ConstantFold.cpp revision b8f74793b9d161bc666fe27fc92fe112b6ec169b
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
19//===----------------------------------------------------------------------===//
20
21#include "ConstantFold.h"
22#include "llvm/Constants.h"
23#include "llvm/Instructions.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Support/ManagedStatic.h"
30#include "llvm/Support/MathExtras.h"
31#include <limits>
32using namespace llvm;
33
34//===----------------------------------------------------------------------===//
35//                ConstantFold*Instruction Implementations
36//===----------------------------------------------------------------------===//
37
38/// CastConstantVector - Convert the specified ConstantVector node to the
39/// specified vector type.  At this point, we know that the elements of the
40/// input vector constant are all simple integer or FP values.
41static Constant *CastConstantVector(ConstantVector *CV,
42                                    const VectorType *DstTy) {
43  unsigned SrcNumElts = CV->getType()->getNumElements();
44  unsigned DstNumElts = DstTy->getNumElements();
45  const Type *SrcEltTy = CV->getType()->getElementType();
46  const Type *DstEltTy = DstTy->getElementType();
47
48  // If both vectors have the same number of elements (thus, the elements
49  // are the same size), perform the conversion now.
50  if (SrcNumElts == DstNumElts) {
51    std::vector<Constant*> Result;
52
53    // If the src and dest elements are both integers, or both floats, we can
54    // just BitCast each element because the elements are the same size.
55    if ((SrcEltTy->isInteger() && DstEltTy->isInteger()) ||
56        (SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
57      for (unsigned i = 0; i != SrcNumElts; ++i)
58        Result.push_back(
59          ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
60      return ConstantVector::get(Result);
61    }
62
63    // If this is an int-to-fp cast ..
64    if (SrcEltTy->isInteger()) {
65      // Ensure that it is int-to-fp cast
66      assert(DstEltTy->isFloatingPoint());
67      if (DstEltTy->getTypeID() == Type::DoubleTyID) {
68        for (unsigned i = 0; i != SrcNumElts; ++i) {
69          ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
70          double V = CI->getValue().bitsToDouble();
71          Result.push_back(ConstantFP::get(Type::DoubleTy, V));
72        }
73        return ConstantVector::get(Result);
74      }
75      assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
76      for (unsigned i = 0; i != SrcNumElts; ++i) {
77        ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
78        float V = CI->getValue().bitsToFloat();
79        Result.push_back(ConstantFP::get(Type::FloatTy, V));
80      }
81      return ConstantVector::get(Result);
82    }
83
84    // Otherwise, this is an fp-to-int cast.
85    assert(SrcEltTy->isFloatingPoint() && DstEltTy->isInteger());
86
87    if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
88      for (unsigned i = 0; i != SrcNumElts; ++i) {
89        uint64_t V =
90          DoubleToBits(cast<ConstantFP>(CV->getOperand(i))->getValue());
91        Constant *C = ConstantInt::get(Type::Int64Ty, V);
92        Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
93      }
94      return ConstantVector::get(Result);
95    }
96
97    assert(SrcEltTy->getTypeID() == Type::FloatTyID);
98    for (unsigned i = 0; i != SrcNumElts; ++i) {
99      uint32_t V = FloatToBits(cast<ConstantFP>(CV->getOperand(i))->getValue());
100      Constant *C = ConstantInt::get(Type::Int32Ty, V);
101      Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
102    }
103    return ConstantVector::get(Result);
104  }
105
106  // Otherwise, this is a cast that changes element count and size.  Handle
107  // casts which shrink the elements here.
108
109  // FIXME: We need to know endianness to do this!
110
111  return 0;
112}
113
114/// This function determines which opcode to use to fold two constant cast
115/// expressions together. It uses CastInst::isEliminableCastPair to determine
116/// the opcode. Consequently its just a wrapper around that function.
117/// @brief Determine if it is valid to fold a cast of a cast
118static unsigned
119foldConstantCastPair(
120  unsigned opc,          ///< opcode of the second cast constant expression
121  const ConstantExpr*Op, ///< the first cast constant expression
122  const Type *DstTy      ///< desintation type of the first cast
123) {
124  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
125  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
126  assert(CastInst::isCast(opc) && "Invalid cast opcode");
127
128  // The the types and opcodes for the two Cast constant expressions
129  const Type *SrcTy = Op->getOperand(0)->getType();
130  const Type *MidTy = Op->getType();
131  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
132  Instruction::CastOps secondOp = Instruction::CastOps(opc);
133
134  // Let CastInst::isEliminableCastPair do the heavy lifting.
135  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
136                                        Type::Int64Ty);
137}
138
139Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
140                                            const Type *DestTy) {
141  const Type *SrcTy = V->getType();
142
143  if (isa<UndefValue>(V)) {
144    // zext(undef) = 0, because the top bits will be zero.
145    // sext(undef) = 0, because the top bits will all be the same.
146    if (opc == Instruction::ZExt || opc == Instruction::SExt)
147      return Constant::getNullValue(DestTy);
148    return UndefValue::get(DestTy);
149  }
150
151  // If the cast operand is a constant expression, there's a few things we can
152  // do to try to simplify it.
153  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
154    if (CE->isCast()) {
155      // Try hard to fold cast of cast because they are often eliminable.
156      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
157        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
158    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
159      // If all of the indexes in the GEP are null values, there is no pointer
160      // adjustment going on.  We might as well cast the source pointer.
161      bool isAllNull = true;
162      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
163        if (!CE->getOperand(i)->isNullValue()) {
164          isAllNull = false;
165          break;
166        }
167      if (isAllNull)
168        // This is casting one pointer type to another, always BitCast
169        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
170    }
171  }
172
173  // We actually have to do a cast now. Perform the cast according to the
174  // opcode specified.
175  switch (opc) {
176  case Instruction::FPTrunc:
177  case Instruction::FPExt:
178    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
179      return ConstantFP::get(DestTy, FPC->getValue());
180    return 0; // Can't fold.
181  case Instruction::FPToUI:
182    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
183      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
184      APInt Val(APIntOps::RoundDoubleToAPInt(FPC->getValue(), DestBitWidth));
185      return ConstantInt::get(Val);
186    }
187    return 0; // Can't fold.
188  case Instruction::FPToSI:
189    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
190      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
191      APInt Val(APIntOps::RoundDoubleToAPInt(FPC->getValue(), DestBitWidth));
192      return ConstantInt::get(Val);
193    }
194    return 0; // Can't fold.
195  case Instruction::IntToPtr:   //always treated as unsigned
196    if (V->isNullValue())       // Is it an integral null value?
197      return ConstantPointerNull::get(cast<PointerType>(DestTy));
198    return 0;                   // Other pointer types cannot be casted
199  case Instruction::PtrToInt:   // always treated as unsigned
200    if (V->isNullValue())       // is it a null pointer value?
201      return ConstantInt::get(DestTy, 0);
202    return 0;                   // Other pointer types cannot be casted
203  case Instruction::UIToFP:
204    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
205      return ConstantFP::get(DestTy, CI->getValue().roundToDouble());
206    return 0;
207  case Instruction::SIToFP:
208    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
209      return ConstantFP::get(DestTy, CI->getValue().signedRoundToDouble());
210    return 0;
211  case Instruction::ZExt:
212    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
213      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
214      APInt Result(CI->getValue());
215      Result.zext(BitWidth);
216      return ConstantInt::get(Result);
217    }
218    return 0;
219  case Instruction::SExt:
220    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
221      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
222      APInt Result(CI->getValue());
223      Result.sext(BitWidth);
224      return ConstantInt::get(Result);
225    }
226    return 0;
227  case Instruction::Trunc:
228    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
229      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
230      APInt Result(CI->getValue());
231      Result.trunc(BitWidth);
232      return ConstantInt::get(Result);
233    }
234    return 0;
235  case Instruction::BitCast:
236    if (SrcTy == DestTy)
237      return (Constant*)V; // no-op cast
238
239    // Check to see if we are casting a pointer to an aggregate to a pointer to
240    // the first element.  If so, return the appropriate GEP instruction.
241    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
242      if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
243        SmallVector<Value*, 8> IdxList;
244        IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
245        const Type *ElTy = PTy->getElementType();
246        while (ElTy != DPTy->getElementType()) {
247          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
248            if (STy->getNumElements() == 0) break;
249            ElTy = STy->getElementType(0);
250            IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
251          } else if (const SequentialType *STy =
252                     dyn_cast<SequentialType>(ElTy)) {
253            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
254            ElTy = STy->getElementType();
255            IdxList.push_back(IdxList[0]);
256          } else {
257            break;
258          }
259        }
260
261        if (ElTy == DPTy->getElementType())
262          return ConstantExpr::getGetElementPtr(
263              const_cast<Constant*>(V), &IdxList[0], IdxList.size());
264      }
265
266    // Handle casts from one vector constant to another.  We know that the src
267    // and dest type have the same size (otherwise its an illegal cast).
268    if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
269      if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
270        assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
271               "Not cast between same sized vectors!");
272        // First, check for null and undef
273        if (isa<ConstantAggregateZero>(V))
274          return Constant::getNullValue(DestTy);
275        if (isa<UndefValue>(V))
276          return UndefValue::get(DestTy);
277
278        if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
279          // This is a cast from a ConstantVector of one type to a
280          // ConstantVector of another type.  Check to see if all elements of
281          // the input are simple.
282          bool AllSimpleConstants = true;
283          for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
284            if (!isa<ConstantInt>(CV->getOperand(i)) &&
285                !isa<ConstantFP>(CV->getOperand(i))) {
286              AllSimpleConstants = false;
287              break;
288            }
289          }
290
291          // If all of the elements are simple constants, we can fold this.
292          if (AllSimpleConstants)
293            return CastConstantVector(const_cast<ConstantVector*>(CV), DestPTy);
294        }
295      }
296    }
297
298    // Finally, implement bitcast folding now.   The code below doesn't handle
299    // bitcast right.
300    if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
301      return ConstantPointerNull::get(cast<PointerType>(DestTy));
302
303    // Handle integral constant input.
304    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
305      if (DestTy->isInteger())
306        // Integral -> Integral. This is a no-op because the bit widths must
307        // be the same. Consequently, we just fold to V.
308        return const_cast<Constant*>(V);
309
310      if (DestTy->isFloatingPoint()) {
311        if (DestTy == Type::FloatTy)
312          return ConstantFP::get(DestTy, CI->getValue().bitsToFloat());
313        assert(DestTy == Type::DoubleTy && "Unknown FP type!");
314        return ConstantFP::get(DestTy, CI->getValue().bitsToDouble());
315      }
316      // Otherwise, can't fold this (vector?)
317      return 0;
318    }
319
320    // Handle ConstantFP input.
321    if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
322      // FP -> Integral.
323      if (DestTy == Type::Int32Ty) {
324        APInt Val(32, 0);
325        return ConstantInt::get(Val.floatToBits(FP->getValue()));
326      } else {
327        assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
328        APInt Val(64, 0);
329        return ConstantInt::get(Val.doubleToBits(FP->getValue()));
330      }
331    }
332    return 0;
333  default:
334    assert(!"Invalid CE CastInst opcode");
335    break;
336  }
337
338  assert(0 && "Failed to cast constant expression");
339  return 0;
340}
341
342Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
343                                              const Constant *V1,
344                                              const Constant *V2) {
345  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
346    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
347
348  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
349  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
350  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
351  if (V1 == V2) return const_cast<Constant*>(V1);
352  return 0;
353}
354
355Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
356                                                      const Constant *Idx) {
357  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
358    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
359  if (Val->isNullValue())  // ee(zero, x) -> zero
360    return Constant::getNullValue(
361                          cast<VectorType>(Val->getType())->getElementType());
362
363  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
364    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
365      return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
366    } else if (isa<UndefValue>(Idx)) {
367      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
368      return const_cast<Constant*>(CVal->getOperand(0));
369    }
370  }
371  return 0;
372}
373
374Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
375                                                     const Constant *Elt,
376                                                     const Constant *Idx) {
377  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
378  if (!CIdx) return 0;
379  APInt idxVal = CIdx->getValue();
380  if (isa<UndefValue>(Val)) {
381    // Insertion of scalar constant into vector undef
382    // Optimize away insertion of undef
383    if (isa<UndefValue>(Elt))
384      return const_cast<Constant*>(Val);
385    // Otherwise break the aggregate undef into multiple undefs and do
386    // the insertion
387    unsigned numOps =
388      cast<VectorType>(Val->getType())->getNumElements();
389    std::vector<Constant*> Ops;
390    Ops.reserve(numOps);
391    for (unsigned i = 0; i < numOps; ++i) {
392      const Constant *Op =
393        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
394      Ops.push_back(const_cast<Constant*>(Op));
395    }
396    return ConstantVector::get(Ops);
397  }
398  if (isa<ConstantAggregateZero>(Val)) {
399    // Insertion of scalar constant into vector aggregate zero
400    // Optimize away insertion of zero
401    if (Elt->isNullValue())
402      return const_cast<Constant*>(Val);
403    // Otherwise break the aggregate zero into multiple zeros and do
404    // the insertion
405    unsigned numOps =
406      cast<VectorType>(Val->getType())->getNumElements();
407    std::vector<Constant*> Ops;
408    Ops.reserve(numOps);
409    for (unsigned i = 0; i < numOps; ++i) {
410      const Constant *Op =
411        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
412      Ops.push_back(const_cast<Constant*>(Op));
413    }
414    return ConstantVector::get(Ops);
415  }
416  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
417    // Insertion of scalar constant into vector constant
418    std::vector<Constant*> Ops;
419    Ops.reserve(CVal->getNumOperands());
420    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
421      const Constant *Op =
422        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
423      Ops.push_back(const_cast<Constant*>(Op));
424    }
425    return ConstantVector::get(Ops);
426  }
427  return 0;
428}
429
430Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
431                                                     const Constant *V2,
432                                                     const Constant *Mask) {
433  // TODO:
434  return 0;
435}
436
437/// EvalVectorOp - Given two vector constants and a function pointer, apply the
438/// function pointer to each element pair, producing a new ConstantVector
439/// constant.
440static Constant *EvalVectorOp(const ConstantVector *V1,
441                              const ConstantVector *V2,
442                              Constant *(*FP)(Constant*, Constant*)) {
443  std::vector<Constant*> Res;
444  for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
445    Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
446                     const_cast<Constant*>(V2->getOperand(i))));
447  return ConstantVector::get(Res);
448}
449
450Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
451                                              const Constant *C1,
452                                              const Constant *C2) {
453  // Handle UndefValue up front
454  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
455    switch (Opcode) {
456    case Instruction::Add:
457    case Instruction::Sub:
458    case Instruction::Xor:
459      return UndefValue::get(C1->getType());
460    case Instruction::Mul:
461    case Instruction::And:
462      return Constant::getNullValue(C1->getType());
463    case Instruction::UDiv:
464    case Instruction::SDiv:
465    case Instruction::FDiv:
466    case Instruction::URem:
467    case Instruction::SRem:
468    case Instruction::FRem:
469      if (!isa<UndefValue>(C2))                    // undef / X -> 0
470        return Constant::getNullValue(C1->getType());
471      return const_cast<Constant*>(C2);            // X / undef -> undef
472    case Instruction::Or:                          // X | undef -> -1
473      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
474        return ConstantVector::getAllOnesValue(PTy);
475      return ConstantInt::getAllOnesValue(C1->getType());
476    case Instruction::LShr:
477      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
478        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
479      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
480                                                    // undef lshr X -> 0
481    case Instruction::AShr:
482      if (!isa<UndefValue>(C2))
483        return const_cast<Constant*>(C1);           // undef ashr X --> undef
484      else if (isa<UndefValue>(C1))
485        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
486      else
487        return const_cast<Constant*>(C1);           // X ashr undef --> X
488    case Instruction::Shl:
489      // undef << X -> 0   or   X << undef -> 0
490      return Constant::getNullValue(C1->getType());
491    }
492  }
493
494  if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
495    if (isa<ConstantExpr>(C2)) {
496      // There are many possible foldings we could do here.  We should probably
497      // at least fold add of a pointer with an integer into the appropriate
498      // getelementptr.  This will improve alias analysis a bit.
499    } else {
500      // Just implement a couple of simple identities.
501      switch (Opcode) {
502      case Instruction::Add:
503        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X + 0 == X
504        break;
505      case Instruction::Sub:
506        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X - 0 == X
507        break;
508      case Instruction::Mul:
509        if (C2->isNullValue()) return const_cast<Constant*>(C2);  // X * 0 == 0
510        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
511          if (CI->equalsInt(1))
512            return const_cast<Constant*>(C1);                     // X * 1 == X
513        break;
514      case Instruction::UDiv:
515      case Instruction::SDiv:
516        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
517          if (CI->equalsInt(1))
518            return const_cast<Constant*>(C1);                     // X / 1 == X
519        break;
520      case Instruction::URem:
521      case Instruction::SRem:
522        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
523          if (CI->equalsInt(1))
524            return Constant::getNullValue(CI->getType());         // X % 1 == 0
525        break;
526      case Instruction::And:
527        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2)) {
528          if (CI->isZero()) return const_cast<Constant*>(C2);     // X & 0 == 0
529          if (CI->isAllOnesValue())
530            return const_cast<Constant*>(C1);                     // X & -1 == X
531
532          // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
533          if (CE1->getOpcode() == Instruction::ZExt) {
534            APInt PossiblySetBits
535              = cast<IntegerType>(CE1->getOperand(0)->getType())->getMask();
536            PossiblySetBits.zext(C1->getType()->getPrimitiveSizeInBits());
537            if ((PossiblySetBits & CI->getValue()) == PossiblySetBits)
538              return const_cast<Constant*>(C1);
539          }
540        }
541        if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
542          GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
543
544          // Functions are at least 4-byte aligned.  If and'ing the address of a
545          // function with a constant < 4, fold it to zero.
546          if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
547            if (CI->getValue().ult(APInt(CI->getType()->getBitWidth(),4)) &&
548                isa<Function>(CPR))
549              return Constant::getNullValue(CI->getType());
550        }
551        break;
552      case Instruction::Or:
553        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X | 0 == X
554        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
555          if (CI->isAllOnesValue())
556            return const_cast<Constant*>(C2);  // X | -1 == -1
557        break;
558      case Instruction::Xor:
559        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X ^ 0 == X
560        break;
561      case Instruction::AShr:
562        // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
563        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
564          return ConstantExpr::getLShr(const_cast<Constant*>(C1),
565                                       const_cast<Constant*>(C2));
566        break;
567      }
568    }
569  } else if (isa<ConstantExpr>(C2)) {
570    // If C2 is a constant expr and C1 isn't, flop them around and fold the
571    // other way if possible.
572    switch (Opcode) {
573    case Instruction::Add:
574    case Instruction::Mul:
575    case Instruction::And:
576    case Instruction::Or:
577    case Instruction::Xor:
578      // No change of opcode required.
579      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
580
581    case Instruction::Shl:
582    case Instruction::LShr:
583    case Instruction::AShr:
584    case Instruction::Sub:
585    case Instruction::SDiv:
586    case Instruction::UDiv:
587    case Instruction::FDiv:
588    case Instruction::URem:
589    case Instruction::SRem:
590    case Instruction::FRem:
591    default:  // These instructions cannot be flopped around.
592      return 0;
593    }
594  }
595
596  // At this point we know neither constant is an UndefValue nor a ConstantExpr
597  // so look at directly computing the value.
598  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
599    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
600      using namespace APIntOps;
601      APInt C1V = CI1->getValue();
602      APInt C2V = CI2->getValue();
603      switch (Opcode) {
604      default:
605        break;
606      case Instruction::Add:
607        return ConstantInt::get(C1V + C2V);
608      case Instruction::Sub:
609        return ConstantInt::get(C1V - C2V);
610      case Instruction::Mul:
611        return ConstantInt::get(C1V * C2V);
612      case Instruction::UDiv:
613        if (CI2->isNullValue())
614          return 0;        // X / 0 -> can't fold
615        return ConstantInt::get(C1V.udiv(C2V));
616      case Instruction::SDiv:
617        if (CI2->isNullValue())
618          return 0;        // X / 0 -> can't fold
619        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
620          return 0;        // MIN_INT / -1 -> overflow
621        return ConstantInt::get(C1V.sdiv(C2V));
622      case Instruction::URem:
623        if (C2->isNullValue())
624          return 0;        // X / 0 -> can't fold
625        return ConstantInt::get(C1V.urem(C2V));
626      case Instruction::SRem:
627        if (CI2->isNullValue())
628          return 0;        // X % 0 -> can't fold
629        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
630          return 0;        // MIN_INT % -1 -> overflow
631        return ConstantInt::get(C1V.srem(C2V));
632      case Instruction::And:
633        return ConstantInt::get(C1V & C2V);
634      case Instruction::Or:
635        return ConstantInt::get(C1V | C2V);
636      case Instruction::Xor:
637        return ConstantInt::get(C1V ^ C2V);
638      case Instruction::Shl:
639        if (uint32_t shiftAmt = C2V.getZExtValue())
640          if (shiftAmt < C1V.getBitWidth())
641            return ConstantInt::get(C1V.shl(shiftAmt));
642          else
643            return UndefValue::get(C1->getType()); // too big shift is undef
644        return const_cast<ConstantInt*>(CI1); // Zero shift is identity
645      case Instruction::LShr:
646        if (uint32_t shiftAmt = C2V.getZExtValue())
647          if (shiftAmt < C1V.getBitWidth())
648            return ConstantInt::get(C1V.lshr(shiftAmt));
649          else
650            return UndefValue::get(C1->getType()); // too big shift is undef
651        return const_cast<ConstantInt*>(CI1); // Zero shift is identity
652      case Instruction::AShr:
653        if (uint32_t shiftAmt = C2V.getZExtValue())
654          if (shiftAmt < C1V.getBitWidth())
655            return ConstantInt::get(C1V.ashr(shiftAmt));
656          else
657            return UndefValue::get(C1->getType()); // too big shift is undef
658        return const_cast<ConstantInt*>(CI1); // Zero shift is identity
659      }
660    }
661  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
662    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
663      double C1Val = CFP1->getValue();
664      double C2Val = CFP2->getValue();
665      switch (Opcode) {
666      default:
667        break;
668      case Instruction::Add:
669        return ConstantFP::get(CFP1->getType(), C1Val + C2Val);
670      case Instruction::Sub:
671        return ConstantFP::get(CFP1->getType(), C1Val - C2Val);
672      case Instruction::Mul:
673        return ConstantFP::get(CFP1->getType(), C1Val * C2Val);
674      case Instruction::FDiv:
675        if (CFP2->isExactlyValue(0.0) || CFP2->isExactlyValue(-0.0))
676          if (CFP1->isExactlyValue(0.0) || CFP1->isExactlyValue(-0.0))
677            // IEEE 754, Section 7.1, #4
678            return ConstantFP::get(CFP1->getType(),
679                                   std::numeric_limits<double>::quiet_NaN());
680          else if (CFP2->isExactlyValue(-0.0) || C1Val < 0.0)
681            // IEEE 754, Section 7.2, negative infinity case
682            return ConstantFP::get(CFP1->getType(),
683                                   -std::numeric_limits<double>::infinity());
684          else
685            // IEEE 754, Section 7.2, positive infinity case
686            return ConstantFP::get(CFP1->getType(),
687                                   std::numeric_limits<double>::infinity());
688        return ConstantFP::get(CFP1->getType(), C1Val / C2Val);
689      case Instruction::FRem:
690        if (CFP2->isExactlyValue(0.0) || CFP2->isExactlyValue(-0.0))
691          // IEEE 754, Section 7.1, #5
692          return ConstantFP::get(CFP1->getType(),
693                                 std::numeric_limits<double>::quiet_NaN());
694        return ConstantFP::get(CFP1->getType(), std::fmod(C1Val, C2Val));
695
696      }
697    }
698  } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
699    if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
700      switch (Opcode) {
701        default:
702          break;
703        case Instruction::Add:
704          return EvalVectorOp(CP1, CP2, ConstantExpr::getAdd);
705        case Instruction::Sub:
706          return EvalVectorOp(CP1, CP2, ConstantExpr::getSub);
707        case Instruction::Mul:
708          return EvalVectorOp(CP1, CP2, ConstantExpr::getMul);
709        case Instruction::UDiv:
710          return EvalVectorOp(CP1, CP2, ConstantExpr::getUDiv);
711        case Instruction::SDiv:
712          return EvalVectorOp(CP1, CP2, ConstantExpr::getSDiv);
713        case Instruction::FDiv:
714          return EvalVectorOp(CP1, CP2, ConstantExpr::getFDiv);
715        case Instruction::URem:
716          return EvalVectorOp(CP1, CP2, ConstantExpr::getURem);
717        case Instruction::SRem:
718          return EvalVectorOp(CP1, CP2, ConstantExpr::getSRem);
719        case Instruction::FRem:
720          return EvalVectorOp(CP1, CP2, ConstantExpr::getFRem);
721        case Instruction::And:
722          return EvalVectorOp(CP1, CP2, ConstantExpr::getAnd);
723        case Instruction::Or:
724          return EvalVectorOp(CP1, CP2, ConstantExpr::getOr);
725        case Instruction::Xor:
726          return EvalVectorOp(CP1, CP2, ConstantExpr::getXor);
727      }
728    }
729  }
730
731  // We don't know how to fold this
732  return 0;
733}
734
735/// isZeroSizedType - This type is zero sized if its an array or structure of
736/// zero sized types.  The only leaf zero sized type is an empty structure.
737static bool isMaybeZeroSizedType(const Type *Ty) {
738  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
739  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
740
741    // If all of elements have zero size, this does too.
742    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
743      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
744    return true;
745
746  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
747    return isMaybeZeroSizedType(ATy->getElementType());
748  }
749  return false;
750}
751
752/// IdxCompare - Compare the two constants as though they were getelementptr
753/// indices.  This allows coersion of the types to be the same thing.
754///
755/// If the two constants are the "same" (after coersion), return 0.  If the
756/// first is less than the second, return -1, if the second is less than the
757/// first, return 1.  If the constants are not integral, return -2.
758///
759static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
760  if (C1 == C2) return 0;
761
762  // Ok, we found a different index.  If they are not ConstantInt, we can't do
763  // anything with them.
764  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
765    return -2; // don't know!
766
767  // Ok, we have two differing integer indices.  Sign extend them to be the same
768  // type.  Long is always big enough, so we use it.
769  if (C1->getType() != Type::Int64Ty)
770    C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
771
772  if (C2->getType() != Type::Int64Ty)
773    C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
774
775  if (C1 == C2) return 0;  // They are equal
776
777  // If the type being indexed over is really just a zero sized type, there is
778  // no pointer difference being made here.
779  if (isMaybeZeroSizedType(ElTy))
780    return -2; // dunno.
781
782  // If they are really different, now that they are the same type, then we
783  // found a difference!
784  if (cast<ConstantInt>(C1)->getSExtValue() <
785      cast<ConstantInt>(C2)->getSExtValue())
786    return -1;
787  else
788    return 1;
789}
790
791/// evaluateFCmpRelation - This function determines if there is anything we can
792/// decide about the two constants provided.  This doesn't need to handle simple
793/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
794/// If we can determine that the two constants have a particular relation to
795/// each other, we should return the corresponding FCmpInst predicate,
796/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
797/// ConstantFoldCompareInstruction.
798///
799/// To simplify this code we canonicalize the relation so that the first
800/// operand is always the most "complex" of the two.  We consider ConstantFP
801/// to be the simplest, and ConstantExprs to be the most complex.
802static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
803                                                const Constant *V2) {
804  assert(V1->getType() == V2->getType() &&
805         "Cannot compare values of different types!");
806  // Handle degenerate case quickly
807  if (V1 == V2) return FCmpInst::FCMP_OEQ;
808
809  if (!isa<ConstantExpr>(V1)) {
810    if (!isa<ConstantExpr>(V2)) {
811      // We distilled thisUse the standard constant folder for a few cases
812      ConstantInt *R = 0;
813      Constant *C1 = const_cast<Constant*>(V1);
814      Constant *C2 = const_cast<Constant*>(V2);
815      R = dyn_cast<ConstantInt>(
816                             ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
817      if (R && !R->isZero())
818        return FCmpInst::FCMP_OEQ;
819      R = dyn_cast<ConstantInt>(
820                             ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
821      if (R && !R->isZero())
822        return FCmpInst::FCMP_OLT;
823      R = dyn_cast<ConstantInt>(
824                             ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
825      if (R && !R->isZero())
826        return FCmpInst::FCMP_OGT;
827
828      // Nothing more we can do
829      return FCmpInst::BAD_FCMP_PREDICATE;
830    }
831
832    // If the first operand is simple and second is ConstantExpr, swap operands.
833    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
834    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
835      return FCmpInst::getSwappedPredicate(SwappedRelation);
836  } else {
837    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
838    // constantexpr or a simple constant.
839    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
840    switch (CE1->getOpcode()) {
841    case Instruction::FPTrunc:
842    case Instruction::FPExt:
843    case Instruction::UIToFP:
844    case Instruction::SIToFP:
845      // We might be able to do something with these but we don't right now.
846      break;
847    default:
848      break;
849    }
850  }
851  // There are MANY other foldings that we could perform here.  They will
852  // probably be added on demand, as they seem needed.
853  return FCmpInst::BAD_FCMP_PREDICATE;
854}
855
856/// evaluateICmpRelation - This function determines if there is anything we can
857/// decide about the two constants provided.  This doesn't need to handle simple
858/// things like integer comparisons, but should instead handle ConstantExprs
859/// and GlobalValues.  If we can determine that the two constants have a
860/// particular relation to each other, we should return the corresponding ICmp
861/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
862///
863/// To simplify this code we canonicalize the relation so that the first
864/// operand is always the most "complex" of the two.  We consider simple
865/// constants (like ConstantInt) to be the simplest, followed by
866/// GlobalValues, followed by ConstantExpr's (the most complex).
867///
868static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
869                                                const Constant *V2,
870                                                bool isSigned) {
871  assert(V1->getType() == V2->getType() &&
872         "Cannot compare different types of values!");
873  if (V1 == V2) return ICmpInst::ICMP_EQ;
874
875  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
876    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
877      // We distilled this down to a simple case, use the standard constant
878      // folder.
879      ConstantInt *R = 0;
880      Constant *C1 = const_cast<Constant*>(V1);
881      Constant *C2 = const_cast<Constant*>(V2);
882      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
883      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
884      if (R && !R->isZero())
885        return pred;
886      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
887      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
888      if (R && !R->isZero())
889        return pred;
890      pred = isSigned ?  ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
891      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
892      if (R && !R->isZero())
893        return pred;
894
895      // If we couldn't figure it out, bail.
896      return ICmpInst::BAD_ICMP_PREDICATE;
897    }
898
899    // If the first operand is simple, swap operands.
900    ICmpInst::Predicate SwappedRelation =
901      evaluateICmpRelation(V2, V1, isSigned);
902    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
903      return ICmpInst::getSwappedPredicate(SwappedRelation);
904
905  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
906    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
907      ICmpInst::Predicate SwappedRelation =
908        evaluateICmpRelation(V2, V1, isSigned);
909      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
910        return ICmpInst::getSwappedPredicate(SwappedRelation);
911      else
912        return ICmpInst::BAD_ICMP_PREDICATE;
913    }
914
915    // Now we know that the RHS is a GlobalValue or simple constant,
916    // which (since the types must match) means that it's a ConstantPointerNull.
917    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
918      if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
919        return ICmpInst::ICMP_NE;
920    } else {
921      // GlobalVals can never be null.
922      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
923      if (!CPR1->hasExternalWeakLinkage())
924        return ICmpInst::ICMP_NE;
925    }
926  } else {
927    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
928    // constantexpr, a CPR, or a simple constant.
929    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
930    const Constant *CE1Op0 = CE1->getOperand(0);
931
932    switch (CE1->getOpcode()) {
933    case Instruction::Trunc:
934    case Instruction::FPTrunc:
935    case Instruction::FPExt:
936    case Instruction::FPToUI:
937    case Instruction::FPToSI:
938      break; // We can't evaluate floating point casts or truncations.
939
940    case Instruction::UIToFP:
941    case Instruction::SIToFP:
942    case Instruction::IntToPtr:
943    case Instruction::BitCast:
944    case Instruction::ZExt:
945    case Instruction::SExt:
946    case Instruction::PtrToInt:
947      // If the cast is not actually changing bits, and the second operand is a
948      // null pointer, do the comparison with the pre-casted value.
949      if (V2->isNullValue() &&
950          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
951        bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
952          (CE1->getOpcode() == Instruction::SExt ? true :
953           (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
954        return evaluateICmpRelation(
955            CE1Op0, Constant::getNullValue(CE1Op0->getType()), sgnd);
956      }
957
958      // If the dest type is a pointer type, and the RHS is a constantexpr cast
959      // from the same type as the src of the LHS, evaluate the inputs.  This is
960      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
961      // which happens a lot in compilers with tagged integers.
962      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
963        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
964            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
965            CE1->getOperand(0)->getType()->isInteger()) {
966          bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
967            (CE1->getOpcode() == Instruction::SExt ? true :
968             (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
969          return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
970              sgnd);
971        }
972      break;
973
974    case Instruction::GetElementPtr:
975      // Ok, since this is a getelementptr, we know that the constant has a
976      // pointer type.  Check the various cases.
977      if (isa<ConstantPointerNull>(V2)) {
978        // If we are comparing a GEP to a null pointer, check to see if the base
979        // of the GEP equals the null pointer.
980        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
981          if (GV->hasExternalWeakLinkage())
982            // Weak linkage GVals could be zero or not. We're comparing that
983            // to null pointer so its greater-or-equal
984            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
985          else
986            // If its not weak linkage, the GVal must have a non-zero address
987            // so the result is greater-than
988            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
989        } else if (isa<ConstantPointerNull>(CE1Op0)) {
990          // If we are indexing from a null pointer, check to see if we have any
991          // non-zero indices.
992          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
993            if (!CE1->getOperand(i)->isNullValue())
994              // Offsetting from null, must not be equal.
995              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
996          // Only zero indexes from null, must still be zero.
997          return ICmpInst::ICMP_EQ;
998        }
999        // Otherwise, we can't really say if the first operand is null or not.
1000      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1001        if (isa<ConstantPointerNull>(CE1Op0)) {
1002          if (CPR2->hasExternalWeakLinkage())
1003            // Weak linkage GVals could be zero or not. We're comparing it to
1004            // a null pointer, so its less-or-equal
1005            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1006          else
1007            // If its not weak linkage, the GVal must have a non-zero address
1008            // so the result is less-than
1009            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1010        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1011          if (CPR1 == CPR2) {
1012            // If this is a getelementptr of the same global, then it must be
1013            // different.  Because the types must match, the getelementptr could
1014            // only have at most one index, and because we fold getelementptr's
1015            // with a single zero index, it must be nonzero.
1016            assert(CE1->getNumOperands() == 2 &&
1017                   !CE1->getOperand(1)->isNullValue() &&
1018                   "Suprising getelementptr!");
1019            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1020          } else {
1021            // If they are different globals, we don't know what the value is,
1022            // but they can't be equal.
1023            return ICmpInst::ICMP_NE;
1024          }
1025        }
1026      } else {
1027        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1028        const Constant *CE2Op0 = CE2->getOperand(0);
1029
1030        // There are MANY other foldings that we could perform here.  They will
1031        // probably be added on demand, as they seem needed.
1032        switch (CE2->getOpcode()) {
1033        default: break;
1034        case Instruction::GetElementPtr:
1035          // By far the most common case to handle is when the base pointers are
1036          // obviously to the same or different globals.
1037          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1038            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1039              return ICmpInst::ICMP_NE;
1040            // Ok, we know that both getelementptr instructions are based on the
1041            // same global.  From this, we can precisely determine the relative
1042            // ordering of the resultant pointers.
1043            unsigned i = 1;
1044
1045            // Compare all of the operands the GEP's have in common.
1046            gep_type_iterator GTI = gep_type_begin(CE1);
1047            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1048                 ++i, ++GTI)
1049              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1050                                 GTI.getIndexedType())) {
1051              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1052              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1053              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1054              }
1055
1056            // Ok, we ran out of things they have in common.  If any leftovers
1057            // are non-zero then we have a difference, otherwise we are equal.
1058            for (; i < CE1->getNumOperands(); ++i)
1059              if (!CE1->getOperand(i)->isNullValue())
1060                if (isa<ConstantInt>(CE1->getOperand(i)))
1061                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1062                else
1063                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1064
1065            for (; i < CE2->getNumOperands(); ++i)
1066              if (!CE2->getOperand(i)->isNullValue())
1067                if (isa<ConstantInt>(CE2->getOperand(i)))
1068                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1069                else
1070                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1071            return ICmpInst::ICMP_EQ;
1072          }
1073        }
1074      }
1075    default:
1076      break;
1077    }
1078  }
1079
1080  return ICmpInst::BAD_ICMP_PREDICATE;
1081}
1082
1083Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1084                                               const Constant *C1,
1085                                               const Constant *C2) {
1086
1087  // Handle some degenerate cases first
1088  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1089    return UndefValue::get(Type::Int1Ty);
1090
1091  // icmp eq/ne(null,GV) -> false/true
1092  if (C1->isNullValue()) {
1093    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1094      if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
1095        if (pred == ICmpInst::ICMP_EQ)
1096          return ConstantInt::getFalse();
1097        else if (pred == ICmpInst::ICMP_NE)
1098          return ConstantInt::getTrue();
1099  // icmp eq/ne(GV,null) -> false/true
1100  } else if (C2->isNullValue()) {
1101    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1102      if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
1103        if (pred == ICmpInst::ICMP_EQ)
1104          return ConstantInt::getFalse();
1105        else if (pred == ICmpInst::ICMP_NE)
1106          return ConstantInt::getTrue();
1107  }
1108
1109  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1110    APInt V1 = cast<ConstantInt>(C1)->getValue();
1111    APInt V2 = cast<ConstantInt>(C2)->getValue();
1112    switch (pred) {
1113    default: assert(0 && "Invalid ICmp Predicate"); return 0;
1114    case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1115    case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1116    case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1117    case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1118    case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1119    case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1120    case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1121    case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1122    case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1123    case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1124    }
1125  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1126    double C1Val = cast<ConstantFP>(C1)->getValue();
1127    double C2Val = cast<ConstantFP>(C2)->getValue();
1128    switch (pred) {
1129    default: assert(0 && "Invalid FCmp Predicate"); return 0;
1130    case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1131    case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue();
1132    case FCmpInst::FCMP_UNO:
1133      return ConstantInt::get(Type::Int1Ty, C1Val != C1Val || C2Val != C2Val);
1134    case FCmpInst::FCMP_ORD:
1135      return ConstantInt::get(Type::Int1Ty, C1Val == C1Val && C2Val == C2Val);
1136    case FCmpInst::FCMP_UEQ:
1137      if (C1Val != C1Val || C2Val != C2Val)
1138        return ConstantInt::getTrue();
1139      /* FALL THROUGH */
1140    case FCmpInst::FCMP_OEQ:
1141      return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
1142    case FCmpInst::FCMP_UNE:
1143      if (C1Val != C1Val || C2Val != C2Val)
1144        return ConstantInt::getTrue();
1145      /* FALL THROUGH */
1146    case FCmpInst::FCMP_ONE:
1147      return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
1148    case FCmpInst::FCMP_ULT:
1149      if (C1Val != C1Val || C2Val != C2Val)
1150        return ConstantInt::getTrue();
1151      /* FALL THROUGH */
1152    case FCmpInst::FCMP_OLT:
1153      return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
1154    case FCmpInst::FCMP_UGT:
1155      if (C1Val != C1Val || C2Val != C2Val)
1156        return ConstantInt::getTrue();
1157      /* FALL THROUGH */
1158    case FCmpInst::FCMP_OGT:
1159      return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
1160    case FCmpInst::FCMP_ULE:
1161      if (C1Val != C1Val || C2Val != C2Val)
1162        return ConstantInt::getTrue();
1163      /* FALL THROUGH */
1164    case FCmpInst::FCMP_OLE:
1165      return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
1166    case FCmpInst::FCMP_UGE:
1167      if (C1Val != C1Val || C2Val != C2Val)
1168        return ConstantInt::getTrue();
1169      /* FALL THROUGH */
1170    case FCmpInst::FCMP_OGE:
1171      return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
1172    }
1173  } else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
1174    if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {
1175      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) {
1176        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1177          Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
1178              const_cast<Constant*>(CP1->getOperand(i)),
1179              const_cast<Constant*>(CP2->getOperand(i)));
1180          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1181            return CB;
1182        }
1183        // Otherwise, could not decide from any element pairs.
1184        return 0;
1185      } else if (pred == ICmpInst::ICMP_EQ) {
1186        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1187          Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
1188              const_cast<Constant*>(CP1->getOperand(i)),
1189              const_cast<Constant*>(CP2->getOperand(i)));
1190          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1191            return CB;
1192        }
1193        // Otherwise, could not decide from any element pairs.
1194        return 0;
1195      }
1196    }
1197  }
1198
1199  if (C1->getType()->isFloatingPoint()) {
1200    switch (evaluateFCmpRelation(C1, C2)) {
1201    default: assert(0 && "Unknown relation!");
1202    case FCmpInst::FCMP_UNO:
1203    case FCmpInst::FCMP_ORD:
1204    case FCmpInst::FCMP_UEQ:
1205    case FCmpInst::FCMP_UNE:
1206    case FCmpInst::FCMP_ULT:
1207    case FCmpInst::FCMP_UGT:
1208    case FCmpInst::FCMP_ULE:
1209    case FCmpInst::FCMP_UGE:
1210    case FCmpInst::FCMP_TRUE:
1211    case FCmpInst::FCMP_FALSE:
1212    case FCmpInst::BAD_FCMP_PREDICATE:
1213      break; // Couldn't determine anything about these constants.
1214    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1215      return ConstantInt::get(Type::Int1Ty,
1216          pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1217          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1218          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1219    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1220      return ConstantInt::get(Type::Int1Ty,
1221          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1222          pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1223          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1224    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1225      return ConstantInt::get(Type::Int1Ty,
1226          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1227          pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1228          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1229    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1230      // We can only partially decide this relation.
1231      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1232        return ConstantInt::getFalse();
1233      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1234        return ConstantInt::getTrue();
1235      break;
1236    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1237      // We can only partially decide this relation.
1238      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1239        return ConstantInt::getFalse();
1240      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1241        return ConstantInt::getTrue();
1242      break;
1243    case ICmpInst::ICMP_NE: // We know that C1 != C2
1244      // We can only partially decide this relation.
1245      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1246        return ConstantInt::getFalse();
1247      if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1248        return ConstantInt::getTrue();
1249      break;
1250    }
1251  } else {
1252    // Evaluate the relation between the two constants, per the predicate.
1253    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1254    default: assert(0 && "Unknown relational!");
1255    case ICmpInst::BAD_ICMP_PREDICATE:
1256      break;  // Couldn't determine anything about these constants.
1257    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1258      // If we know the constants are equal, we can decide the result of this
1259      // computation precisely.
1260      return ConstantInt::get(Type::Int1Ty,
1261                              pred == ICmpInst::ICMP_EQ  ||
1262                              pred == ICmpInst::ICMP_ULE ||
1263                              pred == ICmpInst::ICMP_SLE ||
1264                              pred == ICmpInst::ICMP_UGE ||
1265                              pred == ICmpInst::ICMP_SGE);
1266    case ICmpInst::ICMP_ULT:
1267      // If we know that C1 < C2, we can decide the result of this computation
1268      // precisely.
1269      return ConstantInt::get(Type::Int1Ty,
1270                              pred == ICmpInst::ICMP_ULT ||
1271                              pred == ICmpInst::ICMP_NE  ||
1272                              pred == ICmpInst::ICMP_ULE);
1273    case ICmpInst::ICMP_SLT:
1274      // If we know that C1 < C2, we can decide the result of this computation
1275      // precisely.
1276      return ConstantInt::get(Type::Int1Ty,
1277                              pred == ICmpInst::ICMP_SLT ||
1278                              pred == ICmpInst::ICMP_NE  ||
1279                              pred == ICmpInst::ICMP_SLE);
1280    case ICmpInst::ICMP_UGT:
1281      // If we know that C1 > C2, we can decide the result of this computation
1282      // precisely.
1283      return ConstantInt::get(Type::Int1Ty,
1284                              pred == ICmpInst::ICMP_UGT ||
1285                              pred == ICmpInst::ICMP_NE  ||
1286                              pred == ICmpInst::ICMP_UGE);
1287    case ICmpInst::ICMP_SGT:
1288      // If we know that C1 > C2, we can decide the result of this computation
1289      // precisely.
1290      return ConstantInt::get(Type::Int1Ty,
1291                              pred == ICmpInst::ICMP_SGT ||
1292                              pred == ICmpInst::ICMP_NE  ||
1293                              pred == ICmpInst::ICMP_SGE);
1294    case ICmpInst::ICMP_ULE:
1295      // If we know that C1 <= C2, we can only partially decide this relation.
1296      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse();
1297      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue();
1298      break;
1299    case ICmpInst::ICMP_SLE:
1300      // If we know that C1 <= C2, we can only partially decide this relation.
1301      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse();
1302      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue();
1303      break;
1304
1305    case ICmpInst::ICMP_UGE:
1306      // If we know that C1 >= C2, we can only partially decide this relation.
1307      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse();
1308      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue();
1309      break;
1310    case ICmpInst::ICMP_SGE:
1311      // If we know that C1 >= C2, we can only partially decide this relation.
1312      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse();
1313      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue();
1314      break;
1315
1316    case ICmpInst::ICMP_NE:
1317      // If we know that C1 != C2, we can only partially decide this relation.
1318      if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse();
1319      if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue();
1320      break;
1321    }
1322
1323    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1324      // If C2 is a constant expr and C1 isn't, flop them around and fold the
1325      // other way if possible.
1326      switch (pred) {
1327      case ICmpInst::ICMP_EQ:
1328      case ICmpInst::ICMP_NE:
1329        // No change of predicate required.
1330        return ConstantFoldCompareInstruction(pred, C2, C1);
1331
1332      case ICmpInst::ICMP_ULT:
1333      case ICmpInst::ICMP_SLT:
1334      case ICmpInst::ICMP_UGT:
1335      case ICmpInst::ICMP_SGT:
1336      case ICmpInst::ICMP_ULE:
1337      case ICmpInst::ICMP_SLE:
1338      case ICmpInst::ICMP_UGE:
1339      case ICmpInst::ICMP_SGE:
1340        // Change the predicate as necessary to swap the operands.
1341        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1342        return ConstantFoldCompareInstruction(pred, C2, C1);
1343
1344      default:  // These predicates cannot be flopped around.
1345        break;
1346      }
1347    }
1348  }
1349  return 0;
1350}
1351
1352Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1353                                          Constant* const *Idxs,
1354                                          unsigned NumIdx) {
1355  if (NumIdx == 0 ||
1356      (NumIdx == 1 && Idxs[0]->isNullValue()))
1357    return const_cast<Constant*>(C);
1358
1359  if (isa<UndefValue>(C)) {
1360    const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(),
1361                                                       (Value **)Idxs,
1362                                                       (Value **)Idxs+NumIdx,
1363                                                       true);
1364    assert(Ty != 0 && "Invalid indices for GEP!");
1365    return UndefValue::get(PointerType::get(Ty));
1366  }
1367
1368  Constant *Idx0 = Idxs[0];
1369  if (C->isNullValue()) {
1370    bool isNull = true;
1371    for (unsigned i = 0, e = NumIdx; i != e; ++i)
1372      if (!Idxs[i]->isNullValue()) {
1373        isNull = false;
1374        break;
1375      }
1376    if (isNull) {
1377      const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(),
1378                                                         (Value**)Idxs,
1379                                                         (Value**)Idxs+NumIdx,
1380                                                         true);
1381      assert(Ty != 0 && "Invalid indices for GEP!");
1382      return ConstantPointerNull::get(PointerType::get(Ty));
1383    }
1384  }
1385
1386  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1387    // Combine Indices - If the source pointer to this getelementptr instruction
1388    // is a getelementptr instruction, combine the indices of the two
1389    // getelementptr instructions into a single instruction.
1390    //
1391    if (CE->getOpcode() == Instruction::GetElementPtr) {
1392      const Type *LastTy = 0;
1393      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1394           I != E; ++I)
1395        LastTy = *I;
1396
1397      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1398        SmallVector<Value*, 16> NewIndices;
1399        NewIndices.reserve(NumIdx + CE->getNumOperands());
1400        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1401          NewIndices.push_back(CE->getOperand(i));
1402
1403        // Add the last index of the source with the first index of the new GEP.
1404        // Make sure to handle the case when they are actually different types.
1405        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1406        // Otherwise it must be an array.
1407        if (!Idx0->isNullValue()) {
1408          const Type *IdxTy = Combined->getType();
1409          if (IdxTy != Idx0->getType()) {
1410            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1411            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1412                                                          Type::Int64Ty);
1413            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1414          } else {
1415            Combined =
1416              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1417          }
1418        }
1419
1420        NewIndices.push_back(Combined);
1421        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1422        return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
1423                                              NewIndices.size());
1424      }
1425    }
1426
1427    // Implement folding of:
1428    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1429    //                        long 0, long 0)
1430    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1431    //
1432    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1433      if (const PointerType *SPT =
1434          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1435        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1436          if (const ArrayType *CAT =
1437        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1438            if (CAT->getElementType() == SAT->getElementType())
1439              return ConstantExpr::getGetElementPtr(
1440                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
1441    }
1442
1443    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1444    // Into: inttoptr (i64 0 to i8*)
1445    // This happens with pointers to member functions in C++.
1446    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1447        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1448        cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1449      Constant *Base = CE->getOperand(0);
1450      Constant *Offset = Idxs[0];
1451
1452      // Convert the smaller integer to the larger type.
1453      if (Offset->getType()->getPrimitiveSizeInBits() <
1454          Base->getType()->getPrimitiveSizeInBits())
1455        Offset = ConstantExpr::getSExt(Offset, Base->getType());
1456      else if (Base->getType()->getPrimitiveSizeInBits() <
1457               Offset->getType()->getPrimitiveSizeInBits())
1458        Base = ConstantExpr::getZExt(Base, Base->getType());
1459
1460      Base = ConstantExpr::getAdd(Base, Offset);
1461      return ConstantExpr::getIntToPtr(Base, CE->getType());
1462    }
1463  }
1464  return 0;
1465}
1466
1467