ConstantFold.cpp revision 4c6b8bee2ab087f3b21efa6b638c6848f23b74d7
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Operator.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified ConstantVector node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(ConstantVector *CV,
45                                       VectorType *DstTy) {
46
47  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49
50  // If this cast changes element count then we can't handle it here:
51  // doing so requires endianness information.  This should be handled by
52  // Analysis/ConstantFolding.cpp
53  unsigned NumElts = DstTy->getNumElements();
54  if (NumElts != CV->getNumOperands())
55    return 0;
56
57  // Check to verify that all elements of the input are simple.
58  for (unsigned i = 0; i != NumElts; ++i) {
59    if (!isa<ConstantInt>(CV->getOperand(i)) &&
60        !isa<ConstantFP>(CV->getOperand(i)))
61      return 0;
62  }
63
64  // Bitcast each element now.
65  std::vector<Constant*> Result;
66  Type *DstEltTy = DstTy->getElementType();
67  for (unsigned i = 0; i != NumElts; ++i)
68    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
69                                                    DstEltTy));
70  return ConstantVector::get(Result);
71}
72
73/// This function determines which opcode to use to fold two constant cast
74/// expressions together. It uses CastInst::isEliminableCastPair to determine
75/// the opcode. Consequently its just a wrapper around that function.
76/// @brief Determine if it is valid to fold a cast of a cast
77static unsigned
78foldConstantCastPair(
79  unsigned opc,          ///< opcode of the second cast constant expression
80  ConstantExpr *Op,      ///< the first cast constant expression
81  Type *DstTy      ///< desintation type of the first cast
82) {
83  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
84  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
85  assert(CastInst::isCast(opc) && "Invalid cast opcode");
86
87  // The the types and opcodes for the two Cast constant expressions
88  Type *SrcTy = Op->getOperand(0)->getType();
89  Type *MidTy = Op->getType();
90  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
91  Instruction::CastOps secondOp = Instruction::CastOps(opc);
92
93  // Let CastInst::isEliminableCastPair do the heavy lifting.
94  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
95                                        Type::getInt64Ty(DstTy->getContext()));
96}
97
98static Constant *FoldBitCast(Constant *V, Type *DestTy) {
99  Type *SrcTy = V->getType();
100  if (SrcTy == DestTy)
101    return V; // no-op cast
102
103  // Check to see if we are casting a pointer to an aggregate to a pointer to
104  // the first element.  If so, return the appropriate GEP instruction.
105  if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
106    if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
107      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
108        SmallVector<Value*, 8> IdxList;
109        Value *Zero =
110          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
111        IdxList.push_back(Zero);
112        Type *ElTy = PTy->getElementType();
113        while (ElTy != DPTy->getElementType()) {
114          if (StructType *STy = dyn_cast<StructType>(ElTy)) {
115            if (STy->getNumElements() == 0) break;
116            ElTy = STy->getElementType(0);
117            IdxList.push_back(Zero);
118          } else if (SequentialType *STy =
119                     dyn_cast<SequentialType>(ElTy)) {
120            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
121            ElTy = STy->getElementType();
122            IdxList.push_back(Zero);
123          } else {
124            break;
125          }
126        }
127
128        if (ElTy == DPTy->getElementType())
129          // This GEP is inbounds because all indices are zero.
130          return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
131      }
132
133  // Handle casts from one vector constant to another.  We know that the src
134  // and dest type have the same size (otherwise its an illegal cast).
135  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
136    if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
137      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
138             "Not cast between same sized vectors!");
139      SrcTy = NULL;
140      // First, check for null.  Undef is already handled.
141      if (isa<ConstantAggregateZero>(V))
142        return Constant::getNullValue(DestTy);
143
144      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
145        return BitCastConstantVector(CV, DestPTy);
146    }
147
148    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
149    // This allows for other simplifications (although some of them
150    // can only be handled by Analysis/ConstantFolding.cpp).
151    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
152      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
153  }
154
155  // Finally, implement bitcast folding now.   The code below doesn't handle
156  // bitcast right.
157  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
158    return ConstantPointerNull::get(cast<PointerType>(DestTy));
159
160  // Handle integral constant input.
161  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
162    if (DestTy->isIntegerTy())
163      // Integral -> Integral. This is a no-op because the bit widths must
164      // be the same. Consequently, we just fold to V.
165      return V;
166
167    if (DestTy->isFloatingPointTy())
168      return ConstantFP::get(DestTy->getContext(),
169                             APFloat(CI->getValue(),
170                                     !DestTy->isPPC_FP128Ty()));
171
172    // Otherwise, can't fold this (vector?)
173    return 0;
174  }
175
176  // Handle ConstantFP input: FP -> Integral.
177  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
178    return ConstantInt::get(FP->getContext(),
179                            FP->getValueAPF().bitcastToAPInt());
180
181  return 0;
182}
183
184
185/// ExtractConstantBytes - V is an integer constant which only has a subset of
186/// its bytes used.  The bytes used are indicated by ByteStart (which is the
187/// first byte used, counting from the least significant byte) and ByteSize,
188/// which is the number of bytes used.
189///
190/// This function analyzes the specified constant to see if the specified byte
191/// range can be returned as a simplified constant.  If so, the constant is
192/// returned, otherwise null is returned.
193///
194static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
195                                      unsigned ByteSize) {
196  assert(C->getType()->isIntegerTy() &&
197         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
198         "Non-byte sized integer input");
199  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
200  assert(ByteSize && "Must be accessing some piece");
201  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
202  assert(ByteSize != CSize && "Should not extract everything");
203
204  // Constant Integers are simple.
205  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
206    APInt V = CI->getValue();
207    if (ByteStart)
208      V = V.lshr(ByteStart*8);
209    V = V.trunc(ByteSize*8);
210    return ConstantInt::get(CI->getContext(), V);
211  }
212
213  // In the input is a constant expr, we might be able to recursively simplify.
214  // If not, we definitely can't do anything.
215  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
216  if (CE == 0) return 0;
217
218  switch (CE->getOpcode()) {
219  default: return 0;
220  case Instruction::Or: {
221    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
222    if (RHS == 0)
223      return 0;
224
225    // X | -1 -> -1.
226    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
227      if (RHSC->isAllOnesValue())
228        return RHSC;
229
230    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
231    if (LHS == 0)
232      return 0;
233    return ConstantExpr::getOr(LHS, RHS);
234  }
235  case Instruction::And: {
236    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
237    if (RHS == 0)
238      return 0;
239
240    // X & 0 -> 0.
241    if (RHS->isNullValue())
242      return RHS;
243
244    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
245    if (LHS == 0)
246      return 0;
247    return ConstantExpr::getAnd(LHS, RHS);
248  }
249  case Instruction::LShr: {
250    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
251    if (Amt == 0)
252      return 0;
253    unsigned ShAmt = Amt->getZExtValue();
254    // Cannot analyze non-byte shifts.
255    if ((ShAmt & 7) != 0)
256      return 0;
257    ShAmt >>= 3;
258
259    // If the extract is known to be all zeros, return zero.
260    if (ByteStart >= CSize-ShAmt)
261      return Constant::getNullValue(IntegerType::get(CE->getContext(),
262                                                     ByteSize*8));
263    // If the extract is known to be fully in the input, extract it.
264    if (ByteStart+ByteSize+ShAmt <= CSize)
265      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
266
267    // TODO: Handle the 'partially zero' case.
268    return 0;
269  }
270
271  case Instruction::Shl: {
272    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
273    if (Amt == 0)
274      return 0;
275    unsigned ShAmt = Amt->getZExtValue();
276    // Cannot analyze non-byte shifts.
277    if ((ShAmt & 7) != 0)
278      return 0;
279    ShAmt >>= 3;
280
281    // If the extract is known to be all zeros, return zero.
282    if (ByteStart+ByteSize <= ShAmt)
283      return Constant::getNullValue(IntegerType::get(CE->getContext(),
284                                                     ByteSize*8));
285    // If the extract is known to be fully in the input, extract it.
286    if (ByteStart >= ShAmt)
287      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
288
289    // TODO: Handle the 'partially zero' case.
290    return 0;
291  }
292
293  case Instruction::ZExt: {
294    unsigned SrcBitSize =
295      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
296
297    // If extracting something that is completely zero, return 0.
298    if (ByteStart*8 >= SrcBitSize)
299      return Constant::getNullValue(IntegerType::get(CE->getContext(),
300                                                     ByteSize*8));
301
302    // If exactly extracting the input, return it.
303    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
304      return CE->getOperand(0);
305
306    // If extracting something completely in the input, if if the input is a
307    // multiple of 8 bits, recurse.
308    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
309      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
310
311    // Otherwise, if extracting a subset of the input, which is not multiple of
312    // 8 bits, do a shift and trunc to get the bits.
313    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
314      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
315      Constant *Res = CE->getOperand(0);
316      if (ByteStart)
317        Res = ConstantExpr::getLShr(Res,
318                                 ConstantInt::get(Res->getType(), ByteStart*8));
319      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
320                                                          ByteSize*8));
321    }
322
323    // TODO: Handle the 'partially zero' case.
324    return 0;
325  }
326  }
327}
328
329/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
330/// on Ty, with any known factors factored out. If Folded is false,
331/// return null if no factoring was possible, to avoid endlessly
332/// bouncing an unfoldable expression back into the top-level folder.
333///
334static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
335                                 bool Folded) {
336  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
337    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
338    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
339    return ConstantExpr::getNUWMul(E, N);
340  }
341
342  if (StructType *STy = dyn_cast<StructType>(Ty))
343    if (!STy->isPacked()) {
344      unsigned NumElems = STy->getNumElements();
345      // An empty struct has size zero.
346      if (NumElems == 0)
347        return ConstantExpr::getNullValue(DestTy);
348      // Check for a struct with all members having the same size.
349      Constant *MemberSize =
350        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
351      bool AllSame = true;
352      for (unsigned i = 1; i != NumElems; ++i)
353        if (MemberSize !=
354            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
355          AllSame = false;
356          break;
357        }
358      if (AllSame) {
359        Constant *N = ConstantInt::get(DestTy, NumElems);
360        return ConstantExpr::getNUWMul(MemberSize, N);
361      }
362    }
363
364  // Pointer size doesn't depend on the pointee type, so canonicalize them
365  // to an arbitrary pointee.
366  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
367    if (!PTy->getElementType()->isIntegerTy(1))
368      return
369        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
370                                         PTy->getAddressSpace()),
371                        DestTy, true);
372
373  // If there's no interesting folding happening, bail so that we don't create
374  // a constant that looks like it needs folding but really doesn't.
375  if (!Folded)
376    return 0;
377
378  // Base case: Get a regular sizeof expression.
379  Constant *C = ConstantExpr::getSizeOf(Ty);
380  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
381                                                    DestTy, false),
382                            C, DestTy);
383  return C;
384}
385
386/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
387/// on Ty, with any known factors factored out. If Folded is false,
388/// return null if no factoring was possible, to avoid endlessly
389/// bouncing an unfoldable expression back into the top-level folder.
390///
391static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
392                                  bool Folded) {
393  // The alignment of an array is equal to the alignment of the
394  // array element. Note that this is not always true for vectors.
395  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
396    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
397    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
398                                                      DestTy,
399                                                      false),
400                              C, DestTy);
401    return C;
402  }
403
404  if (StructType *STy = dyn_cast<StructType>(Ty)) {
405    // Packed structs always have an alignment of 1.
406    if (STy->isPacked())
407      return ConstantInt::get(DestTy, 1);
408
409    // Otherwise, struct alignment is the maximum alignment of any member.
410    // Without target data, we can't compare much, but we can check to see
411    // if all the members have the same alignment.
412    unsigned NumElems = STy->getNumElements();
413    // An empty struct has minimal alignment.
414    if (NumElems == 0)
415      return ConstantInt::get(DestTy, 1);
416    // Check for a struct with all members having the same alignment.
417    Constant *MemberAlign =
418      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
419    bool AllSame = true;
420    for (unsigned i = 1; i != NumElems; ++i)
421      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
422        AllSame = false;
423        break;
424      }
425    if (AllSame)
426      return MemberAlign;
427  }
428
429  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
430  // to an arbitrary pointee.
431  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
432    if (!PTy->getElementType()->isIntegerTy(1))
433      return
434        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
435                                                           1),
436                                          PTy->getAddressSpace()),
437                         DestTy, true);
438
439  // If there's no interesting folding happening, bail so that we don't create
440  // a constant that looks like it needs folding but really doesn't.
441  if (!Folded)
442    return 0;
443
444  // Base case: Get a regular alignof expression.
445  Constant *C = ConstantExpr::getAlignOf(Ty);
446  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
447                                                    DestTy, false),
448                            C, DestTy);
449  return C;
450}
451
452/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
453/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
454/// return null if no factoring was possible, to avoid endlessly
455/// bouncing an unfoldable expression back into the top-level folder.
456///
457static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
458                                   Type *DestTy,
459                                   bool Folded) {
460  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
461    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
462                                                                DestTy, false),
463                                        FieldNo, DestTy);
464    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
465    return ConstantExpr::getNUWMul(E, N);
466  }
467
468  if (StructType *STy = dyn_cast<StructType>(Ty))
469    if (!STy->isPacked()) {
470      unsigned NumElems = STy->getNumElements();
471      // An empty struct has no members.
472      if (NumElems == 0)
473        return 0;
474      // Check for a struct with all members having the same size.
475      Constant *MemberSize =
476        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
477      bool AllSame = true;
478      for (unsigned i = 1; i != NumElems; ++i)
479        if (MemberSize !=
480            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
481          AllSame = false;
482          break;
483        }
484      if (AllSame) {
485        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
486                                                                    false,
487                                                                    DestTy,
488                                                                    false),
489                                            FieldNo, DestTy);
490        return ConstantExpr::getNUWMul(MemberSize, N);
491      }
492    }
493
494  // If there's no interesting folding happening, bail so that we don't create
495  // a constant that looks like it needs folding but really doesn't.
496  if (!Folded)
497    return 0;
498
499  // Base case: Get a regular offsetof expression.
500  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
501  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
502                                                    DestTy, false),
503                            C, DestTy);
504  return C;
505}
506
507Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
508                                            Type *DestTy) {
509  if (isa<UndefValue>(V)) {
510    // zext(undef) = 0, because the top bits will be zero.
511    // sext(undef) = 0, because the top bits will all be the same.
512    // [us]itofp(undef) = 0, because the result value is bounded.
513    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
514        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
515      return Constant::getNullValue(DestTy);
516    return UndefValue::get(DestTy);
517  }
518
519  // No compile-time operations on this type yet.
520  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
521    return 0;
522
523  if (V->isNullValue() && !DestTy->isX86_MMXTy())
524    return Constant::getNullValue(DestTy);
525
526  // If the cast operand is a constant expression, there's a few things we can
527  // do to try to simplify it.
528  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
529    if (CE->isCast()) {
530      // Try hard to fold cast of cast because they are often eliminable.
531      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
532        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
533    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
534      // If all of the indexes in the GEP are null values, there is no pointer
535      // adjustment going on.  We might as well cast the source pointer.
536      bool isAllNull = true;
537      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
538        if (!CE->getOperand(i)->isNullValue()) {
539          isAllNull = false;
540          break;
541        }
542      if (isAllNull)
543        // This is casting one pointer type to another, always BitCast
544        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
545    }
546  }
547
548  // If the cast operand is a constant vector, perform the cast by
549  // operating on each element. In the cast of bitcasts, the element
550  // count may be mismatched; don't attempt to handle that here.
551  if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
552    if (DestTy->isVectorTy() &&
553        cast<VectorType>(DestTy)->getNumElements() ==
554        CV->getType()->getNumElements()) {
555      std::vector<Constant*> res;
556      VectorType *DestVecTy = cast<VectorType>(DestTy);
557      Type *DstEltTy = DestVecTy->getElementType();
558      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
559        res.push_back(ConstantExpr::getCast(opc,
560                                            CV->getOperand(i), DstEltTy));
561      return ConstantVector::get(res);
562    }
563
564  // We actually have to do a cast now. Perform the cast according to the
565  // opcode specified.
566  switch (opc) {
567  default:
568    llvm_unreachable("Failed to cast constant expression");
569  case Instruction::FPTrunc:
570  case Instruction::FPExt:
571    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
572      bool ignored;
573      APFloat Val = FPC->getValueAPF();
574      Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
575                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
576                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
577                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
578                  APFloat::Bogus,
579                  APFloat::rmNearestTiesToEven, &ignored);
580      return ConstantFP::get(V->getContext(), Val);
581    }
582    return 0; // Can't fold.
583  case Instruction::FPToUI:
584  case Instruction::FPToSI:
585    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
586      const APFloat &V = FPC->getValueAPF();
587      bool ignored;
588      uint64_t x[2];
589      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
590      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
591                                APFloat::rmTowardZero, &ignored);
592      APInt Val(DestBitWidth, x);
593      return ConstantInt::get(FPC->getContext(), Val);
594    }
595    return 0; // Can't fold.
596  case Instruction::IntToPtr:   //always treated as unsigned
597    if (V->isNullValue())       // Is it an integral null value?
598      return ConstantPointerNull::get(cast<PointerType>(DestTy));
599    return 0;                   // Other pointer types cannot be casted
600  case Instruction::PtrToInt:   // always treated as unsigned
601    // Is it a null pointer value?
602    if (V->isNullValue())
603      return ConstantInt::get(DestTy, 0);
604    // If this is a sizeof-like expression, pull out multiplications by
605    // known factors to expose them to subsequent folding. If it's an
606    // alignof-like expression, factor out known factors.
607    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
608      if (CE->getOpcode() == Instruction::GetElementPtr &&
609          CE->getOperand(0)->isNullValue()) {
610        Type *Ty =
611          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
612        if (CE->getNumOperands() == 2) {
613          // Handle a sizeof-like expression.
614          Constant *Idx = CE->getOperand(1);
615          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
616          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
617            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
618                                                                DestTy, false),
619                                        Idx, DestTy);
620            return ConstantExpr::getMul(C, Idx);
621          }
622        } else if (CE->getNumOperands() == 3 &&
623                   CE->getOperand(1)->isNullValue()) {
624          // Handle an alignof-like expression.
625          if (StructType *STy = dyn_cast<StructType>(Ty))
626            if (!STy->isPacked()) {
627              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
628              if (CI->isOne() &&
629                  STy->getNumElements() == 2 &&
630                  STy->getElementType(0)->isIntegerTy(1)) {
631                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
632              }
633            }
634          // Handle an offsetof-like expression.
635          if (Ty->isStructTy() || Ty->isArrayTy()) {
636            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
637                                                DestTy, false))
638              return C;
639          }
640        }
641      }
642    // Other pointer types cannot be casted
643    return 0;
644  case Instruction::UIToFP:
645  case Instruction::SIToFP:
646    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
647      APInt api = CI->getValue();
648      APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()), true);
649      (void)apf.convertFromAPInt(api,
650                                 opc==Instruction::SIToFP,
651                                 APFloat::rmNearestTiesToEven);
652      return ConstantFP::get(V->getContext(), apf);
653    }
654    return 0;
655  case Instruction::ZExt:
656    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
657      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
658      return ConstantInt::get(V->getContext(),
659                              CI->getValue().zext(BitWidth));
660    }
661    return 0;
662  case Instruction::SExt:
663    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
664      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
665      return ConstantInt::get(V->getContext(),
666                              CI->getValue().sext(BitWidth));
667    }
668    return 0;
669  case Instruction::Trunc: {
670    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
671    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
672      return ConstantInt::get(V->getContext(),
673                              CI->getValue().trunc(DestBitWidth));
674    }
675
676    // The input must be a constantexpr.  See if we can simplify this based on
677    // the bytes we are demanding.  Only do this if the source and dest are an
678    // even multiple of a byte.
679    if ((DestBitWidth & 7) == 0 &&
680        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
681      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
682        return Res;
683
684    return 0;
685  }
686  case Instruction::BitCast:
687    return FoldBitCast(V, DestTy);
688  }
689}
690
691Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
692                                              Constant *V1, Constant *V2) {
693  if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
694    return CB->getZExtValue() ? V1 : V2;
695
696  // Check for zero aggregate and ConstantVector of zeros
697  if (Cond->isNullValue()) return V2;
698
699  if (ConstantVector* CondV = dyn_cast<ConstantVector>(Cond)) {
700
701    if (CondV->isAllOnesValue()) return V1;
702
703    VectorType *VTy = cast<VectorType>(V1->getType());
704    ConstantVector *CP1 = dyn_cast<ConstantVector>(V1);
705    ConstantVector *CP2 = dyn_cast<ConstantVector>(V2);
706
707    if ((CP1 || isa<ConstantAggregateZero>(V1)) &&
708        (CP2 || isa<ConstantAggregateZero>(V2))) {
709
710      // Find the element type of the returned vector
711      Type *EltTy = VTy->getElementType();
712      unsigned NumElem = VTy->getNumElements();
713      std::vector<Constant*> Res(NumElem);
714
715      bool Valid = true;
716      for (unsigned i = 0; i < NumElem; ++i) {
717        ConstantInt* c = dyn_cast<ConstantInt>(CondV->getOperand(i));
718        if (!c) {
719          Valid = false;
720          break;
721        }
722        Constant *C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
723        Constant *C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
724        Res[i] = c->getZExtValue() ? C1 : C2;
725      }
726      // If we were able to build the vector, return it
727      if (Valid) return ConstantVector::get(Res);
728    }
729  }
730
731
732  if (isa<UndefValue>(Cond)) {
733    if (isa<UndefValue>(V1)) return V1;
734    return V2;
735  }
736  if (isa<UndefValue>(V1)) return V2;
737  if (isa<UndefValue>(V2)) return V1;
738  if (V1 == V2) return V1;
739
740  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
741    if (TrueVal->getOpcode() == Instruction::Select)
742      if (TrueVal->getOperand(0) == Cond)
743	return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
744  }
745  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
746    if (FalseVal->getOpcode() == Instruction::Select)
747      if (FalseVal->getOperand(0) == Cond)
748	return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
749  }
750
751  return 0;
752}
753
754Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
755                                                      Constant *Idx) {
756  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
757    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
758  if (Val->isNullValue())  // ee(zero, x) -> zero
759    return Constant::getNullValue(
760                          cast<VectorType>(Val->getType())->getElementType());
761
762  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
763    if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
764      uint64_t Index = CIdx->getZExtValue();
765      if (Index >= CVal->getNumOperands())
766        // ee({w,x,y,z}, wrong_value) -> w (an arbitrary value).
767        return CVal->getOperand(0);
768      return CVal->getOperand(CIdx->getZExtValue());
769    } else if (isa<UndefValue>(Idx)) {
770      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
771      return CVal->getOperand(0);
772    }
773  }
774  return 0;
775}
776
777Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
778                                                     Constant *Elt,
779                                                     Constant *Idx) {
780  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
781  if (!CIdx) return 0;
782  APInt idxVal = CIdx->getValue();
783  if (isa<UndefValue>(Val)) {
784    // Insertion of scalar constant into vector undef
785    // Optimize away insertion of undef
786    if (isa<UndefValue>(Elt))
787      return Val;
788    // Otherwise break the aggregate undef into multiple undefs and do
789    // the insertion
790    unsigned numOps =
791      cast<VectorType>(Val->getType())->getNumElements();
792    std::vector<Constant*> Ops;
793    Ops.reserve(numOps);
794    for (unsigned i = 0; i < numOps; ++i) {
795      Constant *Op =
796        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
797      Ops.push_back(Op);
798    }
799    return ConstantVector::get(Ops);
800  }
801  if (isa<ConstantAggregateZero>(Val)) {
802    // Insertion of scalar constant into vector aggregate zero
803    // Optimize away insertion of zero
804    if (Elt->isNullValue())
805      return Val;
806    // Otherwise break the aggregate zero into multiple zeros and do
807    // the insertion
808    unsigned numOps =
809      cast<VectorType>(Val->getType())->getNumElements();
810    std::vector<Constant*> Ops;
811    Ops.reserve(numOps);
812    for (unsigned i = 0; i < numOps; ++i) {
813      Constant *Op =
814        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
815      Ops.push_back(Op);
816    }
817    return ConstantVector::get(Ops);
818  }
819  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
820    // Insertion of scalar constant into vector constant
821    std::vector<Constant*> Ops;
822    Ops.reserve(CVal->getNumOperands());
823    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
824      Constant *Op =
825        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
826      Ops.push_back(Op);
827    }
828    return ConstantVector::get(Ops);
829  }
830
831  return 0;
832}
833
834/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
835/// return the specified element value.  Otherwise return null.
836static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
837  if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
838    return CV->getOperand(EltNo);
839
840  Type *EltTy = cast<VectorType>(C->getType())->getElementType();
841  if (isa<ConstantAggregateZero>(C))
842    return Constant::getNullValue(EltTy);
843  if (isa<UndefValue>(C))
844    return UndefValue::get(EltTy);
845  return 0;
846}
847
848Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
849                                                     Constant *V2,
850                                                     Constant *Mask) {
851  // Undefined shuffle mask -> undefined value.
852  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
853
854  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
855  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
856  Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
857
858  // Loop over the shuffle mask, evaluating each element.
859  SmallVector<Constant*, 32> Result;
860  for (unsigned i = 0; i != MaskNumElts; ++i) {
861    Constant *InElt = GetVectorElement(Mask, i);
862    if (InElt == 0) return 0;
863
864    if (isa<UndefValue>(InElt))
865      InElt = UndefValue::get(EltTy);
866    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
867      unsigned Elt = CI->getZExtValue();
868      if (Elt >= SrcNumElts*2)
869        InElt = UndefValue::get(EltTy);
870      else if (Elt >= SrcNumElts)
871        InElt = GetVectorElement(V2, Elt - SrcNumElts);
872      else
873        InElt = GetVectorElement(V1, Elt);
874      if (InElt == 0) return 0;
875    } else {
876      // Unknown value.
877      return 0;
878    }
879    Result.push_back(InElt);
880  }
881
882  return ConstantVector::get(Result);
883}
884
885Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
886                                                    ArrayRef<unsigned> Idxs) {
887  // Base case: no indices, so return the entire value.
888  if (Idxs.empty())
889    return Agg;
890
891  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
892    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
893                                                            Idxs));
894
895  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
896    return
897      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
898                                                              Idxs));
899
900  // Otherwise recurse.
901  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
902    return ConstantFoldExtractValueInstruction(CS->getOperand(Idxs[0]),
903                                               Idxs.slice(1));
904
905  if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
906    return ConstantFoldExtractValueInstruction(CA->getOperand(Idxs[0]),
907                                               Idxs.slice(1));
908  ConstantVector *CV = cast<ConstantVector>(Agg);
909  return ConstantFoldExtractValueInstruction(CV->getOperand(Idxs[0]),
910                                             Idxs.slice(1));
911}
912
913Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
914                                                   Constant *Val,
915                                                   ArrayRef<unsigned> Idxs) {
916  // Base case: no indices, so replace the entire value.
917  if (Idxs.empty())
918    return Val;
919
920  if (isa<UndefValue>(Agg)) {
921    // Insertion of constant into aggregate undef
922    // Optimize away insertion of undef.
923    if (isa<UndefValue>(Val))
924      return Agg;
925
926    // Otherwise break the aggregate undef into multiple undefs and do
927    // the insertion.
928    CompositeType *AggTy = cast<CompositeType>(Agg->getType());
929    unsigned numOps;
930    if (ArrayType *AR = dyn_cast<ArrayType>(AggTy))
931      numOps = AR->getNumElements();
932    else
933      numOps = cast<StructType>(AggTy)->getNumElements();
934
935    std::vector<Constant*> Ops(numOps);
936    for (unsigned i = 0; i < numOps; ++i) {
937      Type *MemberTy = AggTy->getTypeAtIndex(i);
938      Constant *Op =
939        (Idxs[0] == i) ?
940        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
941                                           Val, Idxs.slice(1)) :
942        UndefValue::get(MemberTy);
943      Ops[i] = Op;
944    }
945
946    if (StructType* ST = dyn_cast<StructType>(AggTy))
947      return ConstantStruct::get(ST, Ops);
948    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
949  }
950
951  if (isa<ConstantAggregateZero>(Agg)) {
952    // Insertion of constant into aggregate zero
953    // Optimize away insertion of zero.
954    if (Val->isNullValue())
955      return Agg;
956
957    // Otherwise break the aggregate zero into multiple zeros and do
958    // the insertion.
959    CompositeType *AggTy = cast<CompositeType>(Agg->getType());
960    unsigned numOps;
961    if (ArrayType *AR = dyn_cast<ArrayType>(AggTy))
962      numOps = AR->getNumElements();
963    else
964      numOps = cast<StructType>(AggTy)->getNumElements();
965
966    std::vector<Constant*> Ops(numOps);
967    for (unsigned i = 0; i < numOps; ++i) {
968      Type *MemberTy = AggTy->getTypeAtIndex(i);
969      Constant *Op =
970        (Idxs[0] == i) ?
971        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
972                                           Val, Idxs.slice(1)) :
973        Constant::getNullValue(MemberTy);
974      Ops[i] = Op;
975    }
976
977    if (StructType *ST = dyn_cast<StructType>(AggTy))
978      return ConstantStruct::get(ST, Ops);
979    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
980  }
981
982  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
983    // Insertion of constant into aggregate constant.
984    std::vector<Constant*> Ops(Agg->getNumOperands());
985    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
986      Constant *Op = cast<Constant>(Agg->getOperand(i));
987      if (Idxs[0] == i)
988        Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs.slice(1));
989      Ops[i] = Op;
990    }
991
992    if (StructType* ST = dyn_cast<StructType>(Agg->getType()))
993      return ConstantStruct::get(ST, Ops);
994    return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
995  }
996
997  return 0;
998}
999
1000
1001Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
1002                                              Constant *C1, Constant *C2) {
1003  // No compile-time operations on this type yet.
1004  if (C1->getType()->isPPC_FP128Ty())
1005    return 0;
1006
1007  // Handle UndefValue up front.
1008  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1009    switch (Opcode) {
1010    case Instruction::Xor:
1011      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1012        // Handle undef ^ undef -> 0 special case. This is a common
1013        // idiom (misuse).
1014        return Constant::getNullValue(C1->getType());
1015      // Fallthrough
1016    case Instruction::Add:
1017    case Instruction::Sub:
1018      return UndefValue::get(C1->getType());
1019    case Instruction::And:
1020      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
1021        return C1;
1022      return Constant::getNullValue(C1->getType());   // undef & X -> 0
1023    case Instruction::Mul: {
1024      ConstantInt *CI;
1025      // X * undef -> undef   if X is odd or undef
1026      if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
1027          ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
1028          (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1029        return UndefValue::get(C1->getType());
1030
1031      // X * undef -> 0       otherwise
1032      return Constant::getNullValue(C1->getType());
1033    }
1034    case Instruction::UDiv:
1035    case Instruction::SDiv:
1036      // undef / 1 -> undef
1037      if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
1038        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
1039          if (CI2->isOne())
1040            return C1;
1041      // FALL THROUGH
1042    case Instruction::URem:
1043    case Instruction::SRem:
1044      if (!isa<UndefValue>(C2))                    // undef / X -> 0
1045        return Constant::getNullValue(C1->getType());
1046      return C2;                                   // X / undef -> undef
1047    case Instruction::Or:                          // X | undef -> -1
1048      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1049        return C1;
1050      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1051    case Instruction::LShr:
1052      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1053        return C1;                                  // undef lshr undef -> undef
1054      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
1055                                                    // undef lshr X -> 0
1056    case Instruction::AShr:
1057      if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
1058        return Constant::getAllOnesValue(C1->getType());
1059      else if (isa<UndefValue>(C1))
1060        return C1;                                  // undef ashr undef -> undef
1061      else
1062        return C1;                                  // X ashr undef --> X
1063    case Instruction::Shl:
1064      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1065        return C1;                                  // undef shl undef -> undef
1066      // undef << X -> 0   or   X << undef -> 0
1067      return Constant::getNullValue(C1->getType());
1068    }
1069  }
1070
1071  // Handle simplifications when the RHS is a constant int.
1072  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1073    switch (Opcode) {
1074    case Instruction::Add:
1075      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1076      break;
1077    case Instruction::Sub:
1078      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1079      break;
1080    case Instruction::Mul:
1081      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1082      if (CI2->equalsInt(1))
1083        return C1;                                              // X * 1 == X
1084      break;
1085    case Instruction::UDiv:
1086    case Instruction::SDiv:
1087      if (CI2->equalsInt(1))
1088        return C1;                                            // X / 1 == X
1089      if (CI2->equalsInt(0))
1090        return UndefValue::get(CI2->getType());               // X / 0 == undef
1091      break;
1092    case Instruction::URem:
1093    case Instruction::SRem:
1094      if (CI2->equalsInt(1))
1095        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1096      if (CI2->equalsInt(0))
1097        return UndefValue::get(CI2->getType());               // X % 0 == undef
1098      break;
1099    case Instruction::And:
1100      if (CI2->isZero()) return C2;                           // X & 0 == 0
1101      if (CI2->isAllOnesValue())
1102        return C1;                                            // X & -1 == X
1103
1104      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1105        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1106        if (CE1->getOpcode() == Instruction::ZExt) {
1107          unsigned DstWidth = CI2->getType()->getBitWidth();
1108          unsigned SrcWidth =
1109            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1110          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1111          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1112            return C1;
1113        }
1114
1115        // If and'ing the address of a global with a constant, fold it.
1116        if (CE1->getOpcode() == Instruction::PtrToInt &&
1117            isa<GlobalValue>(CE1->getOperand(0))) {
1118          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1119
1120          // Functions are at least 4-byte aligned.
1121          unsigned GVAlign = GV->getAlignment();
1122          if (isa<Function>(GV))
1123            GVAlign = std::max(GVAlign, 4U);
1124
1125          if (GVAlign > 1) {
1126            unsigned DstWidth = CI2->getType()->getBitWidth();
1127            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1128            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1129
1130            // If checking bits we know are clear, return zero.
1131            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1132              return Constant::getNullValue(CI2->getType());
1133          }
1134        }
1135      }
1136      break;
1137    case Instruction::Or:
1138      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1139      if (CI2->isAllOnesValue())
1140        return C2;                         // X | -1 == -1
1141      break;
1142    case Instruction::Xor:
1143      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1144
1145      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1146        switch (CE1->getOpcode()) {
1147        default: break;
1148        case Instruction::ICmp:
1149        case Instruction::FCmp:
1150          // cmp pred ^ true -> cmp !pred
1151          assert(CI2->equalsInt(1));
1152          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1153          pred = CmpInst::getInversePredicate(pred);
1154          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1155                                          CE1->getOperand(1));
1156        }
1157      }
1158      break;
1159    case Instruction::AShr:
1160      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1161      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1162        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1163          return ConstantExpr::getLShr(C1, C2);
1164      break;
1165    }
1166  } else if (isa<ConstantInt>(C1)) {
1167    // If C1 is a ConstantInt and C2 is not, swap the operands.
1168    if (Instruction::isCommutative(Opcode))
1169      return ConstantExpr::get(Opcode, C2, C1);
1170  }
1171
1172  // At this point we know neither constant is an UndefValue.
1173  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1174    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1175      using namespace APIntOps;
1176      const APInt &C1V = CI1->getValue();
1177      const APInt &C2V = CI2->getValue();
1178      switch (Opcode) {
1179      default:
1180        break;
1181      case Instruction::Add:
1182        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1183      case Instruction::Sub:
1184        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1185      case Instruction::Mul:
1186        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1187      case Instruction::UDiv:
1188        assert(!CI2->isNullValue() && "Div by zero handled above");
1189        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1190      case Instruction::SDiv:
1191        assert(!CI2->isNullValue() && "Div by zero handled above");
1192        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1193          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1194        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1195      case Instruction::URem:
1196        assert(!CI2->isNullValue() && "Div by zero handled above");
1197        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1198      case Instruction::SRem:
1199        assert(!CI2->isNullValue() && "Div by zero handled above");
1200        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1201          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1202        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1203      case Instruction::And:
1204        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1205      case Instruction::Or:
1206        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1207      case Instruction::Xor:
1208        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1209      case Instruction::Shl: {
1210        uint32_t shiftAmt = C2V.getZExtValue();
1211        if (shiftAmt < C1V.getBitWidth())
1212          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1213        else
1214          return UndefValue::get(C1->getType()); // too big shift is undef
1215      }
1216      case Instruction::LShr: {
1217        uint32_t shiftAmt = C2V.getZExtValue();
1218        if (shiftAmt < C1V.getBitWidth())
1219          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1220        else
1221          return UndefValue::get(C1->getType()); // too big shift is undef
1222      }
1223      case Instruction::AShr: {
1224        uint32_t shiftAmt = C2V.getZExtValue();
1225        if (shiftAmt < C1V.getBitWidth())
1226          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1227        else
1228          return UndefValue::get(C1->getType()); // too big shift is undef
1229      }
1230      }
1231    }
1232
1233    switch (Opcode) {
1234    case Instruction::SDiv:
1235    case Instruction::UDiv:
1236    case Instruction::URem:
1237    case Instruction::SRem:
1238    case Instruction::LShr:
1239    case Instruction::AShr:
1240    case Instruction::Shl:
1241      if (CI1->equalsInt(0)) return C1;
1242      break;
1243    default:
1244      break;
1245    }
1246  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1247    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1248      APFloat C1V = CFP1->getValueAPF();
1249      APFloat C2V = CFP2->getValueAPF();
1250      APFloat C3V = C1V;  // copy for modification
1251      switch (Opcode) {
1252      default:
1253        break;
1254      case Instruction::FAdd:
1255        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1256        return ConstantFP::get(C1->getContext(), C3V);
1257      case Instruction::FSub:
1258        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1259        return ConstantFP::get(C1->getContext(), C3V);
1260      case Instruction::FMul:
1261        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1262        return ConstantFP::get(C1->getContext(), C3V);
1263      case Instruction::FDiv:
1264        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1265        return ConstantFP::get(C1->getContext(), C3V);
1266      case Instruction::FRem:
1267        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1268        return ConstantFP::get(C1->getContext(), C3V);
1269      }
1270    }
1271  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1272    ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1273    ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1274    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1275        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1276      std::vector<Constant*> Res;
1277      Type* EltTy = VTy->getElementType();
1278      Constant *C1 = 0;
1279      Constant *C2 = 0;
1280      switch (Opcode) {
1281      default:
1282        break;
1283      case Instruction::Add:
1284        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1285          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1286          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1287          Res.push_back(ConstantExpr::getAdd(C1, C2));
1288        }
1289        return ConstantVector::get(Res);
1290      case Instruction::FAdd:
1291        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1292          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1293          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1294          Res.push_back(ConstantExpr::getFAdd(C1, C2));
1295        }
1296        return ConstantVector::get(Res);
1297      case Instruction::Sub:
1298        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1299          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1300          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1301          Res.push_back(ConstantExpr::getSub(C1, C2));
1302        }
1303        return ConstantVector::get(Res);
1304      case Instruction::FSub:
1305        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1306          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1307          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1308          Res.push_back(ConstantExpr::getFSub(C1, C2));
1309        }
1310        return ConstantVector::get(Res);
1311      case Instruction::Mul:
1312        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1313          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1314          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1315          Res.push_back(ConstantExpr::getMul(C1, C2));
1316        }
1317        return ConstantVector::get(Res);
1318      case Instruction::FMul:
1319        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1320          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1321          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1322          Res.push_back(ConstantExpr::getFMul(C1, C2));
1323        }
1324        return ConstantVector::get(Res);
1325      case Instruction::UDiv:
1326        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1327          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1328          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1329          Res.push_back(ConstantExpr::getUDiv(C1, C2));
1330        }
1331        return ConstantVector::get(Res);
1332      case Instruction::SDiv:
1333        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1334          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1335          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1336          Res.push_back(ConstantExpr::getSDiv(C1, C2));
1337        }
1338        return ConstantVector::get(Res);
1339      case Instruction::FDiv:
1340        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1341          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1342          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1343          Res.push_back(ConstantExpr::getFDiv(C1, C2));
1344        }
1345        return ConstantVector::get(Res);
1346      case Instruction::URem:
1347        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1348          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1349          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1350          Res.push_back(ConstantExpr::getURem(C1, C2));
1351        }
1352        return ConstantVector::get(Res);
1353      case Instruction::SRem:
1354        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1355          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1356          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1357          Res.push_back(ConstantExpr::getSRem(C1, C2));
1358        }
1359        return ConstantVector::get(Res);
1360      case Instruction::FRem:
1361        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1362          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1363          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1364          Res.push_back(ConstantExpr::getFRem(C1, C2));
1365        }
1366        return ConstantVector::get(Res);
1367      case Instruction::And:
1368        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1369          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1370          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1371          Res.push_back(ConstantExpr::getAnd(C1, C2));
1372        }
1373        return ConstantVector::get(Res);
1374      case Instruction::Or:
1375        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1376          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1377          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1378          Res.push_back(ConstantExpr::getOr(C1, C2));
1379        }
1380        return ConstantVector::get(Res);
1381      case Instruction::Xor:
1382        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1383          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1384          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1385          Res.push_back(ConstantExpr::getXor(C1, C2));
1386        }
1387        return ConstantVector::get(Res);
1388      case Instruction::LShr:
1389        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1390          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1391          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1392          Res.push_back(ConstantExpr::getLShr(C1, C2));
1393        }
1394        return ConstantVector::get(Res);
1395      case Instruction::AShr:
1396        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1397          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1398          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1399          Res.push_back(ConstantExpr::getAShr(C1, C2));
1400        }
1401        return ConstantVector::get(Res);
1402      case Instruction::Shl:
1403        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1404          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1405          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1406          Res.push_back(ConstantExpr::getShl(C1, C2));
1407        }
1408        return ConstantVector::get(Res);
1409      }
1410    }
1411  }
1412
1413  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1414    // There are many possible foldings we could do here.  We should probably
1415    // at least fold add of a pointer with an integer into the appropriate
1416    // getelementptr.  This will improve alias analysis a bit.
1417
1418    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1419    // (a + (b + c)).
1420    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1421      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1422      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1423        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1424    }
1425  } else if (isa<ConstantExpr>(C2)) {
1426    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1427    // other way if possible.
1428    if (Instruction::isCommutative(Opcode))
1429      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1430  }
1431
1432  // i1 can be simplified in many cases.
1433  if (C1->getType()->isIntegerTy(1)) {
1434    switch (Opcode) {
1435    case Instruction::Add:
1436    case Instruction::Sub:
1437      return ConstantExpr::getXor(C1, C2);
1438    case Instruction::Mul:
1439      return ConstantExpr::getAnd(C1, C2);
1440    case Instruction::Shl:
1441    case Instruction::LShr:
1442    case Instruction::AShr:
1443      // We can assume that C2 == 0.  If it were one the result would be
1444      // undefined because the shift value is as large as the bitwidth.
1445      return C1;
1446    case Instruction::SDiv:
1447    case Instruction::UDiv:
1448      // We can assume that C2 == 1.  If it were zero the result would be
1449      // undefined through division by zero.
1450      return C1;
1451    case Instruction::URem:
1452    case Instruction::SRem:
1453      // We can assume that C2 == 1.  If it were zero the result would be
1454      // undefined through division by zero.
1455      return ConstantInt::getFalse(C1->getContext());
1456    default:
1457      break;
1458    }
1459  }
1460
1461  // We don't know how to fold this.
1462  return 0;
1463}
1464
1465/// isZeroSizedType - This type is zero sized if its an array or structure of
1466/// zero sized types.  The only leaf zero sized type is an empty structure.
1467static bool isMaybeZeroSizedType(Type *Ty) {
1468  if (StructType *STy = dyn_cast<StructType>(Ty)) {
1469    if (STy->isOpaque()) return true;  // Can't say.
1470
1471    // If all of elements have zero size, this does too.
1472    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1473      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1474    return true;
1475
1476  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1477    return isMaybeZeroSizedType(ATy->getElementType());
1478  }
1479  return false;
1480}
1481
1482/// IdxCompare - Compare the two constants as though they were getelementptr
1483/// indices.  This allows coersion of the types to be the same thing.
1484///
1485/// If the two constants are the "same" (after coersion), return 0.  If the
1486/// first is less than the second, return -1, if the second is less than the
1487/// first, return 1.  If the constants are not integral, return -2.
1488///
1489static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1490  if (C1 == C2) return 0;
1491
1492  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1493  // anything with them.
1494  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1495    return -2; // don't know!
1496
1497  // Ok, we have two differing integer indices.  Sign extend them to be the same
1498  // type.  Long is always big enough, so we use it.
1499  if (!C1->getType()->isIntegerTy(64))
1500    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1501
1502  if (!C2->getType()->isIntegerTy(64))
1503    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1504
1505  if (C1 == C2) return 0;  // They are equal
1506
1507  // If the type being indexed over is really just a zero sized type, there is
1508  // no pointer difference being made here.
1509  if (isMaybeZeroSizedType(ElTy))
1510    return -2; // dunno.
1511
1512  // If they are really different, now that they are the same type, then we
1513  // found a difference!
1514  if (cast<ConstantInt>(C1)->getSExtValue() <
1515      cast<ConstantInt>(C2)->getSExtValue())
1516    return -1;
1517  else
1518    return 1;
1519}
1520
1521/// evaluateFCmpRelation - This function determines if there is anything we can
1522/// decide about the two constants provided.  This doesn't need to handle simple
1523/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1524/// If we can determine that the two constants have a particular relation to
1525/// each other, we should return the corresponding FCmpInst predicate,
1526/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1527/// ConstantFoldCompareInstruction.
1528///
1529/// To simplify this code we canonicalize the relation so that the first
1530/// operand is always the most "complex" of the two.  We consider ConstantFP
1531/// to be the simplest, and ConstantExprs to be the most complex.
1532static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1533  assert(V1->getType() == V2->getType() &&
1534         "Cannot compare values of different types!");
1535
1536  // No compile-time operations on this type yet.
1537  if (V1->getType()->isPPC_FP128Ty())
1538    return FCmpInst::BAD_FCMP_PREDICATE;
1539
1540  // Handle degenerate case quickly
1541  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1542
1543  if (!isa<ConstantExpr>(V1)) {
1544    if (!isa<ConstantExpr>(V2)) {
1545      // We distilled thisUse the standard constant folder for a few cases
1546      ConstantInt *R = 0;
1547      R = dyn_cast<ConstantInt>(
1548                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1549      if (R && !R->isZero())
1550        return FCmpInst::FCMP_OEQ;
1551      R = dyn_cast<ConstantInt>(
1552                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1553      if (R && !R->isZero())
1554        return FCmpInst::FCMP_OLT;
1555      R = dyn_cast<ConstantInt>(
1556                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1557      if (R && !R->isZero())
1558        return FCmpInst::FCMP_OGT;
1559
1560      // Nothing more we can do
1561      return FCmpInst::BAD_FCMP_PREDICATE;
1562    }
1563
1564    // If the first operand is simple and second is ConstantExpr, swap operands.
1565    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1566    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1567      return FCmpInst::getSwappedPredicate(SwappedRelation);
1568  } else {
1569    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1570    // constantexpr or a simple constant.
1571    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1572    switch (CE1->getOpcode()) {
1573    case Instruction::FPTrunc:
1574    case Instruction::FPExt:
1575    case Instruction::UIToFP:
1576    case Instruction::SIToFP:
1577      // We might be able to do something with these but we don't right now.
1578      break;
1579    default:
1580      break;
1581    }
1582  }
1583  // There are MANY other foldings that we could perform here.  They will
1584  // probably be added on demand, as they seem needed.
1585  return FCmpInst::BAD_FCMP_PREDICATE;
1586}
1587
1588/// evaluateICmpRelation - This function determines if there is anything we can
1589/// decide about the two constants provided.  This doesn't need to handle simple
1590/// things like integer comparisons, but should instead handle ConstantExprs
1591/// and GlobalValues.  If we can determine that the two constants have a
1592/// particular relation to each other, we should return the corresponding ICmp
1593/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1594///
1595/// To simplify this code we canonicalize the relation so that the first
1596/// operand is always the most "complex" of the two.  We consider simple
1597/// constants (like ConstantInt) to be the simplest, followed by
1598/// GlobalValues, followed by ConstantExpr's (the most complex).
1599///
1600static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1601                                                bool isSigned) {
1602  assert(V1->getType() == V2->getType() &&
1603         "Cannot compare different types of values!");
1604  if (V1 == V2) return ICmpInst::ICMP_EQ;
1605
1606  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1607      !isa<BlockAddress>(V1)) {
1608    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1609        !isa<BlockAddress>(V2)) {
1610      // We distilled this down to a simple case, use the standard constant
1611      // folder.
1612      ConstantInt *R = 0;
1613      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1614      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1615      if (R && !R->isZero())
1616        return pred;
1617      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1618      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1619      if (R && !R->isZero())
1620        return pred;
1621      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1622      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1623      if (R && !R->isZero())
1624        return pred;
1625
1626      // If we couldn't figure it out, bail.
1627      return ICmpInst::BAD_ICMP_PREDICATE;
1628    }
1629
1630    // If the first operand is simple, swap operands.
1631    ICmpInst::Predicate SwappedRelation =
1632      evaluateICmpRelation(V2, V1, isSigned);
1633    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1634      return ICmpInst::getSwappedPredicate(SwappedRelation);
1635
1636  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1637    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1638      ICmpInst::Predicate SwappedRelation =
1639        evaluateICmpRelation(V2, V1, isSigned);
1640      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1641        return ICmpInst::getSwappedPredicate(SwappedRelation);
1642      return ICmpInst::BAD_ICMP_PREDICATE;
1643    }
1644
1645    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1646    // constant (which, since the types must match, means that it's a
1647    // ConstantPointerNull).
1648    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1649      // Don't try to decide equality of aliases.
1650      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1651        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1652          return ICmpInst::ICMP_NE;
1653    } else if (isa<BlockAddress>(V2)) {
1654      return ICmpInst::ICMP_NE; // Globals never equal labels.
1655    } else {
1656      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1657      // GlobalVals can never be null unless they have external weak linkage.
1658      // We don't try to evaluate aliases here.
1659      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1660        return ICmpInst::ICMP_NE;
1661    }
1662  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1663    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1664      ICmpInst::Predicate SwappedRelation =
1665        evaluateICmpRelation(V2, V1, isSigned);
1666      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1667        return ICmpInst::getSwappedPredicate(SwappedRelation);
1668      return ICmpInst::BAD_ICMP_PREDICATE;
1669    }
1670
1671    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1672    // constant (which, since the types must match, means that it is a
1673    // ConstantPointerNull).
1674    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1675      // Block address in another function can't equal this one, but block
1676      // addresses in the current function might be the same if blocks are
1677      // empty.
1678      if (BA2->getFunction() != BA->getFunction())
1679        return ICmpInst::ICMP_NE;
1680    } else {
1681      // Block addresses aren't null, don't equal the address of globals.
1682      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1683             "Canonicalization guarantee!");
1684      return ICmpInst::ICMP_NE;
1685    }
1686  } else {
1687    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1688    // constantexpr, a global, block address, or a simple constant.
1689    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1690    Constant *CE1Op0 = CE1->getOperand(0);
1691
1692    switch (CE1->getOpcode()) {
1693    case Instruction::Trunc:
1694    case Instruction::FPTrunc:
1695    case Instruction::FPExt:
1696    case Instruction::FPToUI:
1697    case Instruction::FPToSI:
1698      break; // We can't evaluate floating point casts or truncations.
1699
1700    case Instruction::UIToFP:
1701    case Instruction::SIToFP:
1702    case Instruction::BitCast:
1703    case Instruction::ZExt:
1704    case Instruction::SExt:
1705      // If the cast is not actually changing bits, and the second operand is a
1706      // null pointer, do the comparison with the pre-casted value.
1707      if (V2->isNullValue() &&
1708          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1709        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1710        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1711        return evaluateICmpRelation(CE1Op0,
1712                                    Constant::getNullValue(CE1Op0->getType()),
1713                                    isSigned);
1714      }
1715      break;
1716
1717    case Instruction::GetElementPtr:
1718      // Ok, since this is a getelementptr, we know that the constant has a
1719      // pointer type.  Check the various cases.
1720      if (isa<ConstantPointerNull>(V2)) {
1721        // If we are comparing a GEP to a null pointer, check to see if the base
1722        // of the GEP equals the null pointer.
1723        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1724          if (GV->hasExternalWeakLinkage())
1725            // Weak linkage GVals could be zero or not. We're comparing that
1726            // to null pointer so its greater-or-equal
1727            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1728          else
1729            // If its not weak linkage, the GVal must have a non-zero address
1730            // so the result is greater-than
1731            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1732        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1733          // If we are indexing from a null pointer, check to see if we have any
1734          // non-zero indices.
1735          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1736            if (!CE1->getOperand(i)->isNullValue())
1737              // Offsetting from null, must not be equal.
1738              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1739          // Only zero indexes from null, must still be zero.
1740          return ICmpInst::ICMP_EQ;
1741        }
1742        // Otherwise, we can't really say if the first operand is null or not.
1743      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1744        if (isa<ConstantPointerNull>(CE1Op0)) {
1745          if (GV2->hasExternalWeakLinkage())
1746            // Weak linkage GVals could be zero or not. We're comparing it to
1747            // a null pointer, so its less-or-equal
1748            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1749          else
1750            // If its not weak linkage, the GVal must have a non-zero address
1751            // so the result is less-than
1752            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1753        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1754          if (GV == GV2) {
1755            // If this is a getelementptr of the same global, then it must be
1756            // different.  Because the types must match, the getelementptr could
1757            // only have at most one index, and because we fold getelementptr's
1758            // with a single zero index, it must be nonzero.
1759            assert(CE1->getNumOperands() == 2 &&
1760                   !CE1->getOperand(1)->isNullValue() &&
1761                   "Surprising getelementptr!");
1762            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1763          } else {
1764            // If they are different globals, we don't know what the value is,
1765            // but they can't be equal.
1766            return ICmpInst::ICMP_NE;
1767          }
1768        }
1769      } else {
1770        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1771        Constant *CE2Op0 = CE2->getOperand(0);
1772
1773        // There are MANY other foldings that we could perform here.  They will
1774        // probably be added on demand, as they seem needed.
1775        switch (CE2->getOpcode()) {
1776        default: break;
1777        case Instruction::GetElementPtr:
1778          // By far the most common case to handle is when the base pointers are
1779          // obviously to the same or different globals.
1780          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1781            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1782              return ICmpInst::ICMP_NE;
1783            // Ok, we know that both getelementptr instructions are based on the
1784            // same global.  From this, we can precisely determine the relative
1785            // ordering of the resultant pointers.
1786            unsigned i = 1;
1787
1788            // The logic below assumes that the result of the comparison
1789            // can be determined by finding the first index that differs.
1790            // This doesn't work if there is over-indexing in any
1791            // subsequent indices, so check for that case first.
1792            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1793                !CE2->isGEPWithNoNotionalOverIndexing())
1794               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1795
1796            // Compare all of the operands the GEP's have in common.
1797            gep_type_iterator GTI = gep_type_begin(CE1);
1798            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1799                 ++i, ++GTI)
1800              switch (IdxCompare(CE1->getOperand(i),
1801                                 CE2->getOperand(i), GTI.getIndexedType())) {
1802              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1803              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1804              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1805              }
1806
1807            // Ok, we ran out of things they have in common.  If any leftovers
1808            // are non-zero then we have a difference, otherwise we are equal.
1809            for (; i < CE1->getNumOperands(); ++i)
1810              if (!CE1->getOperand(i)->isNullValue()) {
1811                if (isa<ConstantInt>(CE1->getOperand(i)))
1812                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1813                else
1814                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1815              }
1816
1817            for (; i < CE2->getNumOperands(); ++i)
1818              if (!CE2->getOperand(i)->isNullValue()) {
1819                if (isa<ConstantInt>(CE2->getOperand(i)))
1820                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1821                else
1822                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1823              }
1824            return ICmpInst::ICMP_EQ;
1825          }
1826        }
1827      }
1828    default:
1829      break;
1830    }
1831  }
1832
1833  return ICmpInst::BAD_ICMP_PREDICATE;
1834}
1835
1836Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1837                                               Constant *C1, Constant *C2) {
1838  Type *ResultTy;
1839  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1840    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1841                               VT->getNumElements());
1842  else
1843    ResultTy = Type::getInt1Ty(C1->getContext());
1844
1845  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1846  if (pred == FCmpInst::FCMP_FALSE)
1847    return Constant::getNullValue(ResultTy);
1848
1849  if (pred == FCmpInst::FCMP_TRUE)
1850    return Constant::getAllOnesValue(ResultTy);
1851
1852  // Handle some degenerate cases first
1853  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1854    // For EQ and NE, we can always pick a value for the undef to make the
1855    // predicate pass or fail, so we can return undef.
1856    // Also, if both operands are undef, we can return undef.
1857    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
1858        (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1859      return UndefValue::get(ResultTy);
1860    // Otherwise, pick the same value as the non-undef operand, and fold
1861    // it to true or false.
1862    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1863  }
1864
1865  // No compile-time operations on this type yet.
1866  if (C1->getType()->isPPC_FP128Ty())
1867    return 0;
1868
1869  // icmp eq/ne(null,GV) -> false/true
1870  if (C1->isNullValue()) {
1871    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1872      // Don't try to evaluate aliases.  External weak GV can be null.
1873      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1874        if (pred == ICmpInst::ICMP_EQ)
1875          return ConstantInt::getFalse(C1->getContext());
1876        else if (pred == ICmpInst::ICMP_NE)
1877          return ConstantInt::getTrue(C1->getContext());
1878      }
1879  // icmp eq/ne(GV,null) -> false/true
1880  } else if (C2->isNullValue()) {
1881    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1882      // Don't try to evaluate aliases.  External weak GV can be null.
1883      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1884        if (pred == ICmpInst::ICMP_EQ)
1885          return ConstantInt::getFalse(C1->getContext());
1886        else if (pred == ICmpInst::ICMP_NE)
1887          return ConstantInt::getTrue(C1->getContext());
1888      }
1889  }
1890
1891  // If the comparison is a comparison between two i1's, simplify it.
1892  if (C1->getType()->isIntegerTy(1)) {
1893    switch(pred) {
1894    case ICmpInst::ICMP_EQ:
1895      if (isa<ConstantInt>(C2))
1896        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1897      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1898    case ICmpInst::ICMP_NE:
1899      return ConstantExpr::getXor(C1, C2);
1900    default:
1901      break;
1902    }
1903  }
1904
1905  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1906    APInt V1 = cast<ConstantInt>(C1)->getValue();
1907    APInt V2 = cast<ConstantInt>(C2)->getValue();
1908    switch (pred) {
1909    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1910    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1911    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1912    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1913    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1914    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1915    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1916    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1917    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1918    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1919    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1920    }
1921  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1922    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1923    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1924    APFloat::cmpResult R = C1V.compare(C2V);
1925    switch (pred) {
1926    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1927    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1928    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1929    case FCmpInst::FCMP_UNO:
1930      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1931    case FCmpInst::FCMP_ORD:
1932      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1933    case FCmpInst::FCMP_UEQ:
1934      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1935                                        R==APFloat::cmpEqual);
1936    case FCmpInst::FCMP_OEQ:
1937      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1938    case FCmpInst::FCMP_UNE:
1939      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1940    case FCmpInst::FCMP_ONE:
1941      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1942                                        R==APFloat::cmpGreaterThan);
1943    case FCmpInst::FCMP_ULT:
1944      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1945                                        R==APFloat::cmpLessThan);
1946    case FCmpInst::FCMP_OLT:
1947      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1948    case FCmpInst::FCMP_UGT:
1949      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1950                                        R==APFloat::cmpGreaterThan);
1951    case FCmpInst::FCMP_OGT:
1952      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1953    case FCmpInst::FCMP_ULE:
1954      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1955    case FCmpInst::FCMP_OLE:
1956      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1957                                        R==APFloat::cmpEqual);
1958    case FCmpInst::FCMP_UGE:
1959      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1960    case FCmpInst::FCMP_OGE:
1961      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1962                                        R==APFloat::cmpEqual);
1963    }
1964  } else if (C1->getType()->isVectorTy()) {
1965    SmallVector<Constant*, 16> C1Elts, C2Elts;
1966    C1->getVectorElements(C1Elts);
1967    C2->getVectorElements(C2Elts);
1968    if (C1Elts.empty() || C2Elts.empty())
1969      return 0;
1970
1971    // If we can constant fold the comparison of each element, constant fold
1972    // the whole vector comparison.
1973    SmallVector<Constant*, 4> ResElts;
1974    // Compare the elements, producing an i1 result or constant expr.
1975    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i)
1976      ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1977
1978    return ConstantVector::get(ResElts);
1979  }
1980
1981  if (C1->getType()->isFloatingPointTy()) {
1982    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1983    switch (evaluateFCmpRelation(C1, C2)) {
1984    default: llvm_unreachable("Unknown relation!");
1985    case FCmpInst::FCMP_UNO:
1986    case FCmpInst::FCMP_ORD:
1987    case FCmpInst::FCMP_UEQ:
1988    case FCmpInst::FCMP_UNE:
1989    case FCmpInst::FCMP_ULT:
1990    case FCmpInst::FCMP_UGT:
1991    case FCmpInst::FCMP_ULE:
1992    case FCmpInst::FCMP_UGE:
1993    case FCmpInst::FCMP_TRUE:
1994    case FCmpInst::FCMP_FALSE:
1995    case FCmpInst::BAD_FCMP_PREDICATE:
1996      break; // Couldn't determine anything about these constants.
1997    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1998      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1999                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
2000                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2001      break;
2002    case FCmpInst::FCMP_OLT: // We know that C1 < C2
2003      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2004                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
2005                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
2006      break;
2007    case FCmpInst::FCMP_OGT: // We know that C1 > C2
2008      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2009                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
2010                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2011      break;
2012    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
2013      // We can only partially decide this relation.
2014      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2015        Result = 0;
2016      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2017        Result = 1;
2018      break;
2019    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
2020      // We can only partially decide this relation.
2021      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2022        Result = 0;
2023      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2024        Result = 1;
2025      break;
2026    case FCmpInst::FCMP_ONE: // We know that C1 != C2
2027      // We can only partially decide this relation.
2028      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
2029        Result = 0;
2030      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
2031        Result = 1;
2032      break;
2033    }
2034
2035    // If we evaluated the result, return it now.
2036    if (Result != -1)
2037      return ConstantInt::get(ResultTy, Result);
2038
2039  } else {
2040    // Evaluate the relation between the two constants, per the predicate.
2041    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2042    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
2043    default: llvm_unreachable("Unknown relational!");
2044    case ICmpInst::BAD_ICMP_PREDICATE:
2045      break;  // Couldn't determine anything about these constants.
2046    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
2047      // If we know the constants are equal, we can decide the result of this
2048      // computation precisely.
2049      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2050      break;
2051    case ICmpInst::ICMP_ULT:
2052      switch (pred) {
2053      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2054        Result = 1; break;
2055      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2056        Result = 0; break;
2057      }
2058      break;
2059    case ICmpInst::ICMP_SLT:
2060      switch (pred) {
2061      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2062        Result = 1; break;
2063      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2064        Result = 0; break;
2065      }
2066      break;
2067    case ICmpInst::ICMP_UGT:
2068      switch (pred) {
2069      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2070        Result = 1; break;
2071      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2072        Result = 0; break;
2073      }
2074      break;
2075    case ICmpInst::ICMP_SGT:
2076      switch (pred) {
2077      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2078        Result = 1; break;
2079      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2080        Result = 0; break;
2081      }
2082      break;
2083    case ICmpInst::ICMP_ULE:
2084      if (pred == ICmpInst::ICMP_UGT) Result = 0;
2085      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2086      break;
2087    case ICmpInst::ICMP_SLE:
2088      if (pred == ICmpInst::ICMP_SGT) Result = 0;
2089      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2090      break;
2091    case ICmpInst::ICMP_UGE:
2092      if (pred == ICmpInst::ICMP_ULT) Result = 0;
2093      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2094      break;
2095    case ICmpInst::ICMP_SGE:
2096      if (pred == ICmpInst::ICMP_SLT) Result = 0;
2097      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2098      break;
2099    case ICmpInst::ICMP_NE:
2100      if (pred == ICmpInst::ICMP_EQ) Result = 0;
2101      if (pred == ICmpInst::ICMP_NE) Result = 1;
2102      break;
2103    }
2104
2105    // If we evaluated the result, return it now.
2106    if (Result != -1)
2107      return ConstantInt::get(ResultTy, Result);
2108
2109    // If the right hand side is a bitcast, try using its inverse to simplify
2110    // it by moving it to the left hand side.  We can't do this if it would turn
2111    // a vector compare into a scalar compare or visa versa.
2112    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2113      Constant *CE2Op0 = CE2->getOperand(0);
2114      if (CE2->getOpcode() == Instruction::BitCast &&
2115          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
2116        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2117        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2118      }
2119    }
2120
2121    // If the left hand side is an extension, try eliminating it.
2122    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2123      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
2124          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
2125        Constant *CE1Op0 = CE1->getOperand(0);
2126        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2127        if (CE1Inverse == CE1Op0) {
2128          // Check whether we can safely truncate the right hand side.
2129          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2130          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2131            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2132          }
2133        }
2134      }
2135    }
2136
2137    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2138        (C1->isNullValue() && !C2->isNullValue())) {
2139      // If C2 is a constant expr and C1 isn't, flip them around and fold the
2140      // other way if possible.
2141      // Also, if C1 is null and C2 isn't, flip them around.
2142      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2143      return ConstantExpr::getICmp(pred, C2, C1);
2144    }
2145  }
2146  return 0;
2147}
2148
2149/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2150/// is "inbounds".
2151template<typename IndexTy>
2152static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2153  // No indices means nothing that could be out of bounds.
2154  if (Idxs.empty()) return true;
2155
2156  // If the first index is zero, it's in bounds.
2157  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2158
2159  // If the first index is one and all the rest are zero, it's in bounds,
2160  // by the one-past-the-end rule.
2161  if (!cast<ConstantInt>(Idxs[0])->isOne())
2162    return false;
2163  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2164    if (!cast<Constant>(Idxs[i])->isNullValue())
2165      return false;
2166  return true;
2167}
2168
2169template<typename IndexTy>
2170static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
2171                                               bool inBounds,
2172                                               ArrayRef<IndexTy> Idxs) {
2173  if (Idxs.empty()) return C;
2174  Constant *Idx0 = cast<Constant>(Idxs[0]);
2175  if ((Idxs.size() == 1 && Idx0->isNullValue()))
2176    return C;
2177
2178  if (isa<UndefValue>(C)) {
2179    PointerType *Ptr = cast<PointerType>(C->getType());
2180    Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
2181    assert(Ty != 0 && "Invalid indices for GEP!");
2182    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2183  }
2184
2185  if (C->isNullValue()) {
2186    bool isNull = true;
2187    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2188      if (!cast<Constant>(Idxs[i])->isNullValue()) {
2189        isNull = false;
2190        break;
2191      }
2192    if (isNull) {
2193      PointerType *Ptr = cast<PointerType>(C->getType());
2194      Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
2195      assert(Ty != 0 && "Invalid indices for GEP!");
2196      return ConstantPointerNull::get(PointerType::get(Ty,
2197                                                       Ptr->getAddressSpace()));
2198    }
2199  }
2200
2201  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2202    // Combine Indices - If the source pointer to this getelementptr instruction
2203    // is a getelementptr instruction, combine the indices of the two
2204    // getelementptr instructions into a single instruction.
2205    //
2206    if (CE->getOpcode() == Instruction::GetElementPtr) {
2207      Type *LastTy = 0;
2208      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2209           I != E; ++I)
2210        LastTy = *I;
2211
2212      if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) {
2213        SmallVector<Value*, 16> NewIndices;
2214        NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2215        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2216          NewIndices.push_back(CE->getOperand(i));
2217
2218        // Add the last index of the source with the first index of the new GEP.
2219        // Make sure to handle the case when they are actually different types.
2220        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2221        // Otherwise it must be an array.
2222        if (!Idx0->isNullValue()) {
2223          Type *IdxTy = Combined->getType();
2224          if (IdxTy != Idx0->getType()) {
2225            Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2226            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2227            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2228            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2229          } else {
2230            Combined =
2231              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2232          }
2233        }
2234
2235        NewIndices.push_back(Combined);
2236        NewIndices.append(Idxs.begin() + 1, Idxs.end());
2237        return
2238          ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
2239                                         inBounds &&
2240                                           cast<GEPOperator>(CE)->isInBounds());
2241      }
2242    }
2243
2244    // Implement folding of:
2245    //    i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2246    //                        i64 0, i64 0)
2247    // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2248    //
2249    if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2250      if (PointerType *SPT =
2251          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2252        if (ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2253          if (ArrayType *CAT =
2254        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2255            if (CAT->getElementType() == SAT->getElementType())
2256              return
2257                ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
2258                                               Idxs, inBounds);
2259    }
2260  }
2261
2262  // Check to see if any array indices are not within the corresponding
2263  // notional array bounds. If so, try to determine if they can be factored
2264  // out into preceding dimensions.
2265  bool Unknown = false;
2266  SmallVector<Constant *, 8> NewIdxs;
2267  Type *Ty = C->getType();
2268  Type *Prev = 0;
2269  for (unsigned i = 0, e = Idxs.size(); i != e;
2270       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2271    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2272      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2273        if (ATy->getNumElements() <= INT64_MAX &&
2274            ATy->getNumElements() != 0 &&
2275            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2276          if (isa<SequentialType>(Prev)) {
2277            // It's out of range, but we can factor it into the prior
2278            // dimension.
2279            NewIdxs.resize(Idxs.size());
2280            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2281                                                   ATy->getNumElements());
2282            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2283
2284            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2285            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2286
2287            // Before adding, extend both operands to i64 to avoid
2288            // overflow trouble.
2289            if (!PrevIdx->getType()->isIntegerTy(64))
2290              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2291                                           Type::getInt64Ty(Div->getContext()));
2292            if (!Div->getType()->isIntegerTy(64))
2293              Div = ConstantExpr::getSExt(Div,
2294                                          Type::getInt64Ty(Div->getContext()));
2295
2296            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2297          } else {
2298            // It's out of range, but the prior dimension is a struct
2299            // so we can't do anything about it.
2300            Unknown = true;
2301          }
2302        }
2303    } else {
2304      // We don't know if it's in range or not.
2305      Unknown = true;
2306    }
2307  }
2308
2309  // If we did any factoring, start over with the adjusted indices.
2310  if (!NewIdxs.empty()) {
2311    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2312      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2313    return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
2314  }
2315
2316  // If all indices are known integers and normalized, we can do a simple
2317  // check for the "inbounds" property.
2318  if (!Unknown && !inBounds &&
2319      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
2320    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
2321
2322  return 0;
2323}
2324
2325Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2326                                          bool inBounds,
2327                                          ArrayRef<Constant *> Idxs) {
2328  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2329}
2330
2331Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2332                                          bool inBounds,
2333                                          ArrayRef<Value *> Idxs) {
2334  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2335}
2336