ConstantFold.cpp revision fc6d3a49867cd38954dc40936a88f1907252c6d2
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Operator.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified ConstantVector node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(ConstantVector *CV,
45                                       const VectorType *DstTy) {
46
47  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49
50  // If this cast changes element count then we can't handle it here:
51  // doing so requires endianness information.  This should be handled by
52  // Analysis/ConstantFolding.cpp
53  unsigned NumElts = DstTy->getNumElements();
54  if (NumElts != CV->getNumOperands())
55    return 0;
56
57  // Check to verify that all elements of the input are simple.
58  for (unsigned i = 0; i != NumElts; ++i) {
59    if (!isa<ConstantInt>(CV->getOperand(i)) &&
60        !isa<ConstantFP>(CV->getOperand(i)))
61      return 0;
62  }
63
64  // Bitcast each element now.
65  std::vector<Constant*> Result;
66  const Type *DstEltTy = DstTy->getElementType();
67  for (unsigned i = 0; i != NumElts; ++i)
68    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
69                                                    DstEltTy));
70  return ConstantVector::get(Result);
71}
72
73/// This function determines which opcode to use to fold two constant cast
74/// expressions together. It uses CastInst::isEliminableCastPair to determine
75/// the opcode. Consequently its just a wrapper around that function.
76/// @brief Determine if it is valid to fold a cast of a cast
77static unsigned
78foldConstantCastPair(
79  unsigned opc,          ///< opcode of the second cast constant expression
80  ConstantExpr *Op,      ///< the first cast constant expression
81  const Type *DstTy      ///< desintation type of the first cast
82) {
83  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
84  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
85  assert(CastInst::isCast(opc) && "Invalid cast opcode");
86
87  // The the types and opcodes for the two Cast constant expressions
88  const Type *SrcTy = Op->getOperand(0)->getType();
89  const Type *MidTy = Op->getType();
90  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
91  Instruction::CastOps secondOp = Instruction::CastOps(opc);
92
93  // Let CastInst::isEliminableCastPair do the heavy lifting.
94  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
95                                        Type::getInt64Ty(DstTy->getContext()));
96}
97
98static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
99  const Type *SrcTy = V->getType();
100  if (SrcTy == DestTy)
101    return V; // no-op cast
102
103  // Check to see if we are casting a pointer to an aggregate to a pointer to
104  // the first element.  If so, return the appropriate GEP instruction.
105  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
106    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
107      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
108        SmallVector<Value*, 8> IdxList;
109        Value *Zero =
110          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
111        IdxList.push_back(Zero);
112        const Type *ElTy = PTy->getElementType();
113        while (ElTy != DPTy->getElementType()) {
114          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
115            if (STy->getNumElements() == 0) break;
116            ElTy = STy->getElementType(0);
117            IdxList.push_back(Zero);
118          } else if (const SequentialType *STy =
119                     dyn_cast<SequentialType>(ElTy)) {
120            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
121            ElTy = STy->getElementType();
122            IdxList.push_back(Zero);
123          } else {
124            break;
125          }
126        }
127
128        if (ElTy == DPTy->getElementType())
129          // This GEP is inbounds because all indices are zero.
130          return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
131                                                        IdxList.size());
132      }
133
134  // Handle casts from one vector constant to another.  We know that the src
135  // and dest type have the same size (otherwise its an illegal cast).
136  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
137    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
138      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
139             "Not cast between same sized vectors!");
140      SrcTy = NULL;
141      // First, check for null.  Undef is already handled.
142      if (isa<ConstantAggregateZero>(V))
143        return Constant::getNullValue(DestTy);
144
145      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
146        return BitCastConstantVector(CV, DestPTy);
147    }
148
149    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
150    // This allows for other simplifications (although some of them
151    // can only be handled by Analysis/ConstantFolding.cpp).
152    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
153      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
154  }
155
156  // Finally, implement bitcast folding now.   The code below doesn't handle
157  // bitcast right.
158  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
159    return ConstantPointerNull::get(cast<PointerType>(DestTy));
160
161  // Handle integral constant input.
162  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
163    if (DestTy->isIntegerTy())
164      // Integral -> Integral. This is a no-op because the bit widths must
165      // be the same. Consequently, we just fold to V.
166      return V;
167
168    if (DestTy->isFloatingPointTy())
169      return ConstantFP::get(DestTy->getContext(),
170                             APFloat(CI->getValue(),
171                                     !DestTy->isPPC_FP128Ty()));
172
173    // Otherwise, can't fold this (vector?)
174    return 0;
175  }
176
177  // Handle ConstantFP input: FP -> Integral.
178  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
179    return ConstantInt::get(FP->getContext(),
180                            FP->getValueAPF().bitcastToAPInt());
181
182  return 0;
183}
184
185
186/// ExtractConstantBytes - V is an integer constant which only has a subset of
187/// its bytes used.  The bytes used are indicated by ByteStart (which is the
188/// first byte used, counting from the least significant byte) and ByteSize,
189/// which is the number of bytes used.
190///
191/// This function analyzes the specified constant to see if the specified byte
192/// range can be returned as a simplified constant.  If so, the constant is
193/// returned, otherwise null is returned.
194///
195static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
196                                      unsigned ByteSize) {
197  assert(C->getType()->isIntegerTy() &&
198         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
199         "Non-byte sized integer input");
200  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
201  assert(ByteSize && "Must be accessing some piece");
202  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
203  assert(ByteSize != CSize && "Should not extract everything");
204
205  // Constant Integers are simple.
206  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
207    APInt V = CI->getValue();
208    if (ByteStart)
209      V = V.lshr(ByteStart*8);
210    V = V.trunc(ByteSize*8);
211    return ConstantInt::get(CI->getContext(), V);
212  }
213
214  // In the input is a constant expr, we might be able to recursively simplify.
215  // If not, we definitely can't do anything.
216  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
217  if (CE == 0) return 0;
218
219  switch (CE->getOpcode()) {
220  default: return 0;
221  case Instruction::Or: {
222    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
223    if (RHS == 0)
224      return 0;
225
226    // X | -1 -> -1.
227    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
228      if (RHSC->isAllOnesValue())
229        return RHSC;
230
231    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
232    if (LHS == 0)
233      return 0;
234    return ConstantExpr::getOr(LHS, RHS);
235  }
236  case Instruction::And: {
237    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
238    if (RHS == 0)
239      return 0;
240
241    // X & 0 -> 0.
242    if (RHS->isNullValue())
243      return RHS;
244
245    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
246    if (LHS == 0)
247      return 0;
248    return ConstantExpr::getAnd(LHS, RHS);
249  }
250  case Instruction::LShr: {
251    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
252    if (Amt == 0)
253      return 0;
254    unsigned ShAmt = Amt->getZExtValue();
255    // Cannot analyze non-byte shifts.
256    if ((ShAmt & 7) != 0)
257      return 0;
258    ShAmt >>= 3;
259
260    // If the extract is known to be all zeros, return zero.
261    if (ByteStart >= CSize-ShAmt)
262      return Constant::getNullValue(IntegerType::get(CE->getContext(),
263                                                     ByteSize*8));
264    // If the extract is known to be fully in the input, extract it.
265    if (ByteStart+ByteSize+ShAmt <= CSize)
266      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
267
268    // TODO: Handle the 'partially zero' case.
269    return 0;
270  }
271
272  case Instruction::Shl: {
273    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
274    if (Amt == 0)
275      return 0;
276    unsigned ShAmt = Amt->getZExtValue();
277    // Cannot analyze non-byte shifts.
278    if ((ShAmt & 7) != 0)
279      return 0;
280    ShAmt >>= 3;
281
282    // If the extract is known to be all zeros, return zero.
283    if (ByteStart+ByteSize <= ShAmt)
284      return Constant::getNullValue(IntegerType::get(CE->getContext(),
285                                                     ByteSize*8));
286    // If the extract is known to be fully in the input, extract it.
287    if (ByteStart >= ShAmt)
288      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
289
290    // TODO: Handle the 'partially zero' case.
291    return 0;
292  }
293
294  case Instruction::ZExt: {
295    unsigned SrcBitSize =
296      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
297
298    // If extracting something that is completely zero, return 0.
299    if (ByteStart*8 >= SrcBitSize)
300      return Constant::getNullValue(IntegerType::get(CE->getContext(),
301                                                     ByteSize*8));
302
303    // If exactly extracting the input, return it.
304    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
305      return CE->getOperand(0);
306
307    // If extracting something completely in the input, if if the input is a
308    // multiple of 8 bits, recurse.
309    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
310      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
311
312    // Otherwise, if extracting a subset of the input, which is not multiple of
313    // 8 bits, do a shift and trunc to get the bits.
314    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
315      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
316      Constant *Res = CE->getOperand(0);
317      if (ByteStart)
318        Res = ConstantExpr::getLShr(Res,
319                                 ConstantInt::get(Res->getType(), ByteStart*8));
320      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
321                                                          ByteSize*8));
322    }
323
324    // TODO: Handle the 'partially zero' case.
325    return 0;
326  }
327  }
328}
329
330/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
331/// on Ty, with any known factors factored out. If Folded is false,
332/// return null if no factoring was possible, to avoid endlessly
333/// bouncing an unfoldable expression back into the top-level folder.
334///
335static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy,
336                                 bool Folded) {
337  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
338    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
339    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
340    return ConstantExpr::getNUWMul(E, N);
341  }
342
343  if (const StructType *STy = dyn_cast<StructType>(Ty))
344    if (!STy->isPacked()) {
345      unsigned NumElems = STy->getNumElements();
346      // An empty struct has size zero.
347      if (NumElems == 0)
348        return ConstantExpr::getNullValue(DestTy);
349      // Check for a struct with all members having the same size.
350      Constant *MemberSize =
351        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
352      bool AllSame = true;
353      for (unsigned i = 1; i != NumElems; ++i)
354        if (MemberSize !=
355            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
356          AllSame = false;
357          break;
358        }
359      if (AllSame) {
360        Constant *N = ConstantInt::get(DestTy, NumElems);
361        return ConstantExpr::getNUWMul(MemberSize, N);
362      }
363    }
364
365  // Pointer size doesn't depend on the pointee type, so canonicalize them
366  // to an arbitrary pointee.
367  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
368    if (!PTy->getElementType()->isIntegerTy(1))
369      return
370        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
371                                         PTy->getAddressSpace()),
372                        DestTy, true);
373
374  // If there's no interesting folding happening, bail so that we don't create
375  // a constant that looks like it needs folding but really doesn't.
376  if (!Folded)
377    return 0;
378
379  // Base case: Get a regular sizeof expression.
380  Constant *C = ConstantExpr::getSizeOf(Ty);
381  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
382                                                    DestTy, false),
383                            C, DestTy);
384  return C;
385}
386
387/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
388/// on Ty, with any known factors factored out. If Folded is false,
389/// return null if no factoring was possible, to avoid endlessly
390/// bouncing an unfoldable expression back into the top-level folder.
391///
392static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy,
393                                  bool Folded) {
394  // The alignment of an array is equal to the alignment of the
395  // array element. Note that this is not always true for vectors.
396  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
397    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
398    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
399                                                      DestTy,
400                                                      false),
401                              C, DestTy);
402    return C;
403  }
404
405  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
406    // Packed structs always have an alignment of 1.
407    if (STy->isPacked())
408      return ConstantInt::get(DestTy, 1);
409
410    // Otherwise, struct alignment is the maximum alignment of any member.
411    // Without target data, we can't compare much, but we can check to see
412    // if all the members have the same alignment.
413    unsigned NumElems = STy->getNumElements();
414    // An empty struct has minimal alignment.
415    if (NumElems == 0)
416      return ConstantInt::get(DestTy, 1);
417    // Check for a struct with all members having the same alignment.
418    Constant *MemberAlign =
419      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
420    bool AllSame = true;
421    for (unsigned i = 1; i != NumElems; ++i)
422      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
423        AllSame = false;
424        break;
425      }
426    if (AllSame)
427      return MemberAlign;
428  }
429
430  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
431  // to an arbitrary pointee.
432  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
433    if (!PTy->getElementType()->isIntegerTy(1))
434      return
435        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
436                                                           1),
437                                          PTy->getAddressSpace()),
438                         DestTy, true);
439
440  // If there's no interesting folding happening, bail so that we don't create
441  // a constant that looks like it needs folding but really doesn't.
442  if (!Folded)
443    return 0;
444
445  // Base case: Get a regular alignof expression.
446  Constant *C = ConstantExpr::getAlignOf(Ty);
447  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
448                                                    DestTy, false),
449                            C, DestTy);
450  return C;
451}
452
453/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
454/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
455/// return null if no factoring was possible, to avoid endlessly
456/// bouncing an unfoldable expression back into the top-level folder.
457///
458static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo,
459                                   const Type *DestTy,
460                                   bool Folded) {
461  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
462    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
463                                                                DestTy, false),
464                                        FieldNo, DestTy);
465    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
466    return ConstantExpr::getNUWMul(E, N);
467  }
468
469  if (const StructType *STy = dyn_cast<StructType>(Ty))
470    if (!STy->isPacked()) {
471      unsigned NumElems = STy->getNumElements();
472      // An empty struct has no members.
473      if (NumElems == 0)
474        return 0;
475      // Check for a struct with all members having the same size.
476      Constant *MemberSize =
477        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
478      bool AllSame = true;
479      for (unsigned i = 1; i != NumElems; ++i)
480        if (MemberSize !=
481            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
482          AllSame = false;
483          break;
484        }
485      if (AllSame) {
486        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
487                                                                    false,
488                                                                    DestTy,
489                                                                    false),
490                                            FieldNo, DestTy);
491        return ConstantExpr::getNUWMul(MemberSize, N);
492      }
493    }
494
495  // If there's no interesting folding happening, bail so that we don't create
496  // a constant that looks like it needs folding but really doesn't.
497  if (!Folded)
498    return 0;
499
500  // Base case: Get a regular offsetof expression.
501  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
502  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
503                                                    DestTy, false),
504                            C, DestTy);
505  return C;
506}
507
508Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
509                                            const Type *DestTy) {
510  if (isa<UndefValue>(V)) {
511    // zext(undef) = 0, because the top bits will be zero.
512    // sext(undef) = 0, because the top bits will all be the same.
513    // [us]itofp(undef) = 0, because the result value is bounded.
514    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
515        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
516      return Constant::getNullValue(DestTy);
517    return UndefValue::get(DestTy);
518  }
519
520  // No compile-time operations on this type yet.
521  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
522    return 0;
523
524  if (V->isNullValue() && !DestTy->isX86_MMXTy())
525    return Constant::getNullValue(DestTy);
526
527  // If the cast operand is a constant expression, there's a few things we can
528  // do to try to simplify it.
529  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
530    if (CE->isCast()) {
531      // Try hard to fold cast of cast because they are often eliminable.
532      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
533        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
534    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
535      // If all of the indexes in the GEP are null values, there is no pointer
536      // adjustment going on.  We might as well cast the source pointer.
537      bool isAllNull = true;
538      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
539        if (!CE->getOperand(i)->isNullValue()) {
540          isAllNull = false;
541          break;
542        }
543      if (isAllNull)
544        // This is casting one pointer type to another, always BitCast
545        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
546    }
547  }
548
549  // If the cast operand is a constant vector, perform the cast by
550  // operating on each element. In the cast of bitcasts, the element
551  // count may be mismatched; don't attempt to handle that here.
552  if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
553    if (DestTy->isVectorTy() &&
554        cast<VectorType>(DestTy)->getNumElements() ==
555        CV->getType()->getNumElements()) {
556      std::vector<Constant*> res;
557      const VectorType *DestVecTy = cast<VectorType>(DestTy);
558      const Type *DstEltTy = DestVecTy->getElementType();
559      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
560        res.push_back(ConstantExpr::getCast(opc,
561                                            CV->getOperand(i), DstEltTy));
562      return ConstantVector::get(res);
563    }
564
565  // We actually have to do a cast now. Perform the cast according to the
566  // opcode specified.
567  switch (opc) {
568  default:
569    llvm_unreachable("Failed to cast constant expression");
570  case Instruction::FPTrunc:
571  case Instruction::FPExt:
572    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
573      bool ignored;
574      APFloat Val = FPC->getValueAPF();
575      Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
576                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
577                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
578                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
579                  APFloat::Bogus,
580                  APFloat::rmNearestTiesToEven, &ignored);
581      return ConstantFP::get(V->getContext(), Val);
582    }
583    return 0; // Can't fold.
584  case Instruction::FPToUI:
585  case Instruction::FPToSI:
586    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
587      const APFloat &V = FPC->getValueAPF();
588      bool ignored;
589      uint64_t x[2];
590      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
591      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
592                                APFloat::rmTowardZero, &ignored);
593      APInt Val(DestBitWidth, 2, x);
594      return ConstantInt::get(FPC->getContext(), Val);
595    }
596    return 0; // Can't fold.
597  case Instruction::IntToPtr:   //always treated as unsigned
598    if (V->isNullValue())       // Is it an integral null value?
599      return ConstantPointerNull::get(cast<PointerType>(DestTy));
600    return 0;                   // Other pointer types cannot be casted
601  case Instruction::PtrToInt:   // always treated as unsigned
602    // Is it a null pointer value?
603    if (V->isNullValue())
604      return ConstantInt::get(DestTy, 0);
605    // If this is a sizeof-like expression, pull out multiplications by
606    // known factors to expose them to subsequent folding. If it's an
607    // alignof-like expression, factor out known factors.
608    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
609      if (CE->getOpcode() == Instruction::GetElementPtr &&
610          CE->getOperand(0)->isNullValue()) {
611        const Type *Ty =
612          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
613        if (CE->getNumOperands() == 2) {
614          // Handle a sizeof-like expression.
615          Constant *Idx = CE->getOperand(1);
616          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
617          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
618            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
619                                                                DestTy, false),
620                                        Idx, DestTy);
621            return ConstantExpr::getMul(C, Idx);
622          }
623        } else if (CE->getNumOperands() == 3 &&
624                   CE->getOperand(1)->isNullValue()) {
625          // Handle an alignof-like expression.
626          if (const StructType *STy = dyn_cast<StructType>(Ty))
627            if (!STy->isPacked()) {
628              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
629              if (CI->isOne() &&
630                  STy->getNumElements() == 2 &&
631                  STy->getElementType(0)->isIntegerTy(1)) {
632                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
633              }
634            }
635          // Handle an offsetof-like expression.
636          if (Ty->isStructTy() || Ty->isArrayTy()) {
637            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
638                                                DestTy, false))
639              return C;
640          }
641        }
642      }
643    // Other pointer types cannot be casted
644    return 0;
645  case Instruction::UIToFP:
646  case Instruction::SIToFP:
647    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
648      APInt api = CI->getValue();
649      APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()), true);
650      (void)apf.convertFromAPInt(api,
651                                 opc==Instruction::SIToFP,
652                                 APFloat::rmNearestTiesToEven);
653      return ConstantFP::get(V->getContext(), apf);
654    }
655    return 0;
656  case Instruction::ZExt:
657    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
658      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
659      return ConstantInt::get(V->getContext(),
660                              CI->getValue().zext(BitWidth));
661    }
662    return 0;
663  case Instruction::SExt:
664    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
665      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
666      return ConstantInt::get(V->getContext(),
667                              CI->getValue().sext(BitWidth));
668    }
669    return 0;
670  case Instruction::Trunc: {
671    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
672    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
673      return ConstantInt::get(V->getContext(),
674                              CI->getValue().trunc(DestBitWidth));
675    }
676
677    // The input must be a constantexpr.  See if we can simplify this based on
678    // the bytes we are demanding.  Only do this if the source and dest are an
679    // even multiple of a byte.
680    if ((DestBitWidth & 7) == 0 &&
681        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
682      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
683        return Res;
684
685    return 0;
686  }
687  case Instruction::BitCast:
688    return FoldBitCast(V, DestTy);
689  }
690}
691
692Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
693                                              Constant *V1, Constant *V2) {
694  if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
695    return CB->getZExtValue() ? V1 : V2;
696
697  // Check for zero aggregate and ConstantVector of zeros
698  if (Cond->isNullValue()) return V2;
699
700  if (ConstantVector* CondV = dyn_cast<ConstantVector>(Cond)) {
701
702    if (CondV->isAllOnesValue()) return V1;
703
704    const VectorType *VTy = cast<VectorType>(V1->getType());
705    ConstantVector *CP1 = dyn_cast<ConstantVector>(V1);
706    ConstantVector *CP2 = dyn_cast<ConstantVector>(V2);
707
708    if ((CP1 || isa<ConstantAggregateZero>(V1)) &&
709        (CP2 || isa<ConstantAggregateZero>(V2))) {
710
711      // Find the element type of the returned vector
712      const Type *EltTy = VTy->getElementType();
713      unsigned NumElem = VTy->getNumElements();
714      std::vector<Constant*> Res(NumElem);
715
716      bool Valid = true;
717      for (unsigned i = 0; i < NumElem; ++i) {
718        ConstantInt* c = dyn_cast<ConstantInt>(CondV->getOperand(i));
719        if (!c) {
720          Valid = false;
721          break;
722        }
723        Constant *C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
724        Constant *C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
725        Res[i] = c->getZExtValue() ? C1 : C2;
726      }
727      // If we were able to build the vector, return it
728      if (Valid) return ConstantVector::get(Res);
729    }
730  }
731
732
733  if (isa<UndefValue>(Cond)) {
734    if (isa<UndefValue>(V1)) return V1;
735    return V2;
736  }
737  if (isa<UndefValue>(V1)) return V2;
738  if (isa<UndefValue>(V2)) return V1;
739  if (V1 == V2) return V1;
740
741  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
742    if (TrueVal->getOpcode() == Instruction::Select)
743      if (TrueVal->getOperand(0) == Cond)
744	return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
745  }
746  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
747    if (FalseVal->getOpcode() == Instruction::Select)
748      if (FalseVal->getOperand(0) == Cond)
749	return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
750  }
751
752  return 0;
753}
754
755Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
756                                                      Constant *Idx) {
757  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
758    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
759  if (Val->isNullValue())  // ee(zero, x) -> zero
760    return Constant::getNullValue(
761                          cast<VectorType>(Val->getType())->getElementType());
762
763  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
764    if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
765      return CVal->getOperand(CIdx->getZExtValue());
766    } else if (isa<UndefValue>(Idx)) {
767      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
768      return CVal->getOperand(0);
769    }
770  }
771  return 0;
772}
773
774Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
775                                                     Constant *Elt,
776                                                     Constant *Idx) {
777  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
778  if (!CIdx) return 0;
779  APInt idxVal = CIdx->getValue();
780  if (isa<UndefValue>(Val)) {
781    // Insertion of scalar constant into vector undef
782    // Optimize away insertion of undef
783    if (isa<UndefValue>(Elt))
784      return Val;
785    // Otherwise break the aggregate undef into multiple undefs and do
786    // the insertion
787    unsigned numOps =
788      cast<VectorType>(Val->getType())->getNumElements();
789    std::vector<Constant*> Ops;
790    Ops.reserve(numOps);
791    for (unsigned i = 0; i < numOps; ++i) {
792      Constant *Op =
793        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
794      Ops.push_back(Op);
795    }
796    return ConstantVector::get(Ops);
797  }
798  if (isa<ConstantAggregateZero>(Val)) {
799    // Insertion of scalar constant into vector aggregate zero
800    // Optimize away insertion of zero
801    if (Elt->isNullValue())
802      return Val;
803    // Otherwise break the aggregate zero into multiple zeros and do
804    // the insertion
805    unsigned numOps =
806      cast<VectorType>(Val->getType())->getNumElements();
807    std::vector<Constant*> Ops;
808    Ops.reserve(numOps);
809    for (unsigned i = 0; i < numOps; ++i) {
810      Constant *Op =
811        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
812      Ops.push_back(Op);
813    }
814    return ConstantVector::get(Ops);
815  }
816  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
817    // Insertion of scalar constant into vector constant
818    std::vector<Constant*> Ops;
819    Ops.reserve(CVal->getNumOperands());
820    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
821      Constant *Op =
822        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
823      Ops.push_back(Op);
824    }
825    return ConstantVector::get(Ops);
826  }
827
828  return 0;
829}
830
831/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
832/// return the specified element value.  Otherwise return null.
833static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
834  if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
835    return CV->getOperand(EltNo);
836
837  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
838  if (isa<ConstantAggregateZero>(C))
839    return Constant::getNullValue(EltTy);
840  if (isa<UndefValue>(C))
841    return UndefValue::get(EltTy);
842  return 0;
843}
844
845Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
846                                                     Constant *V2,
847                                                     Constant *Mask) {
848  // Undefined shuffle mask -> undefined value.
849  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
850
851  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
852  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
853  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
854
855  // Loop over the shuffle mask, evaluating each element.
856  SmallVector<Constant*, 32> Result;
857  for (unsigned i = 0; i != MaskNumElts; ++i) {
858    Constant *InElt = GetVectorElement(Mask, i);
859    if (InElt == 0) return 0;
860
861    if (isa<UndefValue>(InElt))
862      InElt = UndefValue::get(EltTy);
863    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
864      unsigned Elt = CI->getZExtValue();
865      if (Elt >= SrcNumElts*2)
866        InElt = UndefValue::get(EltTy);
867      else if (Elt >= SrcNumElts)
868        InElt = GetVectorElement(V2, Elt - SrcNumElts);
869      else
870        InElt = GetVectorElement(V1, Elt);
871      if (InElt == 0) return 0;
872    } else {
873      // Unknown value.
874      return 0;
875    }
876    Result.push_back(InElt);
877  }
878
879  return ConstantVector::get(Result);
880}
881
882Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
883                                                    ArrayRef<unsigned> Idxs) {
884  // Base case: no indices, so return the entire value.
885  if (Idxs.empty())
886    return Agg;
887
888  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
889    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
890                                                            Idxs));
891
892  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
893    return
894      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
895                                                              Idxs));
896
897  // Otherwise recurse.
898  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
899    return ConstantFoldExtractValueInstruction(CS->getOperand(Idxs[0]),
900                                               Idxs.slice(1));
901
902  if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
903    return ConstantFoldExtractValueInstruction(CA->getOperand(Idxs[0]),
904                                               Idxs.slice(1));
905  ConstantVector *CV = cast<ConstantVector>(Agg);
906  return ConstantFoldExtractValueInstruction(CV->getOperand(Idxs[0]),
907                                             Idxs.slice(1));
908}
909
910Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
911                                                   Constant *Val,
912                                                   ArrayRef<unsigned> Idxs) {
913  // Base case: no indices, so replace the entire value.
914  if (Idxs.empty())
915    return Val;
916
917  if (isa<UndefValue>(Agg)) {
918    // Insertion of constant into aggregate undef
919    // Optimize away insertion of undef.
920    if (isa<UndefValue>(Val))
921      return Agg;
922
923    // Otherwise break the aggregate undef into multiple undefs and do
924    // the insertion.
925    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
926    unsigned numOps;
927    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
928      numOps = AR->getNumElements();
929    else
930      numOps = cast<StructType>(AggTy)->getNumElements();
931
932    std::vector<Constant*> Ops(numOps);
933    for (unsigned i = 0; i < numOps; ++i) {
934      const Type *MemberTy = AggTy->getTypeAtIndex(i);
935      Constant *Op =
936        (Idxs[0] == i) ?
937        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
938                                           Val, Idxs.slice(1)) :
939        UndefValue::get(MemberTy);
940      Ops[i] = Op;
941    }
942
943    if (const StructType* ST = dyn_cast<StructType>(AggTy))
944      return ConstantStruct::get(ST, Ops);
945    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
946  }
947
948  if (isa<ConstantAggregateZero>(Agg)) {
949    // Insertion of constant into aggregate zero
950    // Optimize away insertion of zero.
951    if (Val->isNullValue())
952      return Agg;
953
954    // Otherwise break the aggregate zero into multiple zeros and do
955    // the insertion.
956    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
957    unsigned numOps;
958    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
959      numOps = AR->getNumElements();
960    else
961      numOps = cast<StructType>(AggTy)->getNumElements();
962
963    std::vector<Constant*> Ops(numOps);
964    for (unsigned i = 0; i < numOps; ++i) {
965      const Type *MemberTy = AggTy->getTypeAtIndex(i);
966      Constant *Op =
967        (Idxs[0] == i) ?
968        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
969                                           Val, Idxs.slice(1)) :
970        Constant::getNullValue(MemberTy);
971      Ops[i] = Op;
972    }
973
974    if (const StructType *ST = dyn_cast<StructType>(AggTy))
975      return ConstantStruct::get(ST, Ops);
976    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
977  }
978
979  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
980    // Insertion of constant into aggregate constant.
981    std::vector<Constant*> Ops(Agg->getNumOperands());
982    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
983      Constant *Op = cast<Constant>(Agg->getOperand(i));
984      if (Idxs[0] == i)
985        Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs.slice(1));
986      Ops[i] = Op;
987    }
988
989    if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
990      return ConstantStruct::get(ST, Ops);
991    return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
992  }
993
994  return 0;
995}
996
997
998Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
999                                              Constant *C1, Constant *C2) {
1000  // No compile-time operations on this type yet.
1001  if (C1->getType()->isPPC_FP128Ty())
1002    return 0;
1003
1004  // Handle UndefValue up front.
1005  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1006    switch (Opcode) {
1007    case Instruction::Xor:
1008      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1009        // Handle undef ^ undef -> 0 special case. This is a common
1010        // idiom (misuse).
1011        return Constant::getNullValue(C1->getType());
1012      // Fallthrough
1013    case Instruction::Add:
1014    case Instruction::Sub:
1015      return UndefValue::get(C1->getType());
1016    case Instruction::And:
1017      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
1018        return C1;
1019      return Constant::getNullValue(C1->getType());   // undef & X -> 0
1020    case Instruction::Mul: {
1021      ConstantInt *CI;
1022      // X * undef -> undef   if X is odd or undef
1023      if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
1024          ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
1025          (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1026        return UndefValue::get(C1->getType());
1027
1028      // X * undef -> 0       otherwise
1029      return Constant::getNullValue(C1->getType());
1030    }
1031    case Instruction::UDiv:
1032    case Instruction::SDiv:
1033      // undef / 1 -> undef
1034      if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
1035        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
1036          if (CI2->isOne())
1037            return C1;
1038      // FALL THROUGH
1039    case Instruction::URem:
1040    case Instruction::SRem:
1041      if (!isa<UndefValue>(C2))                    // undef / X -> 0
1042        return Constant::getNullValue(C1->getType());
1043      return C2;                                   // X / undef -> undef
1044    case Instruction::Or:                          // X | undef -> -1
1045      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1046        return C1;
1047      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1048    case Instruction::LShr:
1049      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1050        return C1;                                  // undef lshr undef -> undef
1051      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
1052                                                    // undef lshr X -> 0
1053    case Instruction::AShr:
1054      if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
1055        return Constant::getAllOnesValue(C1->getType());
1056      else if (isa<UndefValue>(C1))
1057        return C1;                                  // undef ashr undef -> undef
1058      else
1059        return C1;                                  // X ashr undef --> X
1060    case Instruction::Shl:
1061      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1062        return C1;                                  // undef shl undef -> undef
1063      // undef << X -> 0   or   X << undef -> 0
1064      return Constant::getNullValue(C1->getType());
1065    }
1066  }
1067
1068  // Handle simplifications when the RHS is a constant int.
1069  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1070    switch (Opcode) {
1071    case Instruction::Add:
1072      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1073      break;
1074    case Instruction::Sub:
1075      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1076      break;
1077    case Instruction::Mul:
1078      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1079      if (CI2->equalsInt(1))
1080        return C1;                                              // X * 1 == X
1081      break;
1082    case Instruction::UDiv:
1083    case Instruction::SDiv:
1084      if (CI2->equalsInt(1))
1085        return C1;                                            // X / 1 == X
1086      if (CI2->equalsInt(0))
1087        return UndefValue::get(CI2->getType());               // X / 0 == undef
1088      break;
1089    case Instruction::URem:
1090    case Instruction::SRem:
1091      if (CI2->equalsInt(1))
1092        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1093      if (CI2->equalsInt(0))
1094        return UndefValue::get(CI2->getType());               // X % 0 == undef
1095      break;
1096    case Instruction::And:
1097      if (CI2->isZero()) return C2;                           // X & 0 == 0
1098      if (CI2->isAllOnesValue())
1099        return C1;                                            // X & -1 == X
1100
1101      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1102        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1103        if (CE1->getOpcode() == Instruction::ZExt) {
1104          unsigned DstWidth = CI2->getType()->getBitWidth();
1105          unsigned SrcWidth =
1106            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1107          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1108          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1109            return C1;
1110        }
1111
1112        // If and'ing the address of a global with a constant, fold it.
1113        if (CE1->getOpcode() == Instruction::PtrToInt &&
1114            isa<GlobalValue>(CE1->getOperand(0))) {
1115          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1116
1117          // Functions are at least 4-byte aligned.
1118          unsigned GVAlign = GV->getAlignment();
1119          if (isa<Function>(GV))
1120            GVAlign = std::max(GVAlign, 4U);
1121
1122          if (GVAlign > 1) {
1123            unsigned DstWidth = CI2->getType()->getBitWidth();
1124            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1125            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1126
1127            // If checking bits we know are clear, return zero.
1128            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1129              return Constant::getNullValue(CI2->getType());
1130          }
1131        }
1132      }
1133      break;
1134    case Instruction::Or:
1135      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1136      if (CI2->isAllOnesValue())
1137        return C2;                         // X | -1 == -1
1138      break;
1139    case Instruction::Xor:
1140      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1141
1142      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1143        switch (CE1->getOpcode()) {
1144        default: break;
1145        case Instruction::ICmp:
1146        case Instruction::FCmp:
1147          // cmp pred ^ true -> cmp !pred
1148          assert(CI2->equalsInt(1));
1149          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1150          pred = CmpInst::getInversePredicate(pred);
1151          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1152                                          CE1->getOperand(1));
1153        }
1154      }
1155      break;
1156    case Instruction::AShr:
1157      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1158      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1159        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1160          return ConstantExpr::getLShr(C1, C2);
1161      break;
1162    }
1163  } else if (isa<ConstantInt>(C1)) {
1164    // If C1 is a ConstantInt and C2 is not, swap the operands.
1165    if (Instruction::isCommutative(Opcode))
1166      return ConstantExpr::get(Opcode, C2, C1);
1167  }
1168
1169  // At this point we know neither constant is an UndefValue.
1170  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1171    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1172      using namespace APIntOps;
1173      const APInt &C1V = CI1->getValue();
1174      const APInt &C2V = CI2->getValue();
1175      switch (Opcode) {
1176      default:
1177        break;
1178      case Instruction::Add:
1179        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1180      case Instruction::Sub:
1181        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1182      case Instruction::Mul:
1183        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1184      case Instruction::UDiv:
1185        assert(!CI2->isNullValue() && "Div by zero handled above");
1186        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1187      case Instruction::SDiv:
1188        assert(!CI2->isNullValue() && "Div by zero handled above");
1189        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1190          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1191        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1192      case Instruction::URem:
1193        assert(!CI2->isNullValue() && "Div by zero handled above");
1194        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1195      case Instruction::SRem:
1196        assert(!CI2->isNullValue() && "Div by zero handled above");
1197        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1198          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1199        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1200      case Instruction::And:
1201        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1202      case Instruction::Or:
1203        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1204      case Instruction::Xor:
1205        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1206      case Instruction::Shl: {
1207        uint32_t shiftAmt = C2V.getZExtValue();
1208        if (shiftAmt < C1V.getBitWidth())
1209          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1210        else
1211          return UndefValue::get(C1->getType()); // too big shift is undef
1212      }
1213      case Instruction::LShr: {
1214        uint32_t shiftAmt = C2V.getZExtValue();
1215        if (shiftAmt < C1V.getBitWidth())
1216          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1217        else
1218          return UndefValue::get(C1->getType()); // too big shift is undef
1219      }
1220      case Instruction::AShr: {
1221        uint32_t shiftAmt = C2V.getZExtValue();
1222        if (shiftAmt < C1V.getBitWidth())
1223          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1224        else
1225          return UndefValue::get(C1->getType()); // too big shift is undef
1226      }
1227      }
1228    }
1229
1230    switch (Opcode) {
1231    case Instruction::SDiv:
1232    case Instruction::UDiv:
1233    case Instruction::URem:
1234    case Instruction::SRem:
1235    case Instruction::LShr:
1236    case Instruction::AShr:
1237    case Instruction::Shl:
1238      if (CI1->equalsInt(0)) return C1;
1239      break;
1240    default:
1241      break;
1242    }
1243  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1244    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1245      APFloat C1V = CFP1->getValueAPF();
1246      APFloat C2V = CFP2->getValueAPF();
1247      APFloat C3V = C1V;  // copy for modification
1248      switch (Opcode) {
1249      default:
1250        break;
1251      case Instruction::FAdd:
1252        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1253        return ConstantFP::get(C1->getContext(), C3V);
1254      case Instruction::FSub:
1255        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1256        return ConstantFP::get(C1->getContext(), C3V);
1257      case Instruction::FMul:
1258        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1259        return ConstantFP::get(C1->getContext(), C3V);
1260      case Instruction::FDiv:
1261        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1262        return ConstantFP::get(C1->getContext(), C3V);
1263      case Instruction::FRem:
1264        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1265        return ConstantFP::get(C1->getContext(), C3V);
1266      }
1267    }
1268  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1269    ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1270    ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1271    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1272        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1273      std::vector<Constant*> Res;
1274      const Type* EltTy = VTy->getElementType();
1275      Constant *C1 = 0;
1276      Constant *C2 = 0;
1277      switch (Opcode) {
1278      default:
1279        break;
1280      case Instruction::Add:
1281        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1282          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1283          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1284          Res.push_back(ConstantExpr::getAdd(C1, C2));
1285        }
1286        return ConstantVector::get(Res);
1287      case Instruction::FAdd:
1288        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1289          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1290          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1291          Res.push_back(ConstantExpr::getFAdd(C1, C2));
1292        }
1293        return ConstantVector::get(Res);
1294      case Instruction::Sub:
1295        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1296          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1297          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1298          Res.push_back(ConstantExpr::getSub(C1, C2));
1299        }
1300        return ConstantVector::get(Res);
1301      case Instruction::FSub:
1302        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1303          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1304          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1305          Res.push_back(ConstantExpr::getFSub(C1, C2));
1306        }
1307        return ConstantVector::get(Res);
1308      case Instruction::Mul:
1309        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1310          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1311          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1312          Res.push_back(ConstantExpr::getMul(C1, C2));
1313        }
1314        return ConstantVector::get(Res);
1315      case Instruction::FMul:
1316        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1317          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1318          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1319          Res.push_back(ConstantExpr::getFMul(C1, C2));
1320        }
1321        return ConstantVector::get(Res);
1322      case Instruction::UDiv:
1323        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1324          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1325          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1326          Res.push_back(ConstantExpr::getUDiv(C1, C2));
1327        }
1328        return ConstantVector::get(Res);
1329      case Instruction::SDiv:
1330        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1331          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1332          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1333          Res.push_back(ConstantExpr::getSDiv(C1, C2));
1334        }
1335        return ConstantVector::get(Res);
1336      case Instruction::FDiv:
1337        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1338          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1339          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1340          Res.push_back(ConstantExpr::getFDiv(C1, C2));
1341        }
1342        return ConstantVector::get(Res);
1343      case Instruction::URem:
1344        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1345          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1346          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1347          Res.push_back(ConstantExpr::getURem(C1, C2));
1348        }
1349        return ConstantVector::get(Res);
1350      case Instruction::SRem:
1351        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1352          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1353          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1354          Res.push_back(ConstantExpr::getSRem(C1, C2));
1355        }
1356        return ConstantVector::get(Res);
1357      case Instruction::FRem:
1358        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1359          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1360          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1361          Res.push_back(ConstantExpr::getFRem(C1, C2));
1362        }
1363        return ConstantVector::get(Res);
1364      case Instruction::And:
1365        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1366          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1367          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1368          Res.push_back(ConstantExpr::getAnd(C1, C2));
1369        }
1370        return ConstantVector::get(Res);
1371      case Instruction::Or:
1372        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1373          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1374          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1375          Res.push_back(ConstantExpr::getOr(C1, C2));
1376        }
1377        return ConstantVector::get(Res);
1378      case Instruction::Xor:
1379        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1380          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1381          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1382          Res.push_back(ConstantExpr::getXor(C1, C2));
1383        }
1384        return ConstantVector::get(Res);
1385      case Instruction::LShr:
1386        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1387          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1388          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1389          Res.push_back(ConstantExpr::getLShr(C1, C2));
1390        }
1391        return ConstantVector::get(Res);
1392      case Instruction::AShr:
1393        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1394          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1395          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1396          Res.push_back(ConstantExpr::getAShr(C1, C2));
1397        }
1398        return ConstantVector::get(Res);
1399      case Instruction::Shl:
1400        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1401          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1402          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1403          Res.push_back(ConstantExpr::getShl(C1, C2));
1404        }
1405        return ConstantVector::get(Res);
1406      }
1407    }
1408  }
1409
1410  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1411    // There are many possible foldings we could do here.  We should probably
1412    // at least fold add of a pointer with an integer into the appropriate
1413    // getelementptr.  This will improve alias analysis a bit.
1414
1415    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1416    // (a + (b + c)).
1417    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1418      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1419      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1420        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1421    }
1422  } else if (isa<ConstantExpr>(C2)) {
1423    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1424    // other way if possible.
1425    if (Instruction::isCommutative(Opcode))
1426      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1427  }
1428
1429  // i1 can be simplified in many cases.
1430  if (C1->getType()->isIntegerTy(1)) {
1431    switch (Opcode) {
1432    case Instruction::Add:
1433    case Instruction::Sub:
1434      return ConstantExpr::getXor(C1, C2);
1435    case Instruction::Mul:
1436      return ConstantExpr::getAnd(C1, C2);
1437    case Instruction::Shl:
1438    case Instruction::LShr:
1439    case Instruction::AShr:
1440      // We can assume that C2 == 0.  If it were one the result would be
1441      // undefined because the shift value is as large as the bitwidth.
1442      return C1;
1443    case Instruction::SDiv:
1444    case Instruction::UDiv:
1445      // We can assume that C2 == 1.  If it were zero the result would be
1446      // undefined through division by zero.
1447      return C1;
1448    case Instruction::URem:
1449    case Instruction::SRem:
1450      // We can assume that C2 == 1.  If it were zero the result would be
1451      // undefined through division by zero.
1452      return ConstantInt::getFalse(C1->getContext());
1453    default:
1454      break;
1455    }
1456  }
1457
1458  // We don't know how to fold this.
1459  return 0;
1460}
1461
1462/// isZeroSizedType - This type is zero sized if its an array or structure of
1463/// zero sized types.  The only leaf zero sized type is an empty structure.
1464static bool isMaybeZeroSizedType(const Type *Ty) {
1465  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1466    if (STy->isOpaque()) return true;  // Can't say.
1467
1468    // If all of elements have zero size, this does too.
1469    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1470      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1471    return true;
1472
1473  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1474    return isMaybeZeroSizedType(ATy->getElementType());
1475  }
1476  return false;
1477}
1478
1479/// IdxCompare - Compare the two constants as though they were getelementptr
1480/// indices.  This allows coersion of the types to be the same thing.
1481///
1482/// If the two constants are the "same" (after coersion), return 0.  If the
1483/// first is less than the second, return -1, if the second is less than the
1484/// first, return 1.  If the constants are not integral, return -2.
1485///
1486static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
1487  if (C1 == C2) return 0;
1488
1489  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1490  // anything with them.
1491  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1492    return -2; // don't know!
1493
1494  // Ok, we have two differing integer indices.  Sign extend them to be the same
1495  // type.  Long is always big enough, so we use it.
1496  if (!C1->getType()->isIntegerTy(64))
1497    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1498
1499  if (!C2->getType()->isIntegerTy(64))
1500    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1501
1502  if (C1 == C2) return 0;  // They are equal
1503
1504  // If the type being indexed over is really just a zero sized type, there is
1505  // no pointer difference being made here.
1506  if (isMaybeZeroSizedType(ElTy))
1507    return -2; // dunno.
1508
1509  // If they are really different, now that they are the same type, then we
1510  // found a difference!
1511  if (cast<ConstantInt>(C1)->getSExtValue() <
1512      cast<ConstantInt>(C2)->getSExtValue())
1513    return -1;
1514  else
1515    return 1;
1516}
1517
1518/// evaluateFCmpRelation - This function determines if there is anything we can
1519/// decide about the two constants provided.  This doesn't need to handle simple
1520/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1521/// If we can determine that the two constants have a particular relation to
1522/// each other, we should return the corresponding FCmpInst predicate,
1523/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1524/// ConstantFoldCompareInstruction.
1525///
1526/// To simplify this code we canonicalize the relation so that the first
1527/// operand is always the most "complex" of the two.  We consider ConstantFP
1528/// to be the simplest, and ConstantExprs to be the most complex.
1529static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1530  assert(V1->getType() == V2->getType() &&
1531         "Cannot compare values of different types!");
1532
1533  // No compile-time operations on this type yet.
1534  if (V1->getType()->isPPC_FP128Ty())
1535    return FCmpInst::BAD_FCMP_PREDICATE;
1536
1537  // Handle degenerate case quickly
1538  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1539
1540  if (!isa<ConstantExpr>(V1)) {
1541    if (!isa<ConstantExpr>(V2)) {
1542      // We distilled thisUse the standard constant folder for a few cases
1543      ConstantInt *R = 0;
1544      R = dyn_cast<ConstantInt>(
1545                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1546      if (R && !R->isZero())
1547        return FCmpInst::FCMP_OEQ;
1548      R = dyn_cast<ConstantInt>(
1549                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1550      if (R && !R->isZero())
1551        return FCmpInst::FCMP_OLT;
1552      R = dyn_cast<ConstantInt>(
1553                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1554      if (R && !R->isZero())
1555        return FCmpInst::FCMP_OGT;
1556
1557      // Nothing more we can do
1558      return FCmpInst::BAD_FCMP_PREDICATE;
1559    }
1560
1561    // If the first operand is simple and second is ConstantExpr, swap operands.
1562    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1563    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1564      return FCmpInst::getSwappedPredicate(SwappedRelation);
1565  } else {
1566    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1567    // constantexpr or a simple constant.
1568    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1569    switch (CE1->getOpcode()) {
1570    case Instruction::FPTrunc:
1571    case Instruction::FPExt:
1572    case Instruction::UIToFP:
1573    case Instruction::SIToFP:
1574      // We might be able to do something with these but we don't right now.
1575      break;
1576    default:
1577      break;
1578    }
1579  }
1580  // There are MANY other foldings that we could perform here.  They will
1581  // probably be added on demand, as they seem needed.
1582  return FCmpInst::BAD_FCMP_PREDICATE;
1583}
1584
1585/// evaluateICmpRelation - This function determines if there is anything we can
1586/// decide about the two constants provided.  This doesn't need to handle simple
1587/// things like integer comparisons, but should instead handle ConstantExprs
1588/// and GlobalValues.  If we can determine that the two constants have a
1589/// particular relation to each other, we should return the corresponding ICmp
1590/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1591///
1592/// To simplify this code we canonicalize the relation so that the first
1593/// operand is always the most "complex" of the two.  We consider simple
1594/// constants (like ConstantInt) to be the simplest, followed by
1595/// GlobalValues, followed by ConstantExpr's (the most complex).
1596///
1597static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1598                                                bool isSigned) {
1599  assert(V1->getType() == V2->getType() &&
1600         "Cannot compare different types of values!");
1601  if (V1 == V2) return ICmpInst::ICMP_EQ;
1602
1603  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1604      !isa<BlockAddress>(V1)) {
1605    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1606        !isa<BlockAddress>(V2)) {
1607      // We distilled this down to a simple case, use the standard constant
1608      // folder.
1609      ConstantInt *R = 0;
1610      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1611      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1612      if (R && !R->isZero())
1613        return pred;
1614      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1615      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1616      if (R && !R->isZero())
1617        return pred;
1618      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1619      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1620      if (R && !R->isZero())
1621        return pred;
1622
1623      // If we couldn't figure it out, bail.
1624      return ICmpInst::BAD_ICMP_PREDICATE;
1625    }
1626
1627    // If the first operand is simple, swap operands.
1628    ICmpInst::Predicate SwappedRelation =
1629      evaluateICmpRelation(V2, V1, isSigned);
1630    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1631      return ICmpInst::getSwappedPredicate(SwappedRelation);
1632
1633  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1634    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1635      ICmpInst::Predicate SwappedRelation =
1636        evaluateICmpRelation(V2, V1, isSigned);
1637      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1638        return ICmpInst::getSwappedPredicate(SwappedRelation);
1639      return ICmpInst::BAD_ICMP_PREDICATE;
1640    }
1641
1642    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1643    // constant (which, since the types must match, means that it's a
1644    // ConstantPointerNull).
1645    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1646      // Don't try to decide equality of aliases.
1647      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1648        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1649          return ICmpInst::ICMP_NE;
1650    } else if (isa<BlockAddress>(V2)) {
1651      return ICmpInst::ICMP_NE; // Globals never equal labels.
1652    } else {
1653      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1654      // GlobalVals can never be null unless they have external weak linkage.
1655      // We don't try to evaluate aliases here.
1656      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1657        return ICmpInst::ICMP_NE;
1658    }
1659  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1660    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1661      ICmpInst::Predicate SwappedRelation =
1662        evaluateICmpRelation(V2, V1, isSigned);
1663      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1664        return ICmpInst::getSwappedPredicate(SwappedRelation);
1665      return ICmpInst::BAD_ICMP_PREDICATE;
1666    }
1667
1668    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1669    // constant (which, since the types must match, means that it is a
1670    // ConstantPointerNull).
1671    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1672      // Block address in another function can't equal this one, but block
1673      // addresses in the current function might be the same if blocks are
1674      // empty.
1675      if (BA2->getFunction() != BA->getFunction())
1676        return ICmpInst::ICMP_NE;
1677    } else {
1678      // Block addresses aren't null, don't equal the address of globals.
1679      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1680             "Canonicalization guarantee!");
1681      return ICmpInst::ICMP_NE;
1682    }
1683  } else {
1684    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1685    // constantexpr, a global, block address, or a simple constant.
1686    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1687    Constant *CE1Op0 = CE1->getOperand(0);
1688
1689    switch (CE1->getOpcode()) {
1690    case Instruction::Trunc:
1691    case Instruction::FPTrunc:
1692    case Instruction::FPExt:
1693    case Instruction::FPToUI:
1694    case Instruction::FPToSI:
1695      break; // We can't evaluate floating point casts or truncations.
1696
1697    case Instruction::UIToFP:
1698    case Instruction::SIToFP:
1699    case Instruction::BitCast:
1700    case Instruction::ZExt:
1701    case Instruction::SExt:
1702      // If the cast is not actually changing bits, and the second operand is a
1703      // null pointer, do the comparison with the pre-casted value.
1704      if (V2->isNullValue() &&
1705          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1706        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1707        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1708        return evaluateICmpRelation(CE1Op0,
1709                                    Constant::getNullValue(CE1Op0->getType()),
1710                                    isSigned);
1711      }
1712      break;
1713
1714    case Instruction::GetElementPtr:
1715      // Ok, since this is a getelementptr, we know that the constant has a
1716      // pointer type.  Check the various cases.
1717      if (isa<ConstantPointerNull>(V2)) {
1718        // If we are comparing a GEP to a null pointer, check to see if the base
1719        // of the GEP equals the null pointer.
1720        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1721          if (GV->hasExternalWeakLinkage())
1722            // Weak linkage GVals could be zero or not. We're comparing that
1723            // to null pointer so its greater-or-equal
1724            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1725          else
1726            // If its not weak linkage, the GVal must have a non-zero address
1727            // so the result is greater-than
1728            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1729        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1730          // If we are indexing from a null pointer, check to see if we have any
1731          // non-zero indices.
1732          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1733            if (!CE1->getOperand(i)->isNullValue())
1734              // Offsetting from null, must not be equal.
1735              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1736          // Only zero indexes from null, must still be zero.
1737          return ICmpInst::ICMP_EQ;
1738        }
1739        // Otherwise, we can't really say if the first operand is null or not.
1740      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1741        if (isa<ConstantPointerNull>(CE1Op0)) {
1742          if (GV2->hasExternalWeakLinkage())
1743            // Weak linkage GVals could be zero or not. We're comparing it to
1744            // a null pointer, so its less-or-equal
1745            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1746          else
1747            // If its not weak linkage, the GVal must have a non-zero address
1748            // so the result is less-than
1749            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1750        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1751          if (GV == GV2) {
1752            // If this is a getelementptr of the same global, then it must be
1753            // different.  Because the types must match, the getelementptr could
1754            // only have at most one index, and because we fold getelementptr's
1755            // with a single zero index, it must be nonzero.
1756            assert(CE1->getNumOperands() == 2 &&
1757                   !CE1->getOperand(1)->isNullValue() &&
1758                   "Surprising getelementptr!");
1759            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1760          } else {
1761            // If they are different globals, we don't know what the value is,
1762            // but they can't be equal.
1763            return ICmpInst::ICMP_NE;
1764          }
1765        }
1766      } else {
1767        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1768        Constant *CE2Op0 = CE2->getOperand(0);
1769
1770        // There are MANY other foldings that we could perform here.  They will
1771        // probably be added on demand, as they seem needed.
1772        switch (CE2->getOpcode()) {
1773        default: break;
1774        case Instruction::GetElementPtr:
1775          // By far the most common case to handle is when the base pointers are
1776          // obviously to the same or different globals.
1777          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1778            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1779              return ICmpInst::ICMP_NE;
1780            // Ok, we know that both getelementptr instructions are based on the
1781            // same global.  From this, we can precisely determine the relative
1782            // ordering of the resultant pointers.
1783            unsigned i = 1;
1784
1785            // The logic below assumes that the result of the comparison
1786            // can be determined by finding the first index that differs.
1787            // This doesn't work if there is over-indexing in any
1788            // subsequent indices, so check for that case first.
1789            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1790                !CE2->isGEPWithNoNotionalOverIndexing())
1791               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1792
1793            // Compare all of the operands the GEP's have in common.
1794            gep_type_iterator GTI = gep_type_begin(CE1);
1795            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1796                 ++i, ++GTI)
1797              switch (IdxCompare(CE1->getOperand(i),
1798                                 CE2->getOperand(i), GTI.getIndexedType())) {
1799              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1800              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1801              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1802              }
1803
1804            // Ok, we ran out of things they have in common.  If any leftovers
1805            // are non-zero then we have a difference, otherwise we are equal.
1806            for (; i < CE1->getNumOperands(); ++i)
1807              if (!CE1->getOperand(i)->isNullValue()) {
1808                if (isa<ConstantInt>(CE1->getOperand(i)))
1809                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1810                else
1811                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1812              }
1813
1814            for (; i < CE2->getNumOperands(); ++i)
1815              if (!CE2->getOperand(i)->isNullValue()) {
1816                if (isa<ConstantInt>(CE2->getOperand(i)))
1817                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1818                else
1819                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1820              }
1821            return ICmpInst::ICMP_EQ;
1822          }
1823        }
1824      }
1825    default:
1826      break;
1827    }
1828  }
1829
1830  return ICmpInst::BAD_ICMP_PREDICATE;
1831}
1832
1833Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1834                                               Constant *C1, Constant *C2) {
1835  const Type *ResultTy;
1836  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1837    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1838                               VT->getNumElements());
1839  else
1840    ResultTy = Type::getInt1Ty(C1->getContext());
1841
1842  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1843  if (pred == FCmpInst::FCMP_FALSE)
1844    return Constant::getNullValue(ResultTy);
1845
1846  if (pred == FCmpInst::FCMP_TRUE)
1847    return Constant::getAllOnesValue(ResultTy);
1848
1849  // Handle some degenerate cases first
1850  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1851    // For EQ and NE, we can always pick a value for the undef to make the
1852    // predicate pass or fail, so we can return undef.
1853    // Also, if both operands are undef, we can return undef.
1854    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
1855        (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1856      return UndefValue::get(ResultTy);
1857    // Otherwise, pick the same value as the non-undef operand, and fold
1858    // it to true or false.
1859    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1860  }
1861
1862  // No compile-time operations on this type yet.
1863  if (C1->getType()->isPPC_FP128Ty())
1864    return 0;
1865
1866  // icmp eq/ne(null,GV) -> false/true
1867  if (C1->isNullValue()) {
1868    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1869      // Don't try to evaluate aliases.  External weak GV can be null.
1870      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1871        if (pred == ICmpInst::ICMP_EQ)
1872          return ConstantInt::getFalse(C1->getContext());
1873        else if (pred == ICmpInst::ICMP_NE)
1874          return ConstantInt::getTrue(C1->getContext());
1875      }
1876  // icmp eq/ne(GV,null) -> false/true
1877  } else if (C2->isNullValue()) {
1878    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1879      // Don't try to evaluate aliases.  External weak GV can be null.
1880      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1881        if (pred == ICmpInst::ICMP_EQ)
1882          return ConstantInt::getFalse(C1->getContext());
1883        else if (pred == ICmpInst::ICMP_NE)
1884          return ConstantInt::getTrue(C1->getContext());
1885      }
1886  }
1887
1888  // If the comparison is a comparison between two i1's, simplify it.
1889  if (C1->getType()->isIntegerTy(1)) {
1890    switch(pred) {
1891    case ICmpInst::ICMP_EQ:
1892      if (isa<ConstantInt>(C2))
1893        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1894      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1895    case ICmpInst::ICMP_NE:
1896      return ConstantExpr::getXor(C1, C2);
1897    default:
1898      break;
1899    }
1900  }
1901
1902  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1903    APInt V1 = cast<ConstantInt>(C1)->getValue();
1904    APInt V2 = cast<ConstantInt>(C2)->getValue();
1905    switch (pred) {
1906    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1907    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1908    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1909    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1910    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1911    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1912    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1913    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1914    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1915    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1916    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1917    }
1918  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1919    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1920    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1921    APFloat::cmpResult R = C1V.compare(C2V);
1922    switch (pred) {
1923    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1924    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1925    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1926    case FCmpInst::FCMP_UNO:
1927      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1928    case FCmpInst::FCMP_ORD:
1929      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1930    case FCmpInst::FCMP_UEQ:
1931      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1932                                        R==APFloat::cmpEqual);
1933    case FCmpInst::FCMP_OEQ:
1934      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1935    case FCmpInst::FCMP_UNE:
1936      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1937    case FCmpInst::FCMP_ONE:
1938      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1939                                        R==APFloat::cmpGreaterThan);
1940    case FCmpInst::FCMP_ULT:
1941      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1942                                        R==APFloat::cmpLessThan);
1943    case FCmpInst::FCMP_OLT:
1944      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1945    case FCmpInst::FCMP_UGT:
1946      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1947                                        R==APFloat::cmpGreaterThan);
1948    case FCmpInst::FCMP_OGT:
1949      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1950    case FCmpInst::FCMP_ULE:
1951      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1952    case FCmpInst::FCMP_OLE:
1953      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1954                                        R==APFloat::cmpEqual);
1955    case FCmpInst::FCMP_UGE:
1956      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1957    case FCmpInst::FCMP_OGE:
1958      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1959                                        R==APFloat::cmpEqual);
1960    }
1961  } else if (C1->getType()->isVectorTy()) {
1962    SmallVector<Constant*, 16> C1Elts, C2Elts;
1963    C1->getVectorElements(C1Elts);
1964    C2->getVectorElements(C2Elts);
1965    if (C1Elts.empty() || C2Elts.empty())
1966      return 0;
1967
1968    // If we can constant fold the comparison of each element, constant fold
1969    // the whole vector comparison.
1970    SmallVector<Constant*, 4> ResElts;
1971    // Compare the elements, producing an i1 result or constant expr.
1972    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i)
1973      ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1974
1975    return ConstantVector::get(ResElts);
1976  }
1977
1978  if (C1->getType()->isFloatingPointTy()) {
1979    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1980    switch (evaluateFCmpRelation(C1, C2)) {
1981    default: llvm_unreachable("Unknown relation!");
1982    case FCmpInst::FCMP_UNO:
1983    case FCmpInst::FCMP_ORD:
1984    case FCmpInst::FCMP_UEQ:
1985    case FCmpInst::FCMP_UNE:
1986    case FCmpInst::FCMP_ULT:
1987    case FCmpInst::FCMP_UGT:
1988    case FCmpInst::FCMP_ULE:
1989    case FCmpInst::FCMP_UGE:
1990    case FCmpInst::FCMP_TRUE:
1991    case FCmpInst::FCMP_FALSE:
1992    case FCmpInst::BAD_FCMP_PREDICATE:
1993      break; // Couldn't determine anything about these constants.
1994    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1995      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1996                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1997                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1998      break;
1999    case FCmpInst::FCMP_OLT: // We know that C1 < C2
2000      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2001                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
2002                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
2003      break;
2004    case FCmpInst::FCMP_OGT: // We know that C1 > C2
2005      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2006                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
2007                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2008      break;
2009    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
2010      // We can only partially decide this relation.
2011      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2012        Result = 0;
2013      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2014        Result = 1;
2015      break;
2016    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
2017      // We can only partially decide this relation.
2018      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2019        Result = 0;
2020      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2021        Result = 1;
2022      break;
2023    case FCmpInst::FCMP_ONE: // We know that C1 != C2
2024      // We can only partially decide this relation.
2025      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
2026        Result = 0;
2027      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
2028        Result = 1;
2029      break;
2030    }
2031
2032    // If we evaluated the result, return it now.
2033    if (Result != -1)
2034      return ConstantInt::get(ResultTy, Result);
2035
2036  } else {
2037    // Evaluate the relation between the two constants, per the predicate.
2038    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2039    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
2040    default: llvm_unreachable("Unknown relational!");
2041    case ICmpInst::BAD_ICMP_PREDICATE:
2042      break;  // Couldn't determine anything about these constants.
2043    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
2044      // If we know the constants are equal, we can decide the result of this
2045      // computation precisely.
2046      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2047      break;
2048    case ICmpInst::ICMP_ULT:
2049      switch (pred) {
2050      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2051        Result = 1; break;
2052      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2053        Result = 0; break;
2054      }
2055      break;
2056    case ICmpInst::ICMP_SLT:
2057      switch (pred) {
2058      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2059        Result = 1; break;
2060      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2061        Result = 0; break;
2062      }
2063      break;
2064    case ICmpInst::ICMP_UGT:
2065      switch (pred) {
2066      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2067        Result = 1; break;
2068      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2069        Result = 0; break;
2070      }
2071      break;
2072    case ICmpInst::ICMP_SGT:
2073      switch (pred) {
2074      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2075        Result = 1; break;
2076      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2077        Result = 0; break;
2078      }
2079      break;
2080    case ICmpInst::ICMP_ULE:
2081      if (pred == ICmpInst::ICMP_UGT) Result = 0;
2082      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2083      break;
2084    case ICmpInst::ICMP_SLE:
2085      if (pred == ICmpInst::ICMP_SGT) Result = 0;
2086      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2087      break;
2088    case ICmpInst::ICMP_UGE:
2089      if (pred == ICmpInst::ICMP_ULT) Result = 0;
2090      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2091      break;
2092    case ICmpInst::ICMP_SGE:
2093      if (pred == ICmpInst::ICMP_SLT) Result = 0;
2094      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2095      break;
2096    case ICmpInst::ICMP_NE:
2097      if (pred == ICmpInst::ICMP_EQ) Result = 0;
2098      if (pred == ICmpInst::ICMP_NE) Result = 1;
2099      break;
2100    }
2101
2102    // If we evaluated the result, return it now.
2103    if (Result != -1)
2104      return ConstantInt::get(ResultTy, Result);
2105
2106    // If the right hand side is a bitcast, try using its inverse to simplify
2107    // it by moving it to the left hand side.  We can't do this if it would turn
2108    // a vector compare into a scalar compare or visa versa.
2109    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2110      Constant *CE2Op0 = CE2->getOperand(0);
2111      if (CE2->getOpcode() == Instruction::BitCast &&
2112          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
2113        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2114        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2115      }
2116    }
2117
2118    // If the left hand side is an extension, try eliminating it.
2119    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2120      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
2121          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
2122        Constant *CE1Op0 = CE1->getOperand(0);
2123        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2124        if (CE1Inverse == CE1Op0) {
2125          // Check whether we can safely truncate the right hand side.
2126          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2127          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2128            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2129          }
2130        }
2131      }
2132    }
2133
2134    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2135        (C1->isNullValue() && !C2->isNullValue())) {
2136      // If C2 is a constant expr and C1 isn't, flip them around and fold the
2137      // other way if possible.
2138      // Also, if C1 is null and C2 isn't, flip them around.
2139      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2140      return ConstantExpr::getICmp(pred, C2, C1);
2141    }
2142  }
2143  return 0;
2144}
2145
2146/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2147/// is "inbounds".
2148template<typename IndexTy>
2149static bool isInBoundsIndices(IndexTy const *Idxs, size_t NumIdx) {
2150  // No indices means nothing that could be out of bounds.
2151  if (NumIdx == 0) return true;
2152
2153  // If the first index is zero, it's in bounds.
2154  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2155
2156  // If the first index is one and all the rest are zero, it's in bounds,
2157  // by the one-past-the-end rule.
2158  if (!cast<ConstantInt>(Idxs[0])->isOne())
2159    return false;
2160  for (unsigned i = 1, e = NumIdx; i != e; ++i)
2161    if (!cast<Constant>(Idxs[i])->isNullValue())
2162      return false;
2163  return true;
2164}
2165
2166template<typename IndexTy>
2167static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
2168                                               bool inBounds,
2169                                               IndexTy const *Idxs,
2170                                               unsigned NumIdx) {
2171  if (NumIdx == 0) return C;
2172  Constant *Idx0 = cast<Constant>(Idxs[0]);
2173  if ((NumIdx == 1 && Idx0->isNullValue()))
2174    return C;
2175
2176  if (isa<UndefValue>(C)) {
2177    const PointerType *Ptr = cast<PointerType>(C->getType());
2178    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs, Idxs+NumIdx);
2179    assert(Ty != 0 && "Invalid indices for GEP!");
2180    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2181  }
2182
2183  if (C->isNullValue()) {
2184    bool isNull = true;
2185    for (unsigned i = 0, e = NumIdx; i != e; ++i)
2186      if (!cast<Constant>(Idxs[i])->isNullValue()) {
2187        isNull = false;
2188        break;
2189      }
2190    if (isNull) {
2191      const PointerType *Ptr = cast<PointerType>(C->getType());
2192      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs,
2193                                                         Idxs+NumIdx);
2194      assert(Ty != 0 && "Invalid indices for GEP!");
2195      return ConstantPointerNull::get(PointerType::get(Ty,
2196                                                       Ptr->getAddressSpace()));
2197    }
2198  }
2199
2200  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2201    // Combine Indices - If the source pointer to this getelementptr instruction
2202    // is a getelementptr instruction, combine the indices of the two
2203    // getelementptr instructions into a single instruction.
2204    //
2205    if (CE->getOpcode() == Instruction::GetElementPtr) {
2206      const Type *LastTy = 0;
2207      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2208           I != E; ++I)
2209        LastTy = *I;
2210
2211      if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) {
2212        SmallVector<Value*, 16> NewIndices;
2213        NewIndices.reserve(NumIdx + CE->getNumOperands());
2214        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2215          NewIndices.push_back(CE->getOperand(i));
2216
2217        // Add the last index of the source with the first index of the new GEP.
2218        // Make sure to handle the case when they are actually different types.
2219        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2220        // Otherwise it must be an array.
2221        if (!Idx0->isNullValue()) {
2222          const Type *IdxTy = Combined->getType();
2223          if (IdxTy != Idx0->getType()) {
2224            const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2225            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2226            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2227            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2228          } else {
2229            Combined =
2230              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2231          }
2232        }
2233
2234        NewIndices.push_back(Combined);
2235        NewIndices.append(Idxs+1, Idxs+NumIdx);
2236        return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
2237          ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
2238                                                 &NewIndices[0],
2239                                                 NewIndices.size()) :
2240          ConstantExpr::getGetElementPtr(CE->getOperand(0),
2241                                         &NewIndices[0],
2242                                         NewIndices.size());
2243      }
2244    }
2245
2246    // Implement folding of:
2247    //    i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2248    //                        i64 0, i64 0)
2249    // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2250    //
2251    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
2252      if (const PointerType *SPT =
2253          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2254        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2255          if (const ArrayType *CAT =
2256        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2257            if (CAT->getElementType() == SAT->getElementType())
2258              return inBounds ?
2259                ConstantExpr::getInBoundsGetElementPtr(
2260                      (Constant*)CE->getOperand(0), Idxs, NumIdx) :
2261                ConstantExpr::getGetElementPtr(
2262                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
2263    }
2264  }
2265
2266  // Check to see if any array indices are not within the corresponding
2267  // notional array bounds. If so, try to determine if they can be factored
2268  // out into preceding dimensions.
2269  bool Unknown = false;
2270  SmallVector<Constant *, 8> NewIdxs;
2271  const Type *Ty = C->getType();
2272  const Type *Prev = 0;
2273  for (unsigned i = 0; i != NumIdx;
2274       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2275    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2276      if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2277        if (ATy->getNumElements() <= INT64_MAX &&
2278            ATy->getNumElements() != 0 &&
2279            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2280          if (isa<SequentialType>(Prev)) {
2281            // It's out of range, but we can factor it into the prior
2282            // dimension.
2283            NewIdxs.resize(NumIdx);
2284            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2285                                                   ATy->getNumElements());
2286            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2287
2288            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2289            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2290
2291            // Before adding, extend both operands to i64 to avoid
2292            // overflow trouble.
2293            if (!PrevIdx->getType()->isIntegerTy(64))
2294              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2295                                           Type::getInt64Ty(Div->getContext()));
2296            if (!Div->getType()->isIntegerTy(64))
2297              Div = ConstantExpr::getSExt(Div,
2298                                          Type::getInt64Ty(Div->getContext()));
2299
2300            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2301          } else {
2302            // It's out of range, but the prior dimension is a struct
2303            // so we can't do anything about it.
2304            Unknown = true;
2305          }
2306        }
2307    } else {
2308      // We don't know if it's in range or not.
2309      Unknown = true;
2310    }
2311  }
2312
2313  // If we did any factoring, start over with the adjusted indices.
2314  if (!NewIdxs.empty()) {
2315    for (unsigned i = 0; i != NumIdx; ++i)
2316      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2317    return inBounds ?
2318      ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
2319                                             NewIdxs.size()) :
2320      ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
2321  }
2322
2323  // If all indices are known integers and normalized, we can do a simple
2324  // check for the "inbounds" property.
2325  if (!Unknown && !inBounds &&
2326      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
2327    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
2328
2329  return 0;
2330}
2331
2332Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2333                                          bool inBounds,
2334                                          Constant* const *Idxs,
2335                                          unsigned NumIdx) {
2336  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs, NumIdx);
2337}
2338
2339Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2340                                          bool inBounds,
2341                                          Value* const *Idxs,
2342                                          unsigned NumIdx) {
2343  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs, NumIdx);
2344}
2345