ConstantFold.cpp revision 868510328fc0b25ca97f2fba466a77c2c4e29c45
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
19//===----------------------------------------------------------------------===//
20
21#include "ConstantFold.h"
22#include "llvm/Constants.h"
23#include "llvm/Instructions.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalAlias.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/Support/ManagedStatic.h"
31#include "llvm/Support/MathExtras.h"
32#include <limits>
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36//                ConstantFold*Instruction Implementations
37//===----------------------------------------------------------------------===//
38
39/// BitCastConstantVector - Convert the specified ConstantVector node to the
40/// specified vector type.  At this point, we know that the elements of the
41/// input vector constant are all simple integer or FP values.
42static Constant *BitCastConstantVector(ConstantVector *CV,
43                                       const VectorType *DstTy) {
44  // If this cast changes element count then we can't handle it here:
45  // doing so requires endianness information.  This should be handled by
46  // Analysis/ConstantFolding.cpp
47  unsigned NumElts = DstTy->getNumElements();
48  if (NumElts != CV->getNumOperands())
49    return 0;
50
51  // Check to verify that all elements of the input are simple.
52  for (unsigned i = 0; i != NumElts; ++i) {
53    if (!isa<ConstantInt>(CV->getOperand(i)) &&
54        !isa<ConstantFP>(CV->getOperand(i)))
55      return 0;
56  }
57
58  // Bitcast each element now.
59  std::vector<Constant*> Result;
60  const Type *DstEltTy = DstTy->getElementType();
61  for (unsigned i = 0; i != NumElts; ++i)
62    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
63  return ConstantVector::get(Result);
64}
65
66/// This function determines which opcode to use to fold two constant cast
67/// expressions together. It uses CastInst::isEliminableCastPair to determine
68/// the opcode. Consequently its just a wrapper around that function.
69/// @brief Determine if it is valid to fold a cast of a cast
70static unsigned
71foldConstantCastPair(
72  unsigned opc,          ///< opcode of the second cast constant expression
73  const ConstantExpr*Op, ///< the first cast constant expression
74  const Type *DstTy      ///< desintation type of the first cast
75) {
76  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
77  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
78  assert(CastInst::isCast(opc) && "Invalid cast opcode");
79
80  // The the types and opcodes for the two Cast constant expressions
81  const Type *SrcTy = Op->getOperand(0)->getType();
82  const Type *MidTy = Op->getType();
83  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
84  Instruction::CastOps secondOp = Instruction::CastOps(opc);
85
86  // Let CastInst::isEliminableCastPair do the heavy lifting.
87  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
88                                        Type::Int64Ty);
89}
90
91static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
92  const Type *SrcTy = V->getType();
93  if (SrcTy == DestTy)
94    return V; // no-op cast
95
96  // Check to see if we are casting a pointer to an aggregate to a pointer to
97  // the first element.  If so, return the appropriate GEP instruction.
98  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
99    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
100      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
101        SmallVector<Value*, 8> IdxList;
102        IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
103        const Type *ElTy = PTy->getElementType();
104        while (ElTy != DPTy->getElementType()) {
105          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
106            if (STy->getNumElements() == 0) break;
107            ElTy = STy->getElementType(0);
108            IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
109          } else if (const SequentialType *STy =
110                     dyn_cast<SequentialType>(ElTy)) {
111            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
112            ElTy = STy->getElementType();
113            IdxList.push_back(IdxList[0]);
114          } else {
115            break;
116          }
117        }
118
119        if (ElTy == DPTy->getElementType())
120          return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
121      }
122
123  // Handle casts from one vector constant to another.  We know that the src
124  // and dest type have the same size (otherwise its an illegal cast).
125  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
126    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
127      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
128             "Not cast between same sized vectors!");
129      // First, check for null.  Undef is already handled.
130      if (isa<ConstantAggregateZero>(V))
131        return Constant::getNullValue(DestTy);
132
133      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
134        return BitCastConstantVector(CV, DestPTy);
135    }
136
137    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
138    // This allows for other simplifications (although some of them
139    // can only be handled by Analysis/ConstantFolding.cpp).
140    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
141      return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
142  }
143
144  // Finally, implement bitcast folding now.   The code below doesn't handle
145  // bitcast right.
146  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
147    return ConstantPointerNull::get(cast<PointerType>(DestTy));
148
149  // Handle integral constant input.
150  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
151    if (DestTy->isInteger())
152      // Integral -> Integral. This is a no-op because the bit widths must
153      // be the same. Consequently, we just fold to V.
154      return V;
155
156    if (DestTy->isFloatingPoint()) {
157      assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) &&
158             "Unknown FP type!");
159      return ConstantFP::get(APFloat(CI->getValue()));
160    }
161    // Otherwise, can't fold this (vector?)
162    return 0;
163  }
164
165  // Handle ConstantFP input.
166  if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
167    // FP -> Integral.
168    if (DestTy == Type::Int32Ty) {
169      return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
170    } else {
171      assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
172      return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
173    }
174  }
175  return 0;
176}
177
178
179Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
180                                            const Type *DestTy) {
181  if (isa<UndefValue>(V)) {
182    // zext(undef) = 0, because the top bits will be zero.
183    // sext(undef) = 0, because the top bits will all be the same.
184    // [us]itofp(undef) = 0, because the result value is bounded.
185    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
186        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
187      return Constant::getNullValue(DestTy);
188    return UndefValue::get(DestTy);
189  }
190  // No compile-time operations on this type yet.
191  if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
192    return 0;
193
194  // If the cast operand is a constant expression, there's a few things we can
195  // do to try to simplify it.
196  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
197    if (CE->isCast()) {
198      // Try hard to fold cast of cast because they are often eliminable.
199      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
200        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
201    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
202      // If all of the indexes in the GEP are null values, there is no pointer
203      // adjustment going on.  We might as well cast the source pointer.
204      bool isAllNull = true;
205      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
206        if (!CE->getOperand(i)->isNullValue()) {
207          isAllNull = false;
208          break;
209        }
210      if (isAllNull)
211        // This is casting one pointer type to another, always BitCast
212        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
213    }
214  }
215
216  // We actually have to do a cast now. Perform the cast according to the
217  // opcode specified.
218  switch (opc) {
219  case Instruction::FPTrunc:
220  case Instruction::FPExt:
221    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
222      bool ignored;
223      APFloat Val = FPC->getValueAPF();
224      Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
225                  DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
226                  DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
227                  DestTy == Type::FP128Ty ? APFloat::IEEEquad :
228                  APFloat::Bogus,
229                  APFloat::rmNearestTiesToEven, &ignored);
230      return ConstantFP::get(Val);
231    }
232    return 0; // Can't fold.
233  case Instruction::FPToUI:
234  case Instruction::FPToSI:
235    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
236      const APFloat &V = FPC->getValueAPF();
237      bool ignored;
238      uint64_t x[2];
239      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
240      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
241                                APFloat::rmTowardZero, &ignored);
242      APInt Val(DestBitWidth, 2, x);
243      return ConstantInt::get(Val);
244    }
245    if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
246      std::vector<Constant*> res;
247      const VectorType *DestVecTy = cast<VectorType>(DestTy);
248      const Type *DstEltTy = DestVecTy->getElementType();
249      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
250        res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
251      return ConstantVector::get(DestVecTy, res);
252    }
253    return 0; // Can't fold.
254  case Instruction::IntToPtr:   //always treated as unsigned
255    if (V->isNullValue())       // Is it an integral null value?
256      return ConstantPointerNull::get(cast<PointerType>(DestTy));
257    return 0;                   // Other pointer types cannot be casted
258  case Instruction::PtrToInt:   // always treated as unsigned
259    if (V->isNullValue())       // is it a null pointer value?
260      return ConstantInt::get(DestTy, 0);
261    return 0;                   // Other pointer types cannot be casted
262  case Instruction::UIToFP:
263  case Instruction::SIToFP:
264    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
265      APInt api = CI->getValue();
266      const uint64_t zero[] = {0, 0};
267      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
268                                  2, zero));
269      (void)apf.convertFromAPInt(api,
270                                 opc==Instruction::SIToFP,
271                                 APFloat::rmNearestTiesToEven);
272      return ConstantFP::get(apf);
273    }
274    if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
275      std::vector<Constant*> res;
276      const VectorType *DestVecTy = cast<VectorType>(DestTy);
277      const Type *DstEltTy = DestVecTy->getElementType();
278      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
279        res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
280      return ConstantVector::get(DestVecTy, res);
281    }
282    return 0;
283  case Instruction::ZExt:
284    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
285      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
286      APInt Result(CI->getValue());
287      Result.zext(BitWidth);
288      return ConstantInt::get(Result);
289    }
290    return 0;
291  case Instruction::SExt:
292    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
293      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
294      APInt Result(CI->getValue());
295      Result.sext(BitWidth);
296      return ConstantInt::get(Result);
297    }
298    return 0;
299  case Instruction::Trunc:
300    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
301      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
302      APInt Result(CI->getValue());
303      Result.trunc(BitWidth);
304      return ConstantInt::get(Result);
305    }
306    return 0;
307  case Instruction::BitCast:
308    return FoldBitCast(const_cast<Constant*>(V), DestTy);
309  default:
310    assert(!"Invalid CE CastInst opcode");
311    break;
312  }
313
314  assert(0 && "Failed to cast constant expression");
315  return 0;
316}
317
318Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
319                                              const Constant *V1,
320                                              const Constant *V2) {
321  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
322    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
323
324  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
325  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
326  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
327  if (V1 == V2) return const_cast<Constant*>(V1);
328  return 0;
329}
330
331Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
332                                                      const Constant *Idx) {
333  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
334    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
335  if (Val->isNullValue())  // ee(zero, x) -> zero
336    return Constant::getNullValue(
337                          cast<VectorType>(Val->getType())->getElementType());
338
339  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
340    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
341      return CVal->getOperand(CIdx->getZExtValue());
342    } else if (isa<UndefValue>(Idx)) {
343      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
344      return CVal->getOperand(0);
345    }
346  }
347  return 0;
348}
349
350Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
351                                                     const Constant *Elt,
352                                                     const Constant *Idx) {
353  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
354  if (!CIdx) return 0;
355  APInt idxVal = CIdx->getValue();
356  if (isa<UndefValue>(Val)) {
357    // Insertion of scalar constant into vector undef
358    // Optimize away insertion of undef
359    if (isa<UndefValue>(Elt))
360      return const_cast<Constant*>(Val);
361    // Otherwise break the aggregate undef into multiple undefs and do
362    // the insertion
363    unsigned numOps =
364      cast<VectorType>(Val->getType())->getNumElements();
365    std::vector<Constant*> Ops;
366    Ops.reserve(numOps);
367    for (unsigned i = 0; i < numOps; ++i) {
368      const Constant *Op =
369        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
370      Ops.push_back(const_cast<Constant*>(Op));
371    }
372    return ConstantVector::get(Ops);
373  }
374  if (isa<ConstantAggregateZero>(Val)) {
375    // Insertion of scalar constant into vector aggregate zero
376    // Optimize away insertion of zero
377    if (Elt->isNullValue())
378      return const_cast<Constant*>(Val);
379    // Otherwise break the aggregate zero into multiple zeros and do
380    // the insertion
381    unsigned numOps =
382      cast<VectorType>(Val->getType())->getNumElements();
383    std::vector<Constant*> Ops;
384    Ops.reserve(numOps);
385    for (unsigned i = 0; i < numOps; ++i) {
386      const Constant *Op =
387        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
388      Ops.push_back(const_cast<Constant*>(Op));
389    }
390    return ConstantVector::get(Ops);
391  }
392  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
393    // Insertion of scalar constant into vector constant
394    std::vector<Constant*> Ops;
395    Ops.reserve(CVal->getNumOperands());
396    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
397      const Constant *Op =
398        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
399      Ops.push_back(const_cast<Constant*>(Op));
400    }
401    return ConstantVector::get(Ops);
402  }
403
404  return 0;
405}
406
407/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
408/// return the specified element value.  Otherwise return null.
409static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
410  if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
411    return CV->getOperand(EltNo);
412
413  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
414  if (isa<ConstantAggregateZero>(C))
415    return Constant::getNullValue(EltTy);
416  if (isa<UndefValue>(C))
417    return UndefValue::get(EltTy);
418  return 0;
419}
420
421Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
422                                                     const Constant *V2,
423                                                     const Constant *Mask) {
424  // Undefined shuffle mask -> undefined value.
425  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
426
427  unsigned NumElts = cast<VectorType>(V1->getType())->getNumElements();
428  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
429
430  // Loop over the shuffle mask, evaluating each element.
431  SmallVector<Constant*, 32> Result;
432  for (unsigned i = 0; i != NumElts; ++i) {
433    Constant *InElt = GetVectorElement(Mask, i);
434    if (InElt == 0) return 0;
435
436    if (isa<UndefValue>(InElt))
437      InElt = UndefValue::get(EltTy);
438    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
439      unsigned Elt = CI->getZExtValue();
440      if (Elt >= NumElts*2)
441        InElt = UndefValue::get(EltTy);
442      else if (Elt >= NumElts)
443        InElt = GetVectorElement(V2, Elt-NumElts);
444      else
445        InElt = GetVectorElement(V1, Elt);
446      if (InElt == 0) return 0;
447    } else {
448      // Unknown value.
449      return 0;
450    }
451    Result.push_back(InElt);
452  }
453
454  return ConstantVector::get(&Result[0], Result.size());
455}
456
457Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
458                                                    const unsigned *Idxs,
459                                                    unsigned NumIdx) {
460  // Base case: no indices, so return the entire value.
461  if (NumIdx == 0)
462    return const_cast<Constant *>(Agg);
463
464  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
465    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
466                                                            Idxs,
467                                                            Idxs + NumIdx));
468
469  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
470    return
471      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
472                                                              Idxs,
473                                                              Idxs + NumIdx));
474
475  // Otherwise recurse.
476  return ConstantFoldExtractValueInstruction(Agg->getOperand(*Idxs),
477                                             Idxs+1, NumIdx-1);
478}
479
480Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg,
481                                                   const Constant *Val,
482                                                   const unsigned *Idxs,
483                                                   unsigned NumIdx) {
484  // Base case: no indices, so replace the entire value.
485  if (NumIdx == 0)
486    return const_cast<Constant *>(Val);
487
488  if (isa<UndefValue>(Agg)) {
489    // Insertion of constant into aggregate undef
490    // Optimize away insertion of undef
491    if (isa<UndefValue>(Val))
492      return const_cast<Constant*>(Agg);
493    // Otherwise break the aggregate undef into multiple undefs and do
494    // the insertion
495    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
496    unsigned numOps;
497    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
498      numOps = AR->getNumElements();
499    else
500      numOps = cast<StructType>(AggTy)->getNumElements();
501    std::vector<Constant*> Ops(numOps);
502    for (unsigned i = 0; i < numOps; ++i) {
503      const Type *MemberTy = AggTy->getTypeAtIndex(i);
504      const Constant *Op =
505        (*Idxs == i) ?
506        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
507                                           Val, Idxs+1, NumIdx-1) :
508        UndefValue::get(MemberTy);
509      Ops[i] = const_cast<Constant*>(Op);
510    }
511    if (isa<StructType>(AggTy))
512      return ConstantStruct::get(Ops);
513    else
514      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
515  }
516  if (isa<ConstantAggregateZero>(Agg)) {
517    // Insertion of constant into aggregate zero
518    // Optimize away insertion of zero
519    if (Val->isNullValue())
520      return const_cast<Constant*>(Agg);
521    // Otherwise break the aggregate zero into multiple zeros and do
522    // the insertion
523    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
524    unsigned numOps;
525    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
526      numOps = AR->getNumElements();
527    else
528      numOps = cast<StructType>(AggTy)->getNumElements();
529    std::vector<Constant*> Ops(numOps);
530    for (unsigned i = 0; i < numOps; ++i) {
531      const Type *MemberTy = AggTy->getTypeAtIndex(i);
532      const Constant *Op =
533        (*Idxs == i) ?
534        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
535                                           Val, Idxs+1, NumIdx-1) :
536        Constant::getNullValue(MemberTy);
537      Ops[i] = const_cast<Constant*>(Op);
538    }
539    if (isa<StructType>(AggTy))
540      return ConstantStruct::get(Ops);
541    else
542      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
543  }
544  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
545    // Insertion of constant into aggregate constant
546    std::vector<Constant*> Ops(Agg->getNumOperands());
547    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
548      const Constant *Op =
549        (*Idxs == i) ?
550        ConstantFoldInsertValueInstruction(Agg->getOperand(i),
551                                           Val, Idxs+1, NumIdx-1) :
552        Agg->getOperand(i);
553      Ops[i] = const_cast<Constant*>(Op);
554    }
555    Constant *C;
556    if (isa<StructType>(Agg->getType()))
557      C = ConstantStruct::get(Ops);
558    else
559      C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
560    return C;
561  }
562
563  return 0;
564}
565
566/// EvalVectorOp - Given two vector constants and a function pointer, apply the
567/// function pointer to each element pair, producing a new ConstantVector
568/// constant. Either or both of V1 and V2 may be NULL, meaning a
569/// ConstantAggregateZero operand.
570static Constant *EvalVectorOp(const ConstantVector *V1,
571                              const ConstantVector *V2,
572                              const VectorType *VTy,
573                              Constant *(*FP)(Constant*, Constant*)) {
574  std::vector<Constant*> Res;
575  const Type *EltTy = VTy->getElementType();
576  for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
577    const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
578    const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
579    Res.push_back(FP(const_cast<Constant*>(C1),
580                     const_cast<Constant*>(C2)));
581  }
582  return ConstantVector::get(Res);
583}
584
585Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
586                                              const Constant *C1,
587                                              const Constant *C2) {
588  // No compile-time operations on this type yet.
589  if (C1->getType() == Type::PPC_FP128Ty)
590    return 0;
591
592  // Handle UndefValue up front
593  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
594    switch (Opcode) {
595    case Instruction::Xor:
596      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
597        // Handle undef ^ undef -> 0 special case. This is a common
598        // idiom (misuse).
599        return Constant::getNullValue(C1->getType());
600      // Fallthrough
601    case Instruction::Add:
602    case Instruction::Sub:
603      return UndefValue::get(C1->getType());
604    case Instruction::Mul:
605    case Instruction::And:
606      return Constant::getNullValue(C1->getType());
607    case Instruction::UDiv:
608    case Instruction::SDiv:
609    case Instruction::FDiv:
610    case Instruction::URem:
611    case Instruction::SRem:
612    case Instruction::FRem:
613      if (!isa<UndefValue>(C2))                    // undef / X -> 0
614        return Constant::getNullValue(C1->getType());
615      return const_cast<Constant*>(C2);            // X / undef -> undef
616    case Instruction::Or:                          // X | undef -> -1
617      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
618        return ConstantVector::getAllOnesValue(PTy);
619      return ConstantInt::getAllOnesValue(C1->getType());
620    case Instruction::LShr:
621      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
622        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
623      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
624                                                    // undef lshr X -> 0
625    case Instruction::AShr:
626      if (!isa<UndefValue>(C2))
627        return const_cast<Constant*>(C1);           // undef ashr X --> undef
628      else if (isa<UndefValue>(C1))
629        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
630      else
631        return const_cast<Constant*>(C1);           // X ashr undef --> X
632    case Instruction::Shl:
633      // undef << X -> 0   or   X << undef -> 0
634      return Constant::getNullValue(C1->getType());
635    }
636  }
637
638  // Handle simplifications of the RHS when a constant int.
639  if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
640    switch (Opcode) {
641    case Instruction::Add:
642      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X + 0 == X
643      break;
644    case Instruction::Sub:
645      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X - 0 == X
646      break;
647    case Instruction::Mul:
648      if (CI2->equalsInt(0)) return const_cast<Constant*>(C2);  // X * 0 == 0
649      if (CI2->equalsInt(1))
650        return const_cast<Constant*>(C1);                       // X * 1 == X
651      break;
652    case Instruction::UDiv:
653    case Instruction::SDiv:
654      if (CI2->equalsInt(1))
655        return const_cast<Constant*>(C1);                     // X / 1 == X
656      break;
657    case Instruction::URem:
658    case Instruction::SRem:
659      if (CI2->equalsInt(1))
660        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
661      break;
662    case Instruction::And:
663      if (CI2->isZero()) return const_cast<Constant*>(C2);    // X & 0 == 0
664      if (CI2->isAllOnesValue())
665        return const_cast<Constant*>(C1);                     // X & -1 == X
666
667      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
668        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
669        if (CE1->getOpcode() == Instruction::ZExt) {
670          unsigned DstWidth = CI2->getType()->getBitWidth();
671          unsigned SrcWidth =
672            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
673          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
674          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
675            return const_cast<Constant*>(C1);
676        }
677
678        // If and'ing the address of a global with a constant, fold it.
679        if (CE1->getOpcode() == Instruction::PtrToInt &&
680            isa<GlobalValue>(CE1->getOperand(0))) {
681          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
682
683          // Functions are at least 4-byte aligned.
684          unsigned GVAlign = GV->getAlignment();
685          if (isa<Function>(GV))
686            GVAlign = std::max(GVAlign, 4U);
687
688          if (GVAlign > 1) {
689            unsigned DstWidth = CI2->getType()->getBitWidth();
690            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
691            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
692
693            // If checking bits we know are clear, return zero.
694            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
695              return Constant::getNullValue(CI2->getType());
696          }
697        }
698      }
699      break;
700    case Instruction::Or:
701      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X | 0 == X
702      if (CI2->isAllOnesValue())
703        return const_cast<Constant*>(C2);  // X | -1 == -1
704      break;
705    case Instruction::Xor:
706      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X ^ 0 == X
707      break;
708    case Instruction::AShr:
709      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
710      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
711        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
712          return ConstantExpr::getLShr(const_cast<Constant*>(C1),
713                                       const_cast<Constant*>(C2));
714      break;
715    }
716  }
717
718  // At this point we know neither constant is an UndefValue.
719  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
720    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
721      using namespace APIntOps;
722      const APInt &C1V = CI1->getValue();
723      const APInt &C2V = CI2->getValue();
724      switch (Opcode) {
725      default:
726        break;
727      case Instruction::Add:
728        return ConstantInt::get(C1V + C2V);
729      case Instruction::Sub:
730        return ConstantInt::get(C1V - C2V);
731      case Instruction::Mul:
732        return ConstantInt::get(C1V * C2V);
733      case Instruction::UDiv:
734        if (CI2->isNullValue())
735          return 0;        // X / 0 -> can't fold
736        return ConstantInt::get(C1V.udiv(C2V));
737      case Instruction::SDiv:
738        if (CI2->isNullValue())
739          return 0;        // X / 0 -> can't fold
740        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
741          return 0;        // MIN_INT / -1 -> overflow
742        return ConstantInt::get(C1V.sdiv(C2V));
743      case Instruction::URem:
744        if (C2->isNullValue())
745          return 0;        // X / 0 -> can't fold
746        return ConstantInt::get(C1V.urem(C2V));
747      case Instruction::SRem:
748        if (CI2->isNullValue())
749          return 0;        // X % 0 -> can't fold
750        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
751          return 0;        // MIN_INT % -1 -> overflow
752        return ConstantInt::get(C1V.srem(C2V));
753      case Instruction::And:
754        return ConstantInt::get(C1V & C2V);
755      case Instruction::Or:
756        return ConstantInt::get(C1V | C2V);
757      case Instruction::Xor:
758        return ConstantInt::get(C1V ^ C2V);
759      case Instruction::Shl: {
760        uint32_t shiftAmt = C2V.getZExtValue();
761        if (shiftAmt < C1V.getBitWidth())
762          return ConstantInt::get(C1V.shl(shiftAmt));
763        else
764          return UndefValue::get(C1->getType()); // too big shift is undef
765      }
766      case Instruction::LShr: {
767        uint32_t shiftAmt = C2V.getZExtValue();
768        if (shiftAmt < C1V.getBitWidth())
769          return ConstantInt::get(C1V.lshr(shiftAmt));
770        else
771          return UndefValue::get(C1->getType()); // too big shift is undef
772      }
773      case Instruction::AShr: {
774        uint32_t shiftAmt = C2V.getZExtValue();
775        if (shiftAmt < C1V.getBitWidth())
776          return ConstantInt::get(C1V.ashr(shiftAmt));
777        else
778          return UndefValue::get(C1->getType()); // too big shift is undef
779      }
780      }
781    }
782  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
783    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
784      APFloat C1V = CFP1->getValueAPF();
785      APFloat C2V = CFP2->getValueAPF();
786      APFloat C3V = C1V;  // copy for modification
787      switch (Opcode) {
788      default:
789        break;
790      case Instruction::Add:
791        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
792        return ConstantFP::get(C3V);
793      case Instruction::Sub:
794        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
795        return ConstantFP::get(C3V);
796      case Instruction::Mul:
797        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
798        return ConstantFP::get(C3V);
799      case Instruction::FDiv:
800        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
801        return ConstantFP::get(C3V);
802      case Instruction::FRem:
803        if (C2V.isZero()) {
804          // IEEE 754, Section 7.1, #5
805          if (CFP1->getType() == Type::DoubleTy)
806            return ConstantFP::get(APFloat(std::numeric_limits<double>::
807                                           quiet_NaN()));
808          if (CFP1->getType() == Type::FloatTy)
809            return ConstantFP::get(APFloat(std::numeric_limits<float>::
810                                           quiet_NaN()));
811          break;
812        }
813        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
814        return ConstantFP::get(C3V);
815      }
816    }
817  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
818    const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
819    const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
820    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
821        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
822      switch (Opcode) {
823      default:
824        break;
825      case Instruction::Add:
826        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd);
827      case Instruction::Sub:
828        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub);
829      case Instruction::Mul:
830        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul);
831      case Instruction::UDiv:
832        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv);
833      case Instruction::SDiv:
834        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv);
835      case Instruction::FDiv:
836        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv);
837      case Instruction::URem:
838        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem);
839      case Instruction::SRem:
840        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem);
841      case Instruction::FRem:
842        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem);
843      case Instruction::And:
844        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd);
845      case Instruction::Or:
846        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr);
847      case Instruction::Xor:
848        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor);
849      }
850    }
851  }
852
853  if (isa<ConstantExpr>(C1)) {
854    // There are many possible foldings we could do here.  We should probably
855    // at least fold add of a pointer with an integer into the appropriate
856    // getelementptr.  This will improve alias analysis a bit.
857  } else if (isa<ConstantExpr>(C2)) {
858    // If C2 is a constant expr and C1 isn't, flop them around and fold the
859    // other way if possible.
860    switch (Opcode) {
861    case Instruction::Add:
862    case Instruction::Mul:
863    case Instruction::And:
864    case Instruction::Or:
865    case Instruction::Xor:
866      // No change of opcode required.
867      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
868
869    case Instruction::Shl:
870    case Instruction::LShr:
871    case Instruction::AShr:
872    case Instruction::Sub:
873    case Instruction::SDiv:
874    case Instruction::UDiv:
875    case Instruction::FDiv:
876    case Instruction::URem:
877    case Instruction::SRem:
878    case Instruction::FRem:
879    default:  // These instructions cannot be flopped around.
880      break;
881    }
882  }
883
884  // We don't know how to fold this.
885  return 0;
886}
887
888/// isZeroSizedType - This type is zero sized if its an array or structure of
889/// zero sized types.  The only leaf zero sized type is an empty structure.
890static bool isMaybeZeroSizedType(const Type *Ty) {
891  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
892  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
893
894    // If all of elements have zero size, this does too.
895    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
896      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
897    return true;
898
899  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
900    return isMaybeZeroSizedType(ATy->getElementType());
901  }
902  return false;
903}
904
905/// IdxCompare - Compare the two constants as though they were getelementptr
906/// indices.  This allows coersion of the types to be the same thing.
907///
908/// If the two constants are the "same" (after coersion), return 0.  If the
909/// first is less than the second, return -1, if the second is less than the
910/// first, return 1.  If the constants are not integral, return -2.
911///
912static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
913  if (C1 == C2) return 0;
914
915  // Ok, we found a different index.  If they are not ConstantInt, we can't do
916  // anything with them.
917  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
918    return -2; // don't know!
919
920  // Ok, we have two differing integer indices.  Sign extend them to be the same
921  // type.  Long is always big enough, so we use it.
922  if (C1->getType() != Type::Int64Ty)
923    C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
924
925  if (C2->getType() != Type::Int64Ty)
926    C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
927
928  if (C1 == C2) return 0;  // They are equal
929
930  // If the type being indexed over is really just a zero sized type, there is
931  // no pointer difference being made here.
932  if (isMaybeZeroSizedType(ElTy))
933    return -2; // dunno.
934
935  // If they are really different, now that they are the same type, then we
936  // found a difference!
937  if (cast<ConstantInt>(C1)->getSExtValue() <
938      cast<ConstantInt>(C2)->getSExtValue())
939    return -1;
940  else
941    return 1;
942}
943
944/// evaluateFCmpRelation - This function determines if there is anything we can
945/// decide about the two constants provided.  This doesn't need to handle simple
946/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
947/// If we can determine that the two constants have a particular relation to
948/// each other, we should return the corresponding FCmpInst predicate,
949/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
950/// ConstantFoldCompareInstruction.
951///
952/// To simplify this code we canonicalize the relation so that the first
953/// operand is always the most "complex" of the two.  We consider ConstantFP
954/// to be the simplest, and ConstantExprs to be the most complex.
955static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
956                                                const Constant *V2) {
957  assert(V1->getType() == V2->getType() &&
958         "Cannot compare values of different types!");
959
960  // No compile-time operations on this type yet.
961  if (V1->getType() == Type::PPC_FP128Ty)
962    return FCmpInst::BAD_FCMP_PREDICATE;
963
964  // Handle degenerate case quickly
965  if (V1 == V2) return FCmpInst::FCMP_OEQ;
966
967  if (!isa<ConstantExpr>(V1)) {
968    if (!isa<ConstantExpr>(V2)) {
969      // We distilled thisUse the standard constant folder for a few cases
970      ConstantInt *R = 0;
971      Constant *C1 = const_cast<Constant*>(V1);
972      Constant *C2 = const_cast<Constant*>(V2);
973      R = dyn_cast<ConstantInt>(
974                             ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
975      if (R && !R->isZero())
976        return FCmpInst::FCMP_OEQ;
977      R = dyn_cast<ConstantInt>(
978                             ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
979      if (R && !R->isZero())
980        return FCmpInst::FCMP_OLT;
981      R = dyn_cast<ConstantInt>(
982                             ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
983      if (R && !R->isZero())
984        return FCmpInst::FCMP_OGT;
985
986      // Nothing more we can do
987      return FCmpInst::BAD_FCMP_PREDICATE;
988    }
989
990    // If the first operand is simple and second is ConstantExpr, swap operands.
991    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
992    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
993      return FCmpInst::getSwappedPredicate(SwappedRelation);
994  } else {
995    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
996    // constantexpr or a simple constant.
997    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
998    switch (CE1->getOpcode()) {
999    case Instruction::FPTrunc:
1000    case Instruction::FPExt:
1001    case Instruction::UIToFP:
1002    case Instruction::SIToFP:
1003      // We might be able to do something with these but we don't right now.
1004      break;
1005    default:
1006      break;
1007    }
1008  }
1009  // There are MANY other foldings that we could perform here.  They will
1010  // probably be added on demand, as they seem needed.
1011  return FCmpInst::BAD_FCMP_PREDICATE;
1012}
1013
1014/// evaluateICmpRelation - This function determines if there is anything we can
1015/// decide about the two constants provided.  This doesn't need to handle simple
1016/// things like integer comparisons, but should instead handle ConstantExprs
1017/// and GlobalValues.  If we can determine that the two constants have a
1018/// particular relation to each other, we should return the corresponding ICmp
1019/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1020///
1021/// To simplify this code we canonicalize the relation so that the first
1022/// operand is always the most "complex" of the two.  We consider simple
1023/// constants (like ConstantInt) to be the simplest, followed by
1024/// GlobalValues, followed by ConstantExpr's (the most complex).
1025///
1026static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
1027                                                const Constant *V2,
1028                                                bool isSigned) {
1029  assert(V1->getType() == V2->getType() &&
1030         "Cannot compare different types of values!");
1031  if (V1 == V2) return ICmpInst::ICMP_EQ;
1032
1033  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1034    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1035      // We distilled this down to a simple case, use the standard constant
1036      // folder.
1037      ConstantInt *R = 0;
1038      Constant *C1 = const_cast<Constant*>(V1);
1039      Constant *C2 = const_cast<Constant*>(V2);
1040      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1041      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1042      if (R && !R->isZero())
1043        return pred;
1044      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1045      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1046      if (R && !R->isZero())
1047        return pred;
1048      pred = isSigned ?  ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1049      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1050      if (R && !R->isZero())
1051        return pred;
1052
1053      // If we couldn't figure it out, bail.
1054      return ICmpInst::BAD_ICMP_PREDICATE;
1055    }
1056
1057    // If the first operand is simple, swap operands.
1058    ICmpInst::Predicate SwappedRelation =
1059      evaluateICmpRelation(V2, V1, isSigned);
1060    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1061      return ICmpInst::getSwappedPredicate(SwappedRelation);
1062
1063  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1064    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1065      ICmpInst::Predicate SwappedRelation =
1066        evaluateICmpRelation(V2, V1, isSigned);
1067      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1068        return ICmpInst::getSwappedPredicate(SwappedRelation);
1069      else
1070        return ICmpInst::BAD_ICMP_PREDICATE;
1071    }
1072
1073    // Now we know that the RHS is a GlobalValue or simple constant,
1074    // which (since the types must match) means that it's a ConstantPointerNull.
1075    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1076      // Don't try to decide equality of aliases.
1077      if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
1078        if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
1079          return ICmpInst::ICMP_NE;
1080    } else {
1081      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1082      // GlobalVals can never be null.  Don't try to evaluate aliases.
1083      if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
1084        return ICmpInst::ICMP_NE;
1085    }
1086  } else {
1087    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1088    // constantexpr, a CPR, or a simple constant.
1089    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1090    const Constant *CE1Op0 = CE1->getOperand(0);
1091
1092    switch (CE1->getOpcode()) {
1093    case Instruction::Trunc:
1094    case Instruction::FPTrunc:
1095    case Instruction::FPExt:
1096    case Instruction::FPToUI:
1097    case Instruction::FPToSI:
1098      break; // We can't evaluate floating point casts or truncations.
1099
1100    case Instruction::UIToFP:
1101    case Instruction::SIToFP:
1102    case Instruction::BitCast:
1103    case Instruction::ZExt:
1104    case Instruction::SExt:
1105      // If the cast is not actually changing bits, and the second operand is a
1106      // null pointer, do the comparison with the pre-casted value.
1107      if (V2->isNullValue() &&
1108          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1109        bool sgnd = isSigned;
1110        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1111        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1112        return evaluateICmpRelation(CE1Op0,
1113                                    Constant::getNullValue(CE1Op0->getType()),
1114                                    sgnd);
1115      }
1116
1117      // If the dest type is a pointer type, and the RHS is a constantexpr cast
1118      // from the same type as the src of the LHS, evaluate the inputs.  This is
1119      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1120      // which happens a lot in compilers with tagged integers.
1121      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1122        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1123            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1124            CE1->getOperand(0)->getType()->isInteger()) {
1125          bool sgnd = isSigned;
1126          if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1127          if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1128          return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
1129                                      sgnd);
1130        }
1131      break;
1132
1133    case Instruction::GetElementPtr:
1134      // Ok, since this is a getelementptr, we know that the constant has a
1135      // pointer type.  Check the various cases.
1136      if (isa<ConstantPointerNull>(V2)) {
1137        // If we are comparing a GEP to a null pointer, check to see if the base
1138        // of the GEP equals the null pointer.
1139        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1140          if (GV->hasExternalWeakLinkage())
1141            // Weak linkage GVals could be zero or not. We're comparing that
1142            // to null pointer so its greater-or-equal
1143            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1144          else
1145            // If its not weak linkage, the GVal must have a non-zero address
1146            // so the result is greater-than
1147            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
1148        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1149          // If we are indexing from a null pointer, check to see if we have any
1150          // non-zero indices.
1151          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1152            if (!CE1->getOperand(i)->isNullValue())
1153              // Offsetting from null, must not be equal.
1154              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1155          // Only zero indexes from null, must still be zero.
1156          return ICmpInst::ICMP_EQ;
1157        }
1158        // Otherwise, we can't really say if the first operand is null or not.
1159      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1160        if (isa<ConstantPointerNull>(CE1Op0)) {
1161          if (CPR2->hasExternalWeakLinkage())
1162            // Weak linkage GVals could be zero or not. We're comparing it to
1163            // a null pointer, so its less-or-equal
1164            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1165          else
1166            // If its not weak linkage, the GVal must have a non-zero address
1167            // so the result is less-than
1168            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1169        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1170          if (CPR1 == CPR2) {
1171            // If this is a getelementptr of the same global, then it must be
1172            // different.  Because the types must match, the getelementptr could
1173            // only have at most one index, and because we fold getelementptr's
1174            // with a single zero index, it must be nonzero.
1175            assert(CE1->getNumOperands() == 2 &&
1176                   !CE1->getOperand(1)->isNullValue() &&
1177                   "Suprising getelementptr!");
1178            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1179          } else {
1180            // If they are different globals, we don't know what the value is,
1181            // but they can't be equal.
1182            return ICmpInst::ICMP_NE;
1183          }
1184        }
1185      } else {
1186        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1187        const Constant *CE2Op0 = CE2->getOperand(0);
1188
1189        // There are MANY other foldings that we could perform here.  They will
1190        // probably be added on demand, as they seem needed.
1191        switch (CE2->getOpcode()) {
1192        default: break;
1193        case Instruction::GetElementPtr:
1194          // By far the most common case to handle is when the base pointers are
1195          // obviously to the same or different globals.
1196          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1197            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1198              return ICmpInst::ICMP_NE;
1199            // Ok, we know that both getelementptr instructions are based on the
1200            // same global.  From this, we can precisely determine the relative
1201            // ordering of the resultant pointers.
1202            unsigned i = 1;
1203
1204            // Compare all of the operands the GEP's have in common.
1205            gep_type_iterator GTI = gep_type_begin(CE1);
1206            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1207                 ++i, ++GTI)
1208              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1209                                 GTI.getIndexedType())) {
1210              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1211              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1212              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1213              }
1214
1215            // Ok, we ran out of things they have in common.  If any leftovers
1216            // are non-zero then we have a difference, otherwise we are equal.
1217            for (; i < CE1->getNumOperands(); ++i)
1218              if (!CE1->getOperand(i)->isNullValue()) {
1219                if (isa<ConstantInt>(CE1->getOperand(i)))
1220                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1221                else
1222                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1223              }
1224
1225            for (; i < CE2->getNumOperands(); ++i)
1226              if (!CE2->getOperand(i)->isNullValue()) {
1227                if (isa<ConstantInt>(CE2->getOperand(i)))
1228                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1229                else
1230                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1231              }
1232            return ICmpInst::ICMP_EQ;
1233          }
1234        }
1235      }
1236    default:
1237      break;
1238    }
1239  }
1240
1241  return ICmpInst::BAD_ICMP_PREDICATE;
1242}
1243
1244Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1245                                               const Constant *C1,
1246                                               const Constant *C2) {
1247  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1248  if (pred == FCmpInst::FCMP_FALSE) {
1249    if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1250      return Constant::getNullValue(VectorType::getInteger(VT));
1251    else
1252      return ConstantInt::getFalse();
1253  }
1254
1255  if (pred == FCmpInst::FCMP_TRUE) {
1256    if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1257      return Constant::getAllOnesValue(VectorType::getInteger(VT));
1258    else
1259      return ConstantInt::getTrue();
1260  }
1261
1262  // Handle some degenerate cases first
1263  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1264    // vicmp/vfcmp -> [vector] undef
1265    if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType()))
1266      return UndefValue::get(VectorType::getInteger(VTy));
1267
1268    // icmp/fcmp -> i1 undef
1269    return UndefValue::get(Type::Int1Ty);
1270  }
1271
1272  // No compile-time operations on this type yet.
1273  if (C1->getType() == Type::PPC_FP128Ty)
1274    return 0;
1275
1276  // icmp eq/ne(null,GV) -> false/true
1277  if (C1->isNullValue()) {
1278    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1279      // Don't try to evaluate aliases.  External weak GV can be null.
1280      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1281        if (pred == ICmpInst::ICMP_EQ)
1282          return ConstantInt::getFalse();
1283        else if (pred == ICmpInst::ICMP_NE)
1284          return ConstantInt::getTrue();
1285      }
1286  // icmp eq/ne(GV,null) -> false/true
1287  } else if (C2->isNullValue()) {
1288    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1289      // Don't try to evaluate aliases.  External weak GV can be null.
1290      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1291        if (pred == ICmpInst::ICMP_EQ)
1292          return ConstantInt::getFalse();
1293        else if (pred == ICmpInst::ICMP_NE)
1294          return ConstantInt::getTrue();
1295      }
1296  }
1297
1298  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1299    APInt V1 = cast<ConstantInt>(C1)->getValue();
1300    APInt V2 = cast<ConstantInt>(C2)->getValue();
1301    switch (pred) {
1302    default: assert(0 && "Invalid ICmp Predicate"); return 0;
1303    case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1304    case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1305    case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1306    case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1307    case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1308    case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1309    case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1310    case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1311    case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1312    case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1313    }
1314  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1315    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1316    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1317    APFloat::cmpResult R = C1V.compare(C2V);
1318    switch (pred) {
1319    default: assert(0 && "Invalid FCmp Predicate"); return 0;
1320    case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1321    case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue();
1322    case FCmpInst::FCMP_UNO:
1323      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1324    case FCmpInst::FCMP_ORD:
1325      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1326    case FCmpInst::FCMP_UEQ:
1327      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1328                                            R==APFloat::cmpEqual);
1329    case FCmpInst::FCMP_OEQ:
1330      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1331    case FCmpInst::FCMP_UNE:
1332      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1333    case FCmpInst::FCMP_ONE:
1334      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1335                                            R==APFloat::cmpGreaterThan);
1336    case FCmpInst::FCMP_ULT:
1337      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1338                                            R==APFloat::cmpLessThan);
1339    case FCmpInst::FCMP_OLT:
1340      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1341    case FCmpInst::FCMP_UGT:
1342      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1343                                            R==APFloat::cmpGreaterThan);
1344    case FCmpInst::FCMP_OGT:
1345      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1346    case FCmpInst::FCMP_ULE:
1347      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1348    case FCmpInst::FCMP_OLE:
1349      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1350                                            R==APFloat::cmpEqual);
1351    case FCmpInst::FCMP_UGE:
1352      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1353    case FCmpInst::FCMP_OGE:
1354      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1355                                            R==APFloat::cmpEqual);
1356    }
1357  } else if (isa<VectorType>(C1->getType())) {
1358    SmallVector<Constant*, 16> C1Elts, C2Elts;
1359    C1->getVectorElements(C1Elts);
1360    C2->getVectorElements(C2Elts);
1361
1362    // If we can constant fold the comparison of each element, constant fold
1363    // the whole vector comparison.
1364    SmallVector<Constant*, 4> ResElts;
1365    const Type *InEltTy = C1Elts[0]->getType();
1366    bool isFP = InEltTy->isFloatingPoint();
1367    const Type *ResEltTy = InEltTy;
1368    if (isFP)
1369      ResEltTy = IntegerType::get(InEltTy->getPrimitiveSizeInBits());
1370
1371    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1372      // Compare the elements, producing an i1 result or constant expr.
1373      Constant *C;
1374      if (isFP)
1375        C = ConstantExpr::getFCmp(pred, C1Elts[i], C2Elts[i]);
1376      else
1377        C = ConstantExpr::getICmp(pred, C1Elts[i], C2Elts[i]);
1378
1379      // If it is a bool or undef result, convert to the dest type.
1380      if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1381        if (CI->isZero())
1382          ResElts.push_back(Constant::getNullValue(ResEltTy));
1383        else
1384          ResElts.push_back(Constant::getAllOnesValue(ResEltTy));
1385      } else if (isa<UndefValue>(C)) {
1386        ResElts.push_back(UndefValue::get(ResEltTy));
1387      } else {
1388        break;
1389      }
1390    }
1391
1392    if (ResElts.size() == C1Elts.size())
1393      return ConstantVector::get(&ResElts[0], ResElts.size());
1394  }
1395
1396  if (C1->getType()->isFloatingPoint()) {
1397    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1398    switch (evaluateFCmpRelation(C1, C2)) {
1399    default: assert(0 && "Unknown relation!");
1400    case FCmpInst::FCMP_UNO:
1401    case FCmpInst::FCMP_ORD:
1402    case FCmpInst::FCMP_UEQ:
1403    case FCmpInst::FCMP_UNE:
1404    case FCmpInst::FCMP_ULT:
1405    case FCmpInst::FCMP_UGT:
1406    case FCmpInst::FCMP_ULE:
1407    case FCmpInst::FCMP_UGE:
1408    case FCmpInst::FCMP_TRUE:
1409    case FCmpInst::FCMP_FALSE:
1410    case FCmpInst::BAD_FCMP_PREDICATE:
1411      break; // Couldn't determine anything about these constants.
1412    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1413      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1414                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1415                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1416      break;
1417    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1418      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1419                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1420                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1421      break;
1422    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1423      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1424                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1425                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1426      break;
1427    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1428      // We can only partially decide this relation.
1429      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1430        Result = 0;
1431      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1432        Result = 1;
1433      break;
1434    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1435      // We can only partially decide this relation.
1436      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1437        Result = 0;
1438      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1439        Result = 1;
1440      break;
1441    case ICmpInst::ICMP_NE: // We know that C1 != C2
1442      // We can only partially decide this relation.
1443      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1444        Result = 0;
1445      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1446        Result = 1;
1447      break;
1448    }
1449
1450    // If we evaluated the result, return it now.
1451    if (Result != -1) {
1452      if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
1453        if (Result == 0)
1454          return Constant::getNullValue(VectorType::getInteger(VT));
1455        else
1456          return Constant::getAllOnesValue(VectorType::getInteger(VT));
1457      }
1458      return ConstantInt::get(Type::Int1Ty, Result);
1459    }
1460
1461  } else {
1462    // Evaluate the relation between the two constants, per the predicate.
1463    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1464    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1465    default: assert(0 && "Unknown relational!");
1466    case ICmpInst::BAD_ICMP_PREDICATE:
1467      break;  // Couldn't determine anything about these constants.
1468    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1469      // If we know the constants are equal, we can decide the result of this
1470      // computation precisely.
1471      Result = (pred == ICmpInst::ICMP_EQ  ||
1472                pred == ICmpInst::ICMP_ULE ||
1473                pred == ICmpInst::ICMP_SLE ||
1474                pred == ICmpInst::ICMP_UGE ||
1475                pred == ICmpInst::ICMP_SGE);
1476      break;
1477    case ICmpInst::ICMP_ULT:
1478      // If we know that C1 < C2, we can decide the result of this computation
1479      // precisely.
1480      Result = (pred == ICmpInst::ICMP_ULT ||
1481                pred == ICmpInst::ICMP_NE  ||
1482                pred == ICmpInst::ICMP_ULE);
1483      break;
1484    case ICmpInst::ICMP_SLT:
1485      // If we know that C1 < C2, we can decide the result of this computation
1486      // precisely.
1487      Result = (pred == ICmpInst::ICMP_SLT ||
1488                pred == ICmpInst::ICMP_NE  ||
1489                pred == ICmpInst::ICMP_SLE);
1490      break;
1491    case ICmpInst::ICMP_UGT:
1492      // If we know that C1 > C2, we can decide the result of this computation
1493      // precisely.
1494      Result = (pred == ICmpInst::ICMP_UGT ||
1495                pred == ICmpInst::ICMP_NE  ||
1496                pred == ICmpInst::ICMP_UGE);
1497      break;
1498    case ICmpInst::ICMP_SGT:
1499      // If we know that C1 > C2, we can decide the result of this computation
1500      // precisely.
1501      Result = (pred == ICmpInst::ICMP_SGT ||
1502                pred == ICmpInst::ICMP_NE  ||
1503                pred == ICmpInst::ICMP_SGE);
1504      break;
1505    case ICmpInst::ICMP_ULE:
1506      // If we know that C1 <= C2, we can only partially decide this relation.
1507      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1508      if (pred == ICmpInst::ICMP_ULT) Result = 1;
1509      break;
1510    case ICmpInst::ICMP_SLE:
1511      // If we know that C1 <= C2, we can only partially decide this relation.
1512      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1513      if (pred == ICmpInst::ICMP_SLT) Result = 1;
1514      break;
1515
1516    case ICmpInst::ICMP_UGE:
1517      // If we know that C1 >= C2, we can only partially decide this relation.
1518      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1519      if (pred == ICmpInst::ICMP_UGT) Result = 1;
1520      break;
1521    case ICmpInst::ICMP_SGE:
1522      // If we know that C1 >= C2, we can only partially decide this relation.
1523      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1524      if (pred == ICmpInst::ICMP_SGT) Result = 1;
1525      break;
1526
1527    case ICmpInst::ICMP_NE:
1528      // If we know that C1 != C2, we can only partially decide this relation.
1529      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1530      if (pred == ICmpInst::ICMP_NE) Result = 1;
1531      break;
1532    }
1533
1534    // If we evaluated the result, return it now.
1535    if (Result != -1) {
1536      if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
1537        if (Result == 0)
1538          return Constant::getNullValue(VT);
1539        else
1540          return Constant::getAllOnesValue(VT);
1541      }
1542      return ConstantInt::get(Type::Int1Ty, Result);
1543    }
1544
1545    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1546      // If C2 is a constant expr and C1 isn't, flop them around and fold the
1547      // other way if possible.
1548      switch (pred) {
1549      case ICmpInst::ICMP_EQ:
1550      case ICmpInst::ICMP_NE:
1551        // No change of predicate required.
1552        return ConstantFoldCompareInstruction(pred, C2, C1);
1553
1554      case ICmpInst::ICMP_ULT:
1555      case ICmpInst::ICMP_SLT:
1556      case ICmpInst::ICMP_UGT:
1557      case ICmpInst::ICMP_SGT:
1558      case ICmpInst::ICMP_ULE:
1559      case ICmpInst::ICMP_SLE:
1560      case ICmpInst::ICMP_UGE:
1561      case ICmpInst::ICMP_SGE:
1562        // Change the predicate as necessary to swap the operands.
1563        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1564        return ConstantFoldCompareInstruction(pred, C2, C1);
1565
1566      default:  // These predicates cannot be flopped around.
1567        break;
1568      }
1569    }
1570  }
1571  return 0;
1572}
1573
1574Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1575                                          Constant* const *Idxs,
1576                                          unsigned NumIdx) {
1577  if (NumIdx == 0 ||
1578      (NumIdx == 1 && Idxs[0]->isNullValue()))
1579    return const_cast<Constant*>(C);
1580
1581  if (isa<UndefValue>(C)) {
1582    const PointerType *Ptr = cast<PointerType>(C->getType());
1583    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1584                                                       (Value **)Idxs,
1585                                                       (Value **)Idxs+NumIdx);
1586    assert(Ty != 0 && "Invalid indices for GEP!");
1587    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1588  }
1589
1590  Constant *Idx0 = Idxs[0];
1591  if (C->isNullValue()) {
1592    bool isNull = true;
1593    for (unsigned i = 0, e = NumIdx; i != e; ++i)
1594      if (!Idxs[i]->isNullValue()) {
1595        isNull = false;
1596        break;
1597      }
1598    if (isNull) {
1599      const PointerType *Ptr = cast<PointerType>(C->getType());
1600      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1601                                                         (Value**)Idxs,
1602                                                         (Value**)Idxs+NumIdx);
1603      assert(Ty != 0 && "Invalid indices for GEP!");
1604      return
1605        ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
1606    }
1607  }
1608
1609  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1610    // Combine Indices - If the source pointer to this getelementptr instruction
1611    // is a getelementptr instruction, combine the indices of the two
1612    // getelementptr instructions into a single instruction.
1613    //
1614    if (CE->getOpcode() == Instruction::GetElementPtr) {
1615      const Type *LastTy = 0;
1616      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1617           I != E; ++I)
1618        LastTy = *I;
1619
1620      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1621        SmallVector<Value*, 16> NewIndices;
1622        NewIndices.reserve(NumIdx + CE->getNumOperands());
1623        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1624          NewIndices.push_back(CE->getOperand(i));
1625
1626        // Add the last index of the source with the first index of the new GEP.
1627        // Make sure to handle the case when they are actually different types.
1628        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1629        // Otherwise it must be an array.
1630        if (!Idx0->isNullValue()) {
1631          const Type *IdxTy = Combined->getType();
1632          if (IdxTy != Idx0->getType()) {
1633            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1634            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1635                                                          Type::Int64Ty);
1636            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1637          } else {
1638            Combined =
1639              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1640          }
1641        }
1642
1643        NewIndices.push_back(Combined);
1644        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1645        return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
1646                                              NewIndices.size());
1647      }
1648    }
1649
1650    // Implement folding of:
1651    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1652    //                        long 0, long 0)
1653    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1654    //
1655    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1656      if (const PointerType *SPT =
1657          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1658        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1659          if (const ArrayType *CAT =
1660        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1661            if (CAT->getElementType() == SAT->getElementType())
1662              return ConstantExpr::getGetElementPtr(
1663                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
1664    }
1665
1666    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1667    // Into: inttoptr (i64 0 to i8*)
1668    // This happens with pointers to member functions in C++.
1669    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1670        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1671        cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1672      Constant *Base = CE->getOperand(0);
1673      Constant *Offset = Idxs[0];
1674
1675      // Convert the smaller integer to the larger type.
1676      if (Offset->getType()->getPrimitiveSizeInBits() <
1677          Base->getType()->getPrimitiveSizeInBits())
1678        Offset = ConstantExpr::getSExt(Offset, Base->getType());
1679      else if (Base->getType()->getPrimitiveSizeInBits() <
1680               Offset->getType()->getPrimitiveSizeInBits())
1681        Base = ConstantExpr::getZExt(Base, Base->getType());
1682
1683      Base = ConstantExpr::getAdd(Base, Offset);
1684      return ConstantExpr::getIntToPtr(Base, CE->getType());
1685    }
1686  }
1687  return 0;
1688}
1689
1690