guest_generic_x87.c revision b32f58018498ea2225959b0ba11c18f0c433deef
1
2/*---------------------------------------------------------------*/
3/*--- begin                               guest_generic_x87.c ---*/
4/*---------------------------------------------------------------*/
5
6/*
7   This file is part of Valgrind, a dynamic binary instrumentation
8   framework.
9
10   Copyright (C) 2004-2011 OpenWorks LLP
11      info@open-works.net
12
13   This program is free software; you can redistribute it and/or
14   modify it under the terms of the GNU General Public License as
15   published by the Free Software Foundation; either version 2 of the
16   License, or (at your option) any later version.
17
18   This program is distributed in the hope that it will be useful, but
19   WITHOUT ANY WARRANTY; without even the implied warranty of
20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21   General Public License for more details.
22
23   You should have received a copy of the GNU General Public License
24   along with this program; if not, write to the Free Software
25   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26   02110-1301, USA.
27
28   The GNU General Public License is contained in the file COPYING.
29
30   Neither the names of the U.S. Department of Energy nor the
31   University of California nor the names of its contributors may be
32   used to endorse or promote products derived from this software
33   without prior written permission.
34*/
35
36/* This file contains functions for doing some x87-specific
37   operations.  Both the amd64 and x86 front ends (guests) indirectly
38   call these functions via guest helper calls.  By putting them here,
39   code duplication is avoided.  Some of these functions are tricky
40   and hard to verify, so there is much to be said for only having one
41   copy thereof.
42*/
43
44#include "libvex_basictypes.h"
45
46#include "main_util.h"
47#include "guest_generic_x87.h"
48
49
50/* 80 and 64-bit floating point formats:
51
52   80-bit:
53
54    S  0       0-------0      zero
55    S  0       0X------X      denormals
56    S  1-7FFE  1X------X      normals (all normals have leading 1)
57    S  7FFF    10------0      infinity
58    S  7FFF    10X-----X      snan
59    S  7FFF    11X-----X      qnan
60
61   S is the sign bit.  For runs X----X, at least one of the Xs must be
62   nonzero.  Exponent is 15 bits, fractional part is 63 bits, and
63   there is an explicitly represented leading 1, and a sign bit,
64   giving 80 in total.
65
66   64-bit avoids the confusion of an explicitly represented leading 1
67   and so is simpler:
68
69    S  0      0------0   zero
70    S  0      X------X   denormals
71    S  1-7FE  any        normals
72    S  7FF    0------0   infinity
73    S  7FF    0X-----X   snan
74    S  7FF    1X-----X   qnan
75
76   Exponent is 11 bits, fractional part is 52 bits, and there is a
77   sign bit, giving 64 in total.
78*/
79
80
81static inline UInt read_bit_array ( UChar* arr, UInt n )
82{
83   UChar c = arr[n >> 3];
84   c >>= (n&7);
85   return c & 1;
86}
87
88static inline void write_bit_array ( UChar* arr, UInt n, UInt b )
89{
90   UChar c = arr[n >> 3];
91   c = toUChar( c & ~(1 << (n&7)) );
92   c = toUChar( c | ((b&1) << (n&7)) );
93   arr[n >> 3] = c;
94}
95
96/* Convert an IEEE754 double (64-bit) into an x87 extended double
97   (80-bit), mimicing the hardware fairly closely.  Both numbers are
98   stored little-endian.  Limitations, all of which could be fixed,
99   given some level of hassle:
100
101   * Identity of NaNs is not preserved.
102
103   See comments in the code for more details.
104*/
105void convert_f64le_to_f80le ( /*IN*/UChar* f64, /*OUT*/UChar* f80 )
106{
107   Bool  mantissaIsZero;
108   Int   bexp, i, j, shift;
109   UChar sign;
110
111   sign = toUChar( (f64[7] >> 7) & 1 );
112   bexp = (f64[7] << 4) | ((f64[6] >> 4) & 0x0F);
113   bexp &= 0x7FF;
114
115   mantissaIsZero = False;
116   if (bexp == 0 || bexp == 0x7FF) {
117      /* We'll need to know whether or not the mantissa (bits 51:0) is
118         all zeroes in order to handle these cases.  So figure it
119         out. */
120      mantissaIsZero
121         = toBool(
122              (f64[6] & 0x0F) == 0
123              && f64[5] == 0 && f64[4] == 0 && f64[3] == 0
124              && f64[2] == 0 && f64[1] == 0 && f64[0] == 0
125           );
126   }
127
128   /* If the exponent is zero, either we have a zero or a denormal.
129      Produce a zero.  This is a hack in that it forces denormals to
130      zero.  Could do better. */
131   if (bexp == 0) {
132      f80[9] = toUChar( sign << 7 );
133      f80[8] = f80[7] = f80[6] = f80[5] = f80[4]
134             = f80[3] = f80[2] = f80[1] = f80[0] = 0;
135
136      if (mantissaIsZero)
137         /* It really is zero, so that's all we can do. */
138         return;
139
140      /* There is at least one 1-bit in the mantissa.  So it's a
141         potentially denormalised double -- but we can produce a
142         normalised long double.  Count the leading zeroes in the
143         mantissa so as to decide how much to bump the exponent down
144         by.  Note, this is SLOW. */
145      shift = 0;
146      for (i = 51; i >= 0; i--) {
147        if (read_bit_array(f64, i))
148           break;
149        shift++;
150      }
151
152      /* and copy into place as many bits as we can get our hands on. */
153      j = 63;
154      for (i = 51 - shift; i >= 0; i--) {
155         write_bit_array( f80, j,
156     	 read_bit_array( f64, i ) );
157         j--;
158      }
159
160      /* Set the exponent appropriately, and we're done. */
161      bexp -= shift;
162      bexp += (16383 - 1023);
163      f80[9] = toUChar( (sign << 7) | ((bexp >> 8) & 0xFF) );
164      f80[8] = toUChar( bexp & 0xFF );
165      return;
166   }
167
168   /* If the exponent is 7FF, this is either an Infinity, a SNaN or
169      QNaN, as determined by examining bits 51:0, thus:
170          0  ... 0    Inf
171          0X ... X    SNaN
172          1X ... X    QNaN
173      where at least one of the Xs is not zero.
174   */
175   if (bexp == 0x7FF) {
176      if (mantissaIsZero) {
177         /* Produce an appropriately signed infinity:
178            S 1--1 (15)  1  0--0 (63)
179         */
180         f80[9] = toUChar( (sign << 7) | 0x7F );
181         f80[8] = 0xFF;
182         f80[7] = 0x80;
183         f80[6] = f80[5] = f80[4] = f80[3]
184                = f80[2] = f80[1] = f80[0] = 0;
185         return;
186      }
187      /* So it's either a QNaN or SNaN.  Distinguish by considering
188         bit 51.  Note, this destroys all the trailing bits
189         (identity?) of the NaN.  IEEE754 doesn't require preserving
190         these (it only requires that there be one QNaN value and one
191         SNaN value), but x87 does seem to have some ability to
192         preserve them.  Anyway, here, the NaN's identity is
193         destroyed.  Could be improved. */
194      if (f64[6] & 8) {
195         /* QNaN.  Make a QNaN:
196            S 1--1 (15)  1  1--1 (63)
197         */
198         f80[9] = toUChar( (sign << 7) | 0x7F );
199         f80[8] = 0xFF;
200         f80[7] = 0xFF;
201         f80[6] = f80[5] = f80[4] = f80[3]
202                = f80[2] = f80[1] = f80[0] = 0xFF;
203      } else {
204         /* SNaN.  Make a SNaN:
205            S 1--1 (15)  0  1--1 (63)
206         */
207         f80[9] = toUChar( (sign << 7) | 0x7F );
208         f80[8] = 0xFF;
209         f80[7] = 0x7F;
210         f80[6] = f80[5] = f80[4] = f80[3]
211                = f80[2] = f80[1] = f80[0] = 0xFF;
212      }
213      return;
214   }
215
216   /* It's not a zero, denormal, infinity or nan.  So it must be a
217      normalised number.  Rebias the exponent and build the new
218      number.  */
219   bexp += (16383 - 1023);
220
221   f80[9] = toUChar( (sign << 7) | ((bexp >> 8) & 0xFF) );
222   f80[8] = toUChar( bexp & 0xFF );
223   f80[7] = toUChar( (1 << 7) | ((f64[6] << 3) & 0x78)
224                              | ((f64[5] >> 5) & 7) );
225   f80[6] = toUChar( ((f64[5] << 3) & 0xF8) | ((f64[4] >> 5) & 7) );
226   f80[5] = toUChar( ((f64[4] << 3) & 0xF8) | ((f64[3] >> 5) & 7) );
227   f80[4] = toUChar( ((f64[3] << 3) & 0xF8) | ((f64[2] >> 5) & 7) );
228   f80[3] = toUChar( ((f64[2] << 3) & 0xF8) | ((f64[1] >> 5) & 7) );
229   f80[2] = toUChar( ((f64[1] << 3) & 0xF8) | ((f64[0] >> 5) & 7) );
230   f80[1] = toUChar( ((f64[0] << 3) & 0xF8) );
231   f80[0] = toUChar( 0 );
232}
233
234
235/* Convert an x87 extended double (80-bit) into an IEEE 754 double
236   (64-bit), mimicking the hardware fairly closely.  Both numbers are
237   stored little-endian.  Limitations, both of which could be fixed,
238   given some level of hassle:
239
240   * Rounding following truncation could be a bit better.
241
242   * Identity of NaNs is not preserved.
243
244   See comments in the code for more details.
245*/
246void convert_f80le_to_f64le ( /*IN*/UChar* f80, /*OUT*/UChar* f64 )
247{
248   Bool  isInf;
249   Int   bexp, i, j;
250   UChar sign;
251
252   sign = toUChar((f80[9] >> 7) & 1);
253   bexp = (((UInt)f80[9]) << 8) | (UInt)f80[8];
254   bexp &= 0x7FFF;
255
256   /* If the exponent is zero, either we have a zero or a denormal.
257      But an extended precision denormal becomes a double precision
258      zero, so in either case, just produce the appropriately signed
259      zero. */
260   if (bexp == 0) {
261      f64[7] = toUChar(sign << 7);
262      f64[6] = f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
263      return;
264   }
265
266   /* If the exponent is 7FFF, this is either an Infinity, a SNaN or
267      QNaN, as determined by examining bits 62:0, thus:
268          0  ... 0    Inf
269          0X ... X    SNaN
270          1X ... X    QNaN
271      where at least one of the Xs is not zero.
272   */
273   if (bexp == 0x7FFF) {
274      isInf = toBool(
275                 (f80[7] & 0x7F) == 0
276                 && f80[6] == 0 && f80[5] == 0 && f80[4] == 0
277                 && f80[3] == 0 && f80[2] == 0 && f80[1] == 0
278                 && f80[0] == 0
279              );
280      if (isInf) {
281         if (0 == (f80[7] & 0x80))
282            goto wierd_NaN;
283         /* Produce an appropriately signed infinity:
284            S 1--1 (11)  0--0 (52)
285         */
286         f64[7] = toUChar((sign << 7) | 0x7F);
287         f64[6] = 0xF0;
288         f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
289         return;
290      }
291      /* So it's either a QNaN or SNaN.  Distinguish by considering
292         bit 62.  Note, this destroys all the trailing bits
293         (identity?) of the NaN.  IEEE754 doesn't require preserving
294         these (it only requires that there be one QNaN value and one
295         SNaN value), but x87 does seem to have some ability to
296         preserve them.  Anyway, here, the NaN's identity is
297         destroyed.  Could be improved. */
298      if (f80[8] & 0x40) {
299         /* QNaN.  Make a QNaN:
300            S 1--1 (11)  1  1--1 (51)
301         */
302         f64[7] = toUChar((sign << 7) | 0x7F);
303         f64[6] = 0xFF;
304         f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0xFF;
305      } else {
306         /* SNaN.  Make a SNaN:
307            S 1--1 (11)  0  1--1 (51)
308         */
309         f64[7] = toUChar((sign << 7) | 0x7F);
310         f64[6] = 0xF7;
311         f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0xFF;
312      }
313      return;
314   }
315
316   /* If it's not a Zero, NaN or Inf, and the integer part (bit 62) is
317      zero, the x87 FPU appears to consider the number denormalised
318      and converts it to a QNaN. */
319   if (0 == (f80[7] & 0x80)) {
320      wierd_NaN:
321      /* Strange hardware QNaN:
322         S 1--1 (11)  1  0--0 (51)
323      */
324      /* On a PIII, these QNaNs always appear with sign==1.  I have
325         no idea why. */
326      f64[7] = (1 /*sign*/ << 7) | 0x7F;
327      f64[6] = 0xF8;
328      f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
329      return;
330   }
331
332   /* It's not a zero, denormal, infinity or nan.  So it must be a
333      normalised number.  Rebias the exponent and consider. */
334   bexp -= (16383 - 1023);
335   if (bexp >= 0x7FF) {
336      /* It's too big for a double.  Construct an infinity. */
337      f64[7] = toUChar((sign << 7) | 0x7F);
338      f64[6] = 0xF0;
339      f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
340      return;
341   }
342
343   if (bexp <= 0) {
344      /* It's too small for a normalised double.  First construct a
345         zero and then see if it can be improved into a denormal.  */
346      f64[7] = toUChar(sign << 7);
347      f64[6] = f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
348
349      if (bexp < -52)
350         /* Too small even for a denormal. */
351         return;
352
353      /* Ok, let's make a denormal.  Note, this is SLOW. */
354      /* Copy bits 63, 62, 61, etc of the src mantissa into the dst,
355         indexes 52+bexp, 51+bexp, etc, until k+bexp < 0. */
356      /* bexp is in range -52 .. 0 inclusive */
357      for (i = 63; i >= 0; i--) {
358         j = i - 12 + bexp;
359         if (j < 0) break;
360         /* We shouldn't really call vassert from generated code. */
361         vassert(j >= 0 && j < 52);
362         write_bit_array ( f64,
363                           j,
364                           read_bit_array ( f80, i ) );
365      }
366      /* and now we might have to round ... */
367      if (read_bit_array(f80, 10+1 - bexp) == 1)
368         goto do_rounding;
369
370      return;
371   }
372
373   /* Ok, it's a normalised number which is representable as a double.
374      Copy the exponent and mantissa into place. */
375   /*
376   for (i = 0; i < 52; i++)
377      write_bit_array ( f64,
378                        i,
379                        read_bit_array ( f80, i+11 ) );
380   */
381   f64[0] = toUChar( (f80[1] >> 3) | (f80[2] << 5) );
382   f64[1] = toUChar( (f80[2] >> 3) | (f80[3] << 5) );
383   f64[2] = toUChar( (f80[3] >> 3) | (f80[4] << 5) );
384   f64[3] = toUChar( (f80[4] >> 3) | (f80[5] << 5) );
385   f64[4] = toUChar( (f80[5] >> 3) | (f80[6] << 5) );
386   f64[5] = toUChar( (f80[6] >> 3) | (f80[7] << 5) );
387
388   f64[6] = toUChar( ((bexp << 4) & 0xF0) | ((f80[7] >> 3) & 0x0F) );
389
390   f64[7] = toUChar( (sign << 7) | ((bexp >> 4) & 0x7F) );
391
392   /* Now consider any rounding that needs to happen as a result of
393      truncating the mantissa. */
394   if (f80[1] & 4) /* read_bit_array(f80, 10) == 1) */ {
395
396      /* If the bottom bits of f80 are "100 0000 0000", then the
397         infinitely precise value is deemed to be mid-way between the
398         two closest representable values.  Since we're doing
399         round-to-nearest (the default mode), in that case it is the
400         bit immediately above which indicates whether we should round
401         upwards or not -- if 0, we don't.  All that is encapsulated
402         in the following simple test. */
403      if ((f80[1] & 0xF) == 4/*0100b*/ && f80[0] == 0)
404         return;
405
406      do_rounding:
407      /* Round upwards.  This is a kludge.  Once in every 2^24
408         roundings (statistically) the bottom three bytes are all 0xFF
409         and so we don't round at all.  Could be improved. */
410      if (f64[0] != 0xFF) {
411         f64[0]++;
412      }
413      else
414      if (f64[0] == 0xFF && f64[1] != 0xFF) {
415         f64[0] = 0;
416         f64[1]++;
417      }
418      else
419      if (f64[0] == 0xFF && f64[1] == 0xFF && f64[2] != 0xFF) {
420         f64[0] = 0;
421         f64[1] = 0;
422         f64[2]++;
423      }
424      /* else we don't round, but we should. */
425   }
426}
427
428
429/* CALLED FROM GENERATED CODE: CLEAN HELPER */
430/* Extract the signed significand or exponent component as per
431   fxtract.  Arg and result are doubles travelling under the guise of
432   ULongs.  Returns significand when getExp is zero and exponent
433   otherwise. */
434ULong x86amd64g_calculate_FXTRACT ( ULong arg, HWord getExp )
435{
436   ULong  uSig, uExp;
437   /* Long   sSig; */
438   Int    sExp, i;
439   UInt   sign, expExp;
440
441   /*
442    S  7FF    0------0   infinity
443    S  7FF    0X-----X   snan
444    S  7FF    1X-----X   qnan
445   */
446   const ULong posInf  = 0x7FF0000000000000ULL;
447   const ULong negInf  = 0xFFF0000000000000ULL;
448   const ULong nanMask = 0x7FF0000000000000ULL;
449   const ULong qNan    = 0x7FF8000000000000ULL;
450   const ULong posZero = 0x0000000000000000ULL;
451   const ULong negZero = 0x8000000000000000ULL;
452   const ULong bit51   = 1ULL << 51;
453   const ULong bit52   = 1ULL << 52;
454   const ULong sigMask = bit52 - 1;
455
456   /* Mimic Core i5 behaviour for special cases. */
457   if (arg == posInf)
458      return getExp ? posInf : posInf;
459   if (arg == negInf)
460      return getExp ? posInf : negInf;
461   if ((arg & nanMask) == nanMask)
462      return qNan | (arg & (1ULL << 63));
463   if (arg == posZero)
464      return getExp ? negInf : posZero;
465   if (arg == negZero)
466      return getExp ? negInf : negZero;
467
468   /* Split into sign, exponent and significand. */
469   sign = ((UInt)(arg >> 63)) & 1;
470
471   /* Mask off exponent & sign. uSig is in range 0 .. 2^52-1. */
472   uSig = arg & sigMask;
473
474   /* Get the exponent. */
475   sExp = ((Int)(arg >> 52)) & 0x7FF;
476
477   /* Deal with denormals: if the exponent is zero, then the
478      significand cannot possibly be zero (negZero/posZero are handled
479      above).  Shift the significand left until bit 51 of it becomes
480      1, and decrease the exponent accordingly.
481   */
482   if (sExp == 0) {
483      for (i = 0; i < 52; i++) {
484         if (uSig & bit51)
485            break;
486         uSig <<= 1;
487         sExp--;
488      }
489      uSig <<= 1;
490   } else {
491      /* Add the implied leading-1 in the significand. */
492      uSig |= bit52;
493   }
494
495   /* Roll in the sign. */
496   /* sSig = uSig; */
497   /* if (sign) sSig =- sSig; */
498
499   /* Convert sig into a double.  This should be an exact conversion.
500      Then divide by 2^52, which should give a value in the range 1.0
501      to 2.0-epsilon, at least for normalised args. */
502   /* dSig = (Double)sSig; */
503   /* dSig /= 67108864.0;  */ /* 2^26 */
504   /* dSig /= 67108864.0;  */ /* 2^26 */
505   uSig &= sigMask;
506   uSig |= 0x3FF0000000000000ULL;
507   if (sign)
508      uSig ^= negZero;
509
510   /* Convert exp into a double.  Also an exact conversion. */
511   /* dExp = (Double)(sExp - 1023); */
512   sExp -= 1023;
513   if (sExp == 0) {
514      uExp = 0;
515   } else {
516      uExp   = sExp < 0 ? -sExp : sExp;
517      expExp = 0x3FF +52;
518      /* 1 <= uExp <= 1074 */
519      /* Skip first 42 iterations of normalisation loop as we know they
520         will always happen */
521      uExp <<= 42;
522      expExp -= 42;
523      for (i = 0; i < 52-42; i++) {
524         if (uExp & bit52)
525            break;
526         uExp <<= 1;
527         expExp--;
528      }
529      uExp &= sigMask;
530      uExp |= ((ULong)expExp) << 52;
531      if (sExp < 0) uExp ^= negZero;
532   }
533
534   return getExp ? uExp : uSig;
535}
536
537
538
539/*---------------------------------------------------------*/
540/*--- SSE4.2 PCMP{E,I}STR{I,M} helpers                  ---*/
541/*---------------------------------------------------------*/
542
543/* We need the definitions for OSZACP eflags/rflags offsets.
544   #including guest_{amd64,x86}_defs.h causes chaos, so just copy the
545   required values directly.  They are not going to change in the
546   foreseeable future :-)
547*/
548
549#define SHIFT_O   11
550#define SHIFT_S   7
551#define SHIFT_Z   6
552#define SHIFT_A   4
553#define SHIFT_C   0
554#define SHIFT_P   2
555
556#define MASK_O    (1 << SHIFT_O)
557#define MASK_S    (1 << SHIFT_S)
558#define MASK_Z    (1 << SHIFT_Z)
559#define MASK_A    (1 << SHIFT_A)
560#define MASK_C    (1 << SHIFT_C)
561#define MASK_P    (1 << SHIFT_P)
562
563
564/* Count leading zeroes, w/ 0-produces-32 semantics, a la Hacker's
565   Delight. */
566static UInt clz32 ( UInt x )
567{
568   Int y, m, n;
569   y = -(x >> 16);
570   m = (y >> 16) & 16;
571   n = 16 - m;
572   x = x >> m;
573   y = x - 0x100;
574   m = (y >> 16) & 8;
575   n = n + m;
576   x = x << m;
577   y = x - 0x1000;
578   m = (y >> 16) & 4;
579   n = n + m;
580   x = x << m;
581   y = x - 0x4000;
582   m = (y >> 16) & 2;
583   n = n + m;
584   x = x << m;
585   y = x >> 14;
586   m = y & ~(y >> 1);
587   return n + 2 - m;
588}
589
590static UInt ctz32 ( UInt x )
591{
592   return 32 - clz32((~x) & (x-1));
593}
594
595/* Convert a 4-bit value to a 32-bit value by cloning each bit 8
596   times.  There's surely a better way to do this, but I don't know
597   what it is. */
598static UInt bits4_to_bytes4 ( UInt bits4 )
599{
600   UInt r = 0;
601   r |= (bits4 & 1) ? 0x000000FF : 0;
602   r |= (bits4 & 2) ? 0x0000FF00 : 0;
603   r |= (bits4 & 4) ? 0x00FF0000 : 0;
604   r |= (bits4 & 8) ? 0xFF000000 : 0;
605   return r;
606}
607
608
609/* Given partial results from a pcmpXstrX operation (intRes1,
610   basically), generate an I- or M-format output value, also the new
611   OSZACP flags.  */
612static
613void compute_PCMPxSTRx_gen_output (/*OUT*/V128* resV,
614                                   /*OUT*/UInt* resOSZACP,
615                                   UInt intRes1,
616                                   UInt zmaskL, UInt zmaskR,
617                                   UInt validL,
618                                   UInt pol, UInt idx,
619                                   Bool isxSTRM )
620{
621   vassert((pol >> 2) == 0);
622   vassert((idx >> 1) == 0);
623
624   UInt intRes2 = 0;
625   switch (pol) {
626      case 0: intRes2 = intRes1;          break; // pol +
627      case 1: intRes2 = ~intRes1;         break; // pol -
628      case 2: intRes2 = intRes1;          break; // pol m+
629      case 3: intRes2 = intRes1 ^ validL; break; // pol m-
630   }
631   intRes2 &= 0xFFFF;
632
633   if (isxSTRM) {
634
635      // generate M-format output (a bit or byte mask in XMM0)
636      if (idx) {
637         resV->w32[0] = bits4_to_bytes4( (intRes2 >>  0) & 0xF );
638         resV->w32[1] = bits4_to_bytes4( (intRes2 >>  4) & 0xF );
639         resV->w32[2] = bits4_to_bytes4( (intRes2 >>  8) & 0xF );
640         resV->w32[3] = bits4_to_bytes4( (intRes2 >> 12) & 0xF );
641      } else {
642         resV->w32[0] = intRes2 & 0xFFFF;
643         resV->w32[1] = 0;
644         resV->w32[2] = 0;
645         resV->w32[3] = 0;
646      }
647
648   } else {
649
650      // generate I-format output (an index in ECX)
651      // generate ecx value
652      UInt newECX = 0;
653      if (idx) {
654         // index of ms-1-bit
655         newECX = intRes2 == 0 ? 16 : (31 - clz32(intRes2));
656      } else {
657         // index of ls-1-bit
658         newECX = intRes2 == 0 ? 16 : ctz32(intRes2);
659      }
660
661      resV->w32[0] = newECX;
662      resV->w32[1] = 0;
663      resV->w32[2] = 0;
664      resV->w32[3] = 0;
665
666   }
667
668   // generate new flags, common to all ISTRI and ISTRM cases
669   *resOSZACP    // A, P are zero
670     = ((intRes2 == 0) ? 0 : MASK_C) // C == 0 iff intRes2 == 0
671     | ((zmaskL == 0)  ? 0 : MASK_Z) // Z == 1 iff any in argL is 0
672     | ((zmaskR == 0)  ? 0 : MASK_S) // S == 1 iff any in argR is 0
673     | ((intRes2 & 1) << SHIFT_O);   // O == IntRes2[0]
674}
675
676
677/* Compute result and new OSZACP flags for all PCMP{E,I}STR{I,M}
678   variants.
679
680   For xSTRI variants, the new ECX value is placed in the 32 bits
681   pointed to by *resV, and the top 96 bits are zeroed.  For xSTRM
682   variants, the result is a 128 bit value and is placed at *resV in
683   the obvious way.
684
685   For all variants, the new OSZACP value is placed at *resOSZACP.
686
687   argLV and argRV are the vector args.  The caller must prepare a
688   16-bit mask for each, zmaskL and zmaskR.  For ISTRx variants this
689   must be 1 for each zero byte of of the respective arg.  For ESTRx
690   variants this is derived from the explicit length indication, and
691   must be 0 in all places except at the bit index corresponding to
692   the valid length (0 .. 16).  If the valid length is 16 then the
693   mask must be all zeroes.  In all cases, bits 31:16 must be zero.
694
695   imm8 is the original immediate from the instruction.  isSTRM
696   indicates whether this is a xSTRM or xSTRI variant, which controls
697   how much of *res is written.
698
699   If the given imm8 case can be handled, the return value is True.
700   If not, False is returned, and neither *res not *resOSZACP are
701   altered.
702*/
703
704Bool compute_PCMPxSTRx ( /*OUT*/V128* resV,
705                         /*OUT*/UInt* resOSZACP,
706                         V128* argLV,  V128* argRV,
707                         UInt zmaskL, UInt zmaskR,
708                         UInt imm8,   Bool isxSTRM )
709{
710   vassert(imm8 < 0x80);
711   vassert((zmaskL >> 16) == 0);
712   vassert((zmaskR >> 16) == 0);
713
714   /* Explicitly reject any imm8 values that haven't been validated,
715      even if they would probably work.  Life is too short to have
716      unvalidated cases in the code base. */
717   switch (imm8) {
718      case 0x00:
719      case 0x02: case 0x08: case 0x0A: case 0x0C: case 0x12:
720      case 0x1A: case 0x38: case 0x3A: case 0x44: case 0x4A:
721         break;
722      default:
723         return False;
724   }
725
726   UInt fmt = (imm8 >> 0) & 3; // imm8[1:0]  data format
727   UInt agg = (imm8 >> 2) & 3; // imm8[3:2]  aggregation fn
728   UInt pol = (imm8 >> 4) & 3; // imm8[5:4]  polarity
729   UInt idx = (imm8 >> 6) & 1; // imm8[6]    1==msb/bytemask
730
731   /*----------------------------------------*/
732   /*-- strcmp on byte data                --*/
733   /*----------------------------------------*/
734
735   if (agg == 2/*equal each, aka strcmp*/
736       && (fmt == 0/*ub*/ || fmt == 2/*sb*/)) {
737      Int    i;
738      UChar* argL = (UChar*)argLV;
739      UChar* argR = (UChar*)argRV;
740      UInt boolResII = 0;
741      for (i = 15; i >= 0; i--) {
742         UChar cL  = argL[i];
743         UChar cR  = argR[i];
744         boolResII = (boolResII << 1) | (cL == cR ? 1 : 0);
745      }
746      UInt validL = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
747      UInt validR = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
748
749      // do invalidation, common to all equal-each cases
750      UInt intRes1
751         = (boolResII & validL & validR)  // if both valid, use cmpres
752           | (~ (validL | validR));       // if both invalid, force 1
753                                          // else force 0
754      intRes1 &= 0xFFFF;
755
756      // generate I-format output
757      compute_PCMPxSTRx_gen_output(
758         resV, resOSZACP,
759         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
760      );
761
762      return True;
763   }
764
765   /*----------------------------------------*/
766   /*-- set membership on byte data        --*/
767   /*----------------------------------------*/
768
769   if (agg == 0/*equal any, aka find chars in a set*/
770       && (fmt == 0/*ub*/ || fmt == 2/*sb*/)) {
771      /* argL: the string,  argR: charset */
772      UInt   si, ci;
773      UChar* argL    = (UChar*)argLV;
774      UChar* argR    = (UChar*)argRV;
775      UInt   boolRes = 0;
776      UInt   validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
777      UInt   validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
778
779      for (si = 0; si < 16; si++) {
780         if ((validL & (1 << si)) == 0)
781            // run off the end of the string.
782            break;
783         UInt m = 0;
784         for (ci = 0; ci < 16; ci++) {
785            if ((validR & (1 << ci)) == 0) break;
786            if (argR[ci] == argL[si]) { m = 1; break; }
787         }
788         boolRes |= (m << si);
789      }
790
791      // boolRes is "pre-invalidated"
792      UInt intRes1 = boolRes & 0xFFFF;
793
794      // generate I-format output
795      compute_PCMPxSTRx_gen_output(
796         resV, resOSZACP,
797         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
798      );
799
800      return True;
801   }
802
803   /*----------------------------------------*/
804   /*-- substring search on byte data      --*/
805   /*----------------------------------------*/
806
807   if (agg == 3/*equal ordered, aka substring search*/
808       && (fmt == 0/*ub*/ || fmt == 2/*sb*/)) {
809
810      /* argL: haystack,  argR: needle */
811      UInt   ni, hi;
812      UChar* argL    = (UChar*)argLV;
813      UChar* argR    = (UChar*)argRV;
814      UInt   boolRes = 0;
815      UInt   validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
816      UInt   validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
817      for (hi = 0; hi < 16; hi++) {
818         if ((validL & (1 << hi)) == 0)
819            // run off the end of the haystack
820            break;
821         UInt m = 1;
822         for (ni = 0; ni < 16; ni++) {
823            if ((validR & (1 << ni)) == 0) break;
824            UInt i = ni + hi;
825            if (i >= 16) break;
826            if (argL[i] != argR[ni]) { m = 0; break; }
827         }
828         boolRes |= (m << hi);
829      }
830
831      // boolRes is "pre-invalidated"
832      UInt intRes1 = boolRes & 0xFFFF;
833
834      // generate I-format output
835      compute_PCMPxSTRx_gen_output(
836         resV, resOSZACP,
837         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
838      );
839
840      return True;
841   }
842
843   /*----------------------------------------*/
844   /*-- ranges, unsigned byte data         --*/
845   /*----------------------------------------*/
846
847   if (agg == 1/*ranges*/
848       && fmt == 0/*ub*/) {
849
850      /* argL: string,  argR: range-pairs */
851      UInt   ri, si;
852      UChar* argL    = (UChar*)argLV;
853      UChar* argR    = (UChar*)argRV;
854      UInt   boolRes = 0;
855      UInt   validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
856      UInt   validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
857      for (si = 0; si < 16; si++) {
858         if ((validL & (1 << si)) == 0)
859            // run off the end of the string
860            break;
861         UInt m = 0;
862         for (ri = 0; ri < 16; ri += 2) {
863            if ((validR & (3 << ri)) != (3 << ri)) break;
864            if (argR[ri] <= argL[si] && argL[si] <= argR[ri+1]) {
865               m = 1; break;
866            }
867         }
868         boolRes |= (m << si);
869      }
870
871      // boolRes is "pre-invalidated"
872      UInt intRes1 = boolRes & 0xFFFF;
873
874      // generate I-format output
875      compute_PCMPxSTRx_gen_output(
876         resV, resOSZACP,
877         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
878      );
879
880      return True;
881   }
882
883   return False;
884}
885
886
887/*---------------------------------------------------------------*/
888/*--- end                                 guest_generic_x87.c ---*/
889/*---------------------------------------------------------------*/
890