't need to handle simple
900/// things like integer comparisons, but should instead handle ConstantExprs
901/// and GlobalValues.  If we can determine that the two constants have a
902/// particular relation to each other, we should return the corresponding ICmp
903/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
904///
905/// To simplify this code we canonicalize the relation so that the first
906/// operand is always the most "complex" of the two.  We consider simple
907/// constants (like ConstantInt) to be the simplest, followed by
908/// GlobalValues, followed by ConstantExpr's (the most complex).
909///
910static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
911                                                const Constant *V2,
912                                                bool isSigned) {
913  assert(V1->getType() == V2->getType() &&
914         "Cannot compare different types of values!");
915  if (V1 == V2) return ICmpInst::ICMP_EQ;
916
917  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
918    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
919      // We distilled this down to a simple case, use the standard constant
920      // folder.
921      ConstantInt *R = 0;
922      Constant *C1 = const_cast<Constant*>(V1);
923      Constant *C2 = const_cast<Constant*>(V2);
924      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
925      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
926      if (R && !R->isZero())
927        return pred;
928      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
929      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
930      if (R && !R->isZero())
931        return pred;
932      pred = isSigned ?  ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
933      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
934      if (R && !R->isZero())
935        return pred;
936
937      // If we couldn't figure it out, bail.
938      return ICmpInst::BAD_ICMP_PREDICATE;
939    }
940
941    // If the first operand is simple, swap operands.
942    ICmpInst::Predicate SwappedRelation =
943      evaluateICmpRelation(V2, V1, isSigned);
944    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
945      return ICmpInst::getSwappedPredicate(SwappedRelation);
946
947  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
948    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
949      ICmpInst::Predicate SwappedRelation =
950        evaluateICmpRelation(V2, V1, isSigned);
951      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
952        return ICmpInst::getSwappedPredicate(SwappedRelation);
953      else
954        return ICmpInst::BAD_ICMP_PREDICATE;
955    }
956
957    // Now we know that the RHS is a GlobalValue or simple constant,
958    // which (since the types must match) means that it's a ConstantPointerNull.
959    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
960      // Don't try to decide equality of aliases.
961      if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
962        if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
963          return ICmpInst::ICMP_NE;
964    } else {
965      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
966      // GlobalVals can never be null.  Don't try to evaluate aliases.
967      if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
968        return ICmpInst::ICMP_NE;
969    }
970  } else {
971    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
972    // constantexpr, a CPR, or a simple constant.
973    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
974    const Constant *CE1Op0 = CE1->getOperand(0);
975
976    switch (CE1->getOpcode()) {
977    case Instruction::Trunc:
978    case Instruction::FPTrunc:
979    case Instruction::FPExt:
980    case Instruction::FPToUI:
981    case Instruction::FPToSI:
982      break; // We can't evaluate floating point casts or truncations.
983
984    case Instruction::UIToFP:
985    case Instruction::SIToFP:
986    case Instruction::BitCast:
987    case Instruction::ZExt:
988    case Instruction::SExt:
989      // If the cast is not actually changing bits, and the second operand is a
990      // null pointer, do the comparison with the pre-casted value.
991      if (V2->isNullValue() &&
992          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
993        bool sgnd = isSigned;
994        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
995        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
996        return evaluateICmpRelation(CE1Op0,
997                                    Constant::getNullValue(CE1Op0->getType()),
998                                    sgnd);
999      }
1000
1001      // If the dest type is a pointer type, and the RHS is a constantexpr cast
1002      // from the same type as the src of the LHS, evaluate the inputs.  This is
1003      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1004      // which happens a lot in compilers with tagged integers.
1005      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1006        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1007            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1008            CE1->getOperand(0)->getType()->isInteger()) {
1009          bool sgnd = isSigned;
1010          if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1011          if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1012          return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
1013                                      sgnd);
1014        }
1015      break;
1016
1017    case Instruction::GetElementPtr:
1018      // Ok, since this is a getelementptr, we know that the constant has a
1019      // pointer type.  Check the various cases.
1020      if (isa<ConstantPointerNull>(V2)) {
1021        // If we are comparing a GEP to a null pointer, check to see if the base
1022        // of the GEP equals the null pointer.
1023        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1024          if (GV->hasExternalWeakLinkage())
1025            // Weak linkage GVals could be zero or not. We're comparing that
1026            // to null pointer so its greater-or-equal
1027            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1028          else
1029            // If its not weak linkage, the GVal must have a non-zero address
1030            // so the result is greater-than
1031            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
1032        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1033          // If we are indexing from a null pointer, check to see if we have any
1034          // non-zero indices.
1035          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1036            if (!CE1->getOperand(i)->isNullValue())
1037              // Offsetting from null, must not be equal.
1038              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1039          // Only zero indexes from null, must still be zero.
1040          return ICmpInst::ICMP_EQ;
1041        }
1042        // Otherwise, we can't really say if the first operand is null or not.
1043      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1044        if (isa<ConstantPointerNull>(CE1Op0)) {
1045          if (CPR2->hasExternalWeakLinkage())
1046            // Weak linkage GVals could be zero or not. We're comparing it to
1047            // a null pointer, so its less-or-equal
1048            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1049          else
1050            // If its not weak linkage, the GVal must have a non-zero address
1051            // so the result is less-than
1052            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1053        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1054          if (CPR1 == CPR2) {
1055            // If this is a getelementptr of the same global, then it must be
1056            // different.  Because the types must match, the getelementptr could
1057            // only have at most one index, and because we fold getelementptr's
1058            // with a single zero index, it must be nonzero.
1059            assert(CE1->getNumOperands() == 2 &&
1060                   !CE1->getOperand(1)->isNullValue() &&
1061                   "Suprising getelementptr!");
1062            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1063          } else {
1064            // If they are different globals, we don't know what the value is,
1065            // but they can't be equal.
1066            return ICmpInst::ICMP_NE;
1067          }
1068        }
1069      } else {
1070        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1071        const Constant *CE2Op0 = CE2->getOperand(0);
1072
1073        // There are MANY other foldings that we could perform here.  They will
1074        // probably be added on demand, as they seem needed.
1075        switch (CE2->getOpcode()) {
1076        default: break;
1077        case Instruction::GetElementPtr:
1078          // By far the most common case to handle is when the base pointers are
1079          // obviously to the same or different globals.
1080          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1081            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1082              return ICmpInst::ICMP_NE;
1083            // Ok, we know that both getelementptr instructions are based on the
1084            // same global.  From this, we can precisely determine the relative
1085            // ordering of the resultant pointers.
1086            unsigned i = 1;
1087
1088            // Compare all of the operands the GEP's have in common.
1089            gep_type_iterator GTI = gep_type_begin(CE1);
1090            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1091                 ++i, ++GTI)
1092              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1093                                 GTI.getIndexedType())) {
1094              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1095              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1096              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1097              }
1098
1099            // Ok, we ran out of things they have in common.  If any leftovers
1100            // are non-zero then we have a difference, otherwise we are equal.
1101            for (; i < CE1->getNumOperands(); ++i)
1102              if (!CE1->getOperand(i)->isNullValue()) {
1103                if (isa<ConstantInt>(CE1->getOperand(i)))
1104                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1105                else
1106                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1107              }
1108
1109            for (; i < CE2->getNumOperands(); ++i)
1110              if (!CE2->getOperand(i)->isNullValue()) {
1111                if (isa<ConstantInt>(CE2->getOperand(i)))
1112                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1113                else
1114                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1115              }
1116            return ICmpInst::ICMP_EQ;
1117          }
1118        }
1119      }
1120    default:
1121      break;
1122    }
1123  }
1124
1125  return ICmpInst::BAD_ICMP_PREDICATE;
1126}
1127
1128Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1129                                               const Constant *C1,
1130                                               const Constant *C2) {
1131
1132  // Handle some degenerate cases first
1133  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1134    return UndefValue::get(Type::Int1Ty);
1135
1136  // No compile-time operations on this type yet.
1137  if (C1->getType() == Type::PPC_FP128Ty)
1138    return 0;
1139
1140  // icmp eq/ne(null,GV) -> false/true
1141  if (C1->isNullValue()) {
1142    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1143      // Don't try to evaluate aliases.  External weak GV can be null.
1144      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1145        if (pred == ICmpInst::ICMP_EQ)
1146          return ConstantInt::getFalse();
1147        else if (pred == ICmpInst::ICMP_NE)
1148          return ConstantInt::getTrue();
1149      }
1150  // icmp eq/ne(GV,null) -> false/true
1151  } else if (C2->isNullValue()) {
1152    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1153      // Don't try to evaluate aliases.  External weak GV can be null.
1154      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1155        if (pred == ICmpInst::ICMP_EQ)
1156          return ConstantInt::getFalse();
1157        else if (pred == ICmpInst::ICMP_NE)
1158          return ConstantInt::getTrue();
1159      }
1160  }
1161
1162  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1163    APInt V1 = cast<ConstantInt>(C1)->getValue();
1164    APInt V2 = cast<ConstantInt>(C2)->getValue();
1165    switch (pred) {
1166    default: assert(0 && "Invalid ICmp Predicate"); return 0;
1167    case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1168    case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1169    case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1170    case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1171    case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1172    case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1173    case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1174    case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1175    case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1176    case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1177    }
1178  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1179    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1180    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1181    APFloat::cmpResult R = C1V.compare(C2V);
1182    switch (pred) {
1183    default: assert(0 && "Invalid FCmp Predicate"); return 0;
1184    case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1185    case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue();
1186    case FCmpInst::FCMP_UNO:
1187      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1188    case FCmpInst::FCMP_ORD:
1189      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1190    case FCmpInst::FCMP_UEQ:
1191      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1192                                            R==APFloat::cmpEqual);
1193    case FCmpInst::FCMP_OEQ:
1194      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1195    case FCmpInst::FCMP_UNE:
1196      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1197    case FCmpInst::FCMP_ONE:
1198      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1199                                            R==APFloat::cmpGreaterThan);
1200    case FCmpInst::FCMP_ULT:
1201      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1202                                            R==APFloat::cmpLessThan);
1203    case FCmpInst::FCMP_OLT:
1204      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1205    case FCmpInst::FCMP_UGT:
1206      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1207                                            R==APFloat::cmpGreaterThan);
1208    case FCmpInst::FCMP_OGT:
1209      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1210    case FCmpInst::FCMP_ULE:
1211      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1212    case FCmpInst::FCMP_OLE:
1213      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1214                                            R==APFloat::cmpEqual);
1215    case FCmpInst::FCMP_UGE:
1216      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1217    case FCmpInst::FCMP_OGE:
1218      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1219                                            R==APFloat::cmpEqual);
1220    }
1221  } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
1222    if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
1223      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) {
1224        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1225          Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
1226              const_cast<Constant*>(CP1->getOperand(i)),
1227              const_cast<Constant*>(CP2->getOperand(i)));
1228          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1229            return CB;
1230        }
1231        // Otherwise, could not decide from any element pairs.
1232        return 0;
1233      } else if (pred == ICmpInst::ICMP_EQ) {
1234        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1235          Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
1236              const_cast<Constant*>(CP1->getOperand(i)),
1237              const_cast<Constant*>(CP2->getOperand(i)));
1238          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1239            return CB;
1240        }
1241        // Otherwise, could not decide from any element pairs.
1242        return 0;
1243      }
1244    }
1245  }
1246
1247  if (C1->getType()->isFloatingPoint()) {
1248    switch (evaluateFCmpRelation(C1, C2)) {
1249    default: assert(0 && "Unknown relation!");
1250    case FCmpInst::FCMP_UNO:
1251    case FCmpInst::FCMP_ORD:
1252    case FCmpInst::FCMP_UEQ:
1253    case FCmpInst::FCMP_UNE:
1254    case FCmpInst::FCMP_ULT:
1255    case FCmpInst::FCMP_UGT:
1256    case FCmpInst::FCMP_ULE:
1257    case FCmpInst::FCMP_UGE:
1258    case FCmpInst::FCMP_TRUE:
1259    case FCmpInst::FCMP_FALSE:
1260    case FCmpInst::BAD_FCMP_PREDICATE:
1261      break; // Couldn't determine anything about these constants.
1262    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1263      return ConstantInt::get(Type::Int1Ty,
1264          pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1265          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1266          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1267    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1268      return ConstantInt::get(Type::Int1Ty,
1269          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1270          pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1271          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1272    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1273      return ConstantInt::get(Type::Int1Ty,
1274          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1275          pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1276          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1277    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1278      // We can only partially decide this relation.
1279      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1280        return ConstantInt::getFalse();
1281      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1282        return ConstantInt::getTrue();
1283      break;
1284    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1285      // We can only partially decide this relation.
1286      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1287        return ConstantInt::getFalse();
1288      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1289        return ConstantInt::getTrue();
1290      break;
1291    case ICmpInst::ICMP_NE: // We know that C1 != C2
1292      // We can only partially decide this relation.
1293      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1294        return ConstantInt::getFalse();
1295      if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1296        return ConstantInt::getTrue();
1297      break;
1298    }
1299  } else {
1300    // Evaluate the relation between the two constants, per the predicate.
1301    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1302    default: assert(0 && "Unknown relational!");
1303    case ICmpInst::BAD_ICMP_PREDICATE:
1304      break;  // Couldn't determine anything about these constants.
1305    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1306      // If we know the constants are equal, we can decide the result of this
1307      // computation precisely.
1308      return ConstantInt::get(Type::Int1Ty,
1309                              pred == ICmpInst::ICMP_EQ  ||
1310                              pred == ICmpInst::ICMP_ULE ||
1311                              pred == ICmpInst::ICMP_SLE ||
1312                              pred == ICmpInst::ICMP_UGE ||
1313                              pred == ICmpInst::ICMP_SGE);
1314    case ICmpInst::ICMP_ULT:
1315      // If we know that C1 < C2, we can decide the result of this computation
1316      // precisely.
1317      return ConstantInt::get(Type::Int1Ty,
1318                              pred == ICmpInst::ICMP_ULT ||
1319                              pred == ICmpInst::ICMP_NE  ||
1320                              pred == ICmpInst::ICMP_ULE);
1321    case ICmpInst::ICMP_SLT:
1322      // If we know that C1 < C2, we can decide the result of this computation
1323      // precisely.
1324      return ConstantInt::get(Type::Int1Ty,
1325                              pred == ICmpInst::ICMP_SLT ||
1326                              pred == ICmpInst::ICMP_NE  ||
1327                              pred == ICmpInst::ICMP_SLE);
1328    case ICmpInst::ICMP_UGT:
1329      // If we know that C1 > C2, we can decide the result of this computation
1330      // precisely.
1331      return ConstantInt::get(Type::Int1Ty,
1332                              pred == ICmpInst::ICMP_UGT ||
1333                              pred == ICmpInst::ICMP_NE  ||
1334                              pred == ICmpInst::ICMP_UGE);
1335    case ICmpInst::ICMP_SGT:
1336      // If we know that C1 > C2, we can decide the result of this computation
1337      // precisely.
1338      return ConstantInt::get(Type::Int1Ty,
1339                              pred == ICmpInst::ICMP_SGT ||
1340                              pred == ICmpInst::ICMP_NE  ||
1341                              pred == ICmpInst::ICMP_SGE);
1342    case ICmpInst::ICMP_ULE:
1343      // If we know that C1 <= C2, we can only partially decide this relation.
1344      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse();
1345      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue();
1346      break;
1347    case ICmpInst::ICMP_SLE:
1348      // If we know that C1 <= C2, we can only partially decide this relation.
1349      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse();
1350      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue();
1351      break;
1352
1353    case ICmpInst::ICMP_UGE:
1354      // If we know that C1 >= C2, we can only partially decide this relation.
1355      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse();
1356      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue();
1357      break;
1358    case ICmpInst::ICMP_SGE:
1359      // If we know that C1 >= C2, we can only partially decide this relation.
1360      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse();
1361      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue();
1362      break;
1363
1364    case ICmpInst::ICMP_NE:
1365      // If we know that C1 != C2, we can only partially decide this relation.
1366      if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse();
1367      if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue();
1368      break;
1369    }
1370
1371    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1372      // If C2 is a constant expr and C1 isn't, flop them around and fold the
1373      // other way if possible.
1374      switch (pred) {
1375      case ICmpInst::ICMP_EQ:
1376      case ICmpInst::ICMP_NE:
1377        // No change of predicate required.
1378        return ConstantFoldCompareInstruction(pred, C2, C1);
1379
1380      case ICmpInst::ICMP_ULT:
1381      case ICmpInst::ICMP_SLT:
1382      case ICmpInst::ICMP_UGT:
1383      case ICmpInst::ICMP_SGT:
1384      case ICmpInst::ICMP_ULE:
1385      case ICmpInst::ICMP_SLE:
1386      case ICmpInst::ICMP_UGE:
1387      case ICmpInst::ICMP_SGE:
1388        // Change the predicate as necessary to swap the operands.
1389        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1390        return ConstantFoldCompareInstruction(pred, C2, C1);
1391
1392      default:  // These predicates cannot be flopped around.
1393        break;
1394      }
1395    }
1396  }
1397  return 0;
1398}
1399
1400Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1401                                          Constant* const *Idxs,
1402                                          unsigned NumIdx) {
1403  if (NumIdx == 0 ||
1404      (NumIdx == 1 && Idxs[0]->isNullValue()))
1405    return const_cast<Constant*>(C);
1406
1407  if (isa<UndefValue>(C)) {
1408    const PointerType *Ptr = cast<PointerType>(C->getType());
1409    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1410                                                       (Value **)Idxs,
1411                                                       (Value **)Idxs+NumIdx,
1412                                                       true);
1413    assert(Ty != 0 && "Invalid indices for GEP!");
1414    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1415  }
1416
1417  Constant *Idx0 = Idxs[0];
1418  if (C->isNullValue()) {
1419    bool isNull = true;
1420    for (unsigned i = 0, e = NumIdx; i != e; ++i)
1421      if (!Idxs[i]->isNullValue()) {
1422        isNull = false;
1423        break;
1424      }
1425    if (isNull) {
1426      const PointerType *Ptr = cast<PointerType>(C->getType());
1427      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1428                                                         (Value**)Idxs,
1429                                                         (Value**)Idxs+NumIdx,
1430                                                         true);
1431      assert(Ty != 0 && "Invalid indices for GEP!");
1432      return
1433        ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
1434    }
1435  }
1436
1437  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1438    // Combine Indices - If the source pointer to this getelementptr instruction
1439    // is a getelementptr instruction, combine the indices of the two
1440    // getelementptr instructions into a single instruction.
1441    //
1442    if (CE->getOpcode() == Instruction::GetElementPtr) {
1443      const Type *LastTy = 0;
1444      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1445           I != E; ++I)
1446        LastTy = *I;
1447
1448      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1449        SmallVector<Value*, 16> NewIndices;
1450        NewIndices.reserve(NumIdx + CE->getNumOperands());
1451        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1452          NewIndices.push_back(CE->getOperand(i));
1453
1454        // Add the last index of the source with the first index of the new GEP.
1455        // Make sure to handle the case when they are actually different types.
1456        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1457        // Otherwise it must be an array.
1458        if (!Idx0->isNullValue()) {
1459          const Type *IdxTy = Combined->getType();
1460          if (IdxTy != Idx0->getType()) {
1461            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1462            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1463                                                          Type::Int64Ty);
1464            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1465          } else {
1466            Combined =
1467              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1468          }
1469        }
1470
1471        NewIndices.push_back(Combined);
1472        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1473        return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
1474                                              NewIndices.size());
1475      }
1476    }
1477
1478    // Implement folding of:
1479    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1480    //                        long 0, long 0)
1481    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1482    //
1483    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1484      if (const PointerType *SPT =
1485          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1486        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1487          if (const ArrayType *CAT =
1488        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1489            if (CAT->getElementType() == SAT->getElementType())
1490              return ConstantExpr::getGetElementPtr(
1491                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
1492    }
1493
1494    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1495    // Into: inttoptr (i64 0 to i8*)
1496    // This happens with pointers to member functions in C++.
1497    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1498        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1499        cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1500      Constant *Base = CE->getOperand(0);
1501      Constant *Offset = Idxs[0];
1502
1503      // Convert the smaller integer to the larger type.
1504      if (Offset->getType()->getPrimitiveSizeInBits() <
1505          Base->getType()->getPrimitiveSizeInBits())
1506        Offset = ConstantExpr::getSExt(Offset, Base->getType());
1507      else if (Base->getType()->getPrimitiveSizeInBits() <
1508               Offset->getType()->getPrimitiveSizeInBits())
1509        Base = ConstantExpr::getZExt(Base, Base->getType());
1510
1511      Base = ConstantExpr::getAdd(Base, Offset);
1512      return ConstantExpr::getIntToPtr(Base, CE->getType());
1513    }
1514  }
1515  return 0;
1516}
1517
1518