ConstantFold.cpp revision ae3a0be92e33bc716722aa600983fc1535acb122
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
19//===----------------------------------------------------------------------===//
20
21#include "ConstantFold.h"
22#include "llvm/Constants.h"
23#include "llvm/Instructions.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalAlias.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/Support/ManagedStatic.h"
31#include "llvm/Support/MathExtras.h"
32#include <limits>
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36//                ConstantFold*Instruction Implementations
37//===----------------------------------------------------------------------===//
38
39/// BitCastConstantVector - Convert the specified ConstantVector node to the
40/// specified vector type.  At this point, we know that the elements of the
41/// input vector constant are all simple integer or FP values.
42static Constant *BitCastConstantVector(ConstantVector *CV,
43                                       const VectorType *DstTy) {
44  // If this cast changes element count then we can't handle it here:
45  // doing so requires endianness information.  This should be handled by
46  // Analysis/ConstantFolding.cpp
47  unsigned NumElts = DstTy->getNumElements();
48  if (NumElts != CV->getNumOperands())
49    return 0;
50
51  // Check to verify that all elements of the input are simple.
52  for (unsigned i = 0; i != NumElts; ++i) {
53    if (!isa<ConstantInt>(CV->getOperand(i)) &&
54        !isa<ConstantFP>(CV->getOperand(i)))
55      return 0;
56  }
57
58  // Bitcast each element now.
59  std::vector<Constant*> Result;
60  const Type *DstEltTy = DstTy->getElementType();
61  for (unsigned i = 0; i != NumElts; ++i)
62    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
63  return ConstantVector::get(Result);
64}
65
66/// This function determines which opcode to use to fold two constant cast
67/// expressions together. It uses CastInst::isEliminableCastPair to determine
68/// the opcode. Consequently its just a wrapper around that function.
69/// @brief Determine if it is valid to fold a cast of a cast
70static unsigned
71foldConstantCastPair(
72  unsigned opc,          ///< opcode of the second cast constant expression
73  const ConstantExpr*Op, ///< the first cast constant expression
74  const Type *DstTy      ///< desintation type of the first cast
75) {
76  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
77  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
78  assert(CastInst::isCast(opc) && "Invalid cast opcode");
79
80  // The the types and opcodes for the two Cast constant expressions
81  const Type *SrcTy = Op->getOperand(0)->getType();
82  const Type *MidTy = Op->getType();
83  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
84  Instruction::CastOps secondOp = Instruction::CastOps(opc);
85
86  // Let CastInst::isEliminableCastPair do the heavy lifting.
87  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
88                                        Type::Int64Ty);
89}
90
91static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
92  const Type *SrcTy = V->getType();
93  if (SrcTy == DestTy)
94    return V; // no-op cast
95
96  // Check to see if we are casting a pointer to an aggregate to a pointer to
97  // the first element.  If so, return the appropriate GEP instruction.
98  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
99    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
100      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
101        SmallVector<Value*, 8> IdxList;
102        IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
103        const Type *ElTy = PTy->getElementType();
104        while (ElTy != DPTy->getElementType()) {
105          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
106            if (STy->getNumElements() == 0) break;
107            ElTy = STy->getElementType(0);
108            IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
109          } else if (const SequentialType *STy =
110                     dyn_cast<SequentialType>(ElTy)) {
111            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
112            ElTy = STy->getElementType();
113            IdxList.push_back(IdxList[0]);
114          } else {
115            break;
116          }
117        }
118
119        if (ElTy == DPTy->getElementType())
120          return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
121      }
122
123  // Handle casts from one vector constant to another.  We know that the src
124  // and dest type have the same size (otherwise its an illegal cast).
125  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
126    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
127      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
128             "Not cast between same sized vectors!");
129      SrcTy = NULL;
130      // First, check for null.  Undef is already handled.
131      if (isa<ConstantAggregateZero>(V))
132        return Constant::getNullValue(DestTy);
133
134      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
135        return BitCastConstantVector(CV, DestPTy);
136    }
137
138    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
139    // This allows for other simplifications (although some of them
140    // can only be handled by Analysis/ConstantFolding.cpp).
141    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
142      return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
143  }
144
145  // Finally, implement bitcast folding now.   The code below doesn't handle
146  // bitcast right.
147  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
148    return ConstantPointerNull::get(cast<PointerType>(DestTy));
149
150  // Handle integral constant input.
151  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
152    if (DestTy->isInteger())
153      // Integral -> Integral. This is a no-op because the bit widths must
154      // be the same. Consequently, we just fold to V.
155      return V;
156
157    if (DestTy->isFloatingPoint())
158      return ConstantFP::get(APFloat(CI->getValue(),
159                                     DestTy != Type::PPC_FP128Ty));
160
161    // Otherwise, can't fold this (vector?)
162    return 0;
163  }
164
165  // Handle ConstantFP input.
166  if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
167    // FP -> Integral.
168    return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
169
170  return 0;
171}
172
173
174Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
175                                            const Type *DestTy) {
176  if (isa<UndefValue>(V)) {
177    // zext(undef) = 0, because the top bits will be zero.
178    // sext(undef) = 0, because the top bits will all be the same.
179    // [us]itofp(undef) = 0, because the result value is bounded.
180    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
181        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
182      return Constant::getNullValue(DestTy);
183    return UndefValue::get(DestTy);
184  }
185  // No compile-time operations on this type yet.
186  if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
187    return 0;
188
189  // If the cast operand is a constant expression, there's a few things we can
190  // do to try to simplify it.
191  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
192    if (CE->isCast()) {
193      // Try hard to fold cast of cast because they are often eliminable.
194      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
195        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
196    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
197      // If all of the indexes in the GEP are null values, there is no pointer
198      // adjustment going on.  We might as well cast the source pointer.
199      bool isAllNull = true;
200      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
201        if (!CE->getOperand(i)->isNullValue()) {
202          isAllNull = false;
203          break;
204        }
205      if (isAllNull)
206        // This is casting one pointer type to another, always BitCast
207        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
208    }
209  }
210
211  // We actually have to do a cast now. Perform the cast according to the
212  // opcode specified.
213  switch (opc) {
214  case Instruction::FPTrunc:
215  case Instruction::FPExt:
216    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
217      bool ignored;
218      APFloat Val = FPC->getValueAPF();
219      Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
220                  DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
221                  DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
222                  DestTy == Type::FP128Ty ? APFloat::IEEEquad :
223                  APFloat::Bogus,
224                  APFloat::rmNearestTiesToEven, &ignored);
225      return ConstantFP::get(Val);
226    }
227    return 0; // Can't fold.
228  case Instruction::FPToUI:
229  case Instruction::FPToSI:
230    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
231      const APFloat &V = FPC->getValueAPF();
232      bool ignored;
233      uint64_t x[2];
234      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
235      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
236                                APFloat::rmTowardZero, &ignored);
237      APInt Val(DestBitWidth, 2, x);
238      return ConstantInt::get(Val);
239    }
240    if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
241      std::vector<Constant*> res;
242      const VectorType *DestVecTy = cast<VectorType>(DestTy);
243      const Type *DstEltTy = DestVecTy->getElementType();
244      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
245        res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
246      return ConstantVector::get(DestVecTy, res);
247    }
248    return 0; // Can't fold.
249  case Instruction::IntToPtr:   //always treated as unsigned
250    if (V->isNullValue())       // Is it an integral null value?
251      return ConstantPointerNull::get(cast<PointerType>(DestTy));
252    return 0;                   // Other pointer types cannot be casted
253  case Instruction::PtrToInt:   // always treated as unsigned
254    if (V->isNullValue())       // is it a null pointer value?
255      return ConstantInt::get(DestTy, 0);
256    return 0;                   // Other pointer types cannot be casted
257  case Instruction::UIToFP:
258  case Instruction::SIToFP:
259    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
260      APInt api = CI->getValue();
261      const uint64_t zero[] = {0, 0};
262      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
263                                  2, zero));
264      (void)apf.convertFromAPInt(api,
265                                 opc==Instruction::SIToFP,
266                                 APFloat::rmNearestTiesToEven);
267      return ConstantFP::get(apf);
268    }
269    if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
270      std::vector<Constant*> res;
271      const VectorType *DestVecTy = cast<VectorType>(DestTy);
272      const Type *DstEltTy = DestVecTy->getElementType();
273      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
274        res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
275      return ConstantVector::get(DestVecTy, res);
276    }
277    return 0;
278  case Instruction::ZExt:
279    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
280      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
281      APInt Result(CI->getValue());
282      Result.zext(BitWidth);
283      return ConstantInt::get(Result);
284    }
285    return 0;
286  case Instruction::SExt:
287    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
288      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
289      APInt Result(CI->getValue());
290      Result.sext(BitWidth);
291      return ConstantInt::get(Result);
292    }
293    return 0;
294  case Instruction::Trunc:
295    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
296      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
297      APInt Result(CI->getValue());
298      Result.trunc(BitWidth);
299      return ConstantInt::get(Result);
300    }
301    return 0;
302  case Instruction::BitCast:
303    return FoldBitCast(const_cast<Constant*>(V), DestTy);
304  default:
305    assert(!"Invalid CE CastInst opcode");
306    break;
307  }
308
309  assert(0 && "Failed to cast constant expression");
310  return 0;
311}
312
313Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
314                                              const Constant *V1,
315                                              const Constant *V2) {
316  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
317    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
318
319  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
320  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
321  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
322  if (V1 == V2) return const_cast<Constant*>(V1);
323  return 0;
324}
325
326Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
327                                                      const Constant *Idx) {
328  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
329    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
330  if (Val->isNullValue())  // ee(zero, x) -> zero
331    return Constant::getNullValue(
332                          cast<VectorType>(Val->getType())->getElementType());
333
334  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
335    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
336      return CVal->getOperand(CIdx->getZExtValue());
337    } else if (isa<UndefValue>(Idx)) {
338      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
339      return CVal->getOperand(0);
340    }
341  }
342  return 0;
343}
344
345Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
346                                                     const Constant *Elt,
347                                                     const Constant *Idx) {
348  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
349  if (!CIdx) return 0;
350  APInt idxVal = CIdx->getValue();
351  if (isa<UndefValue>(Val)) {
352    // Insertion of scalar constant into vector undef
353    // Optimize away insertion of undef
354    if (isa<UndefValue>(Elt))
355      return const_cast<Constant*>(Val);
356    // Otherwise break the aggregate undef into multiple undefs and do
357    // the insertion
358    unsigned numOps =
359      cast<VectorType>(Val->getType())->getNumElements();
360    std::vector<Constant*> Ops;
361    Ops.reserve(numOps);
362    for (unsigned i = 0; i < numOps; ++i) {
363      const Constant *Op =
364        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
365      Ops.push_back(const_cast<Constant*>(Op));
366    }
367    return ConstantVector::get(Ops);
368  }
369  if (isa<ConstantAggregateZero>(Val)) {
370    // Insertion of scalar constant into vector aggregate zero
371    // Optimize away insertion of zero
372    if (Elt->isNullValue())
373      return const_cast<Constant*>(Val);
374    // Otherwise break the aggregate zero into multiple zeros and do
375    // the insertion
376    unsigned numOps =
377      cast<VectorType>(Val->getType())->getNumElements();
378    std::vector<Constant*> Ops;
379    Ops.reserve(numOps);
380    for (unsigned i = 0; i < numOps; ++i) {
381      const Constant *Op =
382        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
383      Ops.push_back(const_cast<Constant*>(Op));
384    }
385    return ConstantVector::get(Ops);
386  }
387  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
388    // Insertion of scalar constant into vector constant
389    std::vector<Constant*> Ops;
390    Ops.reserve(CVal->getNumOperands());
391    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
392      const Constant *Op =
393        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
394      Ops.push_back(const_cast<Constant*>(Op));
395    }
396    return ConstantVector::get(Ops);
397  }
398
399  return 0;
400}
401
402/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
403/// return the specified element value.  Otherwise return null.
404static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
405  if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
406    return CV->getOperand(EltNo);
407
408  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
409  if (isa<ConstantAggregateZero>(C))
410    return Constant::getNullValue(EltTy);
411  if (isa<UndefValue>(C))
412    return UndefValue::get(EltTy);
413  return 0;
414}
415
416Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
417                                                     const Constant *V2,
418                                                     const Constant *Mask) {
419  // Undefined shuffle mask -> undefined value.
420  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
421
422  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
423  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
424  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
425
426  // Loop over the shuffle mask, evaluating each element.
427  SmallVector<Constant*, 32> Result;
428  for (unsigned i = 0; i != MaskNumElts; ++i) {
429    Constant *InElt = GetVectorElement(Mask, i);
430    if (InElt == 0) return 0;
431
432    if (isa<UndefValue>(InElt))
433      InElt = UndefValue::get(EltTy);
434    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
435      unsigned Elt = CI->getZExtValue();
436      if (Elt >= SrcNumElts*2)
437        InElt = UndefValue::get(EltTy);
438      else if (Elt >= SrcNumElts)
439        InElt = GetVectorElement(V2, Elt - SrcNumElts);
440      else
441        InElt = GetVectorElement(V1, Elt);
442      if (InElt == 0) return 0;
443    } else {
444      // Unknown value.
445      return 0;
446    }
447    Result.push_back(InElt);
448  }
449
450  return ConstantVector::get(&Result[0], Result.size());
451}
452
453Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
454                                                    const unsigned *Idxs,
455                                                    unsigned NumIdx) {
456  // Base case: no indices, so return the entire value.
457  if (NumIdx == 0)
458    return const_cast<Constant *>(Agg);
459
460  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
461    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
462                                                            Idxs,
463                                                            Idxs + NumIdx));
464
465  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
466    return
467      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
468                                                              Idxs,
469                                                              Idxs + NumIdx));
470
471  // Otherwise recurse.
472  return ConstantFoldExtractValueInstruction(Agg->getOperand(*Idxs),
473                                             Idxs+1, NumIdx-1);
474}
475
476Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg,
477                                                   const Constant *Val,
478                                                   const unsigned *Idxs,
479                                                   unsigned NumIdx) {
480  // Base case: no indices, so replace the entire value.
481  if (NumIdx == 0)
482    return const_cast<Constant *>(Val);
483
484  if (isa<UndefValue>(Agg)) {
485    // Insertion of constant into aggregate undef
486    // Optimize away insertion of undef
487    if (isa<UndefValue>(Val))
488      return const_cast<Constant*>(Agg);
489    // Otherwise break the aggregate undef into multiple undefs and do
490    // the insertion
491    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
492    unsigned numOps;
493    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
494      numOps = AR->getNumElements();
495    else
496      numOps = cast<StructType>(AggTy)->getNumElements();
497    std::vector<Constant*> Ops(numOps);
498    for (unsigned i = 0; i < numOps; ++i) {
499      const Type *MemberTy = AggTy->getTypeAtIndex(i);
500      const Constant *Op =
501        (*Idxs == i) ?
502        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
503                                           Val, Idxs+1, NumIdx-1) :
504        UndefValue::get(MemberTy);
505      Ops[i] = const_cast<Constant*>(Op);
506    }
507    if (isa<StructType>(AggTy))
508      return ConstantStruct::get(Ops);
509    else
510      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
511  }
512  if (isa<ConstantAggregateZero>(Agg)) {
513    // Insertion of constant into aggregate zero
514    // Optimize away insertion of zero
515    if (Val->isNullValue())
516      return const_cast<Constant*>(Agg);
517    // Otherwise break the aggregate zero into multiple zeros and do
518    // the insertion
519    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
520    unsigned numOps;
521    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
522      numOps = AR->getNumElements();
523    else
524      numOps = cast<StructType>(AggTy)->getNumElements();
525    std::vector<Constant*> Ops(numOps);
526    for (unsigned i = 0; i < numOps; ++i) {
527      const Type *MemberTy = AggTy->getTypeAtIndex(i);
528      const Constant *Op =
529        (*Idxs == i) ?
530        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
531                                           Val, Idxs+1, NumIdx-1) :
532        Constant::getNullValue(MemberTy);
533      Ops[i] = const_cast<Constant*>(Op);
534    }
535    if (isa<StructType>(AggTy))
536      return ConstantStruct::get(Ops);
537    else
538      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
539  }
540  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
541    // Insertion of constant into aggregate constant
542    std::vector<Constant*> Ops(Agg->getNumOperands());
543    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
544      const Constant *Op =
545        (*Idxs == i) ?
546        ConstantFoldInsertValueInstruction(Agg->getOperand(i),
547                                           Val, Idxs+1, NumIdx-1) :
548        Agg->getOperand(i);
549      Ops[i] = const_cast<Constant*>(Op);
550    }
551    Constant *C;
552    if (isa<StructType>(Agg->getType()))
553      C = ConstantStruct::get(Ops);
554    else
555      C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
556    return C;
557  }
558
559  return 0;
560}
561
562/// EvalVectorOp - Given two vector constants and a function pointer, apply the
563/// function pointer to each element pair, producing a new ConstantVector
564/// constant. Either or both of V1 and V2 may be NULL, meaning a
565/// ConstantAggregateZero operand.
566static Constant *EvalVectorOp(const ConstantVector *V1,
567                              const ConstantVector *V2,
568                              const VectorType *VTy,
569                              Constant *(*FP)(Constant*, Constant*)) {
570  std::vector<Constant*> Res;
571  const Type *EltTy = VTy->getElementType();
572  for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
573    const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
574    const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
575    Res.push_back(FP(const_cast<Constant*>(C1),
576                     const_cast<Constant*>(C2)));
577  }
578  return ConstantVector::get(Res);
579}
580
581Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
582                                              const Constant *C1,
583                                              const Constant *C2) {
584  // No compile-time operations on this type yet.
585  if (C1->getType() == Type::PPC_FP128Ty)
586    return 0;
587
588  // Handle UndefValue up front
589  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
590    switch (Opcode) {
591    case Instruction::Xor:
592      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
593        // Handle undef ^ undef -> 0 special case. This is a common
594        // idiom (misuse).
595        return Constant::getNullValue(C1->getType());
596      // Fallthrough
597    case Instruction::Add:
598    case Instruction::Sub:
599      return UndefValue::get(C1->getType());
600    case Instruction::Mul:
601    case Instruction::And:
602      return Constant::getNullValue(C1->getType());
603    case Instruction::UDiv:
604    case Instruction::SDiv:
605    case Instruction::URem:
606    case Instruction::SRem:
607      if (!isa<UndefValue>(C2))                    // undef / X -> 0
608        return Constant::getNullValue(C1->getType());
609      return const_cast<Constant*>(C2);            // X / undef -> undef
610    case Instruction::Or:                          // X | undef -> -1
611      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
612        return ConstantVector::getAllOnesValue(PTy);
613      return ConstantInt::getAllOnesValue(C1->getType());
614    case Instruction::LShr:
615      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
616        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
617      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
618                                                    // undef lshr X -> 0
619    case Instruction::AShr:
620      if (!isa<UndefValue>(C2))
621        return const_cast<Constant*>(C1);           // undef ashr X --> undef
622      else if (isa<UndefValue>(C1))
623        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
624      else
625        return const_cast<Constant*>(C1);           // X ashr undef --> X
626    case Instruction::Shl:
627      // undef << X -> 0   or   X << undef -> 0
628      return Constant::getNullValue(C1->getType());
629    }
630  }
631
632  // Handle simplifications of the RHS when a constant int.
633  if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
634    switch (Opcode) {
635    case Instruction::Add:
636      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X + 0 == X
637      break;
638    case Instruction::Sub:
639      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X - 0 == X
640      break;
641    case Instruction::Mul:
642      if (CI2->equalsInt(0)) return const_cast<Constant*>(C2);  // X * 0 == 0
643      if (CI2->equalsInt(1))
644        return const_cast<Constant*>(C1);                       // X * 1 == X
645      break;
646    case Instruction::UDiv:
647    case Instruction::SDiv:
648      if (CI2->equalsInt(1))
649        return const_cast<Constant*>(C1);                     // X / 1 == X
650      if (CI2->equalsInt(0))
651        return UndefValue::get(CI2->getType());               // X / 0 == undef
652      break;
653    case Instruction::URem:
654    case Instruction::SRem:
655      if (CI2->equalsInt(1))
656        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
657      if (CI2->equalsInt(0))
658        return UndefValue::get(CI2->getType());               // X % 0 == undef
659      break;
660    case Instruction::And:
661      if (CI2->isZero()) return const_cast<Constant*>(C2);    // X & 0 == 0
662      if (CI2->isAllOnesValue())
663        return const_cast<Constant*>(C1);                     // X & -1 == X
664
665      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
666        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
667        if (CE1->getOpcode() == Instruction::ZExt) {
668          unsigned DstWidth = CI2->getType()->getBitWidth();
669          unsigned SrcWidth =
670            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
671          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
672          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
673            return const_cast<Constant*>(C1);
674        }
675
676        // If and'ing the address of a global with a constant, fold it.
677        if (CE1->getOpcode() == Instruction::PtrToInt &&
678            isa<GlobalValue>(CE1->getOperand(0))) {
679          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
680
681          // Functions are at least 4-byte aligned.
682          unsigned GVAlign = GV->getAlignment();
683          if (isa<Function>(GV))
684            GVAlign = std::max(GVAlign, 4U);
685
686          if (GVAlign > 1) {
687            unsigned DstWidth = CI2->getType()->getBitWidth();
688            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
689            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
690
691            // If checking bits we know are clear, return zero.
692            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
693              return Constant::getNullValue(CI2->getType());
694          }
695        }
696      }
697      break;
698    case Instruction::Or:
699      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X | 0 == X
700      if (CI2->isAllOnesValue())
701        return const_cast<Constant*>(C2);  // X | -1 == -1
702      break;
703    case Instruction::Xor:
704      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X ^ 0 == X
705      break;
706    case Instruction::AShr:
707      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
708      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
709        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
710          return ConstantExpr::getLShr(const_cast<Constant*>(C1),
711                                       const_cast<Constant*>(C2));
712      break;
713    }
714  }
715
716  // At this point we know neither constant is an UndefValue.
717  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
718    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
719      using namespace APIntOps;
720      const APInt &C1V = CI1->getValue();
721      const APInt &C2V = CI2->getValue();
722      switch (Opcode) {
723      default:
724        break;
725      case Instruction::Add:
726        return ConstantInt::get(C1V + C2V);
727      case Instruction::Sub:
728        return ConstantInt::get(C1V - C2V);
729      case Instruction::Mul:
730        return ConstantInt::get(C1V * C2V);
731      case Instruction::UDiv:
732        assert(!CI2->isNullValue() && "Div by zero handled above");
733        return ConstantInt::get(C1V.udiv(C2V));
734      case Instruction::SDiv:
735        assert(!CI2->isNullValue() && "Div by zero handled above");
736        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
737          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
738        return ConstantInt::get(C1V.sdiv(C2V));
739      case Instruction::URem:
740        assert(!CI2->isNullValue() && "Div by zero handled above");
741        return ConstantInt::get(C1V.urem(C2V));
742      case Instruction::SRem:
743        assert(!CI2->isNullValue() && "Div by zero handled above");
744        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
745          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
746        return ConstantInt::get(C1V.srem(C2V));
747      case Instruction::And:
748        return ConstantInt::get(C1V & C2V);
749      case Instruction::Or:
750        return ConstantInt::get(C1V | C2V);
751      case Instruction::Xor:
752        return ConstantInt::get(C1V ^ C2V);
753      case Instruction::Shl: {
754        uint32_t shiftAmt = C2V.getZExtValue();
755        if (shiftAmt < C1V.getBitWidth())
756          return ConstantInt::get(C1V.shl(shiftAmt));
757        else
758          return UndefValue::get(C1->getType()); // too big shift is undef
759      }
760      case Instruction::LShr: {
761        uint32_t shiftAmt = C2V.getZExtValue();
762        if (shiftAmt < C1V.getBitWidth())
763          return ConstantInt::get(C1V.lshr(shiftAmt));
764        else
765          return UndefValue::get(C1->getType()); // too big shift is undef
766      }
767      case Instruction::AShr: {
768        uint32_t shiftAmt = C2V.getZExtValue();
769        if (shiftAmt < C1V.getBitWidth())
770          return ConstantInt::get(C1V.ashr(shiftAmt));
771        else
772          return UndefValue::get(C1->getType()); // too big shift is undef
773      }
774      }
775    }
776  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
777    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
778      APFloat C1V = CFP1->getValueAPF();
779      APFloat C2V = CFP2->getValueAPF();
780      APFloat C3V = C1V;  // copy for modification
781      switch (Opcode) {
782      default:
783        break;
784      case Instruction::FAdd:
785        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
786        return ConstantFP::get(C3V);
787      case Instruction::FSub:
788        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
789        return ConstantFP::get(C3V);
790      case Instruction::FMul:
791        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
792        return ConstantFP::get(C3V);
793      case Instruction::FDiv:
794        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
795        return ConstantFP::get(C3V);
796      case Instruction::FRem:
797        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
798        return ConstantFP::get(C3V);
799      }
800    }
801  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
802    const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
803    const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
804    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
805        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
806      switch (Opcode) {
807      default:
808        break;
809      case Instruction::Add:
810        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd);
811      case Instruction::FAdd:
812        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFAdd);
813      case Instruction::Sub:
814        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub);
815      case Instruction::FSub:
816        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFSub);
817      case Instruction::Mul:
818        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul);
819      case Instruction::FMul:
820        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFMul);
821      case Instruction::UDiv:
822        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv);
823      case Instruction::SDiv:
824        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv);
825      case Instruction::FDiv:
826        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv);
827      case Instruction::URem:
828        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem);
829      case Instruction::SRem:
830        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem);
831      case Instruction::FRem:
832        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem);
833      case Instruction::And:
834        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd);
835      case Instruction::Or:
836        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr);
837      case Instruction::Xor:
838        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor);
839      case Instruction::LShr:
840        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getLShr);
841      case Instruction::AShr:
842        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAShr);
843      case Instruction::Shl:
844        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getShl);
845      }
846    }
847  }
848
849  if (isa<ConstantExpr>(C1)) {
850    // There are many possible foldings we could do here.  We should probably
851    // at least fold add of a pointer with an integer into the appropriate
852    // getelementptr.  This will improve alias analysis a bit.
853  } else if (isa<ConstantExpr>(C2)) {
854    // If C2 is a constant expr and C1 isn't, flop them around and fold the
855    // other way if possible.
856    switch (Opcode) {
857    case Instruction::Add:
858    case Instruction::FAdd:
859    case Instruction::Mul:
860    case Instruction::FMul:
861    case Instruction::And:
862    case Instruction::Or:
863    case Instruction::Xor:
864      // No change of opcode required.
865      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
866
867    case Instruction::Shl:
868    case Instruction::LShr:
869    case Instruction::AShr:
870    case Instruction::Sub:
871    case Instruction::FSub:
872    case Instruction::SDiv:
873    case Instruction::UDiv:
874    case Instruction::FDiv:
875    case Instruction::URem:
876    case Instruction::SRem:
877    case Instruction::FRem:
878    default:  // These instructions cannot be flopped around.
879      break;
880    }
881  }
882
883  // We don't know how to fold this.
884  return 0;
885}
886
887/// isZeroSizedType - This type is zero sized if its an array or structure of
888/// zero sized types.  The only leaf zero sized type is an empty structure.
889static bool isMaybeZeroSizedType(const Type *Ty) {
890  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
891  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
892
893    // If all of elements have zero size, this does too.
894    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
895      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
896    return true;
897
898  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
899    return isMaybeZeroSizedType(ATy->getElementType());
900  }
901  return false;
902}
903
904/// IdxCompare - Compare the two constants as though they were getelementptr
905/// indices.  This allows coersion of the types to be the same thing.
906///
907/// If the two constants are the "same" (after coersion), return 0.  If the
908/// first is less than the second, return -1, if the second is less than the
909/// first, return 1.  If the constants are not integral, return -2.
910///
911static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
912  if (C1 == C2) return 0;
913
914  // Ok, we found a different index.  If they are not ConstantInt, we can't do
915  // anything with them.
916  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
917    return -2; // don't know!
918
919  // Ok, we have two differing integer indices.  Sign extend them to be the same
920  // type.  Long is always big enough, so we use it.
921  if (C1->getType() != Type::Int64Ty)
922    C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
923
924  if (C2->getType() != Type::Int64Ty)
925    C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
926
927  if (C1 == C2) return 0;  // They are equal
928
929  // If the type being indexed over is really just a zero sized type, there is
930  // no pointer difference being made here.
931  if (isMaybeZeroSizedType(ElTy))
932    return -2; // dunno.
933
934  // If they are really different, now that they are the same type, then we
935  // found a difference!
936  if (cast<ConstantInt>(C1)->getSExtValue() <
937      cast<ConstantInt>(C2)->getSExtValue())
938    return -1;
939  else
940    return 1;
941}
942
943/// evaluateFCmpRelation - This function determines if there is anything we can
944/// decide about the two constants provided.  This doesn't need to handle simple
945/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
946/// If we can determine that the two constants have a particular relation to
947/// each other, we should return the corresponding FCmpInst predicate,
948/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
949/// ConstantFoldCompareInstruction.
950///
951/// To simplify this code we canonicalize the relation so that the first
952/// operand is always the most "complex" of the two.  We consider ConstantFP
953/// to be the simplest, and ConstantExprs to be the most complex.
954static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
955                                                const Constant *V2) {
956  assert(V1->getType() == V2->getType() &&
957         "Cannot compare values of different types!");
958
959  // No compile-time operations on this type yet.
960  if (V1->getType() == Type::PPC_FP128Ty)
961    return FCmpInst::BAD_FCMP_PREDICATE;
962
963  // Handle degenerate case quickly
964  if (V1 == V2) return FCmpInst::FCMP_OEQ;
965
966  if (!isa<ConstantExpr>(V1)) {
967    if (!isa<ConstantExpr>(V2)) {
968      // We distilled thisUse the standard constant folder for a few cases
969      ConstantInt *R = 0;
970      Constant *C1 = const_cast<Constant*>(V1);
971      Constant *C2 = const_cast<Constant*>(V2);
972      R = dyn_cast<ConstantInt>(
973                             ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
974      if (R && !R->isZero())
975        return FCmpInst::FCMP_OEQ;
976      R = dyn_cast<ConstantInt>(
977                             ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
978      if (R && !R->isZero())
979        return FCmpInst::FCMP_OLT;
980      R = dyn_cast<ConstantInt>(
981                             ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
982      if (R && !R->isZero())
983        return FCmpInst::FCMP_OGT;
984
985      // Nothing more we can do
986      return FCmpInst::BAD_FCMP_PREDICATE;
987    }
988
989    // If the first operand is simple and second is ConstantExpr, swap operands.
990    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
991    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
992      return FCmpInst::getSwappedPredicate(SwappedRelation);
993  } else {
994    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
995    // constantexpr or a simple constant.
996    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
997    switch (CE1->getOpcode()) {
998    case Instruction::FPTrunc:
999    case Instruction::FPExt:
1000    case Instruction::UIToFP:
1001    case Instruction::SIToFP:
1002      // We might be able to do something with these but we don't right now.
1003      break;
1004    default:
1005      break;
1006    }
1007  }
1008  // There are MANY other foldings that we could perform here.  They will
1009  // probably be added on demand, as they seem needed.
1010  return FCmpInst::BAD_FCMP_PREDICATE;
1011}
1012
1013/// evaluateICmpRelation - This function determines if there is anything we can
1014/// decide about the two constants provided.  This doesn't need to handle simple
1015/// things like integer comparisons, but should instead handle ConstantExprs
1016/// and GlobalValues.  If we can determine that the two constants have a
1017/// particular relation to each other, we should return the corresponding ICmp
1018/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1019///
1020/// To simplify this code we canonicalize the relation so that the first
1021/// operand is always the most "complex" of the two.  We consider simple
1022/// constants (like ConstantInt) to be the simplest, followed by
1023/// GlobalValues, followed by ConstantExpr's (the most complex).
1024///
1025static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
1026                                                const Constant *V2,
1027                                                bool isSigned) {
1028  assert(V1->getType() == V2->getType() &&
1029         "Cannot compare different types of values!");
1030  if (V1 == V2) return ICmpInst::ICMP_EQ;
1031
1032  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1033    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1034      // We distilled this down to a simple case, use the standard constant
1035      // folder.
1036      ConstantInt *R = 0;
1037      Constant *C1 = const_cast<Constant*>(V1);
1038      Constant *C2 = const_cast<Constant*>(V2);
1039      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1040      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1041      if (R && !R->isZero())
1042        return pred;
1043      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1044      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1045      if (R && !R->isZero())
1046        return pred;
1047      pred = isSigned ?  ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1048      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1049      if (R && !R->isZero())
1050        return pred;
1051
1052      // If we couldn't figure it out, bail.
1053      return ICmpInst::BAD_ICMP_PREDICATE;
1054    }
1055
1056    // If the first operand is simple, swap operands.
1057    ICmpInst::Predicate SwappedRelation =
1058      evaluateICmpRelation(V2, V1, isSigned);
1059    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1060      return ICmpInst::getSwappedPredicate(SwappedRelation);
1061
1062  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1063    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1064      ICmpInst::Predicate SwappedRelation =
1065        evaluateICmpRelation(V2, V1, isSigned);
1066      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1067        return ICmpInst::getSwappedPredicate(SwappedRelation);
1068      else
1069        return ICmpInst::BAD_ICMP_PREDICATE;
1070    }
1071
1072    // Now we know that the RHS is a GlobalValue or simple constant,
1073    // which (since the types must match) means that it's a ConstantPointerNull.
1074    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1075      // Don't try to decide equality of aliases.
1076      if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
1077        if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
1078          return ICmpInst::ICMP_NE;
1079    } else {
1080      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1081      // GlobalVals can never be null.  Don't try to evaluate aliases.
1082      if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
1083        return ICmpInst::ICMP_NE;
1084    }
1085  } else {
1086    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1087    // constantexpr, a CPR, or a simple constant.
1088    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1089    const Constant *CE1Op0 = CE1->getOperand(0);
1090
1091    switch (CE1->getOpcode()) {
1092    case Instruction::Trunc:
1093    case Instruction::FPTrunc:
1094    case Instruction::FPExt:
1095    case Instruction::FPToUI:
1096    case Instruction::FPToSI:
1097      break; // We can't evaluate floating point casts or truncations.
1098
1099    case Instruction::UIToFP:
1100    case Instruction::SIToFP:
1101    case Instruction::BitCast:
1102    case Instruction::ZExt:
1103    case Instruction::SExt:
1104      // If the cast is not actually changing bits, and the second operand is a
1105      // null pointer, do the comparison with the pre-casted value.
1106      if (V2->isNullValue() &&
1107          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1108        bool sgnd = isSigned;
1109        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1110        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1111        return evaluateICmpRelation(CE1Op0,
1112                                    Constant::getNullValue(CE1Op0->getType()),
1113                                    sgnd);
1114      }
1115
1116      // If the dest type is a pointer type, and the RHS is a constantexpr cast
1117      // from the same type as the src of the LHS, evaluate the inputs.  This is
1118      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1119      // which happens a lot in compilers with tagged integers.
1120      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1121        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1122            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1123            CE1->getOperand(0)->getType()->isInteger()) {
1124          bool sgnd = isSigned;
1125          if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1126          if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1127          return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
1128                                      sgnd);
1129        }
1130      break;
1131
1132    case Instruction::GetElementPtr:
1133      // Ok, since this is a getelementptr, we know that the constant has a
1134      // pointer type.  Check the various cases.
1135      if (isa<ConstantPointerNull>(V2)) {
1136        // If we are comparing a GEP to a null pointer, check to see if the base
1137        // of the GEP equals the null pointer.
1138        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1139          if (GV->hasExternalWeakLinkage())
1140            // Weak linkage GVals could be zero or not. We're comparing that
1141            // to null pointer so its greater-or-equal
1142            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1143          else
1144            // If its not weak linkage, the GVal must have a non-zero address
1145            // so the result is greater-than
1146            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
1147        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1148          // If we are indexing from a null pointer, check to see if we have any
1149          // non-zero indices.
1150          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1151            if (!CE1->getOperand(i)->isNullValue())
1152              // Offsetting from null, must not be equal.
1153              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1154          // Only zero indexes from null, must still be zero.
1155          return ICmpInst::ICMP_EQ;
1156        }
1157        // Otherwise, we can't really say if the first operand is null or not.
1158      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1159        if (isa<ConstantPointerNull>(CE1Op0)) {
1160          if (CPR2->hasExternalWeakLinkage())
1161            // Weak linkage GVals could be zero or not. We're comparing it to
1162            // a null pointer, so its less-or-equal
1163            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1164          else
1165            // If its not weak linkage, the GVal must have a non-zero address
1166            // so the result is less-than
1167            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1168        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1169          if (CPR1 == CPR2) {
1170            // If this is a getelementptr of the same global, then it must be
1171            // different.  Because the types must match, the getelementptr could
1172            // only have at most one index, and because we fold getelementptr's
1173            // with a single zero index, it must be nonzero.
1174            assert(CE1->getNumOperands() == 2 &&
1175                   !CE1->getOperand(1)->isNullValue() &&
1176                   "Suprising getelementptr!");
1177            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1178          } else {
1179            // If they are different globals, we don't know what the value is,
1180            // but they can't be equal.
1181            return ICmpInst::ICMP_NE;
1182          }
1183        }
1184      } else {
1185        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1186        const Constant *CE2Op0 = CE2->getOperand(0);
1187
1188        // There are MANY other foldings that we could perform here.  They will
1189        // probably be added on demand, as they seem needed.
1190        switch (CE2->getOpcode()) {
1191        default: break;
1192        case Instruction::GetElementPtr:
1193          // By far the most common case to handle is when the base pointers are
1194          // obviously to the same or different globals.
1195          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1196            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1197              return ICmpInst::ICMP_NE;
1198            // Ok, we know that both getelementptr instructions are based on the
1199            // same global.  From this, we can precisely determine the relative
1200            // ordering of the resultant pointers.
1201            unsigned i = 1;
1202
1203            // Compare all of the operands the GEP's have in common.
1204            gep_type_iterator GTI = gep_type_begin(CE1);
1205            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1206                 ++i, ++GTI)
1207              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1208                                 GTI.getIndexedType())) {
1209              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1210              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1211              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1212              }
1213
1214            // Ok, we ran out of things they have in common.  If any leftovers
1215            // are non-zero then we have a difference, otherwise we are equal.
1216            for (; i < CE1->getNumOperands(); ++i)
1217              if (!CE1->getOperand(i)->isNullValue()) {
1218                if (isa<ConstantInt>(CE1->getOperand(i)))
1219                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1220                else
1221                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1222              }
1223
1224            for (; i < CE2->getNumOperands(); ++i)
1225              if (!CE2->getOperand(i)->isNullValue()) {
1226                if (isa<ConstantInt>(CE2->getOperand(i)))
1227                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1228                else
1229                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1230              }
1231            return ICmpInst::ICMP_EQ;
1232          }
1233        }
1234      }
1235    default:
1236      break;
1237    }
1238  }
1239
1240  return ICmpInst::BAD_ICMP_PREDICATE;
1241}
1242
1243Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1244                                               const Constant *C1,
1245                                               const Constant *C2) {
1246  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1247  if (pred == FCmpInst::FCMP_FALSE) {
1248    if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1249      return Constant::getNullValue(VectorType::getInteger(VT));
1250    else
1251      return ConstantInt::getFalse();
1252  }
1253
1254  if (pred == FCmpInst::FCMP_TRUE) {
1255    if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1256      return Constant::getAllOnesValue(VectorType::getInteger(VT));
1257    else
1258      return ConstantInt::getTrue();
1259  }
1260
1261  // Handle some degenerate cases first
1262  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1263    // vicmp/vfcmp -> [vector] undef
1264    if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType()))
1265      return UndefValue::get(VectorType::getInteger(VTy));
1266
1267    // icmp/fcmp -> i1 undef
1268    return UndefValue::get(Type::Int1Ty);
1269  }
1270
1271  // No compile-time operations on this type yet.
1272  if (C1->getType() == Type::PPC_FP128Ty)
1273    return 0;
1274
1275  // icmp eq/ne(null,GV) -> false/true
1276  if (C1->isNullValue()) {
1277    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1278      // Don't try to evaluate aliases.  External weak GV can be null.
1279      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1280        if (pred == ICmpInst::ICMP_EQ)
1281          return ConstantInt::getFalse();
1282        else if (pred == ICmpInst::ICMP_NE)
1283          return ConstantInt::getTrue();
1284      }
1285  // icmp eq/ne(GV,null) -> false/true
1286  } else if (C2->isNullValue()) {
1287    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1288      // Don't try to evaluate aliases.  External weak GV can be null.
1289      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1290        if (pred == ICmpInst::ICMP_EQ)
1291          return ConstantInt::getFalse();
1292        else if (pred == ICmpInst::ICMP_NE)
1293          return ConstantInt::getTrue();
1294      }
1295  }
1296
1297  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1298    APInt V1 = cast<ConstantInt>(C1)->getValue();
1299    APInt V2 = cast<ConstantInt>(C2)->getValue();
1300    switch (pred) {
1301    default: assert(0 && "Invalid ICmp Predicate"); return 0;
1302    case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1303    case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1304    case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1305    case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1306    case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1307    case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1308    case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1309    case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1310    case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1311    case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1312    }
1313  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1314    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1315    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1316    APFloat::cmpResult R = C1V.compare(C2V);
1317    switch (pred) {
1318    default: assert(0 && "Invalid FCmp Predicate"); return 0;
1319    case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1320    case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue();
1321    case FCmpInst::FCMP_UNO:
1322      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1323    case FCmpInst::FCMP_ORD:
1324      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1325    case FCmpInst::FCMP_UEQ:
1326      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1327                                            R==APFloat::cmpEqual);
1328    case FCmpInst::FCMP_OEQ:
1329      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1330    case FCmpInst::FCMP_UNE:
1331      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1332    case FCmpInst::FCMP_ONE:
1333      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1334                                            R==APFloat::cmpGreaterThan);
1335    case FCmpInst::FCMP_ULT:
1336      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1337                                            R==APFloat::cmpLessThan);
1338    case FCmpInst::FCMP_OLT:
1339      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1340    case FCmpInst::FCMP_UGT:
1341      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1342                                            R==APFloat::cmpGreaterThan);
1343    case FCmpInst::FCMP_OGT:
1344      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1345    case FCmpInst::FCMP_ULE:
1346      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1347    case FCmpInst::FCMP_OLE:
1348      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1349                                            R==APFloat::cmpEqual);
1350    case FCmpInst::FCMP_UGE:
1351      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1352    case FCmpInst::FCMP_OGE:
1353      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1354                                            R==APFloat::cmpEqual);
1355    }
1356  } else if (isa<VectorType>(C1->getType())) {
1357    SmallVector<Constant*, 16> C1Elts, C2Elts;
1358    C1->getVectorElements(C1Elts);
1359    C2->getVectorElements(C2Elts);
1360
1361    // If we can constant fold the comparison of each element, constant fold
1362    // the whole vector comparison.
1363    SmallVector<Constant*, 4> ResElts;
1364    const Type *InEltTy = C1Elts[0]->getType();
1365    bool isFP = InEltTy->isFloatingPoint();
1366    const Type *ResEltTy = InEltTy;
1367    if (isFP)
1368      ResEltTy = IntegerType::get(InEltTy->getPrimitiveSizeInBits());
1369
1370    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1371      // Compare the elements, producing an i1 result or constant expr.
1372      Constant *C;
1373      if (isFP)
1374        C = ConstantExpr::getFCmp(pred, C1Elts[i], C2Elts[i]);
1375      else
1376        C = ConstantExpr::getICmp(pred, C1Elts[i], C2Elts[i]);
1377
1378      // If it is a bool or undef result, convert to the dest type.
1379      if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1380        if (CI->isZero())
1381          ResElts.push_back(Constant::getNullValue(ResEltTy));
1382        else
1383          ResElts.push_back(Constant::getAllOnesValue(ResEltTy));
1384      } else if (isa<UndefValue>(C)) {
1385        ResElts.push_back(UndefValue::get(ResEltTy));
1386      } else {
1387        break;
1388      }
1389    }
1390
1391    if (ResElts.size() == C1Elts.size())
1392      return ConstantVector::get(&ResElts[0], ResElts.size());
1393  }
1394
1395  if (C1->getType()->isFloatingPoint()) {
1396    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1397    switch (evaluateFCmpRelation(C1, C2)) {
1398    default: assert(0 && "Unknown relation!");
1399    case FCmpInst::FCMP_UNO:
1400    case FCmpInst::FCMP_ORD:
1401    case FCmpInst::FCMP_UEQ:
1402    case FCmpInst::FCMP_UNE:
1403    case FCmpInst::FCMP_ULT:
1404    case FCmpInst::FCMP_UGT:
1405    case FCmpInst::FCMP_ULE:
1406    case FCmpInst::FCMP_UGE:
1407    case FCmpInst::FCMP_TRUE:
1408    case FCmpInst::FCMP_FALSE:
1409    case FCmpInst::BAD_FCMP_PREDICATE:
1410      break; // Couldn't determine anything about these constants.
1411    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1412      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1413                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1414                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1415      break;
1416    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1417      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1418                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1419                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1420      break;
1421    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1422      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1423                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1424                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1425      break;
1426    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1427      // We can only partially decide this relation.
1428      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1429        Result = 0;
1430      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1431        Result = 1;
1432      break;
1433    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1434      // We can only partially decide this relation.
1435      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1436        Result = 0;
1437      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1438        Result = 1;
1439      break;
1440    case ICmpInst::ICMP_NE: // We know that C1 != C2
1441      // We can only partially decide this relation.
1442      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1443        Result = 0;
1444      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1445        Result = 1;
1446      break;
1447    }
1448
1449    // If we evaluated the result, return it now.
1450    if (Result != -1) {
1451      if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
1452        if (Result == 0)
1453          return Constant::getNullValue(VectorType::getInteger(VT));
1454        else
1455          return Constant::getAllOnesValue(VectorType::getInteger(VT));
1456      }
1457      return ConstantInt::get(Type::Int1Ty, Result);
1458    }
1459
1460  } else {
1461    // Evaluate the relation between the two constants, per the predicate.
1462    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1463    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1464    default: assert(0 && "Unknown relational!");
1465    case ICmpInst::BAD_ICMP_PREDICATE:
1466      break;  // Couldn't determine anything about these constants.
1467    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1468      // If we know the constants are equal, we can decide the result of this
1469      // computation precisely.
1470      Result = (pred == ICmpInst::ICMP_EQ  ||
1471                pred == ICmpInst::ICMP_ULE ||
1472                pred == ICmpInst::ICMP_SLE ||
1473                pred == ICmpInst::ICMP_UGE ||
1474                pred == ICmpInst::ICMP_SGE);
1475      break;
1476    case ICmpInst::ICMP_ULT:
1477      // If we know that C1 < C2, we can decide the result of this computation
1478      // precisely.
1479      Result = (pred == ICmpInst::ICMP_ULT ||
1480                pred == ICmpInst::ICMP_NE  ||
1481                pred == ICmpInst::ICMP_ULE);
1482      break;
1483    case ICmpInst::ICMP_SLT:
1484      // If we know that C1 < C2, we can decide the result of this computation
1485      // precisely.
1486      Result = (pred == ICmpInst::ICMP_SLT ||
1487                pred == ICmpInst::ICMP_NE  ||
1488                pred == ICmpInst::ICMP_SLE);
1489      break;
1490    case ICmpInst::ICMP_UGT:
1491      // If we know that C1 > C2, we can decide the result of this computation
1492      // precisely.
1493      Result = (pred == ICmpInst::ICMP_UGT ||
1494                pred == ICmpInst::ICMP_NE  ||
1495                pred == ICmpInst::ICMP_UGE);
1496      break;
1497    case ICmpInst::ICMP_SGT:
1498      // If we know that C1 > C2, we can decide the result of this computation
1499      // precisely.
1500      Result = (pred == ICmpInst::ICMP_SGT ||
1501                pred == ICmpInst::ICMP_NE  ||
1502                pred == ICmpInst::ICMP_SGE);
1503      break;
1504    case ICmpInst::ICMP_ULE:
1505      // If we know that C1 <= C2, we can only partially decide this relation.
1506      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1507      if (pred == ICmpInst::ICMP_ULT) Result = 1;
1508      break;
1509    case ICmpInst::ICMP_SLE:
1510      // If we know that C1 <= C2, we can only partially decide this relation.
1511      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1512      if (pred == ICmpInst::ICMP_SLT) Result = 1;
1513      break;
1514
1515    case ICmpInst::ICMP_UGE:
1516      // If we know that C1 >= C2, we can only partially decide this relation.
1517      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1518      if (pred == ICmpInst::ICMP_UGT) Result = 1;
1519      break;
1520    case ICmpInst::ICMP_SGE:
1521      // If we know that C1 >= C2, we can only partially decide this relation.
1522      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1523      if (pred == ICmpInst::ICMP_SGT) Result = 1;
1524      break;
1525
1526    case ICmpInst::ICMP_NE:
1527      // If we know that C1 != C2, we can only partially decide this relation.
1528      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1529      if (pred == ICmpInst::ICMP_NE) Result = 1;
1530      break;
1531    }
1532
1533    // If we evaluated the result, return it now.
1534    if (Result != -1) {
1535      if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
1536        if (Result == 0)
1537          return Constant::getNullValue(VT);
1538        else
1539          return Constant::getAllOnesValue(VT);
1540      }
1541      return ConstantInt::get(Type::Int1Ty, Result);
1542    }
1543
1544    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1545      // If C2 is a constant expr and C1 isn't, flop them around and fold the
1546      // other way if possible.
1547      switch (pred) {
1548      case ICmpInst::ICMP_EQ:
1549      case ICmpInst::ICMP_NE:
1550        // No change of predicate required.
1551        return ConstantFoldCompareInstruction(pred, C2, C1);
1552
1553      case ICmpInst::ICMP_ULT:
1554      case ICmpInst::ICMP_SLT:
1555      case ICmpInst::ICMP_UGT:
1556      case ICmpInst::ICMP_SGT:
1557      case ICmpInst::ICMP_ULE:
1558      case ICmpInst::ICMP_SLE:
1559      case ICmpInst::ICMP_UGE:
1560      case ICmpInst::ICMP_SGE:
1561        // Change the predicate as necessary to swap the operands.
1562        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1563        return ConstantFoldCompareInstruction(pred, C2, C1);
1564
1565      default:  // These predicates cannot be flopped around.
1566        break;
1567      }
1568    }
1569  }
1570  return 0;
1571}
1572
1573Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1574                                          Constant* const *Idxs,
1575                                          unsigned NumIdx) {
1576  if (NumIdx == 0 ||
1577      (NumIdx == 1 && Idxs[0]->isNullValue()))
1578    return const_cast<Constant*>(C);
1579
1580  if (isa<UndefValue>(C)) {
1581    const PointerType *Ptr = cast<PointerType>(C->getType());
1582    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1583                                                       (Value **)Idxs,
1584                                                       (Value **)Idxs+NumIdx);
1585    assert(Ty != 0 && "Invalid indices for GEP!");
1586    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1587  }
1588
1589  Constant *Idx0 = Idxs[0];
1590  if (C->isNullValue()) {
1591    bool isNull = true;
1592    for (unsigned i = 0, e = NumIdx; i != e; ++i)
1593      if (!Idxs[i]->isNullValue()) {
1594        isNull = false;
1595        break;
1596      }
1597    if (isNull) {
1598      const PointerType *Ptr = cast<PointerType>(C->getType());
1599      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1600                                                         (Value**)Idxs,
1601                                                         (Value**)Idxs+NumIdx);
1602      assert(Ty != 0 && "Invalid indices for GEP!");
1603      return
1604        ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
1605    }
1606  }
1607
1608  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1609    // Combine Indices - If the source pointer to this getelementptr instruction
1610    // is a getelementptr instruction, combine the indices of the two
1611    // getelementptr instructions into a single instruction.
1612    //
1613    if (CE->getOpcode() == Instruction::GetElementPtr) {
1614      const Type *LastTy = 0;
1615      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1616           I != E; ++I)
1617        LastTy = *I;
1618
1619      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1620        SmallVector<Value*, 16> NewIndices;
1621        NewIndices.reserve(NumIdx + CE->getNumOperands());
1622        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1623          NewIndices.push_back(CE->getOperand(i));
1624
1625        // Add the last index of the source with the first index of the new GEP.
1626        // Make sure to handle the case when they are actually different types.
1627        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1628        // Otherwise it must be an array.
1629        if (!Idx0->isNullValue()) {
1630          const Type *IdxTy = Combined->getType();
1631          if (IdxTy != Idx0->getType()) {
1632            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1633            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1634                                                          Type::Int64Ty);
1635            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1636          } else {
1637            Combined =
1638              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1639          }
1640        }
1641
1642        NewIndices.push_back(Combined);
1643        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1644        return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
1645                                              NewIndices.size());
1646      }
1647    }
1648
1649    // Implement folding of:
1650    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1651    //                        long 0, long 0)
1652    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1653    //
1654    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1655      if (const PointerType *SPT =
1656          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1657        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1658          if (const ArrayType *CAT =
1659        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1660            if (CAT->getElementType() == SAT->getElementType())
1661              return ConstantExpr::getGetElementPtr(
1662                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
1663    }
1664
1665    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1666    // Into: inttoptr (i64 0 to i8*)
1667    // This happens with pointers to member functions in C++.
1668    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1669        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1670        cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1671      Constant *Base = CE->getOperand(0);
1672      Constant *Offset = Idxs[0];
1673
1674      // Convert the smaller integer to the larger type.
1675      if (Offset->getType()->getPrimitiveSizeInBits() <
1676          Base->getType()->getPrimitiveSizeInBits())
1677        Offset = ConstantExpr::getSExt(Offset, Base->getType());
1678      else if (Base->getType()->getPrimitiveSizeInBits() <
1679               Offset->getType()->getPrimitiveSizeInBits())
1680        Base = ConstantExpr::getZExt(Base, Offset->getType());
1681
1682      Base = ConstantExpr::getAdd(Base, Offset);
1683      return ConstantExpr::getIntToPtr(Base, CE->getType());
1684    }
1685  }
1686  return 0;
1687}
1688
1689