AsmMatcherEmitter.cpp revision 3b5aec67ef174c74ff6620ddd71ad3b0cb39030c
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "StringMatcher.h"
80#include "llvm/ADT/OwningPtr.h"
81#include "llvm/ADT/SmallPtrSet.h"
82#include "llvm/ADT/SmallVector.h"
83#include "llvm/ADT/STLExtras.h"
84#include "llvm/ADT/StringExtras.h"
85#include "llvm/Support/CommandLine.h"
86#include "llvm/Support/Debug.h"
87#include <list>
88#include <map>
89#include <set>
90using namespace llvm;
91
92static cl::opt<std::string>
93MatchPrefix("match-prefix", cl::init(""),
94            cl::desc("Only match instructions with the given prefix"));
95
96
97namespace {
98  class AsmMatcherInfo;
99struct SubtargetFeatureInfo;
100
101/// ClassInfo - Helper class for storing the information about a particular
102/// class of operands which can be matched.
103struct ClassInfo {
104  enum ClassInfoKind {
105    /// Invalid kind, for use as a sentinel value.
106    Invalid = 0,
107
108    /// The class for a particular token.
109    Token,
110
111    /// The (first) register class, subsequent register classes are
112    /// RegisterClass0+1, and so on.
113    RegisterClass0,
114
115    /// The (first) user defined class, subsequent user defined classes are
116    /// UserClass0+1, and so on.
117    UserClass0 = 1<<16
118  };
119
120  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
121  /// N) for the Nth user defined class.
122  unsigned Kind;
123
124  /// SuperClasses - The super classes of this class. Note that for simplicities
125  /// sake user operands only record their immediate super class, while register
126  /// operands include all superclasses.
127  std::vector<ClassInfo*> SuperClasses;
128
129  /// Name - The full class name, suitable for use in an enum.
130  std::string Name;
131
132  /// ClassName - The unadorned generic name for this class (e.g., Token).
133  std::string ClassName;
134
135  /// ValueName - The name of the value this class represents; for a token this
136  /// is the literal token string, for an operand it is the TableGen class (or
137  /// empty if this is a derived class).
138  std::string ValueName;
139
140  /// PredicateMethod - The name of the operand method to test whether the
141  /// operand matches this class; this is not valid for Token or register kinds.
142  std::string PredicateMethod;
143
144  /// RenderMethod - The name of the operand method to add this operand to an
145  /// MCInst; this is not valid for Token or register kinds.
146  std::string RenderMethod;
147
148  /// For register classes, the records for all the registers in this class.
149  std::set<Record*> Registers;
150
151public:
152  /// isRegisterClass() - Check if this is a register class.
153  bool isRegisterClass() const {
154    return Kind >= RegisterClass0 && Kind < UserClass0;
155  }
156
157  /// isUserClass() - Check if this is a user defined class.
158  bool isUserClass() const {
159    return Kind >= UserClass0;
160  }
161
162  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
163  /// are related if they are in the same class hierarchy.
164  bool isRelatedTo(const ClassInfo &RHS) const {
165    // Tokens are only related to tokens.
166    if (Kind == Token || RHS.Kind == Token)
167      return Kind == Token && RHS.Kind == Token;
168
169    // Registers classes are only related to registers classes, and only if
170    // their intersection is non-empty.
171    if (isRegisterClass() || RHS.isRegisterClass()) {
172      if (!isRegisterClass() || !RHS.isRegisterClass())
173        return false;
174
175      std::set<Record*> Tmp;
176      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
177      std::set_intersection(Registers.begin(), Registers.end(),
178                            RHS.Registers.begin(), RHS.Registers.end(),
179                            II);
180
181      return !Tmp.empty();
182    }
183
184    // Otherwise we have two users operands; they are related if they are in the
185    // same class hierarchy.
186    //
187    // FIXME: This is an oversimplification, they should only be related if they
188    // intersect, however we don't have that information.
189    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
190    const ClassInfo *Root = this;
191    while (!Root->SuperClasses.empty())
192      Root = Root->SuperClasses.front();
193
194    const ClassInfo *RHSRoot = &RHS;
195    while (!RHSRoot->SuperClasses.empty())
196      RHSRoot = RHSRoot->SuperClasses.front();
197
198    return Root == RHSRoot;
199  }
200
201  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
202  bool isSubsetOf(const ClassInfo &RHS) const {
203    // This is a subset of RHS if it is the same class...
204    if (this == &RHS)
205      return true;
206
207    // ... or if any of its super classes are a subset of RHS.
208    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
209           ie = SuperClasses.end(); it != ie; ++it)
210      if ((*it)->isSubsetOf(RHS))
211        return true;
212
213    return false;
214  }
215
216  /// operator< - Compare two classes.
217  bool operator<(const ClassInfo &RHS) const {
218    if (this == &RHS)
219      return false;
220
221    // Unrelated classes can be ordered by kind.
222    if (!isRelatedTo(RHS))
223      return Kind < RHS.Kind;
224
225    switch (Kind) {
226    case Invalid:
227      assert(0 && "Invalid kind!");
228    case Token:
229      // Tokens are comparable by value.
230      //
231      // FIXME: Compare by enum value.
232      return ValueName < RHS.ValueName;
233
234    default:
235      // This class preceeds the RHS if it is a proper subset of the RHS.
236      if (isSubsetOf(RHS))
237        return true;
238      if (RHS.isSubsetOf(*this))
239        return false;
240
241      // Otherwise, order by name to ensure we have a total ordering.
242      return ValueName < RHS.ValueName;
243    }
244  }
245};
246
247/// MatchableInfo - Helper class for storing the necessary information for an
248/// instruction or alias which is capable of being matched.
249struct MatchableInfo {
250  struct Operand {
251    /// Token - This is the token that the operand came from.
252    StringRef Token;
253
254    /// The unique class instance this operand should match.
255    ClassInfo *Class;
256
257    /// The original operand this corresponds to, if any.
258    const CGIOperandList::OperandInfo *OperandInfo;
259
260    explicit Operand(StringRef T) : Token(T), Class(0), OperandInfo(0) {}
261  };
262
263  /// InstrName - The target name for this instruction.
264  std::string InstrName;
265
266  /// TheDef - This is the definition of the instruction or InstAlias that this
267  /// matchable came from.
268  Record *const TheDef;
269
270  /// OperandList - This is the operand list that came from the (ins) and (outs)
271  /// list of the alias or instruction.
272  const CGIOperandList &OperandList;
273
274  /// AsmString - The assembly string for this instruction (with variants
275  /// removed), e.g. "movsx $src, $dst".
276  std::string AsmString;
277
278  /// Mnemonic - This is the first token of the matched instruction, its
279  /// mnemonic.
280  StringRef Mnemonic;
281
282  /// AsmOperands - The textual operands that this instruction matches,
283  /// annotated with a class and where in the OperandList they were defined.
284  /// This directly corresponds to the tokenized AsmString after the mnemonic is
285  /// removed.
286  SmallVector<Operand, 4> AsmOperands;
287
288  /// Predicates - The required subtarget features to match this instruction.
289  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
290
291  /// ConversionFnKind - The enum value which is passed to the generated
292  /// ConvertToMCInst to convert parsed operands into an MCInst for this
293  /// function.
294  std::string ConversionFnKind;
295
296  MatchableInfo(const CodeGenInstruction &CGI)
297    : TheDef(CGI.TheDef), OperandList(CGI.Operands), AsmString(CGI.AsmString) {
298    InstrName = TheDef->getName();
299  }
300
301  MatchableInfo(const CodeGenInstAlias *Alias)
302    : TheDef(Alias->TheDef), OperandList(Alias->Operands),
303      AsmString(Alias->AsmString) {
304
305    // FIXME: Huge hack.
306    DefInit *DI = dynamic_cast<DefInit*>(Alias->Result->getOperator());
307    assert(DI);
308
309    InstrName = DI->getDef()->getName();
310  }
311
312  void Initialize(const AsmMatcherInfo &Info,
313                  SmallPtrSet<Record*, 16> &SingletonRegisters);
314
315  /// Validate - Return true if this matchable is a valid thing to match against
316  /// and perform a bunch of validity checking.
317  bool Validate(StringRef CommentDelimiter, bool Hack) const;
318
319  /// getSingletonRegisterForAsmOperand - If the specified token is a singleton
320  /// register, return the Record for it, otherwise return null.
321  Record *getSingletonRegisterForAsmOperand(unsigned i,
322                                            const AsmMatcherInfo &Info) const;
323
324  /// operator< - Compare two matchables.
325  bool operator<(const MatchableInfo &RHS) const {
326    // The primary comparator is the instruction mnemonic.
327    if (Mnemonic != RHS.Mnemonic)
328      return Mnemonic < RHS.Mnemonic;
329
330    if (AsmOperands.size() != RHS.AsmOperands.size())
331      return AsmOperands.size() < RHS.AsmOperands.size();
332
333    // Compare lexicographically by operand. The matcher validates that other
334    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
335    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
336      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
337        return true;
338      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
339        return false;
340    }
341
342    return false;
343  }
344
345  /// CouldMatchAmiguouslyWith - Check whether this matchable could
346  /// ambiguously match the same set of operands as \arg RHS (without being a
347  /// strictly superior match).
348  bool CouldMatchAmiguouslyWith(const MatchableInfo &RHS) {
349    // The primary comparator is the instruction mnemonic.
350    if (Mnemonic != RHS.Mnemonic)
351      return false;
352
353    // The number of operands is unambiguous.
354    if (AsmOperands.size() != RHS.AsmOperands.size())
355      return false;
356
357    // Otherwise, make sure the ordering of the two instructions is unambiguous
358    // by checking that either (a) a token or operand kind discriminates them,
359    // or (b) the ordering among equivalent kinds is consistent.
360
361    // Tokens and operand kinds are unambiguous (assuming a correct target
362    // specific parser).
363    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
364      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
365          AsmOperands[i].Class->Kind == ClassInfo::Token)
366        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
367            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
368          return false;
369
370    // Otherwise, this operand could commute if all operands are equivalent, or
371    // there is a pair of operands that compare less than and a pair that
372    // compare greater than.
373    bool HasLT = false, HasGT = false;
374    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
375      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
376        HasLT = true;
377      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
378        HasGT = true;
379    }
380
381    return !(HasLT ^ HasGT);
382  }
383
384  void dump();
385
386private:
387  void TokenizeAsmString(const AsmMatcherInfo &Info);
388};
389
390/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
391/// feature which participates in instruction matching.
392struct SubtargetFeatureInfo {
393  /// \brief The predicate record for this feature.
394  Record *TheDef;
395
396  /// \brief An unique index assigned to represent this feature.
397  unsigned Index;
398
399  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
400
401  /// \brief The name of the enumerated constant identifying this feature.
402  std::string getEnumName() const {
403    return "Feature_" + TheDef->getName();
404  }
405};
406
407class AsmMatcherInfo {
408public:
409  /// The tablegen AsmParser record.
410  Record *AsmParser;
411
412  /// Target - The target information.
413  CodeGenTarget &Target;
414
415  /// The AsmParser "RegisterPrefix" value.
416  std::string RegisterPrefix;
417
418  /// The classes which are needed for matching.
419  std::vector<ClassInfo*> Classes;
420
421  /// The information on the matchables to match.
422  std::vector<MatchableInfo*> Matchables;
423
424  /// Map of Register records to their class information.
425  std::map<Record*, ClassInfo*> RegisterClasses;
426
427  /// Map of Predicate records to their subtarget information.
428  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
429
430private:
431  /// Map of token to class information which has already been constructed.
432  std::map<std::string, ClassInfo*> TokenClasses;
433
434  /// Map of RegisterClass records to their class information.
435  std::map<Record*, ClassInfo*> RegisterClassClasses;
436
437  /// Map of AsmOperandClass records to their class information.
438  std::map<Record*, ClassInfo*> AsmOperandClasses;
439
440private:
441  /// getTokenClass - Lookup or create the class for the given token.
442  ClassInfo *getTokenClass(StringRef Token);
443
444  /// getOperandClass - Lookup or create the class for the given operand.
445  ClassInfo *getOperandClass(StringRef Token,
446                             const CGIOperandList::OperandInfo &OI);
447
448  /// BuildRegisterClasses - Build the ClassInfo* instances for register
449  /// classes.
450  void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
451
452  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
453  /// operand classes.
454  void BuildOperandClasses();
455
456public:
457  AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target);
458
459  /// BuildInfo - Construct the various tables used during matching.
460  void BuildInfo();
461
462  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
463  /// given operand.
464  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
465    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
466    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
467      SubtargetFeatures.find(Def);
468    return I == SubtargetFeatures.end() ? 0 : I->second;
469  }
470};
471
472}
473
474void MatchableInfo::dump() {
475  errs() << InstrName << " -- " << "flattened:\"" << AsmString << "\"\n";
476
477  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
478    Operand &Op = AsmOperands[i];
479    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
480    if (Op.Class->Kind == ClassInfo::Token) {
481      errs() << '\"' << Op.Token << "\"\n";
482      continue;
483    }
484
485    if (!Op.OperandInfo) {
486      errs() << "(singleton register)\n";
487      continue;
488    }
489
490    const CGIOperandList::OperandInfo &OI = *Op.OperandInfo;
491    errs() << OI.Name << " " << OI.Rec->getName()
492           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
493  }
494}
495
496void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
497                               SmallPtrSet<Record*, 16> &SingletonRegisters) {
498  // TODO: Eventually support asmparser for Variant != 0.
499  AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, 0);
500
501  TokenizeAsmString(Info);
502
503  // Compute the require features.
504  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
505  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
506    if (SubtargetFeatureInfo *Feature =
507        Info.getSubtargetFeature(Predicates[i]))
508      RequiredFeatures.push_back(Feature);
509
510  // Collect singleton registers, if used.
511  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
512    if (Record *Reg = getSingletonRegisterForAsmOperand(i, Info))
513      SingletonRegisters.insert(Reg);
514  }
515}
516
517/// TokenizeAsmString - Tokenize a simplified assembly string.
518void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
519  StringRef String = AsmString;
520  unsigned Prev = 0;
521  bool InTok = true;
522  for (unsigned i = 0, e = String.size(); i != e; ++i) {
523    switch (String[i]) {
524    case '[':
525    case ']':
526    case '*':
527    case '!':
528    case ' ':
529    case '\t':
530    case ',':
531      if (InTok) {
532        AsmOperands.push_back(Operand(String.slice(Prev, i)));
533        InTok = false;
534      }
535      if (!isspace(String[i]) && String[i] != ',')
536        AsmOperands.push_back(Operand(String.substr(i, 1)));
537      Prev = i + 1;
538      break;
539
540    case '\\':
541      if (InTok) {
542        AsmOperands.push_back(Operand(String.slice(Prev, i)));
543        InTok = false;
544      }
545      ++i;
546      assert(i != String.size() && "Invalid quoted character");
547      AsmOperands.push_back(Operand(String.substr(i, 1)));
548      Prev = i + 1;
549      break;
550
551    case '$': {
552      // If this isn't "${", treat like a normal token.
553      if (i + 1 == String.size() || String[i + 1] != '{') {
554        if (InTok) {
555          AsmOperands.push_back(Operand(String.slice(Prev, i)));
556          InTok = false;
557        }
558        Prev = i;
559        break;
560      }
561
562      if (InTok) {
563        AsmOperands.push_back(Operand(String.slice(Prev, i)));
564        InTok = false;
565      }
566
567      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
568      assert(End != String.end() && "Missing brace in operand reference!");
569      size_t EndPos = End - String.begin();
570      AsmOperands.push_back(Operand(String.slice(i, EndPos+1)));
571      Prev = EndPos + 1;
572      i = EndPos;
573      break;
574    }
575
576    case '.':
577      if (InTok)
578        AsmOperands.push_back(Operand(String.slice(Prev, i)));
579      Prev = i;
580      InTok = true;
581      break;
582
583    default:
584      InTok = true;
585    }
586  }
587  if (InTok && Prev != String.size())
588    AsmOperands.push_back(Operand(String.substr(Prev)));
589
590  // The first token of the instruction is the mnemonic, which must be a
591  // simple string, not a $foo variable or a singleton register.
592  assert(!AsmOperands.empty() && "Instruction has no tokens?");
593  Mnemonic = AsmOperands[0].Token;
594  if (Mnemonic[0] == '$' || getSingletonRegisterForAsmOperand(0, Info))
595    throw TGError(TheDef->getLoc(),
596                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
597
598  // Remove the first operand, it is tracked in the mnemonic field.
599  AsmOperands.erase(AsmOperands.begin());
600}
601
602
603
604/// getRegisterRecord - Get the register record for \arg name, or 0.
605static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
606  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
607    const CodeGenRegister &Reg = Target.getRegisters()[i];
608    if (Name == Reg.TheDef->getValueAsString("AsmName"))
609      return Reg.TheDef;
610  }
611
612  return 0;
613}
614
615bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
616  // Reject matchables with no .s string.
617  if (AsmString.empty())
618    throw TGError(TheDef->getLoc(), "instruction with empty asm string");
619
620  // Reject any matchables with a newline in them, they should be marked
621  // isCodeGenOnly if they are pseudo instructions.
622  if (AsmString.find('\n') != std::string::npos)
623    throw TGError(TheDef->getLoc(),
624                  "multiline instruction is not valid for the asmparser, "
625                  "mark it isCodeGenOnly");
626
627  // Remove comments from the asm string.  We know that the asmstring only
628  // has one line.
629  if (!CommentDelimiter.empty() &&
630      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
631    throw TGError(TheDef->getLoc(),
632                  "asmstring for instruction has comment character in it, "
633                  "mark it isCodeGenOnly");
634
635  // Reject matchables with operand modifiers, these aren't something we can
636  /// handle, the target should be refactored to use operands instead of
637  /// modifiers.
638  //
639  // Also, check for instructions which reference the operand multiple times;
640  // this implies a constraint we would not honor.
641  std::set<std::string> OperandNames;
642  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
643    StringRef Tok = AsmOperands[i].Token;
644    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
645      throw TGError(TheDef->getLoc(),
646                    "matchable with operand modifier '" + Tok.str() +
647                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
648
649    // Verify that any operand is only mentioned once.
650    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
651      if (!Hack)
652        throw TGError(TheDef->getLoc(),
653                      "ERROR: matchable with tied operand '" + Tok.str() +
654                      "' can never be matched!");
655      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
656      // bunch of instructions.  It is unclear what the right answer is.
657      DEBUG({
658        errs() << "warning: '" << InstrName << "': "
659               << "ignoring instruction with tied operand '"
660               << Tok.str() << "'\n";
661      });
662      return false;
663    }
664  }
665
666  return true;
667}
668
669
670/// getSingletonRegisterForAsmOperand - If the specified token is a singleton
671/// register, return the register name, otherwise return a null StringRef.
672Record *MatchableInfo::
673getSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info) const{
674  StringRef Tok = AsmOperands[i].Token;
675  if (!Tok.startswith(Info.RegisterPrefix))
676    return 0;
677
678  StringRef RegName = Tok.substr(Info.RegisterPrefix.size());
679  if (Record *Rec = getRegisterRecord(Info.Target, RegName))
680    return Rec;
681
682  // If there is no register prefix (i.e. "%" in "%eax"), then this may
683  // be some random non-register token, just ignore it.
684  if (Info.RegisterPrefix.empty())
685    return 0;
686
687  std::string Err = "unable to find register for '" + RegName.str() +
688  "' (which matches register prefix)";
689  throw TGError(TheDef->getLoc(), Err);
690}
691
692
693static std::string getEnumNameForToken(StringRef Str) {
694  std::string Res;
695
696  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
697    switch (*it) {
698    case '*': Res += "_STAR_"; break;
699    case '%': Res += "_PCT_"; break;
700    case ':': Res += "_COLON_"; break;
701    default:
702      if (isalnum(*it))
703        Res += *it;
704      else
705        Res += "_" + utostr((unsigned) *it) + "_";
706    }
707  }
708
709  return Res;
710}
711
712ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
713  ClassInfo *&Entry = TokenClasses[Token];
714
715  if (!Entry) {
716    Entry = new ClassInfo();
717    Entry->Kind = ClassInfo::Token;
718    Entry->ClassName = "Token";
719    Entry->Name = "MCK_" + getEnumNameForToken(Token);
720    Entry->ValueName = Token;
721    Entry->PredicateMethod = "<invalid>";
722    Entry->RenderMethod = "<invalid>";
723    Classes.push_back(Entry);
724  }
725
726  return Entry;
727}
728
729ClassInfo *
730AsmMatcherInfo::getOperandClass(StringRef Token,
731                                const CGIOperandList::OperandInfo &OI) {
732  if (OI.Rec->isSubClassOf("RegisterClass")) {
733    ClassInfo *CI = RegisterClassClasses[OI.Rec];
734
735    if (!CI)
736      throw TGError(OI.Rec->getLoc(), "register class has no class info!");
737
738    return CI;
739  }
740
741  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
742  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
743  ClassInfo *CI = AsmOperandClasses[MatchClass];
744
745  if (!CI)
746    throw TGError(OI.Rec->getLoc(), "operand has no match class!");
747
748  return CI;
749}
750
751void AsmMatcherInfo::
752BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
753  std::vector<CodeGenRegisterClass> RegisterClasses;
754  std::vector<CodeGenRegister> Registers;
755
756  RegisterClasses = Target.getRegisterClasses();
757  Registers = Target.getRegisters();
758
759  // The register sets used for matching.
760  std::set< std::set<Record*> > RegisterSets;
761
762  // Gather the defined sets.
763  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
764         ie = RegisterClasses.end(); it != ie; ++it)
765    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
766                                          it->Elements.end()));
767
768  // Add any required singleton sets.
769  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
770       ie = SingletonRegisters.end(); it != ie; ++it) {
771    Record *Rec = *it;
772    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
773  }
774
775  // Introduce derived sets where necessary (when a register does not determine
776  // a unique register set class), and build the mapping of registers to the set
777  // they should classify to.
778  std::map<Record*, std::set<Record*> > RegisterMap;
779  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
780         ie = Registers.end(); it != ie; ++it) {
781    CodeGenRegister &CGR = *it;
782    // Compute the intersection of all sets containing this register.
783    std::set<Record*> ContainingSet;
784
785    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
786           ie = RegisterSets.end(); it != ie; ++it) {
787      if (!it->count(CGR.TheDef))
788        continue;
789
790      if (ContainingSet.empty()) {
791        ContainingSet = *it;
792      } else {
793        std::set<Record*> Tmp;
794        std::swap(Tmp, ContainingSet);
795        std::insert_iterator< std::set<Record*> > II(ContainingSet,
796                                                     ContainingSet.begin());
797        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
798                              II);
799      }
800    }
801
802    if (!ContainingSet.empty()) {
803      RegisterSets.insert(ContainingSet);
804      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
805    }
806  }
807
808  // Construct the register classes.
809  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
810  unsigned Index = 0;
811  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
812         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
813    ClassInfo *CI = new ClassInfo();
814    CI->Kind = ClassInfo::RegisterClass0 + Index;
815    CI->ClassName = "Reg" + utostr(Index);
816    CI->Name = "MCK_Reg" + utostr(Index);
817    CI->ValueName = "";
818    CI->PredicateMethod = ""; // unused
819    CI->RenderMethod = "addRegOperands";
820    CI->Registers = *it;
821    Classes.push_back(CI);
822    RegisterSetClasses.insert(std::make_pair(*it, CI));
823  }
824
825  // Find the superclasses; we could compute only the subgroup lattice edges,
826  // but there isn't really a point.
827  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
828         ie = RegisterSets.end(); it != ie; ++it) {
829    ClassInfo *CI = RegisterSetClasses[*it];
830    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
831           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
832      if (*it != *it2 &&
833          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
834        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
835  }
836
837  // Name the register classes which correspond to a user defined RegisterClass.
838  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
839         ie = RegisterClasses.end(); it != ie; ++it) {
840    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
841                                                         it->Elements.end())];
842    if (CI->ValueName.empty()) {
843      CI->ClassName = it->getName();
844      CI->Name = "MCK_" + it->getName();
845      CI->ValueName = it->getName();
846    } else
847      CI->ValueName = CI->ValueName + "," + it->getName();
848
849    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
850  }
851
852  // Populate the map for individual registers.
853  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
854         ie = RegisterMap.end(); it != ie; ++it)
855    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
856
857  // Name the register classes which correspond to singleton registers.
858  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
859         ie = SingletonRegisters.end(); it != ie; ++it) {
860    Record *Rec = *it;
861    ClassInfo *CI = this->RegisterClasses[Rec];
862    assert(CI && "Missing singleton register class info!");
863
864    if (CI->ValueName.empty()) {
865      CI->ClassName = Rec->getName();
866      CI->Name = "MCK_" + Rec->getName();
867      CI->ValueName = Rec->getName();
868    } else
869      CI->ValueName = CI->ValueName + "," + Rec->getName();
870  }
871}
872
873void AsmMatcherInfo::BuildOperandClasses() {
874  std::vector<Record*> AsmOperands =
875    Records.getAllDerivedDefinitions("AsmOperandClass");
876
877  // Pre-populate AsmOperandClasses map.
878  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
879         ie = AsmOperands.end(); it != ie; ++it)
880    AsmOperandClasses[*it] = new ClassInfo();
881
882  unsigned Index = 0;
883  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
884         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
885    ClassInfo *CI = AsmOperandClasses[*it];
886    CI->Kind = ClassInfo::UserClass0 + Index;
887
888    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
889    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
890      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
891      if (!DI) {
892        PrintError((*it)->getLoc(), "Invalid super class reference!");
893        continue;
894      }
895
896      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
897      if (!SC)
898        PrintError((*it)->getLoc(), "Invalid super class reference!");
899      else
900        CI->SuperClasses.push_back(SC);
901    }
902    CI->ClassName = (*it)->getValueAsString("Name");
903    CI->Name = "MCK_" + CI->ClassName;
904    CI->ValueName = (*it)->getName();
905
906    // Get or construct the predicate method name.
907    Init *PMName = (*it)->getValueInit("PredicateMethod");
908    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
909      CI->PredicateMethod = SI->getValue();
910    } else {
911      assert(dynamic_cast<UnsetInit*>(PMName) &&
912             "Unexpected PredicateMethod field!");
913      CI->PredicateMethod = "is" + CI->ClassName;
914    }
915
916    // Get or construct the render method name.
917    Init *RMName = (*it)->getValueInit("RenderMethod");
918    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
919      CI->RenderMethod = SI->getValue();
920    } else {
921      assert(dynamic_cast<UnsetInit*>(RMName) &&
922             "Unexpected RenderMethod field!");
923      CI->RenderMethod = "add" + CI->ClassName + "Operands";
924    }
925
926    AsmOperandClasses[*it] = CI;
927    Classes.push_back(CI);
928  }
929}
930
931AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target)
932  : AsmParser(asmParser), Target(target),
933    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) {
934}
935
936
937void AsmMatcherInfo::BuildInfo() {
938  // Build information about all of the AssemblerPredicates.
939  std::vector<Record*> AllPredicates =
940    Records.getAllDerivedDefinitions("Predicate");
941  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
942    Record *Pred = AllPredicates[i];
943    // Ignore predicates that are not intended for the assembler.
944    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
945      continue;
946
947    if (Pred->getName().empty())
948      throw TGError(Pred->getLoc(), "Predicate has no name!");
949
950    unsigned FeatureNo = SubtargetFeatures.size();
951    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
952    assert(FeatureNo < 32 && "Too many subtarget features!");
953  }
954
955  StringRef CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter");
956
957  // Parse the instructions; we need to do this first so that we can gather the
958  // singleton register classes.
959  SmallPtrSet<Record*, 16> SingletonRegisters;
960  for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
961       E = Target.inst_end(); I != E; ++I) {
962    const CodeGenInstruction &CGI = **I;
963
964    // If the tblgen -match-prefix option is specified (for tblgen hackers),
965    // filter the set of instructions we consider.
966    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
967      continue;
968
969    // Ignore "codegen only" instructions.
970    if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
971      continue;
972
973    OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
974
975    II->Initialize(*this, SingletonRegisters);
976
977    // Ignore instructions which shouldn't be matched and diagnose invalid
978    // instruction definitions with an error.
979    if (!II->Validate(CommentDelimiter, true))
980      continue;
981
982    // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
983    //
984    // FIXME: This is a total hack.
985    if (StringRef(II->InstrName).startswith("Int_") ||
986        StringRef(II->InstrName).endswith("_Int"))
987      continue;
988
989     Matchables.push_back(II.take());
990  }
991
992  // Parse all of the InstAlias definitions and stick them in the list of
993  // matchables.
994  std::vector<Record*> AllInstAliases =
995    Records.getAllDerivedDefinitions("InstAlias");
996  for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
997    CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i]);
998
999    OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1000
1001    II->Initialize(*this, SingletonRegisters);
1002
1003    // Validate the alias definitions.
1004    II->Validate(CommentDelimiter, false);
1005
1006    Matchables.push_back(II.take());
1007  }
1008
1009  // Build info for the register classes.
1010  BuildRegisterClasses(SingletonRegisters);
1011
1012  // Build info for the user defined assembly operand classes.
1013  BuildOperandClasses();
1014
1015  // Build the information about matchables.
1016  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1017         ie = Matchables.end(); it != ie; ++it) {
1018    MatchableInfo *II = *it;
1019
1020    // Parse the tokens after the mnemonic.
1021    for (unsigned i = 0, e = II->AsmOperands.size(); i != e; ++i) {
1022      MatchableInfo::Operand &Op = II->AsmOperands[i];
1023      StringRef Token = Op.Token;
1024
1025      // Check for singleton registers.
1026      if (Record *RegRecord = II->getSingletonRegisterForAsmOperand(i, *this)) {
1027        Op.Class = RegisterClasses[RegRecord];
1028        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1029               "Unexpected class for singleton register");
1030        continue;
1031      }
1032
1033      // Check for simple tokens.
1034      if (Token[0] != '$') {
1035        Op.Class = getTokenClass(Token);
1036        continue;
1037      }
1038
1039      // Otherwise this is an operand reference.
1040      StringRef OperandName;
1041      if (Token[1] == '{')
1042        OperandName = Token.substr(2, Token.size() - 3);
1043      else
1044        OperandName = Token.substr(1);
1045
1046      // Map this token to an operand. FIXME: Move elsewhere.
1047      unsigned Idx;
1048      if (!II->OperandList.hasOperandNamed(OperandName, Idx))
1049        throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1050                      OperandName.str() + "'");
1051
1052      // FIXME: This is annoying, the named operand may be tied (e.g.,
1053      // XCHG8rm). What we want is the untied operand, which we now have to
1054      // grovel for. Only worry about this for single entry operands, we have to
1055      // clean this up anyway.
1056      const CGIOperandList::OperandInfo *OI = &II->OperandList[Idx];
1057      if (OI->Constraints[0].isTied()) {
1058        unsigned TiedOp = OI->Constraints[0].getTiedOperand();
1059
1060        // The tied operand index is an MIOperand index, find the operand that
1061        // contains it.
1062        for (unsigned i = 0, e = II->OperandList.size(); i != e; ++i) {
1063          if (II->OperandList[i].MIOperandNo == TiedOp) {
1064            OI = &II->OperandList[i];
1065            break;
1066          }
1067        }
1068
1069        assert(OI && "Unable to find tied operand target!");
1070      }
1071
1072      Op.Class = getOperandClass(Token, *OI);
1073      Op.OperandInfo = OI;
1074    }
1075  }
1076
1077  // Reorder classes so that classes preceed super classes.
1078  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1079}
1080
1081static std::pair<unsigned, unsigned> *
1082GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
1083                      unsigned Index) {
1084  for (unsigned i = 0, e = List.size(); i != e; ++i)
1085    if (Index == List[i].first)
1086      return &List[i];
1087
1088  return 0;
1089}
1090
1091static void EmitConvertToMCInst(CodeGenTarget &Target,
1092                                std::vector<MatchableInfo*> &Infos,
1093                                raw_ostream &OS) {
1094  // Write the convert function to a separate stream, so we can drop it after
1095  // the enum.
1096  std::string ConvertFnBody;
1097  raw_string_ostream CvtOS(ConvertFnBody);
1098
1099  // Function we have already generated.
1100  std::set<std::string> GeneratedFns;
1101
1102  // Start the unified conversion function.
1103
1104  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
1105        << "unsigned Opcode,\n"
1106        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1107        << "> &Operands) {\n";
1108  CvtOS << "  Inst.setOpcode(Opcode);\n";
1109  CvtOS << "  switch (Kind) {\n";
1110  CvtOS << "  default:\n";
1111
1112  // Start the enum, which we will generate inline.
1113
1114  OS << "// Unified function for converting operants to MCInst instances.\n\n";
1115  OS << "enum ConversionKind {\n";
1116
1117  // TargetOperandClass - This is the target's operand class, like X86Operand.
1118  std::string TargetOperandClass = Target.getName() + "Operand";
1119
1120  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1121         ie = Infos.end(); it != ie; ++it) {
1122    MatchableInfo &II = **it;
1123
1124    // Order the (class) operands by the order to convert them into an MCInst.
1125    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
1126    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1127      MatchableInfo::Operand &Op = II.AsmOperands[i];
1128      if (Op.OperandInfo)
1129        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
1130    }
1131
1132    // Find any tied operands.
1133    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
1134    for (unsigned i = 0, e = II.OperandList.size(); i != e; ++i) {
1135      const CGIOperandList::OperandInfo &OpInfo = II.OperandList[i];
1136      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
1137        const CGIOperandList::ConstraintInfo &CI = OpInfo.Constraints[j];
1138        if (CI.isTied())
1139          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
1140                                                CI.getTiedOperand()));
1141      }
1142    }
1143
1144    array_pod_sort(MIOperandList.begin(), MIOperandList.end());
1145
1146    // Compute the total number of operands.
1147    unsigned NumMIOperands = 0;
1148    for (unsigned i = 0, e = II.OperandList.size(); i != e; ++i) {
1149      const CGIOperandList::OperandInfo &OI = II.OperandList[i];
1150      NumMIOperands = std::max(NumMIOperands,
1151                               OI.MIOperandNo + OI.MINumOperands);
1152    }
1153
1154    // Build the conversion function signature.
1155    std::string Signature = "Convert";
1156    unsigned CurIndex = 0;
1157    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1158      MatchableInfo::Operand &Op = II.AsmOperands[MIOperandList[i].second];
1159      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
1160             "Duplicate match for instruction operand!");
1161
1162      // Skip operands which weren't matched by anything, this occurs when the
1163      // .td file encodes "implicit" operands as explicit ones.
1164      //
1165      // FIXME: This should be removed from the MCInst structure.
1166      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1167        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1168                                                                   CurIndex);
1169        if (!Tie)
1170          Signature += "__Imp";
1171        else
1172          Signature += "__Tie" + utostr(Tie->second);
1173      }
1174
1175      Signature += "__";
1176
1177      // Registers are always converted the same, don't duplicate the conversion
1178      // function based on them.
1179      //
1180      // FIXME: We could generalize this based on the render method, if it
1181      // mattered.
1182      if (Op.Class->isRegisterClass())
1183        Signature += "Reg";
1184      else
1185        Signature += Op.Class->ClassName;
1186      Signature += utostr(Op.OperandInfo->MINumOperands);
1187      Signature += "_" + utostr(MIOperandList[i].second);
1188
1189      CurIndex += Op.OperandInfo->MINumOperands;
1190    }
1191
1192    // Add any trailing implicit operands.
1193    for (; CurIndex != NumMIOperands; ++CurIndex) {
1194      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1195                                                                 CurIndex);
1196      if (!Tie)
1197        Signature += "__Imp";
1198      else
1199        Signature += "__Tie" + utostr(Tie->second);
1200    }
1201
1202    II.ConversionFnKind = Signature;
1203
1204    // Check if we have already generated this signature.
1205    if (!GeneratedFns.insert(Signature).second)
1206      continue;
1207
1208    // If not, emit it now.
1209
1210    // Add to the enum list.
1211    OS << "  " << Signature << ",\n";
1212
1213    // And to the convert function.
1214    CvtOS << "  case " << Signature << ":\n";
1215    CurIndex = 0;
1216    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1217      MatchableInfo::Operand &Op = II.AsmOperands[MIOperandList[i].second];
1218
1219      // Add the implicit operands.
1220      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1221        // See if this is a tied operand.
1222        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1223                                                                   CurIndex);
1224
1225        if (!Tie) {
1226          // If not, this is some implicit operand. Just assume it is a register
1227          // for now.
1228          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1229        } else {
1230          // Copy the tied operand.
1231          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1232          CvtOS << "    Inst.addOperand(Inst.getOperand("
1233                << Tie->second << "));\n";
1234        }
1235      }
1236
1237      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
1238         << MIOperandList[i].second
1239         << "+1])->" << Op.Class->RenderMethod
1240         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
1241      CurIndex += Op.OperandInfo->MINumOperands;
1242    }
1243
1244    // And add trailing implicit operands.
1245    for (; CurIndex != NumMIOperands; ++CurIndex) {
1246      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1247                                                                 CurIndex);
1248
1249      if (!Tie) {
1250        // If not, this is some implicit operand. Just assume it is a register
1251        // for now.
1252        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1253      } else {
1254        // Copy the tied operand.
1255        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1256        CvtOS << "    Inst.addOperand(Inst.getOperand("
1257              << Tie->second << "));\n";
1258      }
1259    }
1260
1261    CvtOS << "    return;\n";
1262  }
1263
1264  // Finish the convert function.
1265
1266  CvtOS << "  }\n";
1267  CvtOS << "}\n\n";
1268
1269  // Finish the enum, and drop the convert function after it.
1270
1271  OS << "  NumConversionVariants\n";
1272  OS << "};\n\n";
1273
1274  OS << CvtOS.str();
1275}
1276
1277/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1278static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1279                                      std::vector<ClassInfo*> &Infos,
1280                                      raw_ostream &OS) {
1281  OS << "namespace {\n\n";
1282
1283  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1284     << "/// instruction matching.\n";
1285  OS << "enum MatchClassKind {\n";
1286  OS << "  InvalidMatchClass = 0,\n";
1287  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1288         ie = Infos.end(); it != ie; ++it) {
1289    ClassInfo &CI = **it;
1290    OS << "  " << CI.Name << ", // ";
1291    if (CI.Kind == ClassInfo::Token) {
1292      OS << "'" << CI.ValueName << "'\n";
1293    } else if (CI.isRegisterClass()) {
1294      if (!CI.ValueName.empty())
1295        OS << "register class '" << CI.ValueName << "'\n";
1296      else
1297        OS << "derived register class\n";
1298    } else {
1299      OS << "user defined class '" << CI.ValueName << "'\n";
1300    }
1301  }
1302  OS << "  NumMatchClassKinds\n";
1303  OS << "};\n\n";
1304
1305  OS << "}\n\n";
1306}
1307
1308/// EmitClassifyOperand - Emit the function to classify an operand.
1309static void EmitClassifyOperand(AsmMatcherInfo &Info,
1310                                raw_ostream &OS) {
1311  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1312     << "  " << Info.Target.getName() << "Operand &Operand = *("
1313     << Info.Target.getName() << "Operand*)GOp;\n";
1314
1315  // Classify tokens.
1316  OS << "  if (Operand.isToken())\n";
1317  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1318
1319  // Classify registers.
1320  //
1321  // FIXME: Don't hardcode isReg, getReg.
1322  OS << "  if (Operand.isReg()) {\n";
1323  OS << "    switch (Operand.getReg()) {\n";
1324  OS << "    default: return InvalidMatchClass;\n";
1325  for (std::map<Record*, ClassInfo*>::iterator
1326         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1327       it != ie; ++it)
1328    OS << "    case " << Info.Target.getName() << "::"
1329       << it->first->getName() << ": return " << it->second->Name << ";\n";
1330  OS << "    }\n";
1331  OS << "  }\n\n";
1332
1333  // Classify user defined operands.
1334  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1335         ie = Info.Classes.end(); it != ie; ++it) {
1336    ClassInfo &CI = **it;
1337
1338    if (!CI.isUserClass())
1339      continue;
1340
1341    OS << "  // '" << CI.ClassName << "' class";
1342    if (!CI.SuperClasses.empty()) {
1343      OS << ", subclass of ";
1344      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1345        if (i) OS << ", ";
1346        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1347        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1348      }
1349    }
1350    OS << "\n";
1351
1352    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1353
1354    // Validate subclass relationships.
1355    if (!CI.SuperClasses.empty()) {
1356      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1357        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1358           << "() && \"Invalid class relationship!\");\n";
1359    }
1360
1361    OS << "    return " << CI.Name << ";\n";
1362    OS << "  }\n\n";
1363  }
1364  OS << "  return InvalidMatchClass;\n";
1365  OS << "}\n\n";
1366}
1367
1368/// EmitIsSubclass - Emit the subclass predicate function.
1369static void EmitIsSubclass(CodeGenTarget &Target,
1370                           std::vector<ClassInfo*> &Infos,
1371                           raw_ostream &OS) {
1372  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1373  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1374  OS << "  if (A == B)\n";
1375  OS << "    return true;\n\n";
1376
1377  OS << "  switch (A) {\n";
1378  OS << "  default:\n";
1379  OS << "    return false;\n";
1380  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1381         ie = Infos.end(); it != ie; ++it) {
1382    ClassInfo &A = **it;
1383
1384    if (A.Kind != ClassInfo::Token) {
1385      std::vector<StringRef> SuperClasses;
1386      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1387             ie = Infos.end(); it != ie; ++it) {
1388        ClassInfo &B = **it;
1389
1390        if (&A != &B && A.isSubsetOf(B))
1391          SuperClasses.push_back(B.Name);
1392      }
1393
1394      if (SuperClasses.empty())
1395        continue;
1396
1397      OS << "\n  case " << A.Name << ":\n";
1398
1399      if (SuperClasses.size() == 1) {
1400        OS << "    return B == " << SuperClasses.back() << ";\n";
1401        continue;
1402      }
1403
1404      OS << "    switch (B) {\n";
1405      OS << "    default: return false;\n";
1406      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1407        OS << "    case " << SuperClasses[i] << ": return true;\n";
1408      OS << "    }\n";
1409    }
1410  }
1411  OS << "  }\n";
1412  OS << "}\n\n";
1413}
1414
1415
1416
1417/// EmitMatchTokenString - Emit the function to match a token string to the
1418/// appropriate match class value.
1419static void EmitMatchTokenString(CodeGenTarget &Target,
1420                                 std::vector<ClassInfo*> &Infos,
1421                                 raw_ostream &OS) {
1422  // Construct the match list.
1423  std::vector<StringMatcher::StringPair> Matches;
1424  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1425         ie = Infos.end(); it != ie; ++it) {
1426    ClassInfo &CI = **it;
1427
1428    if (CI.Kind == ClassInfo::Token)
1429      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1430                                                  "return " + CI.Name + ";"));
1431  }
1432
1433  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1434
1435  StringMatcher("Name", Matches, OS).Emit();
1436
1437  OS << "  return InvalidMatchClass;\n";
1438  OS << "}\n\n";
1439}
1440
1441/// EmitMatchRegisterName - Emit the function to match a string to the target
1442/// specific register enum.
1443static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1444                                  raw_ostream &OS) {
1445  // Construct the match list.
1446  std::vector<StringMatcher::StringPair> Matches;
1447  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1448    const CodeGenRegister &Reg = Target.getRegisters()[i];
1449    if (Reg.TheDef->getValueAsString("AsmName").empty())
1450      continue;
1451
1452    Matches.push_back(StringMatcher::StringPair(
1453                                        Reg.TheDef->getValueAsString("AsmName"),
1454                                        "return " + utostr(i + 1) + ";"));
1455  }
1456
1457  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1458
1459  StringMatcher("Name", Matches, OS).Emit();
1460
1461  OS << "  return 0;\n";
1462  OS << "}\n\n";
1463}
1464
1465/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1466/// definitions.
1467static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
1468                                                raw_ostream &OS) {
1469  OS << "// Flags for subtarget features that participate in "
1470     << "instruction matching.\n";
1471  OS << "enum SubtargetFeatureFlag {\n";
1472  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1473         it = Info.SubtargetFeatures.begin(),
1474         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1475    SubtargetFeatureInfo &SFI = *it->second;
1476    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
1477  }
1478  OS << "  Feature_None = 0\n";
1479  OS << "};\n\n";
1480}
1481
1482/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1483/// available features given a subtarget.
1484static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
1485                                         raw_ostream &OS) {
1486  std::string ClassName =
1487    Info.AsmParser->getValueAsString("AsmParserClassName");
1488
1489  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
1490     << "ComputeAvailableFeatures(const " << Info.Target.getName()
1491     << "Subtarget *Subtarget) const {\n";
1492  OS << "  unsigned Features = 0;\n";
1493  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1494         it = Info.SubtargetFeatures.begin(),
1495         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1496    SubtargetFeatureInfo &SFI = *it->second;
1497    OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
1498       << ")\n";
1499    OS << "    Features |= " << SFI.getEnumName() << ";\n";
1500  }
1501  OS << "  return Features;\n";
1502  OS << "}\n\n";
1503}
1504
1505static std::string GetAliasRequiredFeatures(Record *R,
1506                                            const AsmMatcherInfo &Info) {
1507  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
1508  std::string Result;
1509  unsigned NumFeatures = 0;
1510  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
1511    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
1512
1513    if (F == 0)
1514      throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
1515                    "' is not marked as an AssemblerPredicate!");
1516
1517    if (NumFeatures)
1518      Result += '|';
1519
1520    Result += F->getEnumName();
1521    ++NumFeatures;
1522  }
1523
1524  if (NumFeatures > 1)
1525    Result = '(' + Result + ')';
1526  return Result;
1527}
1528
1529/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1530/// emit a function for them and return true, otherwise return false.
1531static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
1532  std::vector<Record*> Aliases =
1533    Records.getAllDerivedDefinitions("MnemonicAlias");
1534  if (Aliases.empty()) return false;
1535
1536  OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
1537        "unsigned Features) {\n";
1538
1539  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
1540  // iteration order of the map is stable.
1541  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1542
1543  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1544    Record *R = Aliases[i];
1545    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1546  }
1547
1548  // Process each alias a "from" mnemonic at a time, building the code executed
1549  // by the string remapper.
1550  std::vector<StringMatcher::StringPair> Cases;
1551  for (std::map<std::string, std::vector<Record*> >::iterator
1552       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1553       I != E; ++I) {
1554    const std::vector<Record*> &ToVec = I->second;
1555
1556    // Loop through each alias and emit code that handles each case.  If there
1557    // are two instructions without predicates, emit an error.  If there is one,
1558    // emit it last.
1559    std::string MatchCode;
1560    int AliasWithNoPredicate = -1;
1561
1562    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
1563      Record *R = ToVec[i];
1564      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
1565
1566      // If this unconditionally matches, remember it for later and diagnose
1567      // duplicates.
1568      if (FeatureMask.empty()) {
1569        if (AliasWithNoPredicate != -1) {
1570          // We can't have two aliases from the same mnemonic with no predicate.
1571          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
1572                     "two MnemonicAliases with the same 'from' mnemonic!");
1573          throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
1574        }
1575
1576        AliasWithNoPredicate = i;
1577        continue;
1578      }
1579
1580      if (!MatchCode.empty())
1581        MatchCode += "else ";
1582      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
1583      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
1584    }
1585
1586    if (AliasWithNoPredicate != -1) {
1587      Record *R = ToVec[AliasWithNoPredicate];
1588      if (!MatchCode.empty())
1589        MatchCode += "else\n  ";
1590      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
1591    }
1592
1593    MatchCode += "return;";
1594
1595    Cases.push_back(std::make_pair(I->first, MatchCode));
1596  }
1597
1598
1599  StringMatcher("Mnemonic", Cases, OS).Emit();
1600  OS << "}\n";
1601
1602  return true;
1603}
1604
1605void AsmMatcherEmitter::run(raw_ostream &OS) {
1606  CodeGenTarget Target;
1607  Record *AsmParser = Target.getAsmParser();
1608  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1609
1610  // Compute the information on the instructions to match.
1611  AsmMatcherInfo Info(AsmParser, Target);
1612  Info.BuildInfo();
1613
1614  // Sort the instruction table using the partial order on classes. We use
1615  // stable_sort to ensure that ambiguous instructions are still
1616  // deterministically ordered.
1617  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
1618                   less_ptr<MatchableInfo>());
1619
1620  DEBUG_WITH_TYPE("instruction_info", {
1621      for (std::vector<MatchableInfo*>::iterator
1622             it = Info.Matchables.begin(), ie = Info.Matchables.end();
1623           it != ie; ++it)
1624        (*it)->dump();
1625    });
1626
1627  // Check for ambiguous matchables.
1628  DEBUG_WITH_TYPE("ambiguous_instrs", {
1629    unsigned NumAmbiguous = 0;
1630    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
1631      for (unsigned j = i + 1; j != e; ++j) {
1632        MatchableInfo &A = *Info.Matchables[i];
1633        MatchableInfo &B = *Info.Matchables[j];
1634
1635        if (A.CouldMatchAmiguouslyWith(B)) {
1636          errs() << "warning: ambiguous matchables:\n";
1637          A.dump();
1638          errs() << "\nis incomparable with:\n";
1639          B.dump();
1640          errs() << "\n\n";
1641          ++NumAmbiguous;
1642        }
1643      }
1644    }
1645    if (NumAmbiguous)
1646      errs() << "warning: " << NumAmbiguous
1647             << " ambiguous matchables!\n";
1648  });
1649
1650  // Write the output.
1651
1652  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1653
1654  // Information for the class declaration.
1655  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
1656  OS << "#undef GET_ASSEMBLER_HEADER\n";
1657  OS << "  // This should be included into the middle of the declaration of \n";
1658  OS << "  // your subclasses implementation of TargetAsmParser.\n";
1659  OS << "  unsigned ComputeAvailableFeatures(const " <<
1660           Target.getName() << "Subtarget *Subtarget) const;\n";
1661  OS << "  enum MatchResultTy {\n";
1662  OS << "    Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
1663  OS << "    Match_MissingFeature\n";
1664  OS << "  };\n";
1665  OS << "  MatchResultTy MatchInstructionImpl(const "
1666     << "SmallVectorImpl<MCParsedAsmOperand*>"
1667     << " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n";
1668  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
1669
1670
1671
1672
1673  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
1674  OS << "#undef GET_REGISTER_MATCHER\n\n";
1675
1676  // Emit the subtarget feature enumeration.
1677  EmitSubtargetFeatureFlagEnumeration(Info, OS);
1678
1679  // Emit the function to match a register name to number.
1680  EmitMatchRegisterName(Target, AsmParser, OS);
1681
1682  OS << "#endif // GET_REGISTER_MATCHER\n\n";
1683
1684
1685  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
1686  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
1687
1688  // Generate the function that remaps for mnemonic aliases.
1689  bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
1690
1691  // Generate the unified function to convert operands into an MCInst.
1692  EmitConvertToMCInst(Target, Info.Matchables, OS);
1693
1694  // Emit the enumeration for classes which participate in matching.
1695  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1696
1697  // Emit the routine to match token strings to their match class.
1698  EmitMatchTokenString(Target, Info.Classes, OS);
1699
1700  // Emit the routine to classify an operand.
1701  EmitClassifyOperand(Info, OS);
1702
1703  // Emit the subclass predicate routine.
1704  EmitIsSubclass(Target, Info.Classes, OS);
1705
1706  // Emit the available features compute function.
1707  EmitComputeAvailableFeatures(Info, OS);
1708
1709
1710  size_t MaxNumOperands = 0;
1711  for (std::vector<MatchableInfo*>::const_iterator it =
1712         Info.Matchables.begin(), ie = Info.Matchables.end();
1713       it != ie; ++it)
1714    MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
1715
1716
1717  // Emit the static match table; unused classes get initalized to 0 which is
1718  // guaranteed to be InvalidMatchClass.
1719  //
1720  // FIXME: We can reduce the size of this table very easily. First, we change
1721  // it so that store the kinds in separate bit-fields for each index, which
1722  // only needs to be the max width used for classes at that index (we also need
1723  // to reject based on this during classification). If we then make sure to
1724  // order the match kinds appropriately (putting mnemonics last), then we
1725  // should only end up using a few bits for each class, especially the ones
1726  // following the mnemonic.
1727  OS << "namespace {\n";
1728  OS << "  struct MatchEntry {\n";
1729  OS << "    unsigned Opcode;\n";
1730  OS << "    const char *Mnemonic;\n";
1731  OS << "    ConversionKind ConvertFn;\n";
1732  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1733  OS << "    unsigned RequiredFeatures;\n";
1734  OS << "  };\n\n";
1735
1736  OS << "// Predicate for searching for an opcode.\n";
1737  OS << "  struct LessOpcode {\n";
1738  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
1739  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
1740  OS << "    }\n";
1741  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
1742  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
1743  OS << "    }\n";
1744  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
1745  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
1746  OS << "    }\n";
1747  OS << "  };\n";
1748
1749  OS << "} // end anonymous namespace.\n\n";
1750
1751  OS << "static const MatchEntry MatchTable["
1752     << Info.Matchables.size() << "] = {\n";
1753
1754  for (std::vector<MatchableInfo*>::const_iterator it =
1755       Info.Matchables.begin(), ie = Info.Matchables.end();
1756       it != ie; ++it) {
1757    MatchableInfo &II = **it;
1758
1759    OS << "  { " << Target.getName() << "::" << II.InstrName
1760    << ", \"" << II.Mnemonic << "\""
1761    << ", " << II.ConversionFnKind << ", { ";
1762    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1763      MatchableInfo::Operand &Op = II.AsmOperands[i];
1764
1765      if (i) OS << ", ";
1766      OS << Op.Class->Name;
1767    }
1768    OS << " }, ";
1769
1770    // Write the required features mask.
1771    if (!II.RequiredFeatures.empty()) {
1772      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
1773        if (i) OS << "|";
1774        OS << II.RequiredFeatures[i]->getEnumName();
1775      }
1776    } else
1777      OS << "0";
1778
1779    OS << "},\n";
1780  }
1781
1782  OS << "};\n\n";
1783
1784  // Finally, build the match function.
1785  OS << Target.getName() << ClassName << "::MatchResultTy "
1786     << Target.getName() << ClassName << "::\n"
1787     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
1788     << " &Operands,\n";
1789  OS << "                     MCInst &Inst, unsigned &ErrorInfo) {\n";
1790
1791  // Emit code to get the available features.
1792  OS << "  // Get the current feature set.\n";
1793  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
1794
1795  OS << "  // Get the instruction mnemonic, which is the first token.\n";
1796  OS << "  StringRef Mnemonic = ((" << Target.getName()
1797     << "Operand*)Operands[0])->getToken();\n\n";
1798
1799  if (HasMnemonicAliases) {
1800    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
1801    OS << "  ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
1802  }
1803
1804  // Emit code to compute the class list for this operand vector.
1805  OS << "  // Eliminate obvious mismatches.\n";
1806  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
1807  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
1808  OS << "    return Match_InvalidOperand;\n";
1809  OS << "  }\n\n";
1810
1811  OS << "  // Compute the class list for this operand vector.\n";
1812  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1813  OS << "  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
1814  OS << "    Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
1815
1816  OS << "    // Check for invalid operands before matching.\n";
1817  OS << "    if (Classes[i-1] == InvalidMatchClass) {\n";
1818  OS << "      ErrorInfo = i;\n";
1819  OS << "      return Match_InvalidOperand;\n";
1820  OS << "    }\n";
1821  OS << "  }\n\n";
1822
1823  OS << "  // Mark unused classes.\n";
1824  OS << "  for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
1825     << "i != e; ++i)\n";
1826  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1827
1828  OS << "  // Some state to try to produce better error messages.\n";
1829  OS << "  bool HadMatchOtherThanFeatures = false;\n\n";
1830  OS << "  // Set ErrorInfo to the operand that mismatches if it is \n";
1831  OS << "  // wrong for all instances of the instruction.\n";
1832  OS << "  ErrorInfo = ~0U;\n";
1833
1834  // Emit code to search the table.
1835  OS << "  // Search the table.\n";
1836  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
1837  OS << "    std::equal_range(MatchTable, MatchTable+"
1838     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
1839
1840  OS << "  // Return a more specific error code if no mnemonics match.\n";
1841  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
1842  OS << "    return Match_MnemonicFail;\n\n";
1843
1844  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
1845     << "*ie = MnemonicRange.second;\n";
1846  OS << "       it != ie; ++it) {\n";
1847
1848  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
1849  OS << "    assert(Mnemonic == it->Mnemonic);\n";
1850
1851  // Emit check that the subclasses match.
1852  OS << "    bool OperandsValid = true;\n";
1853  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
1854  OS << "      if (IsSubclass(Classes[i], it->Classes[i]))\n";
1855  OS << "        continue;\n";
1856  OS << "      // If this operand is broken for all of the instances of this\n";
1857  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
1858  OS << "      if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
1859  OS << "        ErrorInfo = i+1;\n";
1860  OS << "      else\n";
1861  OS << "        ErrorInfo = ~0U;";
1862  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
1863  OS << "      OperandsValid = false;\n";
1864  OS << "      break;\n";
1865  OS << "    }\n\n";
1866
1867  OS << "    if (!OperandsValid) continue;\n";
1868
1869  // Emit check that the required features are available.
1870  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
1871     << "!= it->RequiredFeatures) {\n";
1872  OS << "      HadMatchOtherThanFeatures = true;\n";
1873  OS << "      continue;\n";
1874  OS << "    }\n";
1875
1876  OS << "\n";
1877  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
1878
1879  // Call the post-processing function, if used.
1880  std::string InsnCleanupFn =
1881    AsmParser->getValueAsString("AsmParserInstCleanup");
1882  if (!InsnCleanupFn.empty())
1883    OS << "    " << InsnCleanupFn << "(Inst);\n";
1884
1885  OS << "    return Match_Success;\n";
1886  OS << "  }\n\n";
1887
1888  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
1889  OS << "  if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
1890  OS << "  return Match_InvalidOperand;\n";
1891  OS << "}\n\n";
1892
1893  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
1894}
1895