lithium-codegen-x64.cc revision 592a9fc1d8ea420377a2e7efd0600e20b058be2b
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_X64)
31
32#include "x64/lithium-codegen-x64.h"
33#include "code-stubs.h"
34#include "stub-cache.h"
35
36namespace v8 {
37namespace internal {
38
39
40// When invoking builtins, we need to record the safepoint in the middle of
41// the invoke instruction sequence generated by the macro assembler.
42class SafepointGenerator : public CallWrapper {
43 public:
44  SafepointGenerator(LCodeGen* codegen,
45                     LPointerMap* pointers,
46                     Safepoint::DeoptMode mode)
47      : codegen_(codegen),
48        pointers_(pointers),
49        deopt_mode_(mode) { }
50  virtual ~SafepointGenerator() { }
51
52  virtual void BeforeCall(int call_size) const {
53    codegen_->EnsureSpaceForLazyDeopt(Deoptimizer::patch_size() - call_size);
54  }
55
56  virtual void AfterCall() const {
57    codegen_->RecordSafepoint(pointers_, deopt_mode_);
58  }
59
60 private:
61  LCodeGen* codegen_;
62  LPointerMap* pointers_;
63  Safepoint::DeoptMode deopt_mode_;
64};
65
66
67#define __ masm()->
68
69bool LCodeGen::GenerateCode() {
70  HPhase phase("Code generation", chunk());
71  ASSERT(is_unused());
72  status_ = GENERATING;
73
74  // Open a frame scope to indicate that there is a frame on the stack.  The
75  // MANUAL indicates that the scope shouldn't actually generate code to set up
76  // the frame (that is done in GeneratePrologue).
77  FrameScope frame_scope(masm_, StackFrame::MANUAL);
78
79  return GeneratePrologue() &&
80      GenerateBody() &&
81      GenerateDeferredCode() &&
82      GenerateJumpTable() &&
83      GenerateSafepointTable();
84}
85
86
87void LCodeGen::FinishCode(Handle<Code> code) {
88  ASSERT(is_done());
89  code->set_stack_slots(GetStackSlotCount());
90  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
91  PopulateDeoptimizationData(code);
92}
93
94
95void LCodeGen::Abort(const char* format, ...) {
96  if (FLAG_trace_bailout) {
97    SmartArrayPointer<char> name(
98        info()->shared_info()->DebugName()->ToCString());
99    PrintF("Aborting LCodeGen in @\"%s\": ", *name);
100    va_list arguments;
101    va_start(arguments, format);
102    OS::VPrint(format, arguments);
103    va_end(arguments);
104    PrintF("\n");
105  }
106  status_ = ABORTED;
107}
108
109
110void LCodeGen::Comment(const char* format, ...) {
111  if (!FLAG_code_comments) return;
112  char buffer[4 * KB];
113  StringBuilder builder(buffer, ARRAY_SIZE(buffer));
114  va_list arguments;
115  va_start(arguments, format);
116  builder.AddFormattedList(format, arguments);
117  va_end(arguments);
118
119  // Copy the string before recording it in the assembler to avoid
120  // issues when the stack allocated buffer goes out of scope.
121  int length = builder.position();
122  Vector<char> copy = Vector<char>::New(length + 1);
123  memcpy(copy.start(), builder.Finalize(), copy.length());
124  masm()->RecordComment(copy.start());
125}
126
127
128bool LCodeGen::GeneratePrologue() {
129  ASSERT(is_generating());
130
131#ifdef DEBUG
132  if (strlen(FLAG_stop_at) > 0 &&
133      info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
134    __ int3();
135  }
136#endif
137
138  // Strict mode functions need to replace the receiver with undefined
139  // when called as functions (without an explicit receiver
140  // object). rcx is zero for method calls and non-zero for function
141  // calls.
142  if (!info_->is_classic_mode() || info_->is_native()) {
143    Label ok;
144    __ testq(rcx, rcx);
145    __ j(zero, &ok, Label::kNear);
146    // +1 for return address.
147    int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
148    __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
149    __ movq(Operand(rsp, receiver_offset), kScratchRegister);
150    __ bind(&ok);
151  }
152
153  __ push(rbp);  // Caller's frame pointer.
154  __ movq(rbp, rsp);
155  __ push(rsi);  // Callee's context.
156  __ push(rdi);  // Callee's JS function.
157
158  // Reserve space for the stack slots needed by the code.
159  int slots = GetStackSlotCount();
160  if (slots > 0) {
161    if (FLAG_debug_code) {
162      __ Set(rax, slots);
163      __ movq(kScratchRegister, kSlotsZapValue, RelocInfo::NONE);
164      Label loop;
165      __ bind(&loop);
166      __ push(kScratchRegister);
167      __ decl(rax);
168      __ j(not_zero, &loop);
169    } else {
170      __ subq(rsp, Immediate(slots * kPointerSize));
171#ifdef _MSC_VER
172      // On windows, you may not access the stack more than one page below
173      // the most recently mapped page. To make the allocated area randomly
174      // accessible, we write to each page in turn (the value is irrelevant).
175      const int kPageSize = 4 * KB;
176      for (int offset = slots * kPointerSize - kPageSize;
177           offset > 0;
178           offset -= kPageSize) {
179        __ movq(Operand(rsp, offset), rax);
180      }
181#endif
182    }
183  }
184
185  // Possibly allocate a local context.
186  int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
187  if (heap_slots > 0) {
188    Comment(";;; Allocate local context");
189    // Argument to NewContext is the function, which is still in rdi.
190    __ push(rdi);
191    if (heap_slots <= FastNewContextStub::kMaximumSlots) {
192      FastNewContextStub stub(heap_slots);
193      __ CallStub(&stub);
194    } else {
195      __ CallRuntime(Runtime::kNewFunctionContext, 1);
196    }
197    RecordSafepoint(Safepoint::kNoLazyDeopt);
198    // Context is returned in both rax and rsi.  It replaces the context
199    // passed to us.  It's saved in the stack and kept live in rsi.
200    __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
201
202    // Copy any necessary parameters into the context.
203    int num_parameters = scope()->num_parameters();
204    for (int i = 0; i < num_parameters; i++) {
205      Variable* var = scope()->parameter(i);
206      if (var->IsContextSlot()) {
207        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
208            (num_parameters - 1 - i) * kPointerSize;
209        // Load parameter from stack.
210        __ movq(rax, Operand(rbp, parameter_offset));
211        // Store it in the context.
212        int context_offset = Context::SlotOffset(var->index());
213        __ movq(Operand(rsi, context_offset), rax);
214        // Update the write barrier. This clobbers rax and rbx.
215        __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
216      }
217    }
218    Comment(";;; End allocate local context");
219  }
220
221  // Trace the call.
222  if (FLAG_trace) {
223    __ CallRuntime(Runtime::kTraceEnter, 0);
224  }
225  return !is_aborted();
226}
227
228
229bool LCodeGen::GenerateBody() {
230  ASSERT(is_generating());
231  bool emit_instructions = true;
232  for (current_instruction_ = 0;
233       !is_aborted() && current_instruction_ < instructions_->length();
234       current_instruction_++) {
235    LInstruction* instr = instructions_->at(current_instruction_);
236    if (instr->IsLabel()) {
237      LLabel* label = LLabel::cast(instr);
238      emit_instructions = !label->HasReplacement();
239    }
240
241    if (emit_instructions) {
242      Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
243      instr->CompileToNative(this);
244    }
245  }
246  EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
247  return !is_aborted();
248}
249
250
251bool LCodeGen::GenerateJumpTable() {
252  for (int i = 0; i < jump_table_.length(); i++) {
253    __ bind(&jump_table_[i].label);
254    __ Jump(jump_table_[i].address, RelocInfo::RUNTIME_ENTRY);
255  }
256  return !is_aborted();
257}
258
259
260bool LCodeGen::GenerateDeferredCode() {
261  ASSERT(is_generating());
262  if (deferred_.length() > 0) {
263    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
264      LDeferredCode* code = deferred_[i];
265      __ bind(code->entry());
266      Comment(";;; Deferred code @%d: %s.",
267              code->instruction_index(),
268              code->instr()->Mnemonic());
269      code->Generate();
270      __ jmp(code->exit());
271    }
272  }
273
274  // Deferred code is the last part of the instruction sequence. Mark
275  // the generated code as done unless we bailed out.
276  if (!is_aborted()) status_ = DONE;
277  return !is_aborted();
278}
279
280
281bool LCodeGen::GenerateSafepointTable() {
282  ASSERT(is_done());
283  safepoints_.Emit(masm(), GetStackSlotCount());
284  return !is_aborted();
285}
286
287
288Register LCodeGen::ToRegister(int index) const {
289  return Register::FromAllocationIndex(index);
290}
291
292
293XMMRegister LCodeGen::ToDoubleRegister(int index) const {
294  return XMMRegister::FromAllocationIndex(index);
295}
296
297
298Register LCodeGen::ToRegister(LOperand* op) const {
299  ASSERT(op->IsRegister());
300  return ToRegister(op->index());
301}
302
303
304XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
305  ASSERT(op->IsDoubleRegister());
306  return ToDoubleRegister(op->index());
307}
308
309
310bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
311  return op->IsConstantOperand() &&
312      chunk_->LookupLiteralRepresentation(op).IsInteger32();
313}
314
315
316bool LCodeGen::IsTaggedConstant(LConstantOperand* op) const {
317  return op->IsConstantOperand() &&
318      chunk_->LookupLiteralRepresentation(op).IsTagged();
319}
320
321
322int LCodeGen::ToInteger32(LConstantOperand* op) const {
323  Handle<Object> value = chunk_->LookupLiteral(op);
324  ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
325  ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
326      value->Number());
327  return static_cast<int32_t>(value->Number());
328}
329
330
331double LCodeGen::ToDouble(LConstantOperand* op) const {
332  Handle<Object> value = chunk_->LookupLiteral(op);
333  return value->Number();
334}
335
336
337Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
338  Handle<Object> literal = chunk_->LookupLiteral(op);
339  ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged());
340  return literal;
341}
342
343
344Operand LCodeGen::ToOperand(LOperand* op) const {
345  // Does not handle registers. In X64 assembler, plain registers are not
346  // representable as an Operand.
347  ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
348  int index = op->index();
349  if (index >= 0) {
350    // Local or spill slot. Skip the frame pointer, function, and
351    // context in the fixed part of the frame.
352    return Operand(rbp, -(index + 3) * kPointerSize);
353  } else {
354    // Incoming parameter. Skip the return address.
355    return Operand(rbp, -(index - 1) * kPointerSize);
356  }
357}
358
359
360void LCodeGen::WriteTranslation(LEnvironment* environment,
361                                Translation* translation) {
362  if (environment == NULL) return;
363
364  // The translation includes one command per value in the environment.
365  int translation_size = environment->values()->length();
366  // The output frame height does not include the parameters.
367  int height = translation_size - environment->parameter_count();
368
369  WriteTranslation(environment->outer(), translation);
370  int closure_id = DefineDeoptimizationLiteral(environment->closure());
371  translation->BeginFrame(environment->ast_id(), closure_id, height);
372  for (int i = 0; i < translation_size; ++i) {
373    LOperand* value = environment->values()->at(i);
374    // spilled_registers_ and spilled_double_registers_ are either
375    // both NULL or both set.
376    if (environment->spilled_registers() != NULL && value != NULL) {
377      if (value->IsRegister() &&
378          environment->spilled_registers()[value->index()] != NULL) {
379        translation->MarkDuplicate();
380        AddToTranslation(translation,
381                         environment->spilled_registers()[value->index()],
382                         environment->HasTaggedValueAt(i));
383      } else if (
384          value->IsDoubleRegister() &&
385          environment->spilled_double_registers()[value->index()] != NULL) {
386        translation->MarkDuplicate();
387        AddToTranslation(
388            translation,
389            environment->spilled_double_registers()[value->index()],
390            false);
391      }
392    }
393
394    AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
395  }
396}
397
398
399void LCodeGen::AddToTranslation(Translation* translation,
400                                LOperand* op,
401                                bool is_tagged) {
402  if (op == NULL) {
403    // TODO(twuerthinger): Introduce marker operands to indicate that this value
404    // is not present and must be reconstructed from the deoptimizer. Currently
405    // this is only used for the arguments object.
406    translation->StoreArgumentsObject();
407  } else if (op->IsStackSlot()) {
408    if (is_tagged) {
409      translation->StoreStackSlot(op->index());
410    } else {
411      translation->StoreInt32StackSlot(op->index());
412    }
413  } else if (op->IsDoubleStackSlot()) {
414    translation->StoreDoubleStackSlot(op->index());
415  } else if (op->IsArgument()) {
416    ASSERT(is_tagged);
417    int src_index = GetStackSlotCount() + op->index();
418    translation->StoreStackSlot(src_index);
419  } else if (op->IsRegister()) {
420    Register reg = ToRegister(op);
421    if (is_tagged) {
422      translation->StoreRegister(reg);
423    } else {
424      translation->StoreInt32Register(reg);
425    }
426  } else if (op->IsDoubleRegister()) {
427    XMMRegister reg = ToDoubleRegister(op);
428    translation->StoreDoubleRegister(reg);
429  } else if (op->IsConstantOperand()) {
430    Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
431    int src_index = DefineDeoptimizationLiteral(literal);
432    translation->StoreLiteral(src_index);
433  } else {
434    UNREACHABLE();
435  }
436}
437
438
439void LCodeGen::CallCodeGeneric(Handle<Code> code,
440                               RelocInfo::Mode mode,
441                               LInstruction* instr,
442                               SafepointMode safepoint_mode,
443                               int argc) {
444  EnsureSpaceForLazyDeopt(Deoptimizer::patch_size() - masm()->CallSize(code));
445  ASSERT(instr != NULL);
446  LPointerMap* pointers = instr->pointer_map();
447  RecordPosition(pointers->position());
448  __ call(code, mode);
449  RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
450
451  // Signal that we don't inline smi code before these stubs in the
452  // optimizing code generator.
453  if (code->kind() == Code::BINARY_OP_IC ||
454      code->kind() == Code::COMPARE_IC) {
455    __ nop();
456  }
457}
458
459
460void LCodeGen::CallCode(Handle<Code> code,
461                        RelocInfo::Mode mode,
462                        LInstruction* instr) {
463  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
464}
465
466
467void LCodeGen::CallRuntime(const Runtime::Function* function,
468                           int num_arguments,
469                           LInstruction* instr) {
470  ASSERT(instr != NULL);
471  ASSERT(instr->HasPointerMap());
472  LPointerMap* pointers = instr->pointer_map();
473  RecordPosition(pointers->position());
474
475  __ CallRuntime(function, num_arguments);
476  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
477}
478
479
480void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
481                                       int argc,
482                                       LInstruction* instr) {
483  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
484  __ CallRuntimeSaveDoubles(id);
485  RecordSafepointWithRegisters(
486      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
487}
488
489
490void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
491                                                    Safepoint::DeoptMode mode) {
492  if (!environment->HasBeenRegistered()) {
493    // Physical stack frame layout:
494    // -x ............. -4  0 ..................................... y
495    // [incoming arguments] [spill slots] [pushed outgoing arguments]
496
497    // Layout of the environment:
498    // 0 ..................................................... size-1
499    // [parameters] [locals] [expression stack including arguments]
500
501    // Layout of the translation:
502    // 0 ........................................................ size - 1 + 4
503    // [expression stack including arguments] [locals] [4 words] [parameters]
504    // |>------------  translation_size ------------<|
505
506    int frame_count = 0;
507    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
508      ++frame_count;
509    }
510    Translation translation(&translations_, frame_count);
511    WriteTranslation(environment, &translation);
512    int deoptimization_index = deoptimizations_.length();
513    int pc_offset = masm()->pc_offset();
514    environment->Register(deoptimization_index,
515                          translation.index(),
516                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
517    deoptimizations_.Add(environment);
518  }
519}
520
521
522void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
523  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
524  ASSERT(environment->HasBeenRegistered());
525  int id = environment->deoptimization_index();
526  Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
527  ASSERT(entry != NULL);
528  if (entry == NULL) {
529    Abort("bailout was not prepared");
530    return;
531  }
532
533  if (cc == no_condition) {
534    __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
535  } else {
536    // We often have several deopts to the same entry, reuse the last
537    // jump entry if this is the case.
538    if (jump_table_.is_empty() ||
539        jump_table_.last().address != entry) {
540      jump_table_.Add(JumpTableEntry(entry));
541    }
542    __ j(cc, &jump_table_.last().label);
543  }
544}
545
546
547void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
548  int length = deoptimizations_.length();
549  if (length == 0) return;
550  ASSERT(FLAG_deopt);
551  Handle<DeoptimizationInputData> data =
552      factory()->NewDeoptimizationInputData(length, TENURED);
553
554  Handle<ByteArray> translations = translations_.CreateByteArray();
555  data->SetTranslationByteArray(*translations);
556  data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
557
558  Handle<FixedArray> literals =
559      factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
560  for (int i = 0; i < deoptimization_literals_.length(); i++) {
561    literals->set(i, *deoptimization_literals_[i]);
562  }
563  data->SetLiteralArray(*literals);
564
565  data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
566  data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
567
568  // Populate the deoptimization entries.
569  for (int i = 0; i < length; i++) {
570    LEnvironment* env = deoptimizations_[i];
571    data->SetAstId(i, Smi::FromInt(env->ast_id()));
572    data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
573    data->SetArgumentsStackHeight(i,
574                                  Smi::FromInt(env->arguments_stack_height()));
575    data->SetPc(i, Smi::FromInt(env->pc_offset()));
576  }
577  code->set_deoptimization_data(*data);
578}
579
580
581int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
582  int result = deoptimization_literals_.length();
583  for (int i = 0; i < deoptimization_literals_.length(); ++i) {
584    if (deoptimization_literals_[i].is_identical_to(literal)) return i;
585  }
586  deoptimization_literals_.Add(literal);
587  return result;
588}
589
590
591void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
592  ASSERT(deoptimization_literals_.length() == 0);
593
594  const ZoneList<Handle<JSFunction> >* inlined_closures =
595      chunk()->inlined_closures();
596
597  for (int i = 0, length = inlined_closures->length();
598       i < length;
599       i++) {
600    DefineDeoptimizationLiteral(inlined_closures->at(i));
601  }
602
603  inlined_function_count_ = deoptimization_literals_.length();
604}
605
606
607void LCodeGen::RecordSafepointWithLazyDeopt(
608    LInstruction* instr, SafepointMode safepoint_mode, int argc) {
609  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
610    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
611  } else {
612    ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
613    RecordSafepointWithRegisters(
614        instr->pointer_map(), argc, Safepoint::kLazyDeopt);
615  }
616}
617
618
619void LCodeGen::RecordSafepoint(
620    LPointerMap* pointers,
621    Safepoint::Kind kind,
622    int arguments,
623    Safepoint::DeoptMode deopt_mode) {
624  ASSERT(kind == expected_safepoint_kind_);
625
626  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
627
628  Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
629      kind, arguments, deopt_mode);
630  for (int i = 0; i < operands->length(); i++) {
631    LOperand* pointer = operands->at(i);
632    if (pointer->IsStackSlot()) {
633      safepoint.DefinePointerSlot(pointer->index());
634    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
635      safepoint.DefinePointerRegister(ToRegister(pointer));
636    }
637  }
638  if (kind & Safepoint::kWithRegisters) {
639    // Register rsi always contains a pointer to the context.
640    safepoint.DefinePointerRegister(rsi);
641  }
642}
643
644
645void LCodeGen::RecordSafepoint(LPointerMap* pointers,
646                               Safepoint::DeoptMode deopt_mode) {
647  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
648}
649
650
651void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
652  LPointerMap empty_pointers(RelocInfo::kNoPosition);
653  RecordSafepoint(&empty_pointers, deopt_mode);
654}
655
656
657void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
658                                            int arguments,
659                                            Safepoint::DeoptMode deopt_mode) {
660  RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
661}
662
663
664void LCodeGen::RecordPosition(int position) {
665  if (position == RelocInfo::kNoPosition) return;
666  masm()->positions_recorder()->RecordPosition(position);
667}
668
669
670void LCodeGen::DoLabel(LLabel* label) {
671  if (label->is_loop_header()) {
672    Comment(";;; B%d - LOOP entry", label->block_id());
673  } else {
674    Comment(";;; B%d", label->block_id());
675  }
676  __ bind(label->label());
677  current_block_ = label->block_id();
678  DoGap(label);
679}
680
681
682void LCodeGen::DoParallelMove(LParallelMove* move) {
683  resolver_.Resolve(move);
684}
685
686
687void LCodeGen::DoGap(LGap* gap) {
688  for (int i = LGap::FIRST_INNER_POSITION;
689       i <= LGap::LAST_INNER_POSITION;
690       i++) {
691    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
692    LParallelMove* move = gap->GetParallelMove(inner_pos);
693    if (move != NULL) DoParallelMove(move);
694  }
695}
696
697
698void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
699  DoGap(instr);
700}
701
702
703void LCodeGen::DoParameter(LParameter* instr) {
704  // Nothing to do.
705}
706
707
708void LCodeGen::DoCallStub(LCallStub* instr) {
709  ASSERT(ToRegister(instr->result()).is(rax));
710  switch (instr->hydrogen()->major_key()) {
711    case CodeStub::RegExpConstructResult: {
712      RegExpConstructResultStub stub;
713      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
714      break;
715    }
716    case CodeStub::RegExpExec: {
717      RegExpExecStub stub;
718      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
719      break;
720    }
721    case CodeStub::SubString: {
722      SubStringStub stub;
723      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
724      break;
725    }
726    case CodeStub::NumberToString: {
727      NumberToStringStub stub;
728      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
729      break;
730    }
731    case CodeStub::StringAdd: {
732      StringAddStub stub(NO_STRING_ADD_FLAGS);
733      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
734      break;
735    }
736    case CodeStub::StringCompare: {
737      StringCompareStub stub;
738      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
739      break;
740    }
741    case CodeStub::TranscendentalCache: {
742      TranscendentalCacheStub stub(instr->transcendental_type(),
743                                   TranscendentalCacheStub::TAGGED);
744      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
745      break;
746    }
747    default:
748      UNREACHABLE();
749  }
750}
751
752
753void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
754  // Nothing to do.
755}
756
757
758void LCodeGen::DoModI(LModI* instr) {
759  if (instr->hydrogen()->HasPowerOf2Divisor()) {
760    Register dividend = ToRegister(instr->InputAt(0));
761
762    int32_t divisor =
763        HConstant::cast(instr->hydrogen()->right())->Integer32Value();
764
765    if (divisor < 0) divisor = -divisor;
766
767    Label positive_dividend, done;
768    __ testl(dividend, dividend);
769    __ j(not_sign, &positive_dividend, Label::kNear);
770    __ negl(dividend);
771    __ andl(dividend, Immediate(divisor - 1));
772    __ negl(dividend);
773    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
774      __ j(not_zero, &done, Label::kNear);
775      DeoptimizeIf(no_condition, instr->environment());
776    } else {
777      __ jmp(&done, Label::kNear);
778    }
779    __ bind(&positive_dividend);
780    __ andl(dividend, Immediate(divisor - 1));
781    __ bind(&done);
782  } else {
783    Label done, remainder_eq_dividend, slow, do_subtraction, both_positive;
784    Register left_reg = ToRegister(instr->InputAt(0));
785    Register right_reg = ToRegister(instr->InputAt(1));
786    Register result_reg = ToRegister(instr->result());
787
788    ASSERT(left_reg.is(rax));
789    ASSERT(result_reg.is(rdx));
790    ASSERT(!right_reg.is(rax));
791    ASSERT(!right_reg.is(rdx));
792
793    // Check for x % 0.
794    if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
795      __ testl(right_reg, right_reg);
796      DeoptimizeIf(zero, instr->environment());
797    }
798
799    __ testl(left_reg, left_reg);
800    __ j(zero, &remainder_eq_dividend, Label::kNear);
801    __ j(sign, &slow, Label::kNear);
802
803    __ testl(right_reg, right_reg);
804    __ j(not_sign, &both_positive, Label::kNear);
805    // The sign of the divisor doesn't matter.
806    __ neg(right_reg);
807
808    __ bind(&both_positive);
809    // If the dividend is smaller than the nonnegative
810    // divisor, the dividend is the result.
811    __ cmpl(left_reg, right_reg);
812    __ j(less, &remainder_eq_dividend, Label::kNear);
813
814    // Check if the divisor is a PowerOfTwo integer.
815    Register scratch = ToRegister(instr->TempAt(0));
816    __ movl(scratch, right_reg);
817    __ subl(scratch, Immediate(1));
818    __ testl(scratch, right_reg);
819    __ j(not_zero, &do_subtraction, Label::kNear);
820    __ andl(left_reg, scratch);
821    __ jmp(&remainder_eq_dividend, Label::kNear);
822
823    __ bind(&do_subtraction);
824    const int kUnfolds = 3;
825    // Try a few subtractions of the dividend.
826    __ movl(scratch, left_reg);
827    for (int i = 0; i < kUnfolds; i++) {
828      // Reduce the dividend by the divisor.
829      __ subl(left_reg, right_reg);
830      // Check if the dividend is less than the divisor.
831      __ cmpl(left_reg, right_reg);
832      __ j(less, &remainder_eq_dividend, Label::kNear);
833    }
834    __ movl(left_reg, scratch);
835
836    // Slow case, using idiv instruction.
837    __ bind(&slow);
838    // Sign extend eax to edx.
839    // (We are using only the low 32 bits of the values.)
840    __ cdq();
841
842    // Check for (0 % -x) that will produce negative zero.
843    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
844      Label positive_left;
845      Label done;
846      __ testl(left_reg, left_reg);
847      __ j(not_sign, &positive_left, Label::kNear);
848      __ idivl(right_reg);
849
850      // Test the remainder for 0, because then the result would be -0.
851      __ testl(result_reg, result_reg);
852      __ j(not_zero, &done, Label::kNear);
853
854      DeoptimizeIf(no_condition, instr->environment());
855      __ bind(&positive_left);
856      __ idivl(right_reg);
857      __ bind(&done);
858    } else {
859      __ idivl(right_reg);
860    }
861    __ jmp(&done, Label::kNear);
862
863    __ bind(&remainder_eq_dividend);
864    __ movl(result_reg, left_reg);
865
866    __ bind(&done);
867  }
868}
869
870
871void LCodeGen::DoDivI(LDivI* instr) {
872  LOperand* right = instr->InputAt(1);
873  ASSERT(ToRegister(instr->result()).is(rax));
874  ASSERT(ToRegister(instr->InputAt(0)).is(rax));
875  ASSERT(!ToRegister(instr->InputAt(1)).is(rax));
876  ASSERT(!ToRegister(instr->InputAt(1)).is(rdx));
877
878  Register left_reg = rax;
879
880  // Check for x / 0.
881  Register right_reg = ToRegister(right);
882  if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
883    __ testl(right_reg, right_reg);
884    DeoptimizeIf(zero, instr->environment());
885  }
886
887  // Check for (0 / -x) that will produce negative zero.
888  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
889    Label left_not_zero;
890    __ testl(left_reg, left_reg);
891    __ j(not_zero, &left_not_zero, Label::kNear);
892    __ testl(right_reg, right_reg);
893    DeoptimizeIf(sign, instr->environment());
894    __ bind(&left_not_zero);
895  }
896
897  // Check for (-kMinInt / -1).
898  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
899    Label left_not_min_int;
900    __ cmpl(left_reg, Immediate(kMinInt));
901    __ j(not_zero, &left_not_min_int, Label::kNear);
902    __ cmpl(right_reg, Immediate(-1));
903    DeoptimizeIf(zero, instr->environment());
904    __ bind(&left_not_min_int);
905  }
906
907  // Sign extend to rdx.
908  __ cdq();
909  __ idivl(right_reg);
910
911  // Deoptimize if remainder is not 0.
912  __ testl(rdx, rdx);
913  DeoptimizeIf(not_zero, instr->environment());
914}
915
916
917void LCodeGen::DoMulI(LMulI* instr) {
918  Register left = ToRegister(instr->InputAt(0));
919  LOperand* right = instr->InputAt(1);
920
921  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
922    __ movl(kScratchRegister, left);
923  }
924
925  bool can_overflow =
926      instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
927  if (right->IsConstantOperand()) {
928    int right_value = ToInteger32(LConstantOperand::cast(right));
929    if (right_value == -1) {
930      __ negl(left);
931    } else if (right_value == 0) {
932      __ xorl(left, left);
933    } else if (right_value == 2) {
934      __ addl(left, left);
935    } else if (!can_overflow) {
936      // If the multiplication is known to not overflow, we
937      // can use operations that don't set the overflow flag
938      // correctly.
939      switch (right_value) {
940        case 1:
941          // Do nothing.
942          break;
943        case 3:
944          __ leal(left, Operand(left, left, times_2, 0));
945          break;
946        case 4:
947          __ shll(left, Immediate(2));
948          break;
949        case 5:
950          __ leal(left, Operand(left, left, times_4, 0));
951          break;
952        case 8:
953          __ shll(left, Immediate(3));
954          break;
955        case 9:
956          __ leal(left, Operand(left, left, times_8, 0));
957          break;
958        case 16:
959          __ shll(left, Immediate(4));
960          break;
961        default:
962          __ imull(left, left, Immediate(right_value));
963          break;
964      }
965    } else {
966      __ imull(left, left, Immediate(right_value));
967    }
968  } else if (right->IsStackSlot()) {
969    __ imull(left, ToOperand(right));
970  } else {
971    __ imull(left, ToRegister(right));
972  }
973
974  if (can_overflow) {
975    DeoptimizeIf(overflow, instr->environment());
976  }
977
978  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
979    // Bail out if the result is supposed to be negative zero.
980    Label done;
981    __ testl(left, left);
982    __ j(not_zero, &done, Label::kNear);
983    if (right->IsConstantOperand()) {
984      if (ToInteger32(LConstantOperand::cast(right)) <= 0) {
985        DeoptimizeIf(no_condition, instr->environment());
986      }
987    } else if (right->IsStackSlot()) {
988      __ or_(kScratchRegister, ToOperand(right));
989      DeoptimizeIf(sign, instr->environment());
990    } else {
991      // Test the non-zero operand for negative sign.
992      __ or_(kScratchRegister, ToRegister(right));
993      DeoptimizeIf(sign, instr->environment());
994    }
995    __ bind(&done);
996  }
997}
998
999
1000void LCodeGen::DoBitI(LBitI* instr) {
1001  LOperand* left = instr->InputAt(0);
1002  LOperand* right = instr->InputAt(1);
1003  ASSERT(left->Equals(instr->result()));
1004  ASSERT(left->IsRegister());
1005
1006  if (right->IsConstantOperand()) {
1007    int right_operand = ToInteger32(LConstantOperand::cast(right));
1008    switch (instr->op()) {
1009      case Token::BIT_AND:
1010        __ andl(ToRegister(left), Immediate(right_operand));
1011        break;
1012      case Token::BIT_OR:
1013        __ orl(ToRegister(left), Immediate(right_operand));
1014        break;
1015      case Token::BIT_XOR:
1016        __ xorl(ToRegister(left), Immediate(right_operand));
1017        break;
1018      default:
1019        UNREACHABLE();
1020        break;
1021    }
1022  } else if (right->IsStackSlot()) {
1023    switch (instr->op()) {
1024      case Token::BIT_AND:
1025        __ andl(ToRegister(left), ToOperand(right));
1026        break;
1027      case Token::BIT_OR:
1028        __ orl(ToRegister(left), ToOperand(right));
1029        break;
1030      case Token::BIT_XOR:
1031        __ xorl(ToRegister(left), ToOperand(right));
1032        break;
1033      default:
1034        UNREACHABLE();
1035        break;
1036    }
1037  } else {
1038    ASSERT(right->IsRegister());
1039    switch (instr->op()) {
1040      case Token::BIT_AND:
1041        __ andl(ToRegister(left), ToRegister(right));
1042        break;
1043      case Token::BIT_OR:
1044        __ orl(ToRegister(left), ToRegister(right));
1045        break;
1046      case Token::BIT_XOR:
1047        __ xorl(ToRegister(left), ToRegister(right));
1048        break;
1049      default:
1050        UNREACHABLE();
1051        break;
1052    }
1053  }
1054}
1055
1056
1057void LCodeGen::DoShiftI(LShiftI* instr) {
1058  LOperand* left = instr->InputAt(0);
1059  LOperand* right = instr->InputAt(1);
1060  ASSERT(left->Equals(instr->result()));
1061  ASSERT(left->IsRegister());
1062  if (right->IsRegister()) {
1063    ASSERT(ToRegister(right).is(rcx));
1064
1065    switch (instr->op()) {
1066      case Token::SAR:
1067        __ sarl_cl(ToRegister(left));
1068        break;
1069      case Token::SHR:
1070        __ shrl_cl(ToRegister(left));
1071        if (instr->can_deopt()) {
1072          __ testl(ToRegister(left), ToRegister(left));
1073          DeoptimizeIf(negative, instr->environment());
1074        }
1075        break;
1076      case Token::SHL:
1077        __ shll_cl(ToRegister(left));
1078        break;
1079      default:
1080        UNREACHABLE();
1081        break;
1082    }
1083  } else {
1084    int value = ToInteger32(LConstantOperand::cast(right));
1085    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1086    switch (instr->op()) {
1087      case Token::SAR:
1088        if (shift_count != 0) {
1089          __ sarl(ToRegister(left), Immediate(shift_count));
1090        }
1091        break;
1092      case Token::SHR:
1093        if (shift_count == 0 && instr->can_deopt()) {
1094          __ testl(ToRegister(left), ToRegister(left));
1095          DeoptimizeIf(negative, instr->environment());
1096        } else {
1097          __ shrl(ToRegister(left), Immediate(shift_count));
1098        }
1099        break;
1100      case Token::SHL:
1101        if (shift_count != 0) {
1102          __ shll(ToRegister(left), Immediate(shift_count));
1103        }
1104        break;
1105      default:
1106        UNREACHABLE();
1107        break;
1108    }
1109  }
1110}
1111
1112
1113void LCodeGen::DoSubI(LSubI* instr) {
1114  LOperand* left = instr->InputAt(0);
1115  LOperand* right = instr->InputAt(1);
1116  ASSERT(left->Equals(instr->result()));
1117
1118  if (right->IsConstantOperand()) {
1119    __ subl(ToRegister(left),
1120            Immediate(ToInteger32(LConstantOperand::cast(right))));
1121  } else if (right->IsRegister()) {
1122    __ subl(ToRegister(left), ToRegister(right));
1123  } else {
1124    __ subl(ToRegister(left), ToOperand(right));
1125  }
1126
1127  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1128    DeoptimizeIf(overflow, instr->environment());
1129  }
1130}
1131
1132
1133void LCodeGen::DoConstantI(LConstantI* instr) {
1134  ASSERT(instr->result()->IsRegister());
1135  __ Set(ToRegister(instr->result()), instr->value());
1136}
1137
1138
1139void LCodeGen::DoConstantD(LConstantD* instr) {
1140  ASSERT(instr->result()->IsDoubleRegister());
1141  XMMRegister res = ToDoubleRegister(instr->result());
1142  double v = instr->value();
1143  uint64_t int_val = BitCast<uint64_t, double>(v);
1144  // Use xor to produce +0.0 in a fast and compact way, but avoid to
1145  // do so if the constant is -0.0.
1146  if (int_val == 0) {
1147    __ xorps(res, res);
1148  } else {
1149    Register tmp = ToRegister(instr->TempAt(0));
1150    __ Set(tmp, int_val);
1151    __ movq(res, tmp);
1152  }
1153}
1154
1155
1156void LCodeGen::DoConstantT(LConstantT* instr) {
1157  ASSERT(instr->result()->IsRegister());
1158  __ Move(ToRegister(instr->result()), instr->value());
1159}
1160
1161
1162void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
1163  Register result = ToRegister(instr->result());
1164  Register array = ToRegister(instr->InputAt(0));
1165  __ movq(result, FieldOperand(array, JSArray::kLengthOffset));
1166}
1167
1168
1169void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) {
1170  Register result = ToRegister(instr->result());
1171  Register array = ToRegister(instr->InputAt(0));
1172  __ movq(result, FieldOperand(array, FixedArrayBase::kLengthOffset));
1173}
1174
1175
1176void LCodeGen::DoElementsKind(LElementsKind* instr) {
1177  Register result = ToRegister(instr->result());
1178  Register input = ToRegister(instr->InputAt(0));
1179
1180  // Load map into |result|.
1181  __ movq(result, FieldOperand(input, HeapObject::kMapOffset));
1182  // Load the map's "bit field 2" into |result|. We only need the first byte.
1183  __ movzxbq(result, FieldOperand(result, Map::kBitField2Offset));
1184  // Retrieve elements_kind from bit field 2.
1185  __ and_(result, Immediate(Map::kElementsKindMask));
1186  __ shr(result, Immediate(Map::kElementsKindShift));
1187}
1188
1189
1190void LCodeGen::DoValueOf(LValueOf* instr) {
1191  Register input = ToRegister(instr->InputAt(0));
1192  Register result = ToRegister(instr->result());
1193  ASSERT(input.is(result));
1194  Label done;
1195  // If the object is a smi return the object.
1196  __ JumpIfSmi(input, &done, Label::kNear);
1197
1198  // If the object is not a value type, return the object.
1199  __ CmpObjectType(input, JS_VALUE_TYPE, kScratchRegister);
1200  __ j(not_equal, &done, Label::kNear);
1201  __ movq(result, FieldOperand(input, JSValue::kValueOffset));
1202
1203  __ bind(&done);
1204}
1205
1206
1207void LCodeGen::DoBitNotI(LBitNotI* instr) {
1208  LOperand* input = instr->InputAt(0);
1209  ASSERT(input->Equals(instr->result()));
1210  __ not_(ToRegister(input));
1211}
1212
1213
1214void LCodeGen::DoThrow(LThrow* instr) {
1215  __ push(ToRegister(instr->InputAt(0)));
1216  CallRuntime(Runtime::kThrow, 1, instr);
1217
1218  if (FLAG_debug_code) {
1219    Comment("Unreachable code.");
1220    __ int3();
1221  }
1222}
1223
1224
1225void LCodeGen::DoAddI(LAddI* instr) {
1226  LOperand* left = instr->InputAt(0);
1227  LOperand* right = instr->InputAt(1);
1228  ASSERT(left->Equals(instr->result()));
1229
1230  if (right->IsConstantOperand()) {
1231    __ addl(ToRegister(left),
1232            Immediate(ToInteger32(LConstantOperand::cast(right))));
1233  } else if (right->IsRegister()) {
1234    __ addl(ToRegister(left), ToRegister(right));
1235  } else {
1236    __ addl(ToRegister(left), ToOperand(right));
1237  }
1238
1239  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1240    DeoptimizeIf(overflow, instr->environment());
1241  }
1242}
1243
1244
1245void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1246  XMMRegister left = ToDoubleRegister(instr->InputAt(0));
1247  XMMRegister right = ToDoubleRegister(instr->InputAt(1));
1248  XMMRegister result = ToDoubleRegister(instr->result());
1249  // All operations except MOD are computed in-place.
1250  ASSERT(instr->op() == Token::MOD || left.is(result));
1251  switch (instr->op()) {
1252    case Token::ADD:
1253      __ addsd(left, right);
1254      break;
1255    case Token::SUB:
1256       __ subsd(left, right);
1257       break;
1258    case Token::MUL:
1259      __ mulsd(left, right);
1260      break;
1261    case Token::DIV:
1262      __ divsd(left, right);
1263      break;
1264    case Token::MOD:
1265      __ PrepareCallCFunction(2);
1266      __ movaps(xmm0, left);
1267      ASSERT(right.is(xmm1));
1268      __ CallCFunction(
1269          ExternalReference::double_fp_operation(Token::MOD, isolate()), 2);
1270      __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
1271      __ movaps(result, xmm0);
1272      break;
1273    default:
1274      UNREACHABLE();
1275      break;
1276  }
1277}
1278
1279
1280void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1281  ASSERT(ToRegister(instr->InputAt(0)).is(rdx));
1282  ASSERT(ToRegister(instr->InputAt(1)).is(rax));
1283  ASSERT(ToRegister(instr->result()).is(rax));
1284
1285  BinaryOpStub stub(instr->op(), NO_OVERWRITE);
1286  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1287  __ nop();  // Signals no inlined code.
1288}
1289
1290
1291int LCodeGen::GetNextEmittedBlock(int block) {
1292  for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
1293    LLabel* label = chunk_->GetLabel(i);
1294    if (!label->HasReplacement()) return i;
1295  }
1296  return -1;
1297}
1298
1299
1300void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
1301  int next_block = GetNextEmittedBlock(current_block_);
1302  right_block = chunk_->LookupDestination(right_block);
1303  left_block = chunk_->LookupDestination(left_block);
1304
1305  if (right_block == left_block) {
1306    EmitGoto(left_block);
1307  } else if (left_block == next_block) {
1308    __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1309  } else if (right_block == next_block) {
1310    __ j(cc, chunk_->GetAssemblyLabel(left_block));
1311  } else {
1312    __ j(cc, chunk_->GetAssemblyLabel(left_block));
1313    if (cc != always) {
1314      __ jmp(chunk_->GetAssemblyLabel(right_block));
1315    }
1316  }
1317}
1318
1319
1320void LCodeGen::DoBranch(LBranch* instr) {
1321  int true_block = chunk_->LookupDestination(instr->true_block_id());
1322  int false_block = chunk_->LookupDestination(instr->false_block_id());
1323
1324  Representation r = instr->hydrogen()->value()->representation();
1325  if (r.IsInteger32()) {
1326    Register reg = ToRegister(instr->InputAt(0));
1327    __ testl(reg, reg);
1328    EmitBranch(true_block, false_block, not_zero);
1329  } else if (r.IsDouble()) {
1330    XMMRegister reg = ToDoubleRegister(instr->InputAt(0));
1331    __ xorps(xmm0, xmm0);
1332    __ ucomisd(reg, xmm0);
1333    EmitBranch(true_block, false_block, not_equal);
1334  } else {
1335    ASSERT(r.IsTagged());
1336    Register reg = ToRegister(instr->InputAt(0));
1337    HType type = instr->hydrogen()->value()->type();
1338    if (type.IsBoolean()) {
1339      __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1340      EmitBranch(true_block, false_block, equal);
1341    } else if (type.IsSmi()) {
1342      __ SmiCompare(reg, Smi::FromInt(0));
1343      EmitBranch(true_block, false_block, not_equal);
1344    } else {
1345      Label* true_label = chunk_->GetAssemblyLabel(true_block);
1346      Label* false_label = chunk_->GetAssemblyLabel(false_block);
1347
1348      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1349      // Avoid deopts in the case where we've never executed this path before.
1350      if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
1351
1352      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1353        // undefined -> false.
1354        __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
1355        __ j(equal, false_label);
1356      }
1357      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1358        // true -> true.
1359        __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1360        __ j(equal, true_label);
1361        // false -> false.
1362        __ CompareRoot(reg, Heap::kFalseValueRootIndex);
1363        __ j(equal, false_label);
1364      }
1365      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1366        // 'null' -> false.
1367        __ CompareRoot(reg, Heap::kNullValueRootIndex);
1368        __ j(equal, false_label);
1369      }
1370
1371      if (expected.Contains(ToBooleanStub::SMI)) {
1372        // Smis: 0 -> false, all other -> true.
1373        __ Cmp(reg, Smi::FromInt(0));
1374        __ j(equal, false_label);
1375        __ JumpIfSmi(reg, true_label);
1376      } else if (expected.NeedsMap()) {
1377        // If we need a map later and have a Smi -> deopt.
1378        __ testb(reg, Immediate(kSmiTagMask));
1379        DeoptimizeIf(zero, instr->environment());
1380      }
1381
1382      const Register map = kScratchRegister;
1383      if (expected.NeedsMap()) {
1384        __ movq(map, FieldOperand(reg, HeapObject::kMapOffset));
1385
1386        if (expected.CanBeUndetectable()) {
1387          // Undetectable -> false.
1388          __ testb(FieldOperand(map, Map::kBitFieldOffset),
1389                   Immediate(1 << Map::kIsUndetectable));
1390          __ j(not_zero, false_label);
1391        }
1392      }
1393
1394      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1395        // spec object -> true.
1396        __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
1397        __ j(above_equal, true_label);
1398      }
1399
1400      if (expected.Contains(ToBooleanStub::STRING)) {
1401        // String value -> false iff empty.
1402        Label not_string;
1403        __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
1404        __ j(above_equal, &not_string, Label::kNear);
1405        __ cmpq(FieldOperand(reg, String::kLengthOffset), Immediate(0));
1406        __ j(not_zero, true_label);
1407        __ jmp(false_label);
1408        __ bind(&not_string);
1409      }
1410
1411      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1412        // heap number -> false iff +0, -0, or NaN.
1413        Label not_heap_number;
1414        __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
1415        __ j(not_equal, &not_heap_number, Label::kNear);
1416        __ xorps(xmm0, xmm0);
1417        __ ucomisd(xmm0, FieldOperand(reg, HeapNumber::kValueOffset));
1418        __ j(zero, false_label);
1419        __ jmp(true_label);
1420        __ bind(&not_heap_number);
1421      }
1422
1423      // We've seen something for the first time -> deopt.
1424      DeoptimizeIf(no_condition, instr->environment());
1425    }
1426  }
1427}
1428
1429
1430void LCodeGen::EmitGoto(int block) {
1431  block = chunk_->LookupDestination(block);
1432  int next_block = GetNextEmittedBlock(current_block_);
1433  if (block != next_block) {
1434    __ jmp(chunk_->GetAssemblyLabel(block));
1435  }
1436}
1437
1438
1439void LCodeGen::DoGoto(LGoto* instr) {
1440  EmitGoto(instr->block_id());
1441}
1442
1443
1444inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1445  Condition cond = no_condition;
1446  switch (op) {
1447    case Token::EQ:
1448    case Token::EQ_STRICT:
1449      cond = equal;
1450      break;
1451    case Token::LT:
1452      cond = is_unsigned ? below : less;
1453      break;
1454    case Token::GT:
1455      cond = is_unsigned ? above : greater;
1456      break;
1457    case Token::LTE:
1458      cond = is_unsigned ? below_equal : less_equal;
1459      break;
1460    case Token::GTE:
1461      cond = is_unsigned ? above_equal : greater_equal;
1462      break;
1463    case Token::IN:
1464    case Token::INSTANCEOF:
1465    default:
1466      UNREACHABLE();
1467  }
1468  return cond;
1469}
1470
1471
1472void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
1473  LOperand* left = instr->InputAt(0);
1474  LOperand* right = instr->InputAt(1);
1475  int false_block = chunk_->LookupDestination(instr->false_block_id());
1476  int true_block = chunk_->LookupDestination(instr->true_block_id());
1477  Condition cc = TokenToCondition(instr->op(), instr->is_double());
1478
1479  if (left->IsConstantOperand() && right->IsConstantOperand()) {
1480    // We can statically evaluate the comparison.
1481    double left_val = ToDouble(LConstantOperand::cast(left));
1482    double right_val = ToDouble(LConstantOperand::cast(right));
1483    int next_block =
1484      EvalComparison(instr->op(), left_val, right_val) ? true_block
1485                                                       : false_block;
1486    EmitGoto(next_block);
1487  } else {
1488    if (instr->is_double()) {
1489      // Don't base result on EFLAGS when a NaN is involved. Instead
1490      // jump to the false block.
1491      __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
1492      __ j(parity_even, chunk_->GetAssemblyLabel(false_block));
1493    } else {
1494      int32_t value;
1495      if (right->IsConstantOperand()) {
1496        value = ToInteger32(LConstantOperand::cast(right));
1497        __ cmpl(ToRegister(left), Immediate(value));
1498      } else if (left->IsConstantOperand()) {
1499        value = ToInteger32(LConstantOperand::cast(left));
1500        if (right->IsRegister()) {
1501          __ cmpl(ToRegister(right), Immediate(value));
1502        } else {
1503          __ cmpl(ToOperand(right), Immediate(value));
1504        }
1505        // We transposed the operands. Reverse the condition.
1506        cc = ReverseCondition(cc);
1507      } else {
1508        if (right->IsRegister()) {
1509          __ cmpl(ToRegister(left), ToRegister(right));
1510        } else {
1511          __ cmpl(ToRegister(left), ToOperand(right));
1512        }
1513      }
1514    }
1515    EmitBranch(true_block, false_block, cc);
1516  }
1517}
1518
1519
1520void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
1521  Register left = ToRegister(instr->InputAt(0));
1522  Register right = ToRegister(instr->InputAt(1));
1523  int false_block = chunk_->LookupDestination(instr->false_block_id());
1524  int true_block = chunk_->LookupDestination(instr->true_block_id());
1525
1526  __ cmpq(left, right);
1527  EmitBranch(true_block, false_block, equal);
1528}
1529
1530
1531void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
1532  Register left = ToRegister(instr->InputAt(0));
1533  int true_block = chunk_->LookupDestination(instr->true_block_id());
1534  int false_block = chunk_->LookupDestination(instr->false_block_id());
1535
1536  __ cmpq(left, Immediate(instr->hydrogen()->right()));
1537  EmitBranch(true_block, false_block, equal);
1538}
1539
1540
1541void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) {
1542  Register reg = ToRegister(instr->InputAt(0));
1543  int false_block = chunk_->LookupDestination(instr->false_block_id());
1544
1545  // If the expression is known to be untagged or a smi, then it's definitely
1546  // not null, and it can't be a an undetectable object.
1547  if (instr->hydrogen()->representation().IsSpecialization() ||
1548      instr->hydrogen()->type().IsSmi()) {
1549    EmitGoto(false_block);
1550    return;
1551  }
1552
1553  int true_block = chunk_->LookupDestination(instr->true_block_id());
1554  Heap::RootListIndex nil_value = instr->nil() == kNullValue ?
1555      Heap::kNullValueRootIndex :
1556      Heap::kUndefinedValueRootIndex;
1557  __ CompareRoot(reg, nil_value);
1558  if (instr->kind() == kStrictEquality) {
1559    EmitBranch(true_block, false_block, equal);
1560  } else {
1561    Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ?
1562        Heap::kUndefinedValueRootIndex :
1563        Heap::kNullValueRootIndex;
1564    Label* true_label = chunk_->GetAssemblyLabel(true_block);
1565    Label* false_label = chunk_->GetAssemblyLabel(false_block);
1566    __ j(equal, true_label);
1567    __ CompareRoot(reg, other_nil_value);
1568    __ j(equal, true_label);
1569    __ JumpIfSmi(reg, false_label);
1570    // Check for undetectable objects by looking in the bit field in
1571    // the map. The object has already been smi checked.
1572    Register scratch = ToRegister(instr->TempAt(0));
1573    __ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
1574    __ testb(FieldOperand(scratch, Map::kBitFieldOffset),
1575             Immediate(1 << Map::kIsUndetectable));
1576    EmitBranch(true_block, false_block, not_zero);
1577  }
1578}
1579
1580
1581Condition LCodeGen::EmitIsObject(Register input,
1582                                 Label* is_not_object,
1583                                 Label* is_object) {
1584  ASSERT(!input.is(kScratchRegister));
1585
1586  __ JumpIfSmi(input, is_not_object);
1587
1588  __ CompareRoot(input, Heap::kNullValueRootIndex);
1589  __ j(equal, is_object);
1590
1591  __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
1592  // Undetectable objects behave like undefined.
1593  __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
1594           Immediate(1 << Map::kIsUndetectable));
1595  __ j(not_zero, is_not_object);
1596
1597  __ movzxbl(kScratchRegister,
1598             FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
1599  __ cmpb(kScratchRegister, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1600  __ j(below, is_not_object);
1601  __ cmpb(kScratchRegister, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
1602  return below_equal;
1603}
1604
1605
1606void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
1607  Register reg = ToRegister(instr->InputAt(0));
1608
1609  int true_block = chunk_->LookupDestination(instr->true_block_id());
1610  int false_block = chunk_->LookupDestination(instr->false_block_id());
1611  Label* true_label = chunk_->GetAssemblyLabel(true_block);
1612  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1613
1614  Condition true_cond = EmitIsObject(reg, false_label, true_label);
1615
1616  EmitBranch(true_block, false_block, true_cond);
1617}
1618
1619
1620Condition LCodeGen::EmitIsString(Register input,
1621                                 Register temp1,
1622                                 Label* is_not_string) {
1623  __ JumpIfSmi(input, is_not_string);
1624  Condition cond =  masm_->IsObjectStringType(input, temp1, temp1);
1625
1626  return cond;
1627}
1628
1629
1630void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
1631  Register reg = ToRegister(instr->InputAt(0));
1632  Register temp = ToRegister(instr->TempAt(0));
1633
1634  int true_block = chunk_->LookupDestination(instr->true_block_id());
1635  int false_block = chunk_->LookupDestination(instr->false_block_id());
1636  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1637
1638  Condition true_cond = EmitIsString(reg, temp, false_label);
1639
1640  EmitBranch(true_block, false_block, true_cond);
1641}
1642
1643
1644void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
1645  int true_block = chunk_->LookupDestination(instr->true_block_id());
1646  int false_block = chunk_->LookupDestination(instr->false_block_id());
1647
1648  Condition is_smi;
1649  if (instr->InputAt(0)->IsRegister()) {
1650    Register input = ToRegister(instr->InputAt(0));
1651    is_smi = masm()->CheckSmi(input);
1652  } else {
1653    Operand input = ToOperand(instr->InputAt(0));
1654    is_smi = masm()->CheckSmi(input);
1655  }
1656  EmitBranch(true_block, false_block, is_smi);
1657}
1658
1659
1660void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
1661  Register input = ToRegister(instr->InputAt(0));
1662  Register temp = ToRegister(instr->TempAt(0));
1663
1664  int true_block = chunk_->LookupDestination(instr->true_block_id());
1665  int false_block = chunk_->LookupDestination(instr->false_block_id());
1666
1667  __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
1668  __ movq(temp, FieldOperand(input, HeapObject::kMapOffset));
1669  __ testb(FieldOperand(temp, Map::kBitFieldOffset),
1670           Immediate(1 << Map::kIsUndetectable));
1671  EmitBranch(true_block, false_block, not_zero);
1672}
1673
1674
1675void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
1676  Token::Value op = instr->op();
1677  int true_block = chunk_->LookupDestination(instr->true_block_id());
1678  int false_block = chunk_->LookupDestination(instr->false_block_id());
1679
1680  Handle<Code> ic = CompareIC::GetUninitialized(op);
1681  CallCode(ic, RelocInfo::CODE_TARGET, instr);
1682
1683  Condition condition = TokenToCondition(op, false);
1684  __ testq(rax, rax);
1685
1686  EmitBranch(true_block, false_block, condition);
1687}
1688
1689
1690static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
1691  InstanceType from = instr->from();
1692  InstanceType to = instr->to();
1693  if (from == FIRST_TYPE) return to;
1694  ASSERT(from == to || to == LAST_TYPE);
1695  return from;
1696}
1697
1698
1699static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
1700  InstanceType from = instr->from();
1701  InstanceType to = instr->to();
1702  if (from == to) return equal;
1703  if (to == LAST_TYPE) return above_equal;
1704  if (from == FIRST_TYPE) return below_equal;
1705  UNREACHABLE();
1706  return equal;
1707}
1708
1709
1710void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
1711  Register input = ToRegister(instr->InputAt(0));
1712
1713  int true_block = chunk_->LookupDestination(instr->true_block_id());
1714  int false_block = chunk_->LookupDestination(instr->false_block_id());
1715
1716  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1717
1718  __ JumpIfSmi(input, false_label);
1719
1720  __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
1721  EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
1722}
1723
1724
1725void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
1726  Register input = ToRegister(instr->InputAt(0));
1727  Register result = ToRegister(instr->result());
1728
1729  if (FLAG_debug_code) {
1730    __ AbortIfNotString(input);
1731  }
1732
1733  __ movl(result, FieldOperand(input, String::kHashFieldOffset));
1734  ASSERT(String::kHashShift >= kSmiTagSize);
1735  __ IndexFromHash(result, result);
1736}
1737
1738
1739void LCodeGen::DoHasCachedArrayIndexAndBranch(
1740    LHasCachedArrayIndexAndBranch* instr) {
1741  Register input = ToRegister(instr->InputAt(0));
1742
1743  int true_block = chunk_->LookupDestination(instr->true_block_id());
1744  int false_block = chunk_->LookupDestination(instr->false_block_id());
1745
1746  __ testl(FieldOperand(input, String::kHashFieldOffset),
1747           Immediate(String::kContainsCachedArrayIndexMask));
1748  EmitBranch(true_block, false_block, equal);
1749}
1750
1751
1752// Branches to a label or falls through with the answer in the z flag.
1753// Trashes the temp register and possibly input (if it and temp are aliased).
1754void LCodeGen::EmitClassOfTest(Label* is_true,
1755                               Label* is_false,
1756                               Handle<String> class_name,
1757                               Register input,
1758                               Register temp,
1759                               Register scratch) {
1760  __ JumpIfSmi(input, is_false);
1761
1762  if (class_name->IsEqualTo(CStrVector("Function"))) {
1763    // Assuming the following assertions, we can use the same compares to test
1764    // for both being a function type and being in the object type range.
1765    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
1766    STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
1767                  FIRST_SPEC_OBJECT_TYPE + 1);
1768    STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
1769                  LAST_SPEC_OBJECT_TYPE - 1);
1770    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1771    __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
1772    __ j(below, is_false);
1773    __ j(equal, is_true);
1774    __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
1775    __ j(equal, is_true);
1776  } else {
1777    // Faster code path to avoid two compares: subtract lower bound from the
1778    // actual type and do a signed compare with the width of the type range.
1779    __ movq(temp, FieldOperand(input, HeapObject::kMapOffset));
1780    __ movzxbl(scratch, FieldOperand(temp, Map::kInstanceTypeOffset));
1781    __ subq(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1782    __ cmpq(scratch, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
1783                               FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1784    __ j(above, is_false);
1785  }
1786
1787  // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
1788  // Check if the constructor in the map is a function.
1789  __ movq(temp, FieldOperand(temp, Map::kConstructorOffset));
1790
1791  // Objects with a non-function constructor have class 'Object'.
1792  __ CmpObjectType(temp, JS_FUNCTION_TYPE, kScratchRegister);
1793  if (class_name->IsEqualTo(CStrVector("Object"))) {
1794    __ j(not_equal, is_true);
1795  } else {
1796    __ j(not_equal, is_false);
1797  }
1798
1799  // temp now contains the constructor function. Grab the
1800  // instance class name from there.
1801  __ movq(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
1802  __ movq(temp, FieldOperand(temp,
1803                             SharedFunctionInfo::kInstanceClassNameOffset));
1804  // The class name we are testing against is a symbol because it's a literal.
1805  // The name in the constructor is a symbol because of the way the context is
1806  // booted.  This routine isn't expected to work for random API-created
1807  // classes and it doesn't have to because you can't access it with natives
1808  // syntax.  Since both sides are symbols it is sufficient to use an identity
1809  // comparison.
1810  ASSERT(class_name->IsSymbol());
1811  __ Cmp(temp, class_name);
1812  // End with the answer in the z flag.
1813}
1814
1815
1816void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
1817  Register input = ToRegister(instr->InputAt(0));
1818  Register temp = ToRegister(instr->TempAt(0));
1819  Register temp2 = ToRegister(instr->TempAt(1));
1820  Handle<String> class_name = instr->hydrogen()->class_name();
1821
1822  int true_block = chunk_->LookupDestination(instr->true_block_id());
1823  int false_block = chunk_->LookupDestination(instr->false_block_id());
1824
1825  Label* true_label = chunk_->GetAssemblyLabel(true_block);
1826  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1827
1828  EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
1829
1830  EmitBranch(true_block, false_block, equal);
1831}
1832
1833
1834void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
1835  Register reg = ToRegister(instr->InputAt(0));
1836  int true_block = instr->true_block_id();
1837  int false_block = instr->false_block_id();
1838
1839  __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
1840  EmitBranch(true_block, false_block, equal);
1841}
1842
1843
1844void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
1845  InstanceofStub stub(InstanceofStub::kNoFlags);
1846  __ push(ToRegister(instr->InputAt(0)));
1847  __ push(ToRegister(instr->InputAt(1)));
1848  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1849  Label true_value, done;
1850  __ testq(rax, rax);
1851  __ j(zero, &true_value, Label::kNear);
1852  __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
1853  __ jmp(&done, Label::kNear);
1854  __ bind(&true_value);
1855  __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
1856  __ bind(&done);
1857}
1858
1859
1860void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
1861  class DeferredInstanceOfKnownGlobal: public LDeferredCode {
1862   public:
1863    DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
1864                                  LInstanceOfKnownGlobal* instr)
1865        : LDeferredCode(codegen), instr_(instr) { }
1866    virtual void Generate() {
1867      codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
1868    }
1869    virtual LInstruction* instr() { return instr_; }
1870    Label* map_check() { return &map_check_; }
1871   private:
1872    LInstanceOfKnownGlobal* instr_;
1873    Label map_check_;
1874  };
1875
1876
1877  DeferredInstanceOfKnownGlobal* deferred;
1878  deferred = new DeferredInstanceOfKnownGlobal(this, instr);
1879
1880  Label done, false_result;
1881  Register object = ToRegister(instr->InputAt(0));
1882
1883  // A Smi is not an instance of anything.
1884  __ JumpIfSmi(object, &false_result);
1885
1886  // This is the inlined call site instanceof cache. The two occurences of the
1887  // hole value will be patched to the last map/result pair generated by the
1888  // instanceof stub.
1889  Label cache_miss;
1890  // Use a temp register to avoid memory operands with variable lengths.
1891  Register map = ToRegister(instr->TempAt(0));
1892  __ movq(map, FieldOperand(object, HeapObject::kMapOffset));
1893  __ bind(deferred->map_check());  // Label for calculating code patching.
1894  Handle<JSGlobalPropertyCell> cache_cell =
1895      factory()->NewJSGlobalPropertyCell(factory()->the_hole_value());
1896  __ movq(kScratchRegister, cache_cell, RelocInfo::GLOBAL_PROPERTY_CELL);
1897  __ cmpq(map, Operand(kScratchRegister, 0));
1898  __ j(not_equal, &cache_miss, Label::kNear);
1899  // Patched to load either true or false.
1900  __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
1901#ifdef DEBUG
1902  // Check that the code size between patch label and patch sites is invariant.
1903  Label end_of_patched_code;
1904  __ bind(&end_of_patched_code);
1905  ASSERT(true);
1906#endif
1907  __ jmp(&done);
1908
1909  // The inlined call site cache did not match. Check for null and string
1910  // before calling the deferred code.
1911  __ bind(&cache_miss);  // Null is not an instance of anything.
1912  __ CompareRoot(object, Heap::kNullValueRootIndex);
1913  __ j(equal, &false_result, Label::kNear);
1914
1915  // String values are not instances of anything.
1916  __ JumpIfNotString(object, kScratchRegister, deferred->entry());
1917
1918  __ bind(&false_result);
1919  __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
1920
1921  __ bind(deferred->exit());
1922  __ bind(&done);
1923}
1924
1925
1926void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
1927                                               Label* map_check) {
1928  {
1929    PushSafepointRegistersScope scope(this);
1930    InstanceofStub::Flags flags = static_cast<InstanceofStub::Flags>(
1931        InstanceofStub::kNoFlags | InstanceofStub::kCallSiteInlineCheck);
1932    InstanceofStub stub(flags);
1933
1934    __ push(ToRegister(instr->InputAt(0)));
1935    __ Push(instr->function());
1936
1937    static const int kAdditionalDelta = 10;
1938    int delta =
1939        masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
1940    ASSERT(delta >= 0);
1941    __ push_imm32(delta);
1942
1943    // We are pushing three values on the stack but recording a
1944    // safepoint with two arguments because stub is going to
1945    // remove the third argument from the stack before jumping
1946    // to instanceof builtin on the slow path.
1947    CallCodeGeneric(stub.GetCode(),
1948                    RelocInfo::CODE_TARGET,
1949                    instr,
1950                    RECORD_SAFEPOINT_WITH_REGISTERS,
1951                    2);
1952    ASSERT(delta == masm_->SizeOfCodeGeneratedSince(map_check));
1953    ASSERT(instr->HasDeoptimizationEnvironment());
1954    LEnvironment* env = instr->deoptimization_environment();
1955    safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
1956    // Move result to a register that survives the end of the
1957    // PushSafepointRegisterScope.
1958    __ movq(kScratchRegister, rax);
1959  }
1960  __ testq(kScratchRegister, kScratchRegister);
1961  Label load_false;
1962  Label done;
1963  __ j(not_zero, &load_false);
1964  __ LoadRoot(rax, Heap::kTrueValueRootIndex);
1965  __ jmp(&done);
1966  __ bind(&load_false);
1967  __ LoadRoot(rax, Heap::kFalseValueRootIndex);
1968  __ bind(&done);
1969}
1970
1971
1972void LCodeGen::DoCmpT(LCmpT* instr) {
1973  Token::Value op = instr->op();
1974
1975  Handle<Code> ic = CompareIC::GetUninitialized(op);
1976  CallCode(ic, RelocInfo::CODE_TARGET, instr);
1977
1978  Condition condition = TokenToCondition(op, false);
1979  Label true_value, done;
1980  __ testq(rax, rax);
1981  __ j(condition, &true_value, Label::kNear);
1982  __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
1983  __ jmp(&done, Label::kNear);
1984  __ bind(&true_value);
1985  __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
1986  __ bind(&done);
1987}
1988
1989
1990void LCodeGen::DoReturn(LReturn* instr) {
1991  if (FLAG_trace) {
1992    // Preserve the return value on the stack and rely on the runtime
1993    // call to return the value in the same register.
1994    __ push(rax);
1995    __ CallRuntime(Runtime::kTraceExit, 1);
1996  }
1997  __ movq(rsp, rbp);
1998  __ pop(rbp);
1999  __ Ret((GetParameterCount() + 1) * kPointerSize, rcx);
2000}
2001
2002
2003void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2004  Register result = ToRegister(instr->result());
2005  if (result.is(rax)) {
2006    __ load_rax(instr->hydrogen()->cell().location(),
2007                RelocInfo::GLOBAL_PROPERTY_CELL);
2008  } else {
2009    __ movq(result, instr->hydrogen()->cell(), RelocInfo::GLOBAL_PROPERTY_CELL);
2010    __ movq(result, Operand(result, 0));
2011  }
2012  if (instr->hydrogen()->RequiresHoleCheck()) {
2013    __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2014    DeoptimizeIf(equal, instr->environment());
2015  }
2016}
2017
2018
2019void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2020  ASSERT(ToRegister(instr->global_object()).is(rax));
2021  ASSERT(ToRegister(instr->result()).is(rax));
2022
2023  __ Move(rcx, instr->name());
2024  RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET :
2025                                               RelocInfo::CODE_TARGET_CONTEXT;
2026  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2027  CallCode(ic, mode, instr);
2028}
2029
2030
2031void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2032  Register object = ToRegister(instr->TempAt(0));
2033  Register address = ToRegister(instr->TempAt(1));
2034  Register value = ToRegister(instr->InputAt(0));
2035  ASSERT(!value.is(object));
2036  Handle<JSGlobalPropertyCell> cell_handle(instr->hydrogen()->cell());
2037
2038  __ movq(address, cell_handle, RelocInfo::GLOBAL_PROPERTY_CELL);
2039
2040  // If the cell we are storing to contains the hole it could have
2041  // been deleted from the property dictionary. In that case, we need
2042  // to update the property details in the property dictionary to mark
2043  // it as no longer deleted. We deoptimize in that case.
2044  if (instr->hydrogen()->RequiresHoleCheck()) {
2045    __ CompareRoot(Operand(address, 0), Heap::kTheHoleValueRootIndex);
2046    DeoptimizeIf(equal, instr->environment());
2047  }
2048
2049  // Store the value.
2050  __ movq(Operand(address, 0), value);
2051  // Cells are always rescanned, so no write barrier here.
2052}
2053
2054
2055void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
2056  ASSERT(ToRegister(instr->global_object()).is(rdx));
2057  ASSERT(ToRegister(instr->value()).is(rax));
2058
2059  __ Move(rcx, instr->name());
2060  Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
2061      ? isolate()->builtins()->StoreIC_Initialize_Strict()
2062      : isolate()->builtins()->StoreIC_Initialize();
2063  CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2064}
2065
2066
2067void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2068  Register context = ToRegister(instr->context());
2069  Register result = ToRegister(instr->result());
2070  __ movq(result, ContextOperand(context, instr->slot_index()));
2071}
2072
2073
2074void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2075  Register context = ToRegister(instr->context());
2076  Register value = ToRegister(instr->value());
2077  __ movq(ContextOperand(context, instr->slot_index()), value);
2078  if (instr->hydrogen()->NeedsWriteBarrier()) {
2079    HType type = instr->hydrogen()->value()->type();
2080    SmiCheck check_needed =
2081        type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2082    int offset = Context::SlotOffset(instr->slot_index());
2083    Register scratch = ToRegister(instr->TempAt(0));
2084    __ RecordWriteContextSlot(context,
2085                              offset,
2086                              value,
2087                              scratch,
2088                              kSaveFPRegs,
2089                              EMIT_REMEMBERED_SET,
2090                              check_needed);
2091  }
2092}
2093
2094
2095void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2096  Register object = ToRegister(instr->InputAt(0));
2097  Register result = ToRegister(instr->result());
2098  if (instr->hydrogen()->is_in_object()) {
2099    __ movq(result, FieldOperand(object, instr->hydrogen()->offset()));
2100  } else {
2101    __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset));
2102    __ movq(result, FieldOperand(result, instr->hydrogen()->offset()));
2103  }
2104}
2105
2106
2107void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
2108                                               Register object,
2109                                               Handle<Map> type,
2110                                               Handle<String> name) {
2111  LookupResult lookup(isolate());
2112  type->LookupInDescriptors(NULL, *name, &lookup);
2113  ASSERT(lookup.IsProperty() &&
2114         (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
2115  if (lookup.type() == FIELD) {
2116    int index = lookup.GetLocalFieldIndexFromMap(*type);
2117    int offset = index * kPointerSize;
2118    if (index < 0) {
2119      // Negative property indices are in-object properties, indexed
2120      // from the end of the fixed part of the object.
2121      __ movq(result, FieldOperand(object, offset + type->instance_size()));
2122    } else {
2123      // Non-negative property indices are in the properties array.
2124      __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset));
2125      __ movq(result, FieldOperand(result, offset + FixedArray::kHeaderSize));
2126    }
2127  } else {
2128    Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
2129    LoadHeapObject(result, Handle<HeapObject>::cast(function));
2130  }
2131}
2132
2133
2134void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
2135  Register object = ToRegister(instr->object());
2136  Register result = ToRegister(instr->result());
2137
2138  int map_count = instr->hydrogen()->types()->length();
2139  Handle<String> name = instr->hydrogen()->name();
2140
2141  if (map_count == 0) {
2142    ASSERT(instr->hydrogen()->need_generic());
2143    __ Move(rcx, instr->hydrogen()->name());
2144    Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2145    CallCode(ic, RelocInfo::CODE_TARGET, instr);
2146  } else {
2147    Label done;
2148    for (int i = 0; i < map_count - 1; ++i) {
2149      Handle<Map> map = instr->hydrogen()->types()->at(i);
2150      Label next;
2151      __ Cmp(FieldOperand(object, HeapObject::kMapOffset), map);
2152      __ j(not_equal, &next, Label::kNear);
2153      EmitLoadFieldOrConstantFunction(result, object, map, name);
2154      __ jmp(&done, Label::kNear);
2155      __ bind(&next);
2156    }
2157    Handle<Map> map = instr->hydrogen()->types()->last();
2158    __ Cmp(FieldOperand(object, HeapObject::kMapOffset), map);
2159    if (instr->hydrogen()->need_generic()) {
2160      Label generic;
2161      __ j(not_equal, &generic, Label::kNear);
2162      EmitLoadFieldOrConstantFunction(result, object, map, name);
2163      __ jmp(&done, Label::kNear);
2164      __ bind(&generic);
2165      __ Move(rcx, instr->hydrogen()->name());
2166      Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2167      CallCode(ic, RelocInfo::CODE_TARGET, instr);
2168    } else {
2169      DeoptimizeIf(not_equal, instr->environment());
2170      EmitLoadFieldOrConstantFunction(result, object, map, name);
2171    }
2172    __ bind(&done);
2173  }
2174}
2175
2176
2177void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2178  ASSERT(ToRegister(instr->object()).is(rax));
2179  ASSERT(ToRegister(instr->result()).is(rax));
2180
2181  __ Move(rcx, instr->name());
2182  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2183  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2184}
2185
2186
2187void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2188  Register function = ToRegister(instr->function());
2189  Register result = ToRegister(instr->result());
2190
2191  // Check that the function really is a function.
2192  __ CmpObjectType(function, JS_FUNCTION_TYPE, result);
2193  DeoptimizeIf(not_equal, instr->environment());
2194
2195  // Check whether the function has an instance prototype.
2196  Label non_instance;
2197  __ testb(FieldOperand(result, Map::kBitFieldOffset),
2198           Immediate(1 << Map::kHasNonInstancePrototype));
2199  __ j(not_zero, &non_instance, Label::kNear);
2200
2201  // Get the prototype or initial map from the function.
2202  __ movq(result,
2203         FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2204
2205  // Check that the function has a prototype or an initial map.
2206  __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2207  DeoptimizeIf(equal, instr->environment());
2208
2209  // If the function does not have an initial map, we're done.
2210  Label done;
2211  __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
2212  __ j(not_equal, &done, Label::kNear);
2213
2214  // Get the prototype from the initial map.
2215  __ movq(result, FieldOperand(result, Map::kPrototypeOffset));
2216  __ jmp(&done, Label::kNear);
2217
2218  // Non-instance prototype: Fetch prototype from constructor field
2219  // in the function's map.
2220  __ bind(&non_instance);
2221  __ movq(result, FieldOperand(result, Map::kConstructorOffset));
2222
2223  // All done.
2224  __ bind(&done);
2225}
2226
2227
2228void LCodeGen::DoLoadElements(LLoadElements* instr) {
2229  Register result = ToRegister(instr->result());
2230  Register input = ToRegister(instr->InputAt(0));
2231  __ movq(result, FieldOperand(input, JSObject::kElementsOffset));
2232  if (FLAG_debug_code) {
2233    Label done, ok, fail;
2234    __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset),
2235                   Heap::kFixedArrayMapRootIndex);
2236    __ j(equal, &done, Label::kNear);
2237    __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset),
2238                   Heap::kFixedCOWArrayMapRootIndex);
2239    __ j(equal, &done, Label::kNear);
2240    Register temp((result.is(rax)) ? rbx : rax);
2241    __ push(temp);
2242    __ movq(temp, FieldOperand(result, HeapObject::kMapOffset));
2243    __ movzxbq(temp, FieldOperand(temp, Map::kBitField2Offset));
2244    __ and_(temp, Immediate(Map::kElementsKindMask));
2245    __ shr(temp, Immediate(Map::kElementsKindShift));
2246    __ cmpl(temp, Immediate(FAST_ELEMENTS));
2247    __ j(equal, &ok, Label::kNear);
2248    __ cmpl(temp, Immediate(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND));
2249    __ j(less, &fail, Label::kNear);
2250    __ cmpl(temp, Immediate(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND));
2251    __ j(less_equal, &ok, Label::kNear);
2252    __ bind(&fail);
2253    __ Abort("Check for fast or external elements failed");
2254    __ bind(&ok);
2255    __ pop(temp);
2256    __ bind(&done);
2257  }
2258}
2259
2260
2261void LCodeGen::DoLoadExternalArrayPointer(
2262    LLoadExternalArrayPointer* instr) {
2263  Register result = ToRegister(instr->result());
2264  Register input = ToRegister(instr->InputAt(0));
2265  __ movq(result, FieldOperand(input,
2266                               ExternalPixelArray::kExternalPointerOffset));
2267}
2268
2269
2270void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2271  Register arguments = ToRegister(instr->arguments());
2272  Register length = ToRegister(instr->length());
2273  Register result = ToRegister(instr->result());
2274
2275  if (instr->index()->IsRegister()) {
2276    __ subl(length, ToRegister(instr->index()));
2277  } else {
2278    __ subl(length, ToOperand(instr->index()));
2279  }
2280  DeoptimizeIf(below_equal, instr->environment());
2281
2282  // There are two words between the frame pointer and the last argument.
2283  // Subtracting from length accounts for one of them add one more.
2284  __ movq(result, Operand(arguments, length, times_pointer_size, kPointerSize));
2285}
2286
2287
2288void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
2289  Register result = ToRegister(instr->result());
2290
2291  // Load the result.
2292  __ movq(result,
2293          BuildFastArrayOperand(instr->elements(), instr->key(),
2294                                FAST_ELEMENTS,
2295                                FixedArray::kHeaderSize - kHeapObjectTag));
2296
2297  // Check for the hole value.
2298  if (instr->hydrogen()->RequiresHoleCheck()) {
2299    __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2300    DeoptimizeIf(equal, instr->environment());
2301  }
2302}
2303
2304
2305void LCodeGen::DoLoadKeyedFastDoubleElement(
2306    LLoadKeyedFastDoubleElement* instr) {
2307  XMMRegister result(ToDoubleRegister(instr->result()));
2308
2309  int offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag +
2310      sizeof(kHoleNanLower32);
2311  Operand hole_check_operand = BuildFastArrayOperand(
2312      instr->elements(),
2313      instr->key(),
2314      FAST_DOUBLE_ELEMENTS,
2315      offset);
2316  __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
2317  DeoptimizeIf(equal, instr->environment());
2318
2319  Operand double_load_operand = BuildFastArrayOperand(
2320      instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS,
2321      FixedDoubleArray::kHeaderSize - kHeapObjectTag);
2322  __ movsd(result, double_load_operand);
2323}
2324
2325
2326Operand LCodeGen::BuildFastArrayOperand(
2327    LOperand* elements_pointer,
2328    LOperand* key,
2329    ElementsKind elements_kind,
2330    uint32_t offset) {
2331  Register elements_pointer_reg = ToRegister(elements_pointer);
2332  int shift_size = ElementsKindToShiftSize(elements_kind);
2333  if (key->IsConstantOperand()) {
2334    int constant_value = ToInteger32(LConstantOperand::cast(key));
2335    if (constant_value & 0xF0000000) {
2336      Abort("array index constant value too big");
2337    }
2338    return Operand(elements_pointer_reg,
2339                   constant_value * (1 << shift_size) + offset);
2340  } else {
2341    ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
2342    return Operand(elements_pointer_reg, ToRegister(key),
2343                   scale_factor, offset);
2344  }
2345}
2346
2347
2348void LCodeGen::DoLoadKeyedSpecializedArrayElement(
2349    LLoadKeyedSpecializedArrayElement* instr) {
2350  ElementsKind elements_kind = instr->elements_kind();
2351  Operand operand(BuildFastArrayOperand(instr->external_pointer(),
2352                                        instr->key(), elements_kind, 0));
2353  if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
2354    XMMRegister result(ToDoubleRegister(instr->result()));
2355    __ movss(result, operand);
2356    __ cvtss2sd(result, result);
2357  } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
2358    __ movsd(ToDoubleRegister(instr->result()), operand);
2359  } else {
2360    Register result(ToRegister(instr->result()));
2361    switch (elements_kind) {
2362      case EXTERNAL_BYTE_ELEMENTS:
2363        __ movsxbq(result, operand);
2364        break;
2365      case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
2366      case EXTERNAL_PIXEL_ELEMENTS:
2367        __ movzxbq(result, operand);
2368        break;
2369      case EXTERNAL_SHORT_ELEMENTS:
2370        __ movsxwq(result, operand);
2371        break;
2372      case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
2373        __ movzxwq(result, operand);
2374        break;
2375      case EXTERNAL_INT_ELEMENTS:
2376        __ movsxlq(result, operand);
2377        break;
2378      case EXTERNAL_UNSIGNED_INT_ELEMENTS:
2379        __ movl(result, operand);
2380        __ testl(result, result);
2381        // TODO(danno): we could be more clever here, perhaps having a special
2382        // version of the stub that detects if the overflow case actually
2383        // happens, and generate code that returns a double rather than int.
2384        DeoptimizeIf(negative, instr->environment());
2385        break;
2386      case EXTERNAL_FLOAT_ELEMENTS:
2387      case EXTERNAL_DOUBLE_ELEMENTS:
2388      case FAST_ELEMENTS:
2389      case FAST_SMI_ONLY_ELEMENTS:
2390      case FAST_DOUBLE_ELEMENTS:
2391      case DICTIONARY_ELEMENTS:
2392      case NON_STRICT_ARGUMENTS_ELEMENTS:
2393        UNREACHABLE();
2394        break;
2395    }
2396  }
2397}
2398
2399
2400void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2401  ASSERT(ToRegister(instr->object()).is(rdx));
2402  ASSERT(ToRegister(instr->key()).is(rax));
2403
2404  Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2405  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2406}
2407
2408
2409void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2410  Register result = ToRegister(instr->result());
2411
2412  // Check for arguments adapter frame.
2413  Label done, adapted;
2414  __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2415  __ Cmp(Operand(result, StandardFrameConstants::kContextOffset),
2416         Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2417  __ j(equal, &adapted, Label::kNear);
2418
2419  // No arguments adaptor frame.
2420  __ movq(result, rbp);
2421  __ jmp(&done, Label::kNear);
2422
2423  // Arguments adaptor frame present.
2424  __ bind(&adapted);
2425  __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2426
2427  // Result is the frame pointer for the frame if not adapted and for the real
2428  // frame below the adaptor frame if adapted.
2429  __ bind(&done);
2430}
2431
2432
2433void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2434  Register result = ToRegister(instr->result());
2435
2436  Label done;
2437
2438  // If no arguments adaptor frame the number of arguments is fixed.
2439  if (instr->InputAt(0)->IsRegister()) {
2440    __ cmpq(rbp, ToRegister(instr->InputAt(0)));
2441  } else {
2442    __ cmpq(rbp, ToOperand(instr->InputAt(0)));
2443  }
2444  __ movl(result, Immediate(scope()->num_parameters()));
2445  __ j(equal, &done, Label::kNear);
2446
2447  // Arguments adaptor frame present. Get argument length from there.
2448  __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2449  __ SmiToInteger32(result,
2450                    Operand(result,
2451                            ArgumentsAdaptorFrameConstants::kLengthOffset));
2452
2453  // Argument length is in result register.
2454  __ bind(&done);
2455}
2456
2457
2458void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2459  Register receiver = ToRegister(instr->receiver());
2460  Register function = ToRegister(instr->function());
2461  Register length = ToRegister(instr->length());
2462  Register elements = ToRegister(instr->elements());
2463  ASSERT(receiver.is(rax));  // Used for parameter count.
2464  ASSERT(function.is(rdi));  // Required by InvokeFunction.
2465  ASSERT(ToRegister(instr->result()).is(rax));
2466
2467  // If the receiver is null or undefined, we have to pass the global
2468  // object as a receiver to normal functions. Values have to be
2469  // passed unchanged to builtins and strict-mode functions.
2470  Label global_object, receiver_ok;
2471
2472  // Do not transform the receiver to object for strict mode
2473  // functions.
2474  __ movq(kScratchRegister,
2475          FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
2476  __ testb(FieldOperand(kScratchRegister,
2477                        SharedFunctionInfo::kStrictModeByteOffset),
2478           Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
2479  __ j(not_equal, &receiver_ok, Label::kNear);
2480
2481  // Do not transform the receiver to object for builtins.
2482  __ testb(FieldOperand(kScratchRegister,
2483                        SharedFunctionInfo::kNativeByteOffset),
2484           Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
2485  __ j(not_equal, &receiver_ok, Label::kNear);
2486
2487  // Normal function. Replace undefined or null with global receiver.
2488  __ CompareRoot(receiver, Heap::kNullValueRootIndex);
2489  __ j(equal, &global_object, Label::kNear);
2490  __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
2491  __ j(equal, &global_object, Label::kNear);
2492
2493  // The receiver should be a JS object.
2494  Condition is_smi = __ CheckSmi(receiver);
2495  DeoptimizeIf(is_smi, instr->environment());
2496  __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, kScratchRegister);
2497  DeoptimizeIf(below, instr->environment());
2498  __ jmp(&receiver_ok, Label::kNear);
2499
2500  __ bind(&global_object);
2501  // TODO(kmillikin): We have a hydrogen value for the global object.  See
2502  // if it's better to use it than to explicitly fetch it from the context
2503  // here.
2504  __ movq(receiver, ContextOperand(rsi, Context::GLOBAL_INDEX));
2505  __ movq(receiver,
2506          FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
2507  __ bind(&receiver_ok);
2508
2509  // Copy the arguments to this function possibly from the
2510  // adaptor frame below it.
2511  const uint32_t kArgumentsLimit = 1 * KB;
2512  __ cmpq(length, Immediate(kArgumentsLimit));
2513  DeoptimizeIf(above, instr->environment());
2514
2515  __ push(receiver);
2516  __ movq(receiver, length);
2517
2518  // Loop through the arguments pushing them onto the execution
2519  // stack.
2520  Label invoke, loop;
2521  // length is a small non-negative integer, due to the test above.
2522  __ testl(length, length);
2523  __ j(zero, &invoke, Label::kNear);
2524  __ bind(&loop);
2525  __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
2526  __ decl(length);
2527  __ j(not_zero, &loop);
2528
2529  // Invoke the function.
2530  __ bind(&invoke);
2531  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
2532  LPointerMap* pointers = instr->pointer_map();
2533  RecordPosition(pointers->position());
2534  SafepointGenerator safepoint_generator(
2535      this, pointers, Safepoint::kLazyDeopt);
2536  v8::internal::ParameterCount actual(rax);
2537  __ InvokeFunction(function, actual, CALL_FUNCTION,
2538                    safepoint_generator, CALL_AS_METHOD);
2539  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2540}
2541
2542
2543void LCodeGen::DoPushArgument(LPushArgument* instr) {
2544  LOperand* argument = instr->InputAt(0);
2545  EmitPushTaggedOperand(argument);
2546}
2547
2548
2549void LCodeGen::DoThisFunction(LThisFunction* instr) {
2550  Register result = ToRegister(instr->result());
2551  LoadHeapObject(result, instr->hydrogen()->closure());
2552}
2553
2554
2555void LCodeGen::DoContext(LContext* instr) {
2556  Register result = ToRegister(instr->result());
2557  __ movq(result, rsi);
2558}
2559
2560
2561void LCodeGen::DoOuterContext(LOuterContext* instr) {
2562  Register context = ToRegister(instr->context());
2563  Register result = ToRegister(instr->result());
2564  __ movq(result,
2565          Operand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2566}
2567
2568
2569void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
2570  Register result = ToRegister(instr->result());
2571  __ movq(result, GlobalObjectOperand());
2572}
2573
2574
2575void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
2576  Register global = ToRegister(instr->global());
2577  Register result = ToRegister(instr->result());
2578  __ movq(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset));
2579}
2580
2581
2582void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
2583                                 int arity,
2584                                 LInstruction* instr,
2585                                 CallKind call_kind) {
2586  // Change context if needed.
2587  bool change_context =
2588      (info()->closure()->context() != function->context()) ||
2589      scope()->contains_with() ||
2590      (scope()->num_heap_slots() > 0);
2591  if (change_context) {
2592    __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
2593  }
2594
2595  // Set rax to arguments count if adaption is not needed. Assumes that rax
2596  // is available to write to at this point.
2597  if (!function->NeedsArgumentsAdaption()) {
2598    __ Set(rax, arity);
2599  }
2600
2601  LPointerMap* pointers = instr->pointer_map();
2602  RecordPosition(pointers->position());
2603
2604  // Invoke function.
2605  __ SetCallKind(rcx, call_kind);
2606  if (*function == *info()->closure()) {
2607    __ CallSelf();
2608  } else {
2609    __ call(FieldOperand(rdi, JSFunction::kCodeEntryOffset));
2610  }
2611
2612  // Setup deoptimization.
2613  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
2614
2615  // Restore context.
2616  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2617}
2618
2619
2620void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
2621  ASSERT(ToRegister(instr->result()).is(rax));
2622  __ Move(rdi, instr->function());
2623  CallKnownFunction(instr->function(),
2624                    instr->arity(),
2625                    instr,
2626                    CALL_AS_METHOD);
2627}
2628
2629
2630void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
2631  Register input_reg = ToRegister(instr->InputAt(0));
2632  __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
2633                 Heap::kHeapNumberMapRootIndex);
2634  DeoptimizeIf(not_equal, instr->environment());
2635
2636  Label done;
2637  Register tmp = input_reg.is(rax) ? rcx : rax;
2638  Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx;
2639
2640  // Preserve the value of all registers.
2641  PushSafepointRegistersScope scope(this);
2642
2643  Label negative;
2644  __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
2645  // Check the sign of the argument. If the argument is positive, just
2646  // return it. We do not need to patch the stack since |input| and
2647  // |result| are the same register and |input| will be restored
2648  // unchanged by popping safepoint registers.
2649  __ testl(tmp, Immediate(HeapNumber::kSignMask));
2650  __ j(not_zero, &negative);
2651  __ jmp(&done);
2652
2653  __ bind(&negative);
2654
2655  Label allocated, slow;
2656  __ AllocateHeapNumber(tmp, tmp2, &slow);
2657  __ jmp(&allocated);
2658
2659  // Slow case: Call the runtime system to do the number allocation.
2660  __ bind(&slow);
2661
2662  CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
2663  // Set the pointer to the new heap number in tmp.
2664  if (!tmp.is(rax)) {
2665    __ movq(tmp, rax);
2666  }
2667
2668  // Restore input_reg after call to runtime.
2669  __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
2670
2671  __ bind(&allocated);
2672  __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
2673  __ shl(tmp2, Immediate(1));
2674  __ shr(tmp2, Immediate(1));
2675  __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
2676  __ StoreToSafepointRegisterSlot(input_reg, tmp);
2677
2678  __ bind(&done);
2679}
2680
2681
2682void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
2683  Register input_reg = ToRegister(instr->InputAt(0));
2684  __ testl(input_reg, input_reg);
2685  Label is_positive;
2686  __ j(not_sign, &is_positive);
2687  __ negl(input_reg);  // Sets flags.
2688  DeoptimizeIf(negative, instr->environment());
2689  __ bind(&is_positive);
2690}
2691
2692
2693void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
2694  // Class for deferred case.
2695  class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
2696   public:
2697    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
2698                                    LUnaryMathOperation* instr)
2699        : LDeferredCode(codegen), instr_(instr) { }
2700    virtual void Generate() {
2701      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
2702    }
2703    virtual LInstruction* instr() { return instr_; }
2704   private:
2705    LUnaryMathOperation* instr_;
2706  };
2707
2708  ASSERT(instr->InputAt(0)->Equals(instr->result()));
2709  Representation r = instr->hydrogen()->value()->representation();
2710
2711  if (r.IsDouble()) {
2712    XMMRegister scratch = xmm0;
2713    XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2714    __ xorps(scratch, scratch);
2715    __ subsd(scratch, input_reg);
2716    __ andpd(input_reg, scratch);
2717  } else if (r.IsInteger32()) {
2718    EmitIntegerMathAbs(instr);
2719  } else {  // Tagged case.
2720    DeferredMathAbsTaggedHeapNumber* deferred =
2721        new DeferredMathAbsTaggedHeapNumber(this, instr);
2722    Register input_reg = ToRegister(instr->InputAt(0));
2723    // Smi check.
2724    __ JumpIfNotSmi(input_reg, deferred->entry());
2725    __ SmiToInteger32(input_reg, input_reg);
2726    EmitIntegerMathAbs(instr);
2727    __ Integer32ToSmi(input_reg, input_reg);
2728    __ bind(deferred->exit());
2729  }
2730}
2731
2732
2733void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
2734  XMMRegister xmm_scratch = xmm0;
2735  Register output_reg = ToRegister(instr->result());
2736  XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2737  Label done;
2738
2739  if (CpuFeatures::IsSupported(SSE4_1)) {
2740    CpuFeatures::Scope scope(SSE4_1);
2741    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2742      // Deoptimize if minus zero.
2743      __ movq(output_reg, input_reg);
2744      __ subq(output_reg, Immediate(1));
2745      DeoptimizeIf(overflow, instr->environment());
2746    }
2747    __ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown);
2748    __ cvttsd2si(output_reg, xmm_scratch);
2749    __ cmpl(output_reg, Immediate(0x80000000));
2750    DeoptimizeIf(equal, instr->environment());
2751  } else {
2752    // Deoptimize on negative inputs.
2753    __ xorps(xmm_scratch, xmm_scratch);  // Zero the register.
2754    __ ucomisd(input_reg, xmm_scratch);
2755    DeoptimizeIf(below, instr->environment());
2756    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2757      // Check for negative zero.
2758      Label positive_sign;
2759      __ j(above, &positive_sign, Label::kNear);
2760      __ movmskpd(output_reg, input_reg);
2761      __ testq(output_reg, Immediate(1));
2762      DeoptimizeIf(not_zero, instr->environment());
2763      __ Set(output_reg, 0);
2764      __ jmp(&done);
2765      __ bind(&positive_sign);
2766    }
2767
2768    // Use truncating instruction (OK because input is positive).
2769    __ cvttsd2si(output_reg, input_reg);
2770
2771    // Overflow is signalled with minint.
2772    __ cmpl(output_reg, Immediate(0x80000000));
2773    DeoptimizeIf(equal, instr->environment());
2774  }
2775  __ bind(&done);
2776}
2777
2778
2779void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
2780  const XMMRegister xmm_scratch = xmm0;
2781  Register output_reg = ToRegister(instr->result());
2782  XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2783
2784  Label done;
2785  // xmm_scratch = 0.5
2786  __ movq(kScratchRegister, V8_INT64_C(0x3FE0000000000000), RelocInfo::NONE);
2787  __ movq(xmm_scratch, kScratchRegister);
2788  Label below_half;
2789  __ ucomisd(xmm_scratch, input_reg);
2790  // If input_reg is NaN, this doesn't jump.
2791  __ j(above, &below_half, Label::kNear);
2792  // input = input + 0.5
2793  // This addition might give a result that isn't the correct for
2794  // rounding, due to loss of precision, but only for a number that's
2795  // so big that the conversion below will overflow anyway.
2796  __ addsd(xmm_scratch, input_reg);
2797  // Compute Math.floor(input).
2798  // Use truncating instruction (OK because input is positive).
2799  __ cvttsd2si(output_reg, xmm_scratch);
2800  // Overflow is signalled with minint.
2801  __ cmpl(output_reg, Immediate(0x80000000));
2802  DeoptimizeIf(equal, instr->environment());
2803  __ jmp(&done);
2804
2805  __ bind(&below_half);
2806  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2807    // Bailout if negative (including -0).
2808    __ movq(output_reg, input_reg);
2809    __ testq(output_reg, output_reg);
2810    DeoptimizeIf(negative, instr->environment());
2811  } else {
2812    // Bailout if below -0.5, otherwise round to (positive) zero, even
2813    // if negative.
2814    // xmm_scrach = -0.5
2815    __ movq(kScratchRegister, V8_INT64_C(0xBFE0000000000000), RelocInfo::NONE);
2816    __ movq(xmm_scratch, kScratchRegister);
2817    __ ucomisd(input_reg, xmm_scratch);
2818    DeoptimizeIf(below, instr->environment());
2819  }
2820  __ xorl(output_reg, output_reg);
2821
2822  __ bind(&done);
2823}
2824
2825
2826void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
2827  XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2828  ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
2829  __ sqrtsd(input_reg, input_reg);
2830}
2831
2832
2833void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
2834  XMMRegister xmm_scratch = xmm0;
2835  XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2836  ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
2837  __ xorps(xmm_scratch, xmm_scratch);
2838  __ addsd(input_reg, xmm_scratch);  // Convert -0 to +0.
2839  __ sqrtsd(input_reg, input_reg);
2840}
2841
2842
2843void LCodeGen::DoPower(LPower* instr) {
2844  LOperand* left = instr->InputAt(0);
2845  XMMRegister left_reg = ToDoubleRegister(left);
2846  ASSERT(!left_reg.is(xmm1));
2847  LOperand* right = instr->InputAt(1);
2848  XMMRegister result_reg = ToDoubleRegister(instr->result());
2849  Representation exponent_type = instr->hydrogen()->right()->representation();
2850  if (exponent_type.IsDouble()) {
2851    __ PrepareCallCFunction(2);
2852    // Move arguments to correct registers
2853    __ movaps(xmm0, left_reg);
2854    ASSERT(ToDoubleRegister(right).is(xmm1));
2855    __ CallCFunction(
2856        ExternalReference::power_double_double_function(isolate()), 2);
2857  } else if (exponent_type.IsInteger32()) {
2858    __ PrepareCallCFunction(2);
2859    // Move arguments to correct registers: xmm0 and edi (not rdi).
2860    // On Windows, the registers are xmm0 and edx.
2861    __ movaps(xmm0, left_reg);
2862#ifdef _WIN64
2863    ASSERT(ToRegister(right).is(rdx));
2864#else
2865    ASSERT(ToRegister(right).is(rdi));
2866#endif
2867    __ CallCFunction(
2868        ExternalReference::power_double_int_function(isolate()), 2);
2869  } else {
2870    ASSERT(exponent_type.IsTagged());
2871    Register right_reg = ToRegister(right);
2872
2873    Label non_smi, call;
2874    __ JumpIfNotSmi(right_reg, &non_smi);
2875    __ SmiToInteger32(right_reg, right_reg);
2876    __ cvtlsi2sd(xmm1, right_reg);
2877    __ jmp(&call);
2878
2879    __ bind(&non_smi);
2880    __ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , kScratchRegister);
2881    DeoptimizeIf(not_equal, instr->environment());
2882    __ movsd(xmm1, FieldOperand(right_reg, HeapNumber::kValueOffset));
2883
2884    __ bind(&call);
2885    __ PrepareCallCFunction(2);
2886    // Move arguments to correct registers xmm0 and xmm1.
2887    __ movaps(xmm0, left_reg);
2888    // Right argument is already in xmm1.
2889    __ CallCFunction(
2890        ExternalReference::power_double_double_function(isolate()), 2);
2891  }
2892  // Return value is in xmm0.
2893  __ movaps(result_reg, xmm0);
2894  // Restore context register.
2895  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2896}
2897
2898
2899void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
2900  ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2901  TranscendentalCacheStub stub(TranscendentalCache::LOG,
2902                               TranscendentalCacheStub::UNTAGGED);
2903  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2904}
2905
2906
2907void LCodeGen::DoMathTan(LUnaryMathOperation* instr) {
2908  ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2909  TranscendentalCacheStub stub(TranscendentalCache::TAN,
2910                               TranscendentalCacheStub::UNTAGGED);
2911  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2912}
2913
2914
2915void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
2916  ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2917  TranscendentalCacheStub stub(TranscendentalCache::COS,
2918                               TranscendentalCacheStub::UNTAGGED);
2919  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2920}
2921
2922
2923void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
2924  ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2925  TranscendentalCacheStub stub(TranscendentalCache::SIN,
2926                               TranscendentalCacheStub::UNTAGGED);
2927  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2928}
2929
2930
2931void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
2932  switch (instr->op()) {
2933    case kMathAbs:
2934      DoMathAbs(instr);
2935      break;
2936    case kMathFloor:
2937      DoMathFloor(instr);
2938      break;
2939    case kMathRound:
2940      DoMathRound(instr);
2941      break;
2942    case kMathSqrt:
2943      DoMathSqrt(instr);
2944      break;
2945    case kMathPowHalf:
2946      DoMathPowHalf(instr);
2947      break;
2948    case kMathCos:
2949      DoMathCos(instr);
2950      break;
2951    case kMathSin:
2952      DoMathSin(instr);
2953      break;
2954    case kMathTan:
2955      DoMathTan(instr);
2956      break;
2957    case kMathLog:
2958      DoMathLog(instr);
2959      break;
2960
2961    default:
2962      UNREACHABLE();
2963  }
2964}
2965
2966
2967void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
2968  ASSERT(ToRegister(instr->function()).is(rdi));
2969  ASSERT(instr->HasPointerMap());
2970  ASSERT(instr->HasDeoptimizationEnvironment());
2971  LPointerMap* pointers = instr->pointer_map();
2972  RecordPosition(pointers->position());
2973  SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2974  ParameterCount count(instr->arity());
2975  __ InvokeFunction(rdi, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
2976  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2977}
2978
2979
2980void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
2981  ASSERT(ToRegister(instr->key()).is(rcx));
2982  ASSERT(ToRegister(instr->result()).is(rax));
2983
2984  int arity = instr->arity();
2985  Handle<Code> ic =
2986      isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
2987  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2988  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2989}
2990
2991
2992void LCodeGen::DoCallNamed(LCallNamed* instr) {
2993  ASSERT(ToRegister(instr->result()).is(rax));
2994
2995  int arity = instr->arity();
2996  RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
2997  Handle<Code> ic =
2998      isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
2999  __ Move(rcx, instr->name());
3000  CallCode(ic, mode, instr);
3001  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
3002}
3003
3004
3005void LCodeGen::DoCallFunction(LCallFunction* instr) {
3006  ASSERT(ToRegister(instr->function()).is(rdi));
3007  ASSERT(ToRegister(instr->result()).is(rax));
3008
3009  int arity = instr->arity();
3010  CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
3011  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3012  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
3013}
3014
3015
3016void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
3017  ASSERT(ToRegister(instr->result()).is(rax));
3018  int arity = instr->arity();
3019  RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
3020  Handle<Code> ic =
3021      isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
3022  __ Move(rcx, instr->name());
3023  CallCode(ic, mode, instr);
3024  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
3025}
3026
3027
3028void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
3029  ASSERT(ToRegister(instr->result()).is(rax));
3030  __ Move(rdi, instr->target());
3031  CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
3032}
3033
3034
3035void LCodeGen::DoCallNew(LCallNew* instr) {
3036  ASSERT(ToRegister(instr->InputAt(0)).is(rdi));
3037  ASSERT(ToRegister(instr->result()).is(rax));
3038
3039  Handle<Code> builtin = isolate()->builtins()->JSConstructCall();
3040  __ Set(rax, instr->arity());
3041  CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
3042}
3043
3044
3045void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3046  CallRuntime(instr->function(), instr->arity(), instr);
3047}
3048
3049
3050void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3051  Register object = ToRegister(instr->object());
3052  Register value = ToRegister(instr->value());
3053  int offset = instr->offset();
3054
3055  if (!instr->transition().is_null()) {
3056    __ Move(FieldOperand(object, HeapObject::kMapOffset), instr->transition());
3057  }
3058
3059  // Do the store.
3060  HType type = instr->hydrogen()->value()->type();
3061  SmiCheck check_needed =
3062      type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3063  if (instr->is_in_object()) {
3064    __ movq(FieldOperand(object, offset), value);
3065    if (instr->hydrogen()->NeedsWriteBarrier()) {
3066      Register temp = ToRegister(instr->TempAt(0));
3067      // Update the write barrier for the object for in-object properties.
3068      __ RecordWriteField(object,
3069                          offset,
3070                          value,
3071                          temp,
3072                          kSaveFPRegs,
3073                          EMIT_REMEMBERED_SET,
3074                          check_needed);
3075    }
3076  } else {
3077    Register temp = ToRegister(instr->TempAt(0));
3078    __ movq(temp, FieldOperand(object, JSObject::kPropertiesOffset));
3079    __ movq(FieldOperand(temp, offset), value);
3080    if (instr->hydrogen()->NeedsWriteBarrier()) {
3081      // Update the write barrier for the properties array.
3082      // object is used as a scratch register.
3083      __ RecordWriteField(temp,
3084                          offset,
3085                          value,
3086                          object,
3087                          kSaveFPRegs,
3088                          EMIT_REMEMBERED_SET,
3089                          check_needed);
3090    }
3091  }
3092}
3093
3094
3095void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3096  ASSERT(ToRegister(instr->object()).is(rdx));
3097  ASSERT(ToRegister(instr->value()).is(rax));
3098
3099  __ Move(rcx, instr->hydrogen()->name());
3100  Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
3101      ? isolate()->builtins()->StoreIC_Initialize_Strict()
3102      : isolate()->builtins()->StoreIC_Initialize();
3103  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3104}
3105
3106
3107void LCodeGen::DoStoreKeyedSpecializedArrayElement(
3108    LStoreKeyedSpecializedArrayElement* instr) {
3109  ElementsKind elements_kind = instr->elements_kind();
3110  Operand operand(BuildFastArrayOperand(instr->external_pointer(),
3111                                        instr->key(), elements_kind, 0));
3112  if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
3113    XMMRegister value(ToDoubleRegister(instr->value()));
3114    __ cvtsd2ss(value, value);
3115    __ movss(operand, value);
3116  } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
3117    __ movsd(operand, ToDoubleRegister(instr->value()));
3118  } else {
3119    Register value(ToRegister(instr->value()));
3120    switch (elements_kind) {
3121      case EXTERNAL_PIXEL_ELEMENTS:
3122      case EXTERNAL_BYTE_ELEMENTS:
3123      case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3124        __ movb(operand, value);
3125        break;
3126      case EXTERNAL_SHORT_ELEMENTS:
3127      case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
3128        __ movw(operand, value);
3129        break;
3130      case EXTERNAL_INT_ELEMENTS:
3131      case EXTERNAL_UNSIGNED_INT_ELEMENTS:
3132        __ movl(operand, value);
3133        break;
3134      case EXTERNAL_FLOAT_ELEMENTS:
3135      case EXTERNAL_DOUBLE_ELEMENTS:
3136      case FAST_ELEMENTS:
3137      case FAST_SMI_ONLY_ELEMENTS:
3138      case FAST_DOUBLE_ELEMENTS:
3139      case DICTIONARY_ELEMENTS:
3140      case NON_STRICT_ARGUMENTS_ELEMENTS:
3141        UNREACHABLE();
3142        break;
3143    }
3144  }
3145}
3146
3147
3148void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3149  if (instr->index()->IsConstantOperand()) {
3150    if (instr->length()->IsRegister()) {
3151      __ cmpq(ToRegister(instr->length()),
3152              Immediate(ToInteger32(LConstantOperand::cast(instr->index()))));
3153    } else {
3154      __ cmpq(ToOperand(instr->length()),
3155              Immediate(ToInteger32(LConstantOperand::cast(instr->index()))));
3156    }
3157  } else {
3158    if (instr->length()->IsRegister()) {
3159      __ cmpq(ToRegister(instr->length()), ToRegister(instr->index()));
3160    } else {
3161      __ cmpq(ToOperand(instr->length()), ToRegister(instr->index()));
3162    }
3163  }
3164  DeoptimizeIf(below_equal, instr->environment());
3165}
3166
3167
3168void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
3169  Register value = ToRegister(instr->value());
3170  Register elements = ToRegister(instr->object());
3171  Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
3172
3173  // This instruction cannot handle the FAST_SMI_ONLY_ELEMENTS -> FAST_ELEMENTS
3174  // conversion, so it deopts in that case.
3175  if (instr->hydrogen()->ValueNeedsSmiCheck()) {
3176    Condition cc = masm()->CheckSmi(value);
3177    DeoptimizeIf(NegateCondition(cc), instr->environment());
3178  }
3179
3180  // Do the store.
3181  if (instr->key()->IsConstantOperand()) {
3182    ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3183    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3184    int offset =
3185        ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
3186    __ movq(FieldOperand(elements, offset), value);
3187  } else {
3188    __ movq(FieldOperand(elements,
3189                         key,
3190                         times_pointer_size,
3191                         FixedArray::kHeaderSize),
3192            value);
3193  }
3194
3195  if (instr->hydrogen()->NeedsWriteBarrier()) {
3196    HType type = instr->hydrogen()->value()->type();
3197    SmiCheck check_needed =
3198        type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3199    // Compute address of modified element and store it into key register.
3200    __ lea(key, FieldOperand(elements,
3201                             key,
3202                             times_pointer_size,
3203                             FixedArray::kHeaderSize));
3204    __ RecordWrite(elements,
3205                   key,
3206                   value,
3207                   kSaveFPRegs,
3208                   EMIT_REMEMBERED_SET,
3209                   check_needed);
3210  }
3211}
3212
3213
3214void LCodeGen::DoStoreKeyedFastDoubleElement(
3215    LStoreKeyedFastDoubleElement* instr) {
3216  XMMRegister value = ToDoubleRegister(instr->value());
3217  Label have_value;
3218
3219  __ ucomisd(value, value);
3220  __ j(parity_odd, &have_value);  // NaN.
3221
3222  __ Set(kScratchRegister, BitCast<uint64_t>(
3223      FixedDoubleArray::canonical_not_the_hole_nan_as_double()));
3224  __ movq(value, kScratchRegister);
3225
3226  __ bind(&have_value);
3227  Operand double_store_operand = BuildFastArrayOperand(
3228      instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS,
3229      FixedDoubleArray::kHeaderSize - kHeapObjectTag);
3230  __ movsd(double_store_operand, value);
3231}
3232
3233void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
3234  ASSERT(ToRegister(instr->object()).is(rdx));
3235  ASSERT(ToRegister(instr->key()).is(rcx));
3236  ASSERT(ToRegister(instr->value()).is(rax));
3237
3238  Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
3239      ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
3240      : isolate()->builtins()->KeyedStoreIC_Initialize();
3241  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3242}
3243
3244
3245void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
3246  Register object_reg = ToRegister(instr->object());
3247  Register new_map_reg = ToRegister(instr->new_map_reg());
3248
3249  Handle<Map> from_map = instr->original_map();
3250  Handle<Map> to_map = instr->transitioned_map();
3251  ElementsKind from_kind = from_map->elements_kind();
3252  ElementsKind to_kind = to_map->elements_kind();
3253
3254  Label not_applicable;
3255  __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
3256  __ j(not_equal, &not_applicable);
3257  __ movq(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
3258  if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) {
3259    __ movq(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
3260    // Write barrier.
3261    ASSERT_NE(instr->temp_reg(), NULL);
3262    __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg,
3263                        ToRegister(instr->temp_reg()), kDontSaveFPRegs);
3264  } else if (from_kind == FAST_SMI_ONLY_ELEMENTS &&
3265      to_kind == FAST_DOUBLE_ELEMENTS) {
3266    Register fixed_object_reg = ToRegister(instr->temp_reg());
3267    ASSERT(fixed_object_reg.is(rdx));
3268    ASSERT(new_map_reg.is(rbx));
3269    __ movq(fixed_object_reg, object_reg);
3270    CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(),
3271             RelocInfo::CODE_TARGET, instr);
3272  } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) {
3273    Register fixed_object_reg = ToRegister(instr->temp_reg());
3274    ASSERT(fixed_object_reg.is(rdx));
3275    ASSERT(new_map_reg.is(rbx));
3276    __ movq(fixed_object_reg, object_reg);
3277    CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(),
3278             RelocInfo::CODE_TARGET, instr);
3279  } else {
3280    UNREACHABLE();
3281  }
3282  __ bind(&not_applicable);
3283}
3284
3285
3286void LCodeGen::DoStringAdd(LStringAdd* instr) {
3287  EmitPushTaggedOperand(instr->left());
3288  EmitPushTaggedOperand(instr->right());
3289  StringAddStub stub(NO_STRING_CHECK_IN_STUB);
3290  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3291}
3292
3293
3294void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
3295  class DeferredStringCharCodeAt: public LDeferredCode {
3296   public:
3297    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
3298        : LDeferredCode(codegen), instr_(instr) { }
3299    virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
3300    virtual LInstruction* instr() { return instr_; }
3301   private:
3302    LStringCharCodeAt* instr_;
3303  };
3304
3305  DeferredStringCharCodeAt* deferred =
3306      new DeferredStringCharCodeAt(this, instr);
3307
3308  StringCharLoadGenerator::Generate(masm(),
3309                                    ToRegister(instr->string()),
3310                                    ToRegister(instr->index()),
3311                                    ToRegister(instr->result()),
3312                                    deferred->entry());
3313  __ bind(deferred->exit());
3314}
3315
3316
3317void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
3318  Register string = ToRegister(instr->string());
3319  Register result = ToRegister(instr->result());
3320
3321  // TODO(3095996): Get rid of this. For now, we need to make the
3322  // result register contain a valid pointer because it is already
3323  // contained in the register pointer map.
3324  __ Set(result, 0);
3325
3326  PushSafepointRegistersScope scope(this);
3327  __ push(string);
3328  // Push the index as a smi. This is safe because of the checks in
3329  // DoStringCharCodeAt above.
3330  STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
3331  if (instr->index()->IsConstantOperand()) {
3332    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3333    __ Push(Smi::FromInt(const_index));
3334  } else {
3335    Register index = ToRegister(instr->index());
3336    __ Integer32ToSmi(index, index);
3337    __ push(index);
3338  }
3339  CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
3340  if (FLAG_debug_code) {
3341    __ AbortIfNotSmi(rax);
3342  }
3343  __ SmiToInteger32(rax, rax);
3344  __ StoreToSafepointRegisterSlot(result, rax);
3345}
3346
3347
3348void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
3349  class DeferredStringCharFromCode: public LDeferredCode {
3350   public:
3351    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
3352        : LDeferredCode(codegen), instr_(instr) { }
3353    virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
3354    virtual LInstruction* instr() { return instr_; }
3355   private:
3356    LStringCharFromCode* instr_;
3357  };
3358
3359  DeferredStringCharFromCode* deferred =
3360      new DeferredStringCharFromCode(this, instr);
3361
3362  ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
3363  Register char_code = ToRegister(instr->char_code());
3364  Register result = ToRegister(instr->result());
3365  ASSERT(!char_code.is(result));
3366
3367  __ cmpl(char_code, Immediate(String::kMaxAsciiCharCode));
3368  __ j(above, deferred->entry());
3369  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
3370  __ movq(result, FieldOperand(result,
3371                               char_code, times_pointer_size,
3372                               FixedArray::kHeaderSize));
3373  __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
3374  __ j(equal, deferred->entry());
3375  __ bind(deferred->exit());
3376}
3377
3378
3379void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
3380  Register char_code = ToRegister(instr->char_code());
3381  Register result = ToRegister(instr->result());
3382
3383  // TODO(3095996): Get rid of this. For now, we need to make the
3384  // result register contain a valid pointer because it is already
3385  // contained in the register pointer map.
3386  __ Set(result, 0);
3387
3388  PushSafepointRegistersScope scope(this);
3389  __ Integer32ToSmi(char_code, char_code);
3390  __ push(char_code);
3391  CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
3392  __ StoreToSafepointRegisterSlot(result, rax);
3393}
3394
3395
3396void LCodeGen::DoStringLength(LStringLength* instr) {
3397  Register string = ToRegister(instr->string());
3398  Register result = ToRegister(instr->result());
3399  __ movq(result, FieldOperand(string, String::kLengthOffset));
3400}
3401
3402
3403void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3404  LOperand* input = instr->InputAt(0);
3405  ASSERT(input->IsRegister() || input->IsStackSlot());
3406  LOperand* output = instr->result();
3407  ASSERT(output->IsDoubleRegister());
3408  if (input->IsRegister()) {
3409    __ cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
3410  } else {
3411    __ cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
3412  }
3413}
3414
3415
3416void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
3417  LOperand* input = instr->InputAt(0);
3418  ASSERT(input->IsRegister() && input->Equals(instr->result()));
3419  Register reg = ToRegister(input);
3420
3421  __ Integer32ToSmi(reg, reg);
3422}
3423
3424
3425void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
3426  class DeferredNumberTagD: public LDeferredCode {
3427   public:
3428    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
3429        : LDeferredCode(codegen), instr_(instr) { }
3430    virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
3431    virtual LInstruction* instr() { return instr_; }
3432   private:
3433    LNumberTagD* instr_;
3434  };
3435
3436  XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
3437  Register reg = ToRegister(instr->result());
3438  Register tmp = ToRegister(instr->TempAt(0));
3439
3440  DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
3441  if (FLAG_inline_new) {
3442    __ AllocateHeapNumber(reg, tmp, deferred->entry());
3443  } else {
3444    __ jmp(deferred->entry());
3445  }
3446  __ bind(deferred->exit());
3447  __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
3448}
3449
3450
3451void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
3452  // TODO(3095996): Get rid of this. For now, we need to make the
3453  // result register contain a valid pointer because it is already
3454  // contained in the register pointer map.
3455  Register reg = ToRegister(instr->result());
3456  __ Move(reg, Smi::FromInt(0));
3457
3458  {
3459    PushSafepointRegistersScope scope(this);
3460    CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3461    // Ensure that value in rax survives popping registers.
3462    __ movq(kScratchRegister, rax);
3463  }
3464  __ movq(reg, kScratchRegister);
3465}
3466
3467
3468void LCodeGen::DoSmiTag(LSmiTag* instr) {
3469  ASSERT(instr->InputAt(0)->Equals(instr->result()));
3470  Register input = ToRegister(instr->InputAt(0));
3471  ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
3472  __ Integer32ToSmi(input, input);
3473}
3474
3475
3476void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
3477  ASSERT(instr->InputAt(0)->Equals(instr->result()));
3478  Register input = ToRegister(instr->InputAt(0));
3479  if (instr->needs_check()) {
3480    Condition is_smi = __ CheckSmi(input);
3481    DeoptimizeIf(NegateCondition(is_smi), instr->environment());
3482  }
3483  __ SmiToInteger32(input, input);
3484}
3485
3486
3487void LCodeGen::EmitNumberUntagD(Register input_reg,
3488                                XMMRegister result_reg,
3489                                bool deoptimize_on_undefined,
3490                                LEnvironment* env) {
3491  Label load_smi, done;
3492
3493  // Smi check.
3494  __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
3495
3496  // Heap number map check.
3497  __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3498                 Heap::kHeapNumberMapRootIndex);
3499  if (deoptimize_on_undefined) {
3500    DeoptimizeIf(not_equal, env);
3501  } else {
3502    Label heap_number;
3503    __ j(equal, &heap_number, Label::kNear);
3504
3505    __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
3506    DeoptimizeIf(not_equal, env);
3507
3508    // Convert undefined to NaN. Compute NaN as 0/0.
3509    __ xorps(result_reg, result_reg);
3510    __ divsd(result_reg, result_reg);
3511    __ jmp(&done, Label::kNear);
3512
3513    __ bind(&heap_number);
3514  }
3515  // Heap number to XMM conversion.
3516  __ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
3517  __ jmp(&done, Label::kNear);
3518
3519  // Smi to XMM conversion
3520  __ bind(&load_smi);
3521  __ SmiToInteger32(kScratchRegister, input_reg);
3522  __ cvtlsi2sd(result_reg, kScratchRegister);
3523  __ bind(&done);
3524}
3525
3526
3527void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
3528  Label done, heap_number;
3529  Register input_reg = ToRegister(instr->InputAt(0));
3530
3531  // Heap number map check.
3532  __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3533                 Heap::kHeapNumberMapRootIndex);
3534
3535  if (instr->truncating()) {
3536    __ j(equal, &heap_number, Label::kNear);
3537    // Check for undefined. Undefined is converted to zero for truncating
3538    // conversions.
3539    __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
3540    DeoptimizeIf(not_equal, instr->environment());
3541    __ Set(input_reg, 0);
3542    __ jmp(&done, Label::kNear);
3543
3544    __ bind(&heap_number);
3545
3546    __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3547    __ cvttsd2siq(input_reg, xmm0);
3548    __ Set(kScratchRegister, V8_UINT64_C(0x8000000000000000));
3549    __ cmpq(input_reg, kScratchRegister);
3550    DeoptimizeIf(equal, instr->environment());
3551  } else {
3552    // Deoptimize if we don't have a heap number.
3553    DeoptimizeIf(not_equal, instr->environment());
3554
3555    XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
3556    __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3557    __ cvttsd2si(input_reg, xmm0);
3558    __ cvtlsi2sd(xmm_temp, input_reg);
3559    __ ucomisd(xmm0, xmm_temp);
3560    DeoptimizeIf(not_equal, instr->environment());
3561    DeoptimizeIf(parity_even, instr->environment());  // NaN.
3562    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3563      __ testl(input_reg, input_reg);
3564      __ j(not_zero, &done);
3565      __ movmskpd(input_reg, xmm0);
3566      __ andl(input_reg, Immediate(1));
3567      DeoptimizeIf(not_zero, instr->environment());
3568    }
3569  }
3570  __ bind(&done);
3571}
3572
3573
3574void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
3575  class DeferredTaggedToI: public LDeferredCode {
3576   public:
3577    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
3578        : LDeferredCode(codegen), instr_(instr) { }
3579    virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
3580    virtual LInstruction* instr() { return instr_; }
3581   private:
3582    LTaggedToI* instr_;
3583  };
3584
3585  LOperand* input = instr->InputAt(0);
3586  ASSERT(input->IsRegister());
3587  ASSERT(input->Equals(instr->result()));
3588
3589  Register input_reg = ToRegister(input);
3590  DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
3591  __ JumpIfNotSmi(input_reg, deferred->entry());
3592  __ SmiToInteger32(input_reg, input_reg);
3593  __ bind(deferred->exit());
3594}
3595
3596
3597void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
3598  LOperand* input = instr->InputAt(0);
3599  ASSERT(input->IsRegister());
3600  LOperand* result = instr->result();
3601  ASSERT(result->IsDoubleRegister());
3602
3603  Register input_reg = ToRegister(input);
3604  XMMRegister result_reg = ToDoubleRegister(result);
3605
3606  EmitNumberUntagD(input_reg, result_reg,
3607                   instr->hydrogen()->deoptimize_on_undefined(),
3608                   instr->environment());
3609}
3610
3611
3612void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
3613  LOperand* input = instr->InputAt(0);
3614  ASSERT(input->IsDoubleRegister());
3615  LOperand* result = instr->result();
3616  ASSERT(result->IsRegister());
3617
3618  XMMRegister input_reg = ToDoubleRegister(input);
3619  Register result_reg = ToRegister(result);
3620
3621  if (instr->truncating()) {
3622    // Performs a truncating conversion of a floating point number as used by
3623    // the JS bitwise operations.
3624    __ cvttsd2siq(result_reg, input_reg);
3625    __ movq(kScratchRegister, V8_INT64_C(0x8000000000000000), RelocInfo::NONE);
3626    __ cmpq(result_reg, kScratchRegister);
3627    DeoptimizeIf(equal, instr->environment());
3628  } else {
3629    __ cvttsd2si(result_reg, input_reg);
3630    __ cvtlsi2sd(xmm0, result_reg);
3631    __ ucomisd(xmm0, input_reg);
3632    DeoptimizeIf(not_equal, instr->environment());
3633    DeoptimizeIf(parity_even, instr->environment());  // NaN.
3634    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3635      Label done;
3636      // The integer converted back is equal to the original. We
3637      // only have to test if we got -0 as an input.
3638      __ testl(result_reg, result_reg);
3639      __ j(not_zero, &done, Label::kNear);
3640      __ movmskpd(result_reg, input_reg);
3641      // Bit 0 contains the sign of the double in input_reg.
3642      // If input was positive, we are ok and return 0, otherwise
3643      // deoptimize.
3644      __ andl(result_reg, Immediate(1));
3645      DeoptimizeIf(not_zero, instr->environment());
3646      __ bind(&done);
3647    }
3648  }
3649}
3650
3651
3652void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
3653  LOperand* input = instr->InputAt(0);
3654  Condition cc = masm()->CheckSmi(ToRegister(input));
3655  DeoptimizeIf(NegateCondition(cc), instr->environment());
3656}
3657
3658
3659void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
3660  LOperand* input = instr->InputAt(0);
3661  Condition cc = masm()->CheckSmi(ToRegister(input));
3662  DeoptimizeIf(cc, instr->environment());
3663}
3664
3665
3666void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
3667  Register input = ToRegister(instr->InputAt(0));
3668
3669  __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
3670
3671  if (instr->hydrogen()->is_interval_check()) {
3672    InstanceType first;
3673    InstanceType last;
3674    instr->hydrogen()->GetCheckInterval(&first, &last);
3675
3676    __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3677            Immediate(static_cast<int8_t>(first)));
3678
3679    // If there is only one type in the interval check for equality.
3680    if (first == last) {
3681      DeoptimizeIf(not_equal, instr->environment());
3682    } else {
3683      DeoptimizeIf(below, instr->environment());
3684      // Omit check for the last type.
3685      if (last != LAST_TYPE) {
3686        __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3687                Immediate(static_cast<int8_t>(last)));
3688        DeoptimizeIf(above, instr->environment());
3689      }
3690    }
3691  } else {
3692    uint8_t mask;
3693    uint8_t tag;
3694    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
3695
3696    if (IsPowerOf2(mask)) {
3697      ASSERT(tag == 0 || IsPowerOf2(tag));
3698      __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3699               Immediate(mask));
3700      DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment());
3701    } else {
3702      __ movzxbl(kScratchRegister,
3703                 FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
3704      __ andb(kScratchRegister, Immediate(mask));
3705      __ cmpb(kScratchRegister, Immediate(tag));
3706      DeoptimizeIf(not_equal, instr->environment());
3707    }
3708  }
3709}
3710
3711
3712void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
3713  ASSERT(instr->InputAt(0)->IsRegister());
3714  Register reg = ToRegister(instr->InputAt(0));
3715  __ Cmp(reg, instr->hydrogen()->target());
3716  DeoptimizeIf(not_equal, instr->environment());
3717}
3718
3719
3720void LCodeGen::DoCheckMap(LCheckMap* instr) {
3721  LOperand* input = instr->InputAt(0);
3722  ASSERT(input->IsRegister());
3723  Register reg = ToRegister(input);
3724  __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3725         instr->hydrogen()->map());
3726  DeoptimizeIf(not_equal, instr->environment());
3727}
3728
3729
3730void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
3731  XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
3732  Register result_reg = ToRegister(instr->result());
3733  Register temp_reg = ToRegister(instr->TempAt(0));
3734  __ ClampDoubleToUint8(value_reg, xmm0, result_reg, temp_reg);
3735}
3736
3737
3738void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
3739  ASSERT(instr->unclamped()->Equals(instr->result()));
3740  Register value_reg = ToRegister(instr->result());
3741  __ ClampUint8(value_reg);
3742}
3743
3744
3745void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
3746  ASSERT(instr->unclamped()->Equals(instr->result()));
3747  Register input_reg = ToRegister(instr->unclamped());
3748  Register temp_reg = ToRegister(instr->TempAt(0));
3749  XMMRegister temp_xmm_reg = ToDoubleRegister(instr->TempAt(1));
3750  Label is_smi, done, heap_number;
3751
3752  __ JumpIfSmi(input_reg, &is_smi);
3753
3754  // Check for heap number
3755  __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
3756         factory()->heap_number_map());
3757  __ j(equal, &heap_number, Label::kNear);
3758
3759  // Check for undefined. Undefined is converted to zero for clamping
3760  // conversions.
3761  __ Cmp(input_reg, factory()->undefined_value());
3762  DeoptimizeIf(not_equal, instr->environment());
3763  __ movq(input_reg, Immediate(0));
3764  __ jmp(&done, Label::kNear);
3765
3766  // Heap number
3767  __ bind(&heap_number);
3768  __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3769  __ ClampDoubleToUint8(xmm0, temp_xmm_reg, input_reg, temp_reg);
3770  __ jmp(&done, Label::kNear);
3771
3772  // smi
3773  __ bind(&is_smi);
3774  __ SmiToInteger32(input_reg, input_reg);
3775  __ ClampUint8(input_reg);
3776
3777  __ bind(&done);
3778}
3779
3780
3781void LCodeGen::LoadHeapObject(Register result, Handle<HeapObject> object) {
3782  if (heap()->InNewSpace(*object)) {
3783    Handle<JSGlobalPropertyCell> cell =
3784        factory()->NewJSGlobalPropertyCell(object);
3785    __ movq(result, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
3786    __ movq(result, Operand(result, 0));
3787  } else {
3788    __ Move(result, object);
3789  }
3790}
3791
3792
3793void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
3794  Register reg = ToRegister(instr->TempAt(0));
3795
3796  Handle<JSObject> holder = instr->holder();
3797  Handle<JSObject> current_prototype = instr->prototype();
3798
3799  // Load prototype object.
3800  LoadHeapObject(reg, current_prototype);
3801
3802  // Check prototype maps up to the holder.
3803  while (!current_prototype.is_identical_to(holder)) {
3804    __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3805           Handle<Map>(current_prototype->map()));
3806    DeoptimizeIf(not_equal, instr->environment());
3807    current_prototype =
3808        Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
3809    // Load next prototype object.
3810    LoadHeapObject(reg, current_prototype);
3811  }
3812
3813  // Check the holder map.
3814  __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3815         Handle<Map>(current_prototype->map()));
3816  DeoptimizeIf(not_equal, instr->environment());
3817}
3818
3819
3820void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
3821  Handle<FixedArray> constant_elements = instr->hydrogen()->constant_elements();
3822  ASSERT_EQ(2, constant_elements->length());
3823  ElementsKind constant_elements_kind =
3824      static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
3825
3826  // Setup the parameters to the stub/runtime call.
3827  __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3828  __ push(FieldOperand(rax, JSFunction::kLiteralsOffset));
3829  __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3830  __ Push(instr->hydrogen()->constant_elements());
3831
3832  // Pick the right runtime function or stub to call.
3833  int length = instr->hydrogen()->length();
3834  if (instr->hydrogen()->IsCopyOnWrite()) {
3835    ASSERT(instr->hydrogen()->depth() == 1);
3836    FastCloneShallowArrayStub::Mode mode =
3837        FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
3838    FastCloneShallowArrayStub stub(mode, length);
3839    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3840  } else if (instr->hydrogen()->depth() > 1) {
3841    CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
3842  } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
3843    CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
3844  } else {
3845    FastCloneShallowArrayStub::Mode mode =
3846        constant_elements_kind == FAST_DOUBLE_ELEMENTS
3847        ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
3848        : FastCloneShallowArrayStub::CLONE_ELEMENTS;
3849    FastCloneShallowArrayStub stub(mode, length);
3850    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3851  }
3852}
3853
3854
3855void LCodeGen::EmitDeepCopy(Handle<JSObject> object,
3856                            Register result,
3857                            Register source,
3858                            int* offset) {
3859  ASSERT(!source.is(rcx));
3860  ASSERT(!result.is(rcx));
3861
3862  // Increase the offset so that subsequent objects end up right after
3863  // this one.
3864  int current_offset = *offset;
3865  int size = object->map()->instance_size();
3866  *offset += size;
3867
3868  // Copy object header.
3869  ASSERT(object->properties()->length() == 0);
3870  ASSERT(object->elements()->length() == 0 ||
3871         object->elements()->map() == isolate()->heap()->fixed_cow_array_map());
3872  int inobject_properties = object->map()->inobject_properties();
3873  int header_size = size - inobject_properties * kPointerSize;
3874  for (int i = 0; i < header_size; i += kPointerSize) {
3875    __ movq(rcx, FieldOperand(source, i));
3876    __ movq(FieldOperand(result, current_offset + i), rcx);
3877  }
3878
3879  // Copy in-object properties.
3880  for (int i = 0; i < inobject_properties; i++) {
3881    int total_offset = current_offset + object->GetInObjectPropertyOffset(i);
3882    Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i));
3883    if (value->IsJSObject()) {
3884      Handle<JSObject> value_object = Handle<JSObject>::cast(value);
3885      __ lea(rcx, Operand(result, *offset));
3886      __ movq(FieldOperand(result, total_offset), rcx);
3887      LoadHeapObject(source, value_object);
3888      EmitDeepCopy(value_object, result, source, offset);
3889    } else if (value->IsHeapObject()) {
3890      LoadHeapObject(rcx, Handle<HeapObject>::cast(value));
3891      __ movq(FieldOperand(result, total_offset), rcx);
3892    } else {
3893      __ movq(rcx, value, RelocInfo::NONE);
3894      __ movq(FieldOperand(result, total_offset), rcx);
3895    }
3896  }
3897}
3898
3899
3900void LCodeGen::DoObjectLiteralFast(LObjectLiteralFast* instr) {
3901  int size = instr->hydrogen()->total_size();
3902
3903  // Allocate all objects that are part of the literal in one big
3904  // allocation. This avoids multiple limit checks.
3905  Label allocated, runtime_allocate;
3906  __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
3907  __ jmp(&allocated);
3908
3909  __ bind(&runtime_allocate);
3910  __ Push(Smi::FromInt(size));
3911  CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
3912
3913  __ bind(&allocated);
3914  int offset = 0;
3915  LoadHeapObject(rbx, instr->hydrogen()->boilerplate());
3916  EmitDeepCopy(instr->hydrogen()->boilerplate(), rax, rbx, &offset);
3917  ASSERT_EQ(size, offset);
3918}
3919
3920
3921void LCodeGen::DoObjectLiteralGeneric(LObjectLiteralGeneric* instr) {
3922  Handle<FixedArray> constant_properties =
3923      instr->hydrogen()->constant_properties();
3924
3925  // Setup the parameters to the stub/runtime call.
3926  __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3927  __ push(FieldOperand(rax, JSFunction::kLiteralsOffset));
3928  __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3929  __ Push(constant_properties);
3930  int flags = instr->hydrogen()->fast_elements()
3931      ? ObjectLiteral::kFastElements
3932      : ObjectLiteral::kNoFlags;
3933  flags |= instr->hydrogen()->has_function()
3934      ? ObjectLiteral::kHasFunction
3935      : ObjectLiteral::kNoFlags;
3936  __ Push(Smi::FromInt(flags));
3937
3938  // Pick the right runtime function to call.
3939  int properties_count = constant_properties->length() / 2;
3940  if (instr->hydrogen()->depth() > 1) {
3941    CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
3942  } else if (flags != ObjectLiteral::kFastElements ||
3943      properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
3944    CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
3945  } else {
3946    FastCloneShallowObjectStub stub(properties_count);
3947    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3948  }
3949}
3950
3951
3952void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
3953  ASSERT(ToRegister(instr->InputAt(0)).is(rax));
3954  __ push(rax);
3955  CallRuntime(Runtime::kToFastProperties, 1, instr);
3956}
3957
3958
3959void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
3960  Label materialized;
3961  // Registers will be used as follows:
3962  // rdi = JS function.
3963  // rcx = literals array.
3964  // rbx = regexp literal.
3965  // rax = regexp literal clone.
3966  __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3967  __ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
3968  int literal_offset = FixedArray::kHeaderSize +
3969      instr->hydrogen()->literal_index() * kPointerSize;
3970  __ movq(rbx, FieldOperand(rcx, literal_offset));
3971  __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
3972  __ j(not_equal, &materialized, Label::kNear);
3973
3974  // Create regexp literal using runtime function
3975  // Result will be in rax.
3976  __ push(rcx);
3977  __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3978  __ Push(instr->hydrogen()->pattern());
3979  __ Push(instr->hydrogen()->flags());
3980  CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
3981  __ movq(rbx, rax);
3982
3983  __ bind(&materialized);
3984  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
3985  Label allocated, runtime_allocate;
3986  __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
3987  __ jmp(&allocated);
3988
3989  __ bind(&runtime_allocate);
3990  __ push(rbx);
3991  __ Push(Smi::FromInt(size));
3992  CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
3993  __ pop(rbx);
3994
3995  __ bind(&allocated);
3996  // Copy the content into the newly allocated memory.
3997  // (Unroll copy loop once for better throughput).
3998  for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
3999    __ movq(rdx, FieldOperand(rbx, i));
4000    __ movq(rcx, FieldOperand(rbx, i + kPointerSize));
4001    __ movq(FieldOperand(rax, i), rdx);
4002    __ movq(FieldOperand(rax, i + kPointerSize), rcx);
4003  }
4004  if ((size % (2 * kPointerSize)) != 0) {
4005    __ movq(rdx, FieldOperand(rbx, size - kPointerSize));
4006    __ movq(FieldOperand(rax, size - kPointerSize), rdx);
4007  }
4008}
4009
4010
4011void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
4012  // Use the fast case closure allocation code that allocates in new
4013  // space for nested functions that don't need literals cloning.
4014  Handle<SharedFunctionInfo> shared_info = instr->shared_info();
4015  bool pretenure = instr->hydrogen()->pretenure();
4016  if (!pretenure && shared_info->num_literals() == 0) {
4017    FastNewClosureStub stub(shared_info->language_mode());
4018    __ Push(shared_info);
4019    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4020  } else {
4021    __ push(rsi);
4022    __ Push(shared_info);
4023    __ PushRoot(pretenure ?
4024                Heap::kTrueValueRootIndex :
4025                Heap::kFalseValueRootIndex);
4026    CallRuntime(Runtime::kNewClosure, 3, instr);
4027  }
4028}
4029
4030
4031void LCodeGen::DoTypeof(LTypeof* instr) {
4032  LOperand* input = instr->InputAt(0);
4033  EmitPushTaggedOperand(input);
4034  CallRuntime(Runtime::kTypeof, 1, instr);
4035}
4036
4037
4038void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
4039  ASSERT(!operand->IsDoubleRegister());
4040  if (operand->IsConstantOperand()) {
4041    __ Push(ToHandle(LConstantOperand::cast(operand)));
4042  } else if (operand->IsRegister()) {
4043    __ push(ToRegister(operand));
4044  } else {
4045    __ push(ToOperand(operand));
4046  }
4047}
4048
4049
4050void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
4051  Register input = ToRegister(instr->InputAt(0));
4052  int true_block = chunk_->LookupDestination(instr->true_block_id());
4053  int false_block = chunk_->LookupDestination(instr->false_block_id());
4054  Label* true_label = chunk_->GetAssemblyLabel(true_block);
4055  Label* false_label = chunk_->GetAssemblyLabel(false_block);
4056
4057  Condition final_branch_condition =
4058      EmitTypeofIs(true_label, false_label, input, instr->type_literal());
4059  if (final_branch_condition != no_condition) {
4060    EmitBranch(true_block, false_block, final_branch_condition);
4061  }
4062}
4063
4064
4065Condition LCodeGen::EmitTypeofIs(Label* true_label,
4066                                 Label* false_label,
4067                                 Register input,
4068                                 Handle<String> type_name) {
4069  Condition final_branch_condition = no_condition;
4070  if (type_name->Equals(heap()->number_symbol())) {
4071    __ JumpIfSmi(input, true_label);
4072    __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
4073                   Heap::kHeapNumberMapRootIndex);
4074
4075    final_branch_condition = equal;
4076
4077  } else if (type_name->Equals(heap()->string_symbol())) {
4078    __ JumpIfSmi(input, false_label);
4079    __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
4080    __ j(above_equal, false_label);
4081    __ testb(FieldOperand(input, Map::kBitFieldOffset),
4082             Immediate(1 << Map::kIsUndetectable));
4083    final_branch_condition = zero;
4084
4085  } else if (type_name->Equals(heap()->boolean_symbol())) {
4086    __ CompareRoot(input, Heap::kTrueValueRootIndex);
4087    __ j(equal, true_label);
4088    __ CompareRoot(input, Heap::kFalseValueRootIndex);
4089    final_branch_condition = equal;
4090
4091  } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
4092    __ CompareRoot(input, Heap::kNullValueRootIndex);
4093    final_branch_condition = equal;
4094
4095  } else if (type_name->Equals(heap()->undefined_symbol())) {
4096    __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
4097    __ j(equal, true_label);
4098    __ JumpIfSmi(input, false_label);
4099    // Check for undetectable objects => true.
4100    __ movq(input, FieldOperand(input, HeapObject::kMapOffset));
4101    __ testb(FieldOperand(input, Map::kBitFieldOffset),
4102             Immediate(1 << Map::kIsUndetectable));
4103    final_branch_condition = not_zero;
4104
4105  } else if (type_name->Equals(heap()->function_symbol())) {
4106    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4107    __ JumpIfSmi(input, false_label);
4108    __ CmpObjectType(input, JS_FUNCTION_TYPE, input);
4109    __ j(equal, true_label);
4110    __ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE);
4111    final_branch_condition = equal;
4112
4113  } else if (type_name->Equals(heap()->object_symbol())) {
4114    __ JumpIfSmi(input, false_label);
4115    if (!FLAG_harmony_typeof) {
4116      __ CompareRoot(input, Heap::kNullValueRootIndex);
4117      __ j(equal, true_label);
4118    }
4119    __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
4120    __ j(below, false_label);
4121    __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4122    __ j(above, false_label);
4123    // Check for undetectable objects => false.
4124    __ testb(FieldOperand(input, Map::kBitFieldOffset),
4125             Immediate(1 << Map::kIsUndetectable));
4126    final_branch_condition = zero;
4127
4128  } else {
4129    __ jmp(false_label);
4130  }
4131
4132  return final_branch_condition;
4133}
4134
4135
4136void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
4137  Register temp = ToRegister(instr->TempAt(0));
4138  int true_block = chunk_->LookupDestination(instr->true_block_id());
4139  int false_block = chunk_->LookupDestination(instr->false_block_id());
4140
4141  EmitIsConstructCall(temp);
4142  EmitBranch(true_block, false_block, equal);
4143}
4144
4145
4146void LCodeGen::EmitIsConstructCall(Register temp) {
4147  // Get the frame pointer for the calling frame.
4148  __ movq(temp, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
4149
4150  // Skip the arguments adaptor frame if it exists.
4151  Label check_frame_marker;
4152  __ Cmp(Operand(temp, StandardFrameConstants::kContextOffset),
4153         Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
4154  __ j(not_equal, &check_frame_marker, Label::kNear);
4155  __ movq(temp, Operand(rax, StandardFrameConstants::kCallerFPOffset));
4156
4157  // Check the marker in the calling frame.
4158  __ bind(&check_frame_marker);
4159  __ Cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
4160         Smi::FromInt(StackFrame::CONSTRUCT));
4161}
4162
4163
4164void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
4165  // Ensure that we have enough space after the previous lazy-bailout
4166  // instruction for patching the code here.
4167  int current_pc = masm()->pc_offset();
4168  if (current_pc < last_lazy_deopt_pc_ + space_needed) {
4169    int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
4170    while (padding_size > 0) {
4171      int nop_size = padding_size > 9 ? 9 : padding_size;
4172      __ nop(nop_size);
4173      padding_size -= nop_size;
4174    }
4175  }
4176}
4177
4178
4179void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
4180  EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4181  last_lazy_deopt_pc_ = masm()->pc_offset();
4182  ASSERT(instr->HasEnvironment());
4183  LEnvironment* env = instr->environment();
4184  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4185  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4186}
4187
4188
4189void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
4190  DeoptimizeIf(no_condition, instr->environment());
4191}
4192
4193
4194void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
4195  LOperand* obj = instr->object();
4196  LOperand* key = instr->key();
4197  EmitPushTaggedOperand(obj);
4198  EmitPushTaggedOperand(key);
4199  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4200  LPointerMap* pointers = instr->pointer_map();
4201  RecordPosition(pointers->position());
4202  // Create safepoint generator that will also ensure enough space in the
4203  // reloc info for patching in deoptimization (since this is invoking a
4204  // builtin)
4205  SafepointGenerator safepoint_generator(
4206      this, pointers, Safepoint::kLazyDeopt);
4207  __ Push(Smi::FromInt(strict_mode_flag()));
4208  __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
4209}
4210
4211
4212void LCodeGen::DoIn(LIn* instr) {
4213  LOperand* obj = instr->object();
4214  LOperand* key = instr->key();
4215  EmitPushTaggedOperand(key);
4216  EmitPushTaggedOperand(obj);
4217  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4218  LPointerMap* pointers = instr->pointer_map();
4219  RecordPosition(pointers->position());
4220  SafepointGenerator safepoint_generator(
4221      this, pointers, Safepoint::kLazyDeopt);
4222  __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
4223}
4224
4225
4226void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4227  PushSafepointRegistersScope scope(this);
4228  __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4229  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4230  RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4231  ASSERT(instr->HasEnvironment());
4232  LEnvironment* env = instr->environment();
4233  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4234}
4235
4236
4237void LCodeGen::DoStackCheck(LStackCheck* instr) {
4238  class DeferredStackCheck: public LDeferredCode {
4239   public:
4240    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4241        : LDeferredCode(codegen), instr_(instr) { }
4242    virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4243    virtual LInstruction* instr() { return instr_; }
4244   private:
4245    LStackCheck* instr_;
4246  };
4247
4248  ASSERT(instr->HasEnvironment());
4249  LEnvironment* env = instr->environment();
4250  // There is no LLazyBailout instruction for stack-checks. We have to
4251  // prepare for lazy deoptimization explicitly here.
4252  if (instr->hydrogen()->is_function_entry()) {
4253    // Perform stack overflow check.
4254    Label done;
4255    __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
4256    __ j(above_equal, &done, Label::kNear);
4257    StackCheckStub stub;
4258    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4259    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4260    last_lazy_deopt_pc_ = masm()->pc_offset();
4261    __ bind(&done);
4262    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4263    safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4264  } else {
4265    ASSERT(instr->hydrogen()->is_backwards_branch());
4266    // Perform stack overflow check if this goto needs it before jumping.
4267    DeferredStackCheck* deferred_stack_check =
4268        new DeferredStackCheck(this, instr);
4269    __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
4270    __ j(below, deferred_stack_check->entry());
4271    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4272    last_lazy_deopt_pc_ = masm()->pc_offset();
4273    __ bind(instr->done_label());
4274    deferred_stack_check->SetExit(instr->done_label());
4275    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4276    // Don't record a deoptimization index for the safepoint here.
4277    // This will be done explicitly when emitting call and the safepoint in
4278    // the deferred code.
4279  }
4280}
4281
4282
4283void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4284  // This is a pseudo-instruction that ensures that the environment here is
4285  // properly registered for deoptimization and records the assembler's PC
4286  // offset.
4287  LEnvironment* environment = instr->environment();
4288  environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
4289                                   instr->SpilledDoubleRegisterArray());
4290
4291  // If the environment were already registered, we would have no way of
4292  // backpatching it with the spill slot operands.
4293  ASSERT(!environment->HasBeenRegistered());
4294  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4295  ASSERT(osr_pc_offset_ == -1);
4296  osr_pc_offset_ = masm()->pc_offset();
4297}
4298
4299#undef __
4300
4301} }  // namespace v8::internal
4302
4303#endif  // V8_TARGET_ARCH_X64
4304