ConstantFold.cpp revision 61c70e98ac3c7504d31dd9bc81c4e9cb998e9984
12898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
22898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//
32898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//                     The LLVM Compiler Infrastructure
42898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//
52898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek// This file is distributed under the University of Illinois Open Source
62898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek// License. See LICENSE.TXT for details.
72898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//
82898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//===----------------------------------------------------------------------===//
92898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//
102898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek// This file implements folding of constants for LLVM.  This implements the
112898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek// (internal) ConstantFold.h interface, which is used by the
122898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek// ConstantExpr::get* methods to automatically fold constants when possible.
132898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//
142898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek// The current constant folding implementation is implemented in two pieces: the
152898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek// pieces that don't need TargetData, and the pieces that do. This is to avoid
162898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek// a dependence in VMCore on Target.
172898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//
182898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//===----------------------------------------------------------------------===//
192898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
202898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek#include "ConstantFold.h"
212898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek#include "llvm/Constants.h"
228be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek#include "llvm/Instructions.h"
232898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek#include "llvm/DerivedTypes.h"
242898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek#include "llvm/Function.h"
252898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek#include "llvm/GlobalAlias.h"
268be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek#include "llvm/GlobalVariable.h"
278be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek#include "llvm/ADT/SmallVector.h"
288be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek#include "llvm/Support/Compiler.h"
298be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek#include "llvm/Support/ErrorHandling.h"
308be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek#include "llvm/Support/GetElementPtrTypeIterator.h"
318be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek#include "llvm/Support/ManagedStatic.h"
328be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek#include "llvm/Support/MathExtras.h"
332898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek#include <limits>
342898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenekusing namespace llvm;
352898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
362898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//===----------------------------------------------------------------------===//
372898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//                ConstantFold*Instruction Implementations
382898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek//===----------------------------------------------------------------------===//
392898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
402898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek/// BitCastConstantVector - Convert the specified ConstantVector node to the
412898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek/// specified vector type.  At this point, we know that the elements of the
422898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek/// input vector constant are all simple integer or FP values.
432898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenekstatic Constant *BitCastConstantVector(ConstantVector *CV,
442898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek                                       const VectorType *DstTy) {
452898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // If this cast changes element count then we can't handle it here:
462898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // doing so requires endianness information.  This should be handled by
472898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // Analysis/ConstantFolding.cpp
482898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  unsigned NumElts = DstTy->getNumElements();
492898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  if (NumElts != CV->getNumOperands())
502898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek    return 0;
512898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
522898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // Check to verify that all elements of the input are simple.
532898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  for (unsigned i = 0; i != NumElts; ++i) {
542898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek    if (!isa<ConstantInt>(CV->getOperand(i)) &&
552898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek        !isa<ConstantFP>(CV->getOperand(i)))
562898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek      return 0;
572898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  }
582898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
592898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // Bitcast each element now.
602898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  std::vector<Constant*> Result;
612898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  const Type *DstEltTy = DstTy->getElementType();
622898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  for (unsigned i = 0; i != NumElts; ++i)
632898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
642898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek                                                    DstEltTy));
652898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  return ConstantVector::get(Result);
662898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek}
672898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
682898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek/// This function determines which opcode to use to fold two constant cast
692898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek/// expressions together. It uses CastInst::isEliminableCastPair to determine
702898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek/// the opcode. Consequently its just a wrapper around that function.
712898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek/// @brief Determine if it is valid to fold a cast of a cast
722898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenekstatic unsigned
732898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted KremenekfoldConstantCastPair(
742898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  unsigned opc,          ///< opcode of the second cast constant expression
752898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  ConstantExpr *Op,      ///< the first cast constant expression
762898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  const Type *DstTy      ///< desintation type of the first cast
772898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek) {
782898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
798be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
802898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  assert(CastInst::isCast(opc) && "Invalid cast opcode");
812898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
822898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // The the types and opcodes for the two Cast constant expressions
832898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  const Type *SrcTy = Op->getOperand(0)->getType();
842898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  const Type *MidTy = Op->getType();
852898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
862898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  Instruction::CastOps secondOp = Instruction::CastOps(opc);
872898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
882898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // Let CastInst::isEliminableCastPair do the heavy lifting.
892898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
902898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek                                        Type::getInt64Ty(DstTy->getContext()));
912898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek}
922898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
932898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenekstatic Constant *FoldBitCast(Constant *V, const Type *DestTy) {
948be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek  const Type *SrcTy = V->getType();
952898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  if (SrcTy == DestTy)
968be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek    return V; // no-op cast
972898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
982898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // Check to see if we are casting a pointer to an aggregate to a pointer to
992898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  // the first element.  If so, return the appropriate GEP instruction.
1002898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
1012898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
1022898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
1032898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek        SmallVector<Value*, 8> IdxList;
1042898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek        Value *Zero =
1052898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
1062898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek        IdxList.push_back(Zero);
1072898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek        const Type *ElTy = PTy->getElementType();
1082898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek        while (ElTy != DPTy->getElementType()) {
1092898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
1102898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek            if (STy->getNumElements() == 0) break;
1112898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek            ElTy = STy->getElementType(0);
1122898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek            IdxList.push_back(Zero);
1132898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek          } else if (const SequentialType *STy =
1142898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek                     dyn_cast<SequentialType>(ElTy)) {
1152898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
1162898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek            ElTy = STy->getElementType();
1172898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek            IdxList.push_back(Zero);
1182898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek          } else {
1192898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek            break;
1202898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek          }
1212898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek        }
1222898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek
1232898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek        if (ElTy == DPTy->getElementType())
1242898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek          // This GEP is inbounds because all indices are zero.
1258be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek          return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
1268be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek                                                        IdxList.size());
1278be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek      }
1288be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek
1298be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek  // Handle casts from one vector constant to another.  We know that the src
1308be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek  // and dest type have the same size (otherwise its an illegal cast).
1318be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
1328be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
1338be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
1348be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek             "Not cast between same sized vectors!");
1358be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek      SrcTy = NULL;
1368be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek      // First, check for null.  Undef is already handled.
1378be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek      if (isa<ConstantAggregateZero>(V))
1388be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek        return Constant::getNullValue(DestTy);
1398be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek
1408be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
1418be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek        return BitCastConstantVector(CV, DestPTy);
1428be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek    }
1438be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek
1448be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
1458be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek    // This allows for other simplifications (although some of them
1468be51eab5ad34515d2a40dcdc8558128ca1800adTed Kremenek    // can only be handled by Analysis/ConstantFolding.cpp).
1472898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
1482898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek      return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
1492898d4f7648e6ed5e9047068f1e8ee2f3c2bcd75Ted Kremenek  }
150
151  // Finally, implement bitcast folding now.   The code below doesn't handle
152  // bitcast right.
153  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
154    return ConstantPointerNull::get(cast<PointerType>(DestTy));
155
156  // Handle integral constant input.
157  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158    if (DestTy->isIntegerTy())
159      // Integral -> Integral. This is a no-op because the bit widths must
160      // be the same. Consequently, we just fold to V.
161      return V;
162
163    if (DestTy->isFloatingPointTy())
164      return ConstantFP::get(DestTy->getContext(),
165                             APFloat(CI->getValue(),
166                                     !DestTy->isPPC_FP128Ty()));
167
168    // Otherwise, can't fold this (vector?)
169    return 0;
170  }
171
172  // Handle ConstantFP input: FP -> Integral.
173  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
174    return ConstantInt::get(FP->getContext(),
175                            FP->getValueAPF().bitcastToAPInt());
176
177  return 0;
178}
179
180
181/// ExtractConstantBytes - V is an integer constant which only has a subset of
182/// its bytes used.  The bytes used are indicated by ByteStart (which is the
183/// first byte used, counting from the least significant byte) and ByteSize,
184/// which is the number of bytes used.
185///
186/// This function analyzes the specified constant to see if the specified byte
187/// range can be returned as a simplified constant.  If so, the constant is
188/// returned, otherwise null is returned.
189///
190static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
191                                      unsigned ByteSize) {
192  assert(C->getType()->isIntegerTy() &&
193         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
194         "Non-byte sized integer input");
195  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
196  assert(ByteSize && "Must be accessing some piece");
197  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
198  assert(ByteSize != CSize && "Should not extract everything");
199
200  // Constant Integers are simple.
201  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
202    APInt V = CI->getValue();
203    if (ByteStart)
204      V = V.lshr(ByteStart*8);
205    V.trunc(ByteSize*8);
206    return ConstantInt::get(CI->getContext(), V);
207  }
208
209  // In the input is a constant expr, we might be able to recursively simplify.
210  // If not, we definitely can't do anything.
211  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
212  if (CE == 0) return 0;
213
214  switch (CE->getOpcode()) {
215  default: return 0;
216  case Instruction::Or: {
217    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
218    if (RHS == 0)
219      return 0;
220
221    // X | -1 -> -1.
222    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
223      if (RHSC->isAllOnesValue())
224        return RHSC;
225
226    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
227    if (LHS == 0)
228      return 0;
229    return ConstantExpr::getOr(LHS, RHS);
230  }
231  case Instruction::And: {
232    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
233    if (RHS == 0)
234      return 0;
235
236    // X & 0 -> 0.
237    if (RHS->isNullValue())
238      return RHS;
239
240    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
241    if (LHS == 0)
242      return 0;
243    return ConstantExpr::getAnd(LHS, RHS);
244  }
245  case Instruction::LShr: {
246    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
247    if (Amt == 0)
248      return 0;
249    unsigned ShAmt = Amt->getZExtValue();
250    // Cannot analyze non-byte shifts.
251    if ((ShAmt & 7) != 0)
252      return 0;
253    ShAmt >>= 3;
254
255    // If the extract is known to be all zeros, return zero.
256    if (ByteStart >= CSize-ShAmt)
257      return Constant::getNullValue(IntegerType::get(CE->getContext(),
258                                                     ByteSize*8));
259    // If the extract is known to be fully in the input, extract it.
260    if (ByteStart+ByteSize+ShAmt <= CSize)
261      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
262
263    // TODO: Handle the 'partially zero' case.
264    return 0;
265  }
266
267  case Instruction::Shl: {
268    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269    if (Amt == 0)
270      return 0;
271    unsigned ShAmt = Amt->getZExtValue();
272    // Cannot analyze non-byte shifts.
273    if ((ShAmt & 7) != 0)
274      return 0;
275    ShAmt >>= 3;
276
277    // If the extract is known to be all zeros, return zero.
278    if (ByteStart+ByteSize <= ShAmt)
279      return Constant::getNullValue(IntegerType::get(CE->getContext(),
280                                                     ByteSize*8));
281    // If the extract is known to be fully in the input, extract it.
282    if (ByteStart >= ShAmt)
283      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
284
285    // TODO: Handle the 'partially zero' case.
286    return 0;
287  }
288
289  case Instruction::ZExt: {
290    unsigned SrcBitSize =
291      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
292
293    // If extracting something that is completely zero, return 0.
294    if (ByteStart*8 >= SrcBitSize)
295      return Constant::getNullValue(IntegerType::get(CE->getContext(),
296                                                     ByteSize*8));
297
298    // If exactly extracting the input, return it.
299    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
300      return CE->getOperand(0);
301
302    // If extracting something completely in the input, if if the input is a
303    // multiple of 8 bits, recurse.
304    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
305      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
306
307    // Otherwise, if extracting a subset of the input, which is not multiple of
308    // 8 bits, do a shift and trunc to get the bits.
309    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
310      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
311      Constant *Res = CE->getOperand(0);
312      if (ByteStart)
313        Res = ConstantExpr::getLShr(Res,
314                                 ConstantInt::get(Res->getType(), ByteStart*8));
315      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
316                                                          ByteSize*8));
317    }
318
319    // TODO: Handle the 'partially zero' case.
320    return 0;
321  }
322  }
323}
324
325/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
326/// on Ty, with any known factors factored out. If Folded is false,
327/// return null if no factoring was possible, to avoid endlessly
328/// bouncing an unfoldable expression back into the top-level folder.
329///
330static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy,
331                                 bool Folded) {
332  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
333    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
334    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
335    return ConstantExpr::getNUWMul(E, N);
336  }
337
338  if (const StructType *STy = dyn_cast<StructType>(Ty))
339    if (!STy->isPacked()) {
340      unsigned NumElems = STy->getNumElements();
341      // An empty struct has size zero.
342      if (NumElems == 0)
343        return ConstantExpr::getNullValue(DestTy);
344      // Check for a struct with all members having the same size.
345      Constant *MemberSize =
346        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
347      bool AllSame = true;
348      for (unsigned i = 1; i != NumElems; ++i)
349        if (MemberSize !=
350            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
351          AllSame = false;
352          break;
353        }
354      if (AllSame) {
355        Constant *N = ConstantInt::get(DestTy, NumElems);
356        return ConstantExpr::getNUWMul(MemberSize, N);
357      }
358    }
359
360  // Pointer size doesn't depend on the pointee type, so canonicalize them
361  // to an arbitrary pointee.
362  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
363    if (!PTy->getElementType()->isIntegerTy(1))
364      return
365        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
366                                         PTy->getAddressSpace()),
367                        DestTy, true);
368
369  // If there's no interesting folding happening, bail so that we don't create
370  // a constant that looks like it needs folding but really doesn't.
371  if (!Folded)
372    return 0;
373
374  // Base case: Get a regular sizeof expression.
375  Constant *C = ConstantExpr::getSizeOf(Ty);
376  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
377                                                    DestTy, false),
378                            C, DestTy);
379  return C;
380}
381
382/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
383/// on Ty, with any known factors factored out. If Folded is false,
384/// return null if no factoring was possible, to avoid endlessly
385/// bouncing an unfoldable expression back into the top-level folder.
386///
387static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy,
388                                  bool Folded) {
389  // The alignment of an array is equal to the alignment of the
390  // array element. Note that this is not always true for vectors.
391  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
392    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
393    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
394                                                      DestTy,
395                                                      false),
396                              C, DestTy);
397    return C;
398  }
399
400  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
401    // Packed structs always have an alignment of 1.
402    if (STy->isPacked())
403      return ConstantInt::get(DestTy, 1);
404
405    // Otherwise, struct alignment is the maximum alignment of any member.
406    // Without target data, we can't compare much, but we can check to see
407    // if all the members have the same alignment.
408    unsigned NumElems = STy->getNumElements();
409    // An empty struct has minimal alignment.
410    if (NumElems == 0)
411      return ConstantInt::get(DestTy, 1);
412    // Check for a struct with all members having the same alignment.
413    Constant *MemberAlign =
414      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
415    bool AllSame = true;
416    for (unsigned i = 1; i != NumElems; ++i)
417      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
418        AllSame = false;
419        break;
420      }
421    if (AllSame)
422      return MemberAlign;
423  }
424
425  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
426  // to an arbitrary pointee.
427  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
428    if (!PTy->getElementType()->isIntegerTy(1))
429      return
430        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
431                                                           1),
432                                          PTy->getAddressSpace()),
433                         DestTy, true);
434
435  // If there's no interesting folding happening, bail so that we don't create
436  // a constant that looks like it needs folding but really doesn't.
437  if (!Folded)
438    return 0;
439
440  // Base case: Get a regular alignof expression.
441  Constant *C = ConstantExpr::getAlignOf(Ty);
442  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
443                                                    DestTy, false),
444                            C, DestTy);
445  return C;
446}
447
448/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
449/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
450/// return null if no factoring was possible, to avoid endlessly
451/// bouncing an unfoldable expression back into the top-level folder.
452///
453static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo,
454                                   const Type *DestTy,
455                                   bool Folded) {
456  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
457    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
458                                                                DestTy, false),
459                                        FieldNo, DestTy);
460    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
461    return ConstantExpr::getNUWMul(E, N);
462  }
463
464  if (const StructType *STy = dyn_cast<StructType>(Ty))
465    if (!STy->isPacked()) {
466      unsigned NumElems = STy->getNumElements();
467      // An empty struct has no members.
468      if (NumElems == 0)
469        return 0;
470      // Check for a struct with all members having the same size.
471      Constant *MemberSize =
472        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
473      bool AllSame = true;
474      for (unsigned i = 1; i != NumElems; ++i)
475        if (MemberSize !=
476            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
477          AllSame = false;
478          break;
479        }
480      if (AllSame) {
481        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
482                                                                    false,
483                                                                    DestTy,
484                                                                    false),
485                                            FieldNo, DestTy);
486        return ConstantExpr::getNUWMul(MemberSize, N);
487      }
488    }
489
490  // If there's no interesting folding happening, bail so that we don't create
491  // a constant that looks like it needs folding but really doesn't.
492  if (!Folded)
493    return 0;
494
495  // Base case: Get a regular offsetof expression.
496  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
497  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
498                                                    DestTy, false),
499                            C, DestTy);
500  return C;
501}
502
503Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
504                                            const Type *DestTy) {
505  if (isa<UndefValue>(V)) {
506    // zext(undef) = 0, because the top bits will be zero.
507    // sext(undef) = 0, because the top bits will all be the same.
508    // [us]itofp(undef) = 0, because the result value is bounded.
509    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
510        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
511      return Constant::getNullValue(DestTy);
512    return UndefValue::get(DestTy);
513  }
514  // No compile-time operations on this type yet.
515  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
516    return 0;
517
518  // If the cast operand is a constant expression, there's a few things we can
519  // do to try to simplify it.
520  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
521    if (CE->isCast()) {
522      // Try hard to fold cast of cast because they are often eliminable.
523      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
524        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
525    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
526      // If all of the indexes in the GEP are null values, there is no pointer
527      // adjustment going on.  We might as well cast the source pointer.
528      bool isAllNull = true;
529      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
530        if (!CE->getOperand(i)->isNullValue()) {
531          isAllNull = false;
532          break;
533        }
534      if (isAllNull)
535        // This is casting one pointer type to another, always BitCast
536        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
537    }
538  }
539
540  // If the cast operand is a constant vector, perform the cast by
541  // operating on each element. In the cast of bitcasts, the element
542  // count may be mismatched; don't attempt to handle that here.
543  if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
544    if (DestTy->isVectorTy() &&
545        cast<VectorType>(DestTy)->getNumElements() ==
546        CV->getType()->getNumElements()) {
547      std::vector<Constant*> res;
548      const VectorType *DestVecTy = cast<VectorType>(DestTy);
549      const Type *DstEltTy = DestVecTy->getElementType();
550      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
551        res.push_back(ConstantExpr::getCast(opc,
552                                            CV->getOperand(i), DstEltTy));
553      return ConstantVector::get(DestVecTy, res);
554    }
555
556  // We actually have to do a cast now. Perform the cast according to the
557  // opcode specified.
558  switch (opc) {
559  default:
560    llvm_unreachable("Failed to cast constant expression");
561  case Instruction::FPTrunc:
562  case Instruction::FPExt:
563    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
564      bool ignored;
565      APFloat Val = FPC->getValueAPF();
566      Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
567                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
568                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
569                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
570                  APFloat::Bogus,
571                  APFloat::rmNearestTiesToEven, &ignored);
572      return ConstantFP::get(V->getContext(), Val);
573    }
574    return 0; // Can't fold.
575  case Instruction::FPToUI:
576  case Instruction::FPToSI:
577    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
578      const APFloat &V = FPC->getValueAPF();
579      bool ignored;
580      uint64_t x[2];
581      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
582      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
583                                APFloat::rmTowardZero, &ignored);
584      APInt Val(DestBitWidth, 2, x);
585      return ConstantInt::get(FPC->getContext(), Val);
586    }
587    return 0; // Can't fold.
588  case Instruction::IntToPtr:   //always treated as unsigned
589    if (V->isNullValue())       // Is it an integral null value?
590      return ConstantPointerNull::get(cast<PointerType>(DestTy));
591    return 0;                   // Other pointer types cannot be casted
592  case Instruction::PtrToInt:   // always treated as unsigned
593    // Is it a null pointer value?
594    if (V->isNullValue())
595      return ConstantInt::get(DestTy, 0);
596    // If this is a sizeof-like expression, pull out multiplications by
597    // known factors to expose them to subsequent folding. If it's an
598    // alignof-like expression, factor out known factors.
599    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
600      if (CE->getOpcode() == Instruction::GetElementPtr &&
601          CE->getOperand(0)->isNullValue()) {
602        const Type *Ty =
603          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
604        if (CE->getNumOperands() == 2) {
605          // Handle a sizeof-like expression.
606          Constant *Idx = CE->getOperand(1);
607          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
608          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
609            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
610                                                                DestTy, false),
611                                        Idx, DestTy);
612            return ConstantExpr::getMul(C, Idx);
613          }
614        } else if (CE->getNumOperands() == 3 &&
615                   CE->getOperand(1)->isNullValue()) {
616          // Handle an alignof-like expression.
617          if (const StructType *STy = dyn_cast<StructType>(Ty))
618            if (!STy->isPacked()) {
619              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
620              if (CI->isOne() &&
621                  STy->getNumElements() == 2 &&
622                  STy->getElementType(0)->isIntegerTy(1)) {
623                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
624              }
625            }
626          // Handle an offsetof-like expression.
627          if (Ty->isStructTy() || Ty->isArrayTy()) {
628            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
629                                                DestTy, false))
630              return C;
631          }
632        }
633      }
634    // Other pointer types cannot be casted
635    return 0;
636  case Instruction::UIToFP:
637  case Instruction::SIToFP:
638    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
639      APInt api = CI->getValue();
640      const uint64_t zero[] = {0, 0};
641      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
642                                  2, zero));
643      (void)apf.convertFromAPInt(api,
644                                 opc==Instruction::SIToFP,
645                                 APFloat::rmNearestTiesToEven);
646      return ConstantFP::get(V->getContext(), apf);
647    }
648    return 0;
649  case Instruction::ZExt:
650    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
651      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
652      APInt Result(CI->getValue());
653      Result.zext(BitWidth);
654      return ConstantInt::get(V->getContext(), Result);
655    }
656    return 0;
657  case Instruction::SExt:
658    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
659      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
660      APInt Result(CI->getValue());
661      Result.sext(BitWidth);
662      return ConstantInt::get(V->getContext(), Result);
663    }
664    return 0;
665  case Instruction::Trunc: {
666    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
667    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
668      APInt Result(CI->getValue());
669      Result.trunc(DestBitWidth);
670      return ConstantInt::get(V->getContext(), Result);
671    }
672
673    // The input must be a constantexpr.  See if we can simplify this based on
674    // the bytes we are demanding.  Only do this if the source and dest are an
675    // even multiple of a byte.
676    if ((DestBitWidth & 7) == 0 &&
677        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
678      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
679        return Res;
680
681    return 0;
682  }
683  case Instruction::BitCast:
684    return FoldBitCast(V, DestTy);
685  }
686}
687
688Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
689                                              Constant *V1, Constant *V2) {
690  if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
691    return CB->getZExtValue() ? V1 : V2;
692
693  if (isa<UndefValue>(V1)) return V2;
694  if (isa<UndefValue>(V2)) return V1;
695  if (isa<UndefValue>(Cond)) return V1;
696  if (V1 == V2) return V1;
697  return 0;
698}
699
700Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
701                                                      Constant *Idx) {
702  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
703    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
704  if (Val->isNullValue())  // ee(zero, x) -> zero
705    return Constant::getNullValue(
706                          cast<VectorType>(Val->getType())->getElementType());
707
708  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
709    if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
710      return CVal->getOperand(CIdx->getZExtValue());
711    } else if (isa<UndefValue>(Idx)) {
712      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
713      return CVal->getOperand(0);
714    }
715  }
716  return 0;
717}
718
719Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
720                                                     Constant *Elt,
721                                                     Constant *Idx) {
722  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
723  if (!CIdx) return 0;
724  APInt idxVal = CIdx->getValue();
725  if (isa<UndefValue>(Val)) {
726    // Insertion of scalar constant into vector undef
727    // Optimize away insertion of undef
728    if (isa<UndefValue>(Elt))
729      return Val;
730    // Otherwise break the aggregate undef into multiple undefs and do
731    // the insertion
732    unsigned numOps =
733      cast<VectorType>(Val->getType())->getNumElements();
734    std::vector<Constant*> Ops;
735    Ops.reserve(numOps);
736    for (unsigned i = 0; i < numOps; ++i) {
737      Constant *Op =
738        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
739      Ops.push_back(Op);
740    }
741    return ConstantVector::get(Ops);
742  }
743  if (isa<ConstantAggregateZero>(Val)) {
744    // Insertion of scalar constant into vector aggregate zero
745    // Optimize away insertion of zero
746    if (Elt->isNullValue())
747      return Val;
748    // Otherwise break the aggregate zero into multiple zeros and do
749    // the insertion
750    unsigned numOps =
751      cast<VectorType>(Val->getType())->getNumElements();
752    std::vector<Constant*> Ops;
753    Ops.reserve(numOps);
754    for (unsigned i = 0; i < numOps; ++i) {
755      Constant *Op =
756        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
757      Ops.push_back(Op);
758    }
759    return ConstantVector::get(Ops);
760  }
761  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
762    // Insertion of scalar constant into vector constant
763    std::vector<Constant*> Ops;
764    Ops.reserve(CVal->getNumOperands());
765    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
766      Constant *Op =
767        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
768      Ops.push_back(Op);
769    }
770    return ConstantVector::get(Ops);
771  }
772
773  return 0;
774}
775
776/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
777/// return the specified element value.  Otherwise return null.
778static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
779  if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
780    return CV->getOperand(EltNo);
781
782  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
783  if (isa<ConstantAggregateZero>(C))
784    return Constant::getNullValue(EltTy);
785  if (isa<UndefValue>(C))
786    return UndefValue::get(EltTy);
787  return 0;
788}
789
790Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
791                                                     Constant *V2,
792                                                     Constant *Mask) {
793  // Undefined shuffle mask -> undefined value.
794  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
795
796  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
797  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
798  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
799
800  // Loop over the shuffle mask, evaluating each element.
801  SmallVector<Constant*, 32> Result;
802  for (unsigned i = 0; i != MaskNumElts; ++i) {
803    Constant *InElt = GetVectorElement(Mask, i);
804    if (InElt == 0) return 0;
805
806    if (isa<UndefValue>(InElt))
807      InElt = UndefValue::get(EltTy);
808    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
809      unsigned Elt = CI->getZExtValue();
810      if (Elt >= SrcNumElts*2)
811        InElt = UndefValue::get(EltTy);
812      else if (Elt >= SrcNumElts)
813        InElt = GetVectorElement(V2, Elt - SrcNumElts);
814      else
815        InElt = GetVectorElement(V1, Elt);
816      if (InElt == 0) return 0;
817    } else {
818      // Unknown value.
819      return 0;
820    }
821    Result.push_back(InElt);
822  }
823
824  return ConstantVector::get(&Result[0], Result.size());
825}
826
827Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
828                                                    const unsigned *Idxs,
829                                                    unsigned NumIdx) {
830  // Base case: no indices, so return the entire value.
831  if (NumIdx == 0)
832    return Agg;
833
834  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
835    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
836                                                            Idxs,
837                                                            Idxs + NumIdx));
838
839  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
840    return
841      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
842                                                              Idxs,
843                                                              Idxs + NumIdx));
844
845  // Otherwise recurse.
846  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
847    return ConstantFoldExtractValueInstruction(CS->getOperand(*Idxs),
848                                               Idxs+1, NumIdx-1);
849
850  if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
851    return ConstantFoldExtractValueInstruction(CA->getOperand(*Idxs),
852                                               Idxs+1, NumIdx-1);
853  ConstantVector *CV = cast<ConstantVector>(Agg);
854  return ConstantFoldExtractValueInstruction(CV->getOperand(*Idxs),
855                                             Idxs+1, NumIdx-1);
856}
857
858Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
859                                                   Constant *Val,
860                                                   const unsigned *Idxs,
861                                                   unsigned NumIdx) {
862  // Base case: no indices, so replace the entire value.
863  if (NumIdx == 0)
864    return Val;
865
866  if (isa<UndefValue>(Agg)) {
867    // Insertion of constant into aggregate undef
868    // Optimize away insertion of undef.
869    if (isa<UndefValue>(Val))
870      return Agg;
871
872    // Otherwise break the aggregate undef into multiple undefs and do
873    // the insertion.
874    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
875    unsigned numOps;
876    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
877      numOps = AR->getNumElements();
878    else
879      numOps = cast<StructType>(AggTy)->getNumElements();
880
881    std::vector<Constant*> Ops(numOps);
882    for (unsigned i = 0; i < numOps; ++i) {
883      const Type *MemberTy = AggTy->getTypeAtIndex(i);
884      Constant *Op =
885        (*Idxs == i) ?
886        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
887                                           Val, Idxs+1, NumIdx-1) :
888        UndefValue::get(MemberTy);
889      Ops[i] = Op;
890    }
891
892    if (const StructType* ST = dyn_cast<StructType>(AggTy))
893      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
894    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
895  }
896
897  if (isa<ConstantAggregateZero>(Agg)) {
898    // Insertion of constant into aggregate zero
899    // Optimize away insertion of zero.
900    if (Val->isNullValue())
901      return Agg;
902
903    // Otherwise break the aggregate zero into multiple zeros and do
904    // the insertion.
905    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
906    unsigned numOps;
907    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
908      numOps = AR->getNumElements();
909    else
910      numOps = cast<StructType>(AggTy)->getNumElements();
911
912    std::vector<Constant*> Ops(numOps);
913    for (unsigned i = 0; i < numOps; ++i) {
914      const Type *MemberTy = AggTy->getTypeAtIndex(i);
915      Constant *Op =
916        (*Idxs == i) ?
917        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
918                                           Val, Idxs+1, NumIdx-1) :
919        Constant::getNullValue(MemberTy);
920      Ops[i] = Op;
921    }
922
923    if (const StructType *ST = dyn_cast<StructType>(AggTy))
924      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
925    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
926  }
927
928  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
929    // Insertion of constant into aggregate constant.
930    std::vector<Constant*> Ops(Agg->getNumOperands());
931    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
932      Constant *Op = cast<Constant>(Agg->getOperand(i));
933      if (*Idxs == i)
934        Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs+1, NumIdx-1);
935      Ops[i] = Op;
936    }
937
938    if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
939      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
940    return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
941  }
942
943  return 0;
944}
945
946
947Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
948                                              Constant *C1, Constant *C2) {
949  // No compile-time operations on this type yet.
950  if (C1->getType()->isPPC_FP128Ty())
951    return 0;
952
953  // Handle UndefValue up front.
954  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
955    switch (Opcode) {
956    case Instruction::Xor:
957      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
958        // Handle undef ^ undef -> 0 special case. This is a common
959        // idiom (misuse).
960        return Constant::getNullValue(C1->getType());
961      // Fallthrough
962    case Instruction::Add:
963    case Instruction::Sub:
964      return UndefValue::get(C1->getType());
965    case Instruction::Mul:
966    case Instruction::And:
967      return Constant::getNullValue(C1->getType());
968    case Instruction::UDiv:
969    case Instruction::SDiv:
970    case Instruction::URem:
971    case Instruction::SRem:
972      if (!isa<UndefValue>(C2))                    // undef / X -> 0
973        return Constant::getNullValue(C1->getType());
974      return C2;                                   // X / undef -> undef
975    case Instruction::Or:                          // X | undef -> -1
976      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
977        return Constant::getAllOnesValue(PTy);
978      return Constant::getAllOnesValue(C1->getType());
979    case Instruction::LShr:
980      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
981        return C1;                                  // undef lshr undef -> undef
982      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
983                                                    // undef lshr X -> 0
984    case Instruction::AShr:
985      if (!isa<UndefValue>(C2))
986        return C1;                                  // undef ashr X --> undef
987      else if (isa<UndefValue>(C1))
988        return C1;                                  // undef ashr undef -> undef
989      else
990        return C1;                                  // X ashr undef --> X
991    case Instruction::Shl:
992      // undef << X -> 0   or   X << undef -> 0
993      return Constant::getNullValue(C1->getType());
994    }
995  }
996
997  // Handle simplifications when the RHS is a constant int.
998  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
999    switch (Opcode) {
1000    case Instruction::Add:
1001      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1002      break;
1003    case Instruction::Sub:
1004      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1005      break;
1006    case Instruction::Mul:
1007      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1008      if (CI2->equalsInt(1))
1009        return C1;                                              // X * 1 == X
1010      break;
1011    case Instruction::UDiv:
1012    case Instruction::SDiv:
1013      if (CI2->equalsInt(1))
1014        return C1;                                            // X / 1 == X
1015      if (CI2->equalsInt(0))
1016        return UndefValue::get(CI2->getType());               // X / 0 == undef
1017      break;
1018    case Instruction::URem:
1019    case Instruction::SRem:
1020      if (CI2->equalsInt(1))
1021        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1022      if (CI2->equalsInt(0))
1023        return UndefValue::get(CI2->getType());               // X % 0 == undef
1024      break;
1025    case Instruction::And:
1026      if (CI2->isZero()) return C2;                           // X & 0 == 0
1027      if (CI2->isAllOnesValue())
1028        return C1;                                            // X & -1 == X
1029
1030      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1031        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1032        if (CE1->getOpcode() == Instruction::ZExt) {
1033          unsigned DstWidth = CI2->getType()->getBitWidth();
1034          unsigned SrcWidth =
1035            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1036          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1037          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1038            return C1;
1039        }
1040
1041        // If and'ing the address of a global with a constant, fold it.
1042        if (CE1->getOpcode() == Instruction::PtrToInt &&
1043            isa<GlobalValue>(CE1->getOperand(0))) {
1044          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1045
1046          // Functions are at least 4-byte aligned.
1047          unsigned GVAlign = GV->getAlignment();
1048          if (isa<Function>(GV))
1049            GVAlign = std::max(GVAlign, 4U);
1050
1051          if (GVAlign > 1) {
1052            unsigned DstWidth = CI2->getType()->getBitWidth();
1053            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1054            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1055
1056            // If checking bits we know are clear, return zero.
1057            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1058              return Constant::getNullValue(CI2->getType());
1059          }
1060        }
1061      }
1062      break;
1063    case Instruction::Or:
1064      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1065      if (CI2->isAllOnesValue())
1066        return C2;                         // X | -1 == -1
1067      break;
1068    case Instruction::Xor:
1069      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1070
1071      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1072        switch (CE1->getOpcode()) {
1073        default: break;
1074        case Instruction::ICmp:
1075        case Instruction::FCmp:
1076          // cmp pred ^ true -> cmp !pred
1077          assert(CI2->equalsInt(1));
1078          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1079          pred = CmpInst::getInversePredicate(pred);
1080          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1081                                          CE1->getOperand(1));
1082        }
1083      }
1084      break;
1085    case Instruction::AShr:
1086      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1087      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1088        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1089          return ConstantExpr::getLShr(C1, C2);
1090      break;
1091    }
1092  } else if (isa<ConstantInt>(C1)) {
1093    // If C1 is a ConstantInt and C2 is not, swap the operands.
1094    if (Instruction::isCommutative(Opcode))
1095      return ConstantExpr::get(Opcode, C2, C1);
1096  }
1097
1098  // At this point we know neither constant is an UndefValue.
1099  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1100    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1101      using namespace APIntOps;
1102      const APInt &C1V = CI1->getValue();
1103      const APInt &C2V = CI2->getValue();
1104      switch (Opcode) {
1105      default:
1106        break;
1107      case Instruction::Add:
1108        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1109      case Instruction::Sub:
1110        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1111      case Instruction::Mul:
1112        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1113      case Instruction::UDiv:
1114        assert(!CI2->isNullValue() && "Div by zero handled above");
1115        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1116      case Instruction::SDiv:
1117        assert(!CI2->isNullValue() && "Div by zero handled above");
1118        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1119          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1120        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1121      case Instruction::URem:
1122        assert(!CI2->isNullValue() && "Div by zero handled above");
1123        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1124      case Instruction::SRem:
1125        assert(!CI2->isNullValue() && "Div by zero handled above");
1126        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1127          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1128        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1129      case Instruction::And:
1130        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1131      case Instruction::Or:
1132        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1133      case Instruction::Xor:
1134        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1135      case Instruction::Shl: {
1136        uint32_t shiftAmt = C2V.getZExtValue();
1137        if (shiftAmt < C1V.getBitWidth())
1138          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1139        else
1140          return UndefValue::get(C1->getType()); // too big shift is undef
1141      }
1142      case Instruction::LShr: {
1143        uint32_t shiftAmt = C2V.getZExtValue();
1144        if (shiftAmt < C1V.getBitWidth())
1145          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1146        else
1147          return UndefValue::get(C1->getType()); // too big shift is undef
1148      }
1149      case Instruction::AShr: {
1150        uint32_t shiftAmt = C2V.getZExtValue();
1151        if (shiftAmt < C1V.getBitWidth())
1152          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1153        else
1154          return UndefValue::get(C1->getType()); // too big shift is undef
1155      }
1156      }
1157    }
1158
1159    switch (Opcode) {
1160    case Instruction::SDiv:
1161    case Instruction::UDiv:
1162    case Instruction::URem:
1163    case Instruction::SRem:
1164    case Instruction::LShr:
1165    case Instruction::AShr:
1166    case Instruction::Shl:
1167      if (CI1->equalsInt(0)) return C1;
1168      break;
1169    default:
1170      break;
1171    }
1172  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1173    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1174      APFloat C1V = CFP1->getValueAPF();
1175      APFloat C2V = CFP2->getValueAPF();
1176      APFloat C3V = C1V;  // copy for modification
1177      switch (Opcode) {
1178      default:
1179        break;
1180      case Instruction::FAdd:
1181        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1182        return ConstantFP::get(C1->getContext(), C3V);
1183      case Instruction::FSub:
1184        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1185        return ConstantFP::get(C1->getContext(), C3V);
1186      case Instruction::FMul:
1187        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1188        return ConstantFP::get(C1->getContext(), C3V);
1189      case Instruction::FDiv:
1190        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1191        return ConstantFP::get(C1->getContext(), C3V);
1192      case Instruction::FRem:
1193        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1194        return ConstantFP::get(C1->getContext(), C3V);
1195      }
1196    }
1197  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1198    ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1199    ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1200    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1201        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1202      std::vector<Constant*> Res;
1203      const Type* EltTy = VTy->getElementType();
1204      Constant *C1 = 0;
1205      Constant *C2 = 0;
1206      switch (Opcode) {
1207      default:
1208        break;
1209      case Instruction::Add:
1210        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1211          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1212          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1213          Res.push_back(ConstantExpr::getAdd(C1, C2));
1214        }
1215        return ConstantVector::get(Res);
1216      case Instruction::FAdd:
1217        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1218          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1219          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1220          Res.push_back(ConstantExpr::getFAdd(C1, C2));
1221        }
1222        return ConstantVector::get(Res);
1223      case Instruction::Sub:
1224        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1225          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1226          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1227          Res.push_back(ConstantExpr::getSub(C1, C2));
1228        }
1229        return ConstantVector::get(Res);
1230      case Instruction::FSub:
1231        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1232          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1233          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1234          Res.push_back(ConstantExpr::getFSub(C1, C2));
1235        }
1236        return ConstantVector::get(Res);
1237      case Instruction::Mul:
1238        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1239          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1240          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1241          Res.push_back(ConstantExpr::getMul(C1, C2));
1242        }
1243        return ConstantVector::get(Res);
1244      case Instruction::FMul:
1245        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1246          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1247          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1248          Res.push_back(ConstantExpr::getFMul(C1, C2));
1249        }
1250        return ConstantVector::get(Res);
1251      case Instruction::UDiv:
1252        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1253          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1254          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1255          Res.push_back(ConstantExpr::getUDiv(C1, C2));
1256        }
1257        return ConstantVector::get(Res);
1258      case Instruction::SDiv:
1259        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1260          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1261          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1262          Res.push_back(ConstantExpr::getSDiv(C1, C2));
1263        }
1264        return ConstantVector::get(Res);
1265      case Instruction::FDiv:
1266        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1267          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1268          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1269          Res.push_back(ConstantExpr::getFDiv(C1, C2));
1270        }
1271        return ConstantVector::get(Res);
1272      case Instruction::URem:
1273        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1274          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1275          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1276          Res.push_back(ConstantExpr::getURem(C1, C2));
1277        }
1278        return ConstantVector::get(Res);
1279      case Instruction::SRem:
1280        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1281          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1282          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1283          Res.push_back(ConstantExpr::getSRem(C1, C2));
1284        }
1285        return ConstantVector::get(Res);
1286      case Instruction::FRem:
1287        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1288          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1289          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1290          Res.push_back(ConstantExpr::getFRem(C1, C2));
1291        }
1292        return ConstantVector::get(Res);
1293      case Instruction::And:
1294        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1295          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1296          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1297          Res.push_back(ConstantExpr::getAnd(C1, C2));
1298        }
1299        return ConstantVector::get(Res);
1300      case Instruction::Or:
1301        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1302          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1303          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1304          Res.push_back(ConstantExpr::getOr(C1, C2));
1305        }
1306        return ConstantVector::get(Res);
1307      case Instruction::Xor:
1308        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1309          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1310          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1311          Res.push_back(ConstantExpr::getXor(C1, C2));
1312        }
1313        return ConstantVector::get(Res);
1314      case Instruction::LShr:
1315        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1316          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1317          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1318          Res.push_back(ConstantExpr::getLShr(C1, C2));
1319        }
1320        return ConstantVector::get(Res);
1321      case Instruction::AShr:
1322        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1323          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1324          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1325          Res.push_back(ConstantExpr::getAShr(C1, C2));
1326        }
1327        return ConstantVector::get(Res);
1328      case Instruction::Shl:
1329        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1330          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1331          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1332          Res.push_back(ConstantExpr::getShl(C1, C2));
1333        }
1334        return ConstantVector::get(Res);
1335      }
1336    }
1337  }
1338
1339  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1340    // There are many possible foldings we could do here.  We should probably
1341    // at least fold add of a pointer with an integer into the appropriate
1342    // getelementptr.  This will improve alias analysis a bit.
1343
1344    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1345    // (a + (b + c)).
1346    if (Instruction::isAssociative(Opcode, C1->getType()) &&
1347        CE1->getOpcode() == Opcode) {
1348      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1349      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1350        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1351    }
1352  } else if (isa<ConstantExpr>(C2)) {
1353    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1354    // other way if possible.
1355    if (Instruction::isCommutative(Opcode))
1356      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1357  }
1358
1359  // i1 can be simplified in many cases.
1360  if (C1->getType()->isIntegerTy(1)) {
1361    switch (Opcode) {
1362    case Instruction::Add:
1363    case Instruction::Sub:
1364      return ConstantExpr::getXor(C1, C2);
1365    case Instruction::Mul:
1366      return ConstantExpr::getAnd(C1, C2);
1367    case Instruction::Shl:
1368    case Instruction::LShr:
1369    case Instruction::AShr:
1370      // We can assume that C2 == 0.  If it were one the result would be
1371      // undefined because the shift value is as large as the bitwidth.
1372      return C1;
1373    case Instruction::SDiv:
1374    case Instruction::UDiv:
1375      // We can assume that C2 == 1.  If it were zero the result would be
1376      // undefined through division by zero.
1377      return C1;
1378    case Instruction::URem:
1379    case Instruction::SRem:
1380      // We can assume that C2 == 1.  If it were zero the result would be
1381      // undefined through division by zero.
1382      return ConstantInt::getFalse(C1->getContext());
1383    default:
1384      break;
1385    }
1386  }
1387
1388  // We don't know how to fold this.
1389  return 0;
1390}
1391
1392/// isZeroSizedType - This type is zero sized if its an array or structure of
1393/// zero sized types.  The only leaf zero sized type is an empty structure.
1394static bool isMaybeZeroSizedType(const Type *Ty) {
1395  if (Ty->isOpaqueTy()) return true;  // Can't say.
1396  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1397
1398    // If all of elements have zero size, this does too.
1399    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1400      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1401    return true;
1402
1403  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1404    return isMaybeZeroSizedType(ATy->getElementType());
1405  }
1406  return false;
1407}
1408
1409/// IdxCompare - Compare the two constants as though they were getelementptr
1410/// indices.  This allows coersion of the types to be the same thing.
1411///
1412/// If the two constants are the "same" (after coersion), return 0.  If the
1413/// first is less than the second, return -1, if the second is less than the
1414/// first, return 1.  If the constants are not integral, return -2.
1415///
1416static int IdxCompare(Constant *C1, Constant *C2,  const Type *ElTy) {
1417  if (C1 == C2) return 0;
1418
1419  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1420  // anything with them.
1421  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1422    return -2; // don't know!
1423
1424  // Ok, we have two differing integer indices.  Sign extend them to be the same
1425  // type.  Long is always big enough, so we use it.
1426  if (!C1->getType()->isIntegerTy(64))
1427    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1428
1429  if (!C2->getType()->isIntegerTy(64))
1430    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1431
1432  if (C1 == C2) return 0;  // They are equal
1433
1434  // If the type being indexed over is really just a zero sized type, there is
1435  // no pointer difference being made here.
1436  if (isMaybeZeroSizedType(ElTy))
1437    return -2; // dunno.
1438
1439  // If they are really different, now that they are the same type, then we
1440  // found a difference!
1441  if (cast<ConstantInt>(C1)->getSExtValue() <
1442      cast<ConstantInt>(C2)->getSExtValue())
1443    return -1;
1444  else
1445    return 1;
1446}
1447
1448/// evaluateFCmpRelation - This function determines if there is anything we can
1449/// decide about the two constants provided.  This doesn't need to handle simple
1450/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1451/// If we can determine that the two constants have a particular relation to
1452/// each other, we should return the corresponding FCmpInst predicate,
1453/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1454/// ConstantFoldCompareInstruction.
1455///
1456/// To simplify this code we canonicalize the relation so that the first
1457/// operand is always the most "complex" of the two.  We consider ConstantFP
1458/// to be the simplest, and ConstantExprs to be the most complex.
1459static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1460  assert(V1->getType() == V2->getType() &&
1461         "Cannot compare values of different types!");
1462
1463  // No compile-time operations on this type yet.
1464  if (V1->getType()->isPPC_FP128Ty())
1465    return FCmpInst::BAD_FCMP_PREDICATE;
1466
1467  // Handle degenerate case quickly
1468  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1469
1470  if (!isa<ConstantExpr>(V1)) {
1471    if (!isa<ConstantExpr>(V2)) {
1472      // We distilled thisUse the standard constant folder for a few cases
1473      ConstantInt *R = 0;
1474      R = dyn_cast<ConstantInt>(
1475                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1476      if (R && !R->isZero())
1477        return FCmpInst::FCMP_OEQ;
1478      R = dyn_cast<ConstantInt>(
1479                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1480      if (R && !R->isZero())
1481        return FCmpInst::FCMP_OLT;
1482      R = dyn_cast<ConstantInt>(
1483                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1484      if (R && !R->isZero())
1485        return FCmpInst::FCMP_OGT;
1486
1487      // Nothing more we can do
1488      return FCmpInst::BAD_FCMP_PREDICATE;
1489    }
1490
1491    // If the first operand is simple and second is ConstantExpr, swap operands.
1492    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1493    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1494      return FCmpInst::getSwappedPredicate(SwappedRelation);
1495  } else {
1496    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1497    // constantexpr or a simple constant.
1498    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1499    switch (CE1->getOpcode()) {
1500    case Instruction::FPTrunc:
1501    case Instruction::FPExt:
1502    case Instruction::UIToFP:
1503    case Instruction::SIToFP:
1504      // We might be able to do something with these but we don't right now.
1505      break;
1506    default:
1507      break;
1508    }
1509  }
1510  // There are MANY other foldings that we could perform here.  They will
1511  // probably be added on demand, as they seem needed.
1512  return FCmpInst::BAD_FCMP_PREDICATE;
1513}
1514
1515/// evaluateICmpRelation - This function determines if there is anything we can
1516/// decide about the two constants provided.  This doesn't need to handle simple
1517/// things like integer comparisons, but should instead handle ConstantExprs
1518/// and GlobalValues.  If we can determine that the two constants have a
1519/// particular relation to each other, we should return the corresponding ICmp
1520/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1521///
1522/// To simplify this code we canonicalize the relation so that the first
1523/// operand is always the most "complex" of the two.  We consider simple
1524/// constants (like ConstantInt) to be the simplest, followed by
1525/// GlobalValues, followed by ConstantExpr's (the most complex).
1526///
1527static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1528                                                bool isSigned) {
1529  assert(V1->getType() == V2->getType() &&
1530         "Cannot compare different types of values!");
1531  if (V1 == V2) return ICmpInst::ICMP_EQ;
1532
1533  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1534      !isa<BlockAddress>(V1)) {
1535    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1536        !isa<BlockAddress>(V2)) {
1537      // We distilled this down to a simple case, use the standard constant
1538      // folder.
1539      ConstantInt *R = 0;
1540      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1541      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1542      if (R && !R->isZero())
1543        return pred;
1544      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1545      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1546      if (R && !R->isZero())
1547        return pred;
1548      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1549      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1550      if (R && !R->isZero())
1551        return pred;
1552
1553      // If we couldn't figure it out, bail.
1554      return ICmpInst::BAD_ICMP_PREDICATE;
1555    }
1556
1557    // If the first operand is simple, swap operands.
1558    ICmpInst::Predicate SwappedRelation =
1559      evaluateICmpRelation(V2, V1, isSigned);
1560    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1561      return ICmpInst::getSwappedPredicate(SwappedRelation);
1562
1563  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1564    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1565      ICmpInst::Predicate SwappedRelation =
1566        evaluateICmpRelation(V2, V1, isSigned);
1567      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1568        return ICmpInst::getSwappedPredicate(SwappedRelation);
1569      return ICmpInst::BAD_ICMP_PREDICATE;
1570    }
1571
1572    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1573    // constant (which, since the types must match, means that it's a
1574    // ConstantPointerNull).
1575    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1576      // Don't try to decide equality of aliases.
1577      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1578        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1579          return ICmpInst::ICMP_NE;
1580    } else if (isa<BlockAddress>(V2)) {
1581      return ICmpInst::ICMP_NE; // Globals never equal labels.
1582    } else {
1583      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1584      // GlobalVals can never be null unless they have external weak linkage.
1585      // We don't try to evaluate aliases here.
1586      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1587        return ICmpInst::ICMP_NE;
1588    }
1589  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1590    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1591      ICmpInst::Predicate SwappedRelation =
1592        evaluateICmpRelation(V2, V1, isSigned);
1593      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1594        return ICmpInst::getSwappedPredicate(SwappedRelation);
1595      return ICmpInst::BAD_ICMP_PREDICATE;
1596    }
1597
1598    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1599    // constant (which, since the types must match, means that it is a
1600    // ConstantPointerNull).
1601    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1602      // Block address in another function can't equal this one, but block
1603      // addresses in the current function might be the same if blocks are
1604      // empty.
1605      if (BA2->getFunction() != BA->getFunction())
1606        return ICmpInst::ICMP_NE;
1607    } else {
1608      // Block addresses aren't null, don't equal the address of globals.
1609      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1610             "Canonicalization guarantee!");
1611      return ICmpInst::ICMP_NE;
1612    }
1613  } else {
1614    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1615    // constantexpr, a global, block address, or a simple constant.
1616    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1617    Constant *CE1Op0 = CE1->getOperand(0);
1618
1619    switch (CE1->getOpcode()) {
1620    case Instruction::Trunc:
1621    case Instruction::FPTrunc:
1622    case Instruction::FPExt:
1623    case Instruction::FPToUI:
1624    case Instruction::FPToSI:
1625      break; // We can't evaluate floating point casts or truncations.
1626
1627    case Instruction::UIToFP:
1628    case Instruction::SIToFP:
1629    case Instruction::BitCast:
1630    case Instruction::ZExt:
1631    case Instruction::SExt:
1632      // If the cast is not actually changing bits, and the second operand is a
1633      // null pointer, do the comparison with the pre-casted value.
1634      if (V2->isNullValue() &&
1635          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1636        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1637        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1638        return evaluateICmpRelation(CE1Op0,
1639                                    Constant::getNullValue(CE1Op0->getType()),
1640                                    isSigned);
1641      }
1642      break;
1643
1644    case Instruction::GetElementPtr:
1645      // Ok, since this is a getelementptr, we know that the constant has a
1646      // pointer type.  Check the various cases.
1647      if (isa<ConstantPointerNull>(V2)) {
1648        // If we are comparing a GEP to a null pointer, check to see if the base
1649        // of the GEP equals the null pointer.
1650        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1651          if (GV->hasExternalWeakLinkage())
1652            // Weak linkage GVals could be zero or not. We're comparing that
1653            // to null pointer so its greater-or-equal
1654            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1655          else
1656            // If its not weak linkage, the GVal must have a non-zero address
1657            // so the result is greater-than
1658            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1659        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1660          // If we are indexing from a null pointer, check to see if we have any
1661          // non-zero indices.
1662          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1663            if (!CE1->getOperand(i)->isNullValue())
1664              // Offsetting from null, must not be equal.
1665              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1666          // Only zero indexes from null, must still be zero.
1667          return ICmpInst::ICMP_EQ;
1668        }
1669        // Otherwise, we can't really say if the first operand is null or not.
1670      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1671        if (isa<ConstantPointerNull>(CE1Op0)) {
1672          if (GV2->hasExternalWeakLinkage())
1673            // Weak linkage GVals could be zero or not. We're comparing it to
1674            // a null pointer, so its less-or-equal
1675            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1676          else
1677            // If its not weak linkage, the GVal must have a non-zero address
1678            // so the result is less-than
1679            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1680        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1681          if (GV == GV2) {
1682            // If this is a getelementptr of the same global, then it must be
1683            // different.  Because the types must match, the getelementptr could
1684            // only have at most one index, and because we fold getelementptr's
1685            // with a single zero index, it must be nonzero.
1686            assert(CE1->getNumOperands() == 2 &&
1687                   !CE1->getOperand(1)->isNullValue() &&
1688                   "Suprising getelementptr!");
1689            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1690          } else {
1691            // If they are different globals, we don't know what the value is,
1692            // but they can't be equal.
1693            return ICmpInst::ICMP_NE;
1694          }
1695        }
1696      } else {
1697        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1698        Constant *CE2Op0 = CE2->getOperand(0);
1699
1700        // There are MANY other foldings that we could perform here.  They will
1701        // probably be added on demand, as they seem needed.
1702        switch (CE2->getOpcode()) {
1703        default: break;
1704        case Instruction::GetElementPtr:
1705          // By far the most common case to handle is when the base pointers are
1706          // obviously to the same or different globals.
1707          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1708            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1709              return ICmpInst::ICMP_NE;
1710            // Ok, we know that both getelementptr instructions are based on the
1711            // same global.  From this, we can precisely determine the relative
1712            // ordering of the resultant pointers.
1713            unsigned i = 1;
1714
1715            // The logic below assumes that the result of the comparison
1716            // can be determined by finding the first index that differs.
1717            // This doesn't work if there is over-indexing in any
1718            // subsequent indices, so check for that case first.
1719            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1720                !CE2->isGEPWithNoNotionalOverIndexing())
1721               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1722
1723            // Compare all of the operands the GEP's have in common.
1724            gep_type_iterator GTI = gep_type_begin(CE1);
1725            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1726                 ++i, ++GTI)
1727              switch (IdxCompare(CE1->getOperand(i),
1728                                 CE2->getOperand(i), GTI.getIndexedType())) {
1729              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1730              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1731              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1732              }
1733
1734            // Ok, we ran out of things they have in common.  If any leftovers
1735            // are non-zero then we have a difference, otherwise we are equal.
1736            for (; i < CE1->getNumOperands(); ++i)
1737              if (!CE1->getOperand(i)->isNullValue()) {
1738                if (isa<ConstantInt>(CE1->getOperand(i)))
1739                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1740                else
1741                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1742              }
1743
1744            for (; i < CE2->getNumOperands(); ++i)
1745              if (!CE2->getOperand(i)->isNullValue()) {
1746                if (isa<ConstantInt>(CE2->getOperand(i)))
1747                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1748                else
1749                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1750              }
1751            return ICmpInst::ICMP_EQ;
1752          }
1753        }
1754      }
1755    default:
1756      break;
1757    }
1758  }
1759
1760  return ICmpInst::BAD_ICMP_PREDICATE;
1761}
1762
1763Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1764                                               Constant *C1, Constant *C2) {
1765  const Type *ResultTy;
1766  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1767    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1768                               VT->getNumElements());
1769  else
1770    ResultTy = Type::getInt1Ty(C1->getContext());
1771
1772  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1773  if (pred == FCmpInst::FCMP_FALSE)
1774    return Constant::getNullValue(ResultTy);
1775
1776  if (pred == FCmpInst::FCMP_TRUE)
1777    return Constant::getAllOnesValue(ResultTy);
1778
1779  // Handle some degenerate cases first
1780  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1781    // For EQ and NE, we can always pick a value for the undef to make the
1782    // predicate pass or fail, so we can return undef.
1783    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)))
1784      return UndefValue::get(ResultTy);
1785    // Otherwise, pick the same value as the non-undef operand, and fold
1786    // it to true or false.
1787    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1788  }
1789
1790  // No compile-time operations on this type yet.
1791  if (C1->getType()->isPPC_FP128Ty())
1792    return 0;
1793
1794  // icmp eq/ne(null,GV) -> false/true
1795  if (C1->isNullValue()) {
1796    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1797      // Don't try to evaluate aliases.  External weak GV can be null.
1798      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1799        if (pred == ICmpInst::ICMP_EQ)
1800          return ConstantInt::getFalse(C1->getContext());
1801        else if (pred == ICmpInst::ICMP_NE)
1802          return ConstantInt::getTrue(C1->getContext());
1803      }
1804  // icmp eq/ne(GV,null) -> false/true
1805  } else if (C2->isNullValue()) {
1806    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1807      // Don't try to evaluate aliases.  External weak GV can be null.
1808      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1809        if (pred == ICmpInst::ICMP_EQ)
1810          return ConstantInt::getFalse(C1->getContext());
1811        else if (pred == ICmpInst::ICMP_NE)
1812          return ConstantInt::getTrue(C1->getContext());
1813      }
1814  }
1815
1816  // If the comparison is a comparison between two i1's, simplify it.
1817  if (C1->getType()->isIntegerTy(1)) {
1818    switch(pred) {
1819    case ICmpInst::ICMP_EQ:
1820      if (isa<ConstantInt>(C2))
1821        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1822      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1823    case ICmpInst::ICMP_NE:
1824      return ConstantExpr::getXor(C1, C2);
1825    default:
1826      break;
1827    }
1828  }
1829
1830  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1831    APInt V1 = cast<ConstantInt>(C1)->getValue();
1832    APInt V2 = cast<ConstantInt>(C2)->getValue();
1833    switch (pred) {
1834    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1835    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1836    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1837    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1838    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1839    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1840    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1841    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1842    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1843    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1844    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1845    }
1846  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1847    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1848    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1849    APFloat::cmpResult R = C1V.compare(C2V);
1850    switch (pred) {
1851    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1852    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1853    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1854    case FCmpInst::FCMP_UNO:
1855      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1856    case FCmpInst::FCMP_ORD:
1857      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1858    case FCmpInst::FCMP_UEQ:
1859      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1860                                        R==APFloat::cmpEqual);
1861    case FCmpInst::FCMP_OEQ:
1862      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1863    case FCmpInst::FCMP_UNE:
1864      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1865    case FCmpInst::FCMP_ONE:
1866      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1867                                        R==APFloat::cmpGreaterThan);
1868    case FCmpInst::FCMP_ULT:
1869      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1870                                        R==APFloat::cmpLessThan);
1871    case FCmpInst::FCMP_OLT:
1872      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1873    case FCmpInst::FCMP_UGT:
1874      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1875                                        R==APFloat::cmpGreaterThan);
1876    case FCmpInst::FCMP_OGT:
1877      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1878    case FCmpInst::FCMP_ULE:
1879      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1880    case FCmpInst::FCMP_OLE:
1881      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1882                                        R==APFloat::cmpEqual);
1883    case FCmpInst::FCMP_UGE:
1884      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1885    case FCmpInst::FCMP_OGE:
1886      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1887                                        R==APFloat::cmpEqual);
1888    }
1889  } else if (C1->getType()->isVectorTy()) {
1890    SmallVector<Constant*, 16> C1Elts, C2Elts;
1891    C1->getVectorElements(C1Elts);
1892    C2->getVectorElements(C2Elts);
1893    if (C1Elts.empty() || C2Elts.empty())
1894      return 0;
1895
1896    // If we can constant fold the comparison of each element, constant fold
1897    // the whole vector comparison.
1898    SmallVector<Constant*, 4> ResElts;
1899    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1900      // Compare the elements, producing an i1 result or constant expr.
1901      ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1902    }
1903    return ConstantVector::get(&ResElts[0], ResElts.size());
1904  }
1905
1906  if (C1->getType()->isFloatingPointTy()) {
1907    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1908    switch (evaluateFCmpRelation(C1, C2)) {
1909    default: llvm_unreachable("Unknown relation!");
1910    case FCmpInst::FCMP_UNO:
1911    case FCmpInst::FCMP_ORD:
1912    case FCmpInst::FCMP_UEQ:
1913    case FCmpInst::FCMP_UNE:
1914    case FCmpInst::FCMP_ULT:
1915    case FCmpInst::FCMP_UGT:
1916    case FCmpInst::FCMP_ULE:
1917    case FCmpInst::FCMP_UGE:
1918    case FCmpInst::FCMP_TRUE:
1919    case FCmpInst::FCMP_FALSE:
1920    case FCmpInst::BAD_FCMP_PREDICATE:
1921      break; // Couldn't determine anything about these constants.
1922    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1923      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1924                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1925                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1926      break;
1927    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1928      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1929                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1930                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1931      break;
1932    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1933      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1934                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1935                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1936      break;
1937    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1938      // We can only partially decide this relation.
1939      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1940        Result = 0;
1941      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1942        Result = 1;
1943      break;
1944    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1945      // We can only partially decide this relation.
1946      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1947        Result = 0;
1948      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1949        Result = 1;
1950      break;
1951    case ICmpInst::ICMP_NE: // We know that C1 != C2
1952      // We can only partially decide this relation.
1953      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1954        Result = 0;
1955      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1956        Result = 1;
1957      break;
1958    }
1959
1960    // If we evaluated the result, return it now.
1961    if (Result != -1)
1962      return ConstantInt::get(ResultTy, Result);
1963
1964  } else {
1965    // Evaluate the relation between the two constants, per the predicate.
1966    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1967    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1968    default: llvm_unreachable("Unknown relational!");
1969    case ICmpInst::BAD_ICMP_PREDICATE:
1970      break;  // Couldn't determine anything about these constants.
1971    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1972      // If we know the constants are equal, we can decide the result of this
1973      // computation precisely.
1974      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1975      break;
1976    case ICmpInst::ICMP_ULT:
1977      switch (pred) {
1978      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1979        Result = 1; break;
1980      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1981        Result = 0; break;
1982      }
1983      break;
1984    case ICmpInst::ICMP_SLT:
1985      switch (pred) {
1986      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1987        Result = 1; break;
1988      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1989        Result = 0; break;
1990      }
1991      break;
1992    case ICmpInst::ICMP_UGT:
1993      switch (pred) {
1994      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1995        Result = 1; break;
1996      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1997        Result = 0; break;
1998      }
1999      break;
2000    case ICmpInst::ICMP_SGT:
2001      switch (pred) {
2002      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2003        Result = 1; break;
2004      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2005        Result = 0; break;
2006      }
2007      break;
2008    case ICmpInst::ICMP_ULE:
2009      if (pred == ICmpInst::ICMP_UGT) Result = 0;
2010      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2011      break;
2012    case ICmpInst::ICMP_SLE:
2013      if (pred == ICmpInst::ICMP_SGT) Result = 0;
2014      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2015      break;
2016    case ICmpInst::ICMP_UGE:
2017      if (pred == ICmpInst::ICMP_ULT) Result = 0;
2018      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2019      break;
2020    case ICmpInst::ICMP_SGE:
2021      if (pred == ICmpInst::ICMP_SLT) Result = 0;
2022      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2023      break;
2024    case ICmpInst::ICMP_NE:
2025      if (pred == ICmpInst::ICMP_EQ) Result = 0;
2026      if (pred == ICmpInst::ICMP_NE) Result = 1;
2027      break;
2028    }
2029
2030    // If we evaluated the result, return it now.
2031    if (Result != -1)
2032      return ConstantInt::get(ResultTy, Result);
2033
2034    // If the right hand side is a bitcast, try using its inverse to simplify
2035    // it by moving it to the left hand side.  We can't do this if it would turn
2036    // a vector compare into a scalar compare or visa versa.
2037    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2038      Constant *CE2Op0 = CE2->getOperand(0);
2039      if (CE2->getOpcode() == Instruction::BitCast &&
2040          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
2041        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2042        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2043      }
2044    }
2045
2046    // If the left hand side is an extension, try eliminating it.
2047    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2048      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
2049          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
2050        Constant *CE1Op0 = CE1->getOperand(0);
2051        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2052        if (CE1Inverse == CE1Op0) {
2053          // Check whether we can safely truncate the right hand side.
2054          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2055          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2056            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2057          }
2058        }
2059      }
2060    }
2061
2062    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2063        (C1->isNullValue() && !C2->isNullValue())) {
2064      // If C2 is a constant expr and C1 isn't, flip them around and fold the
2065      // other way if possible.
2066      // Also, if C1 is null and C2 isn't, flip them around.
2067      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2068      return ConstantExpr::getICmp(pred, C2, C1);
2069    }
2070  }
2071  return 0;
2072}
2073
2074/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2075/// is "inbounds".
2076static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) {
2077  // No indices means nothing that could be out of bounds.
2078  if (NumIdx == 0) return true;
2079
2080  // If the first index is zero, it's in bounds.
2081  if (Idxs[0]->isNullValue()) return true;
2082
2083  // If the first index is one and all the rest are zero, it's in bounds,
2084  // by the one-past-the-end rule.
2085  if (!cast<ConstantInt>(Idxs[0])->isOne())
2086    return false;
2087  for (unsigned i = 1, e = NumIdx; i != e; ++i)
2088    if (!Idxs[i]->isNullValue())
2089      return false;
2090  return true;
2091}
2092
2093Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2094                                          bool inBounds,
2095                                          Constant* const *Idxs,
2096                                          unsigned NumIdx) {
2097  if (NumIdx == 0 ||
2098      (NumIdx == 1 && Idxs[0]->isNullValue()))
2099    return C;
2100
2101  if (isa<UndefValue>(C)) {
2102    const PointerType *Ptr = cast<PointerType>(C->getType());
2103    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
2104                                                       (Value **)Idxs,
2105                                                       (Value **)Idxs+NumIdx);
2106    assert(Ty != 0 && "Invalid indices for GEP!");
2107    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2108  }
2109
2110  Constant *Idx0 = Idxs[0];
2111  if (C->isNullValue()) {
2112    bool isNull = true;
2113    for (unsigned i = 0, e = NumIdx; i != e; ++i)
2114      if (!Idxs[i]->isNullValue()) {
2115        isNull = false;
2116        break;
2117      }
2118    if (isNull) {
2119      const PointerType *Ptr = cast<PointerType>(C->getType());
2120      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
2121                                                         (Value**)Idxs,
2122                                                         (Value**)Idxs+NumIdx);
2123      assert(Ty != 0 && "Invalid indices for GEP!");
2124      return  ConstantPointerNull::get(
2125                            PointerType::get(Ty,Ptr->getAddressSpace()));
2126    }
2127  }
2128
2129  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2130    // Combine Indices - If the source pointer to this getelementptr instruction
2131    // is a getelementptr instruction, combine the indices of the two
2132    // getelementptr instructions into a single instruction.
2133    //
2134    if (CE->getOpcode() == Instruction::GetElementPtr) {
2135      const Type *LastTy = 0;
2136      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2137           I != E; ++I)
2138        LastTy = *I;
2139
2140      if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) {
2141        SmallVector<Value*, 16> NewIndices;
2142        NewIndices.reserve(NumIdx + CE->getNumOperands());
2143        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2144          NewIndices.push_back(CE->getOperand(i));
2145
2146        // Add the last index of the source with the first index of the new GEP.
2147        // Make sure to handle the case when they are actually different types.
2148        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2149        // Otherwise it must be an array.
2150        if (!Idx0->isNullValue()) {
2151          const Type *IdxTy = Combined->getType();
2152          if (IdxTy != Idx0->getType()) {
2153            const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2154            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2155            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2156            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2157          } else {
2158            Combined =
2159              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2160          }
2161        }
2162
2163        NewIndices.push_back(Combined);
2164        NewIndices.append(Idxs+1, Idxs+NumIdx);
2165        return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
2166          ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
2167                                                 &NewIndices[0],
2168                                                 NewIndices.size()) :
2169          ConstantExpr::getGetElementPtr(CE->getOperand(0),
2170                                         &NewIndices[0],
2171                                         NewIndices.size());
2172      }
2173    }
2174
2175    // Implement folding of:
2176    //    int* getelementptr ([2 x int]* bitcast ([3 x int]* %X to [2 x int]*),
2177    //                        long 0, long 0)
2178    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
2179    //
2180    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
2181      if (const PointerType *SPT =
2182          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2183        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2184          if (const ArrayType *CAT =
2185        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2186            if (CAT->getElementType() == SAT->getElementType())
2187              return inBounds ?
2188                ConstantExpr::getInBoundsGetElementPtr(
2189                      (Constant*)CE->getOperand(0), Idxs, NumIdx) :
2190                ConstantExpr::getGetElementPtr(
2191                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
2192    }
2193  }
2194
2195  // Check to see if any array indices are not within the corresponding
2196  // notional array bounds. If so, try to determine if they can be factored
2197  // out into preceding dimensions.
2198  bool Unknown = false;
2199  SmallVector<Constant *, 8> NewIdxs;
2200  const Type *Ty = C->getType();
2201  const Type *Prev = 0;
2202  for (unsigned i = 0; i != NumIdx;
2203       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2204    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2205      if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2206        if (ATy->getNumElements() <= INT64_MAX &&
2207            ATy->getNumElements() != 0 &&
2208            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2209          if (isa<SequentialType>(Prev)) {
2210            // It's out of range, but we can factor it into the prior
2211            // dimension.
2212            NewIdxs.resize(NumIdx);
2213            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2214                                                   ATy->getNumElements());
2215            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2216
2217            Constant *PrevIdx = Idxs[i-1];
2218            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2219
2220            // Before adding, extend both operands to i64 to avoid
2221            // overflow trouble.
2222            if (!PrevIdx->getType()->isIntegerTy(64))
2223              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2224                                           Type::getInt64Ty(Div->getContext()));
2225            if (!Div->getType()->isIntegerTy(64))
2226              Div = ConstantExpr::getSExt(Div,
2227                                          Type::getInt64Ty(Div->getContext()));
2228
2229            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2230          } else {
2231            // It's out of range, but the prior dimension is a struct
2232            // so we can't do anything about it.
2233            Unknown = true;
2234          }
2235        }
2236    } else {
2237      // We don't know if it's in range or not.
2238      Unknown = true;
2239    }
2240  }
2241
2242  // If we did any factoring, start over with the adjusted indices.
2243  if (!NewIdxs.empty()) {
2244    for (unsigned i = 0; i != NumIdx; ++i)
2245      if (!NewIdxs[i]) NewIdxs[i] = Idxs[i];
2246    return inBounds ?
2247      ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
2248                                             NewIdxs.size()) :
2249      ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
2250  }
2251
2252  // If all indices are known integers and normalized, we can do a simple
2253  // check for the "inbounds" property.
2254  if (!Unknown && !inBounds &&
2255      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
2256    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
2257
2258  return 0;
2259}
2260