Sync.cpp revision 92c1f6f1b4249e4e379452ee7b49f027052bf4ce
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "Dalvik.h"
18
19#include <fcntl.h>
20#include <stdlib.h>
21#include <unistd.h>
22#include <pthread.h>
23#include <time.h>
24#include <errno.h>
25
26/*
27 * Every Object has a monitor associated with it, but not every Object is
28 * actually locked.  Even the ones that are locked do not need a
29 * full-fledged monitor until a) there is actual contention or b) wait()
30 * is called on the Object.
31 *
32 * For Dalvik, we have implemented a scheme similar to the one described
33 * in Bacon et al.'s "Thin locks: featherweight synchronization for Java"
34 * (ACM 1998).  Things are even easier for us, though, because we have
35 * a full 32 bits to work with.
36 *
37 * The two states of an Object's lock are referred to as "thin" and
38 * "fat".  A lock may transition from the "thin" state to the "fat"
39 * state and this transition is referred to as inflation.  Once a lock
40 * has been inflated it remains in the "fat" state indefinitely.
41 *
42 * The lock value itself is stored in Object.lock.  The LSB of the
43 * lock encodes its state.  When cleared, the lock is in the "thin"
44 * state and its bits are formatted as follows:
45 *
46 *    [31 ---- 19] [18 ---- 3] [2 ---- 1] [0]
47 *     lock count   thread id  hash state  0
48 *
49 * When set, the lock is in the "fat" state and its bits are formatted
50 * as follows:
51 *
52 *    [31 ---- 3] [2 ---- 1] [0]
53 *      pointer   hash state  1
54 *
55 * For an in-depth description of the mechanics of thin-vs-fat locking,
56 * read the paper referred to above.
57 */
58
59/*
60 * Monitors provide:
61 *  - mutually exclusive access to resources
62 *  - a way for multiple threads to wait for notification
63 *
64 * In effect, they fill the role of both mutexes and condition variables.
65 *
66 * Only one thread can own the monitor at any time.  There may be several
67 * threads waiting on it (the wait call unlocks it).  One or more waiting
68 * threads may be getting interrupted or notified at any given time.
69 *
70 * TODO: the various members of monitor are not SMP-safe.
71 */
72struct Monitor {
73    Thread*     owner;          /* which thread currently owns the lock? */
74    int         lockCount;      /* owner's recursive lock depth */
75    Object*     obj;            /* what object are we part of [debug only] */
76
77    Thread*     waitSet;	/* threads currently waiting on this monitor */
78
79    pthread_mutex_t lock;
80
81    Monitor*    next;
82
83    /*
84     * Who last acquired this monitor, when lock sampling is enabled.
85     * Even when enabled, ownerFileName may be NULL.
86     */
87    const char* ownerFileName;
88    u4          ownerLineNumber;
89};
90
91
92/*
93 * Create and initialize a monitor.
94 */
95Monitor* dvmCreateMonitor(Object* obj)
96{
97    Monitor* mon;
98
99    mon = (Monitor*) calloc(1, sizeof(Monitor));
100    if (mon == NULL) {
101        LOGE("Unable to allocate monitor");
102        dvmAbort();
103    }
104    if (((u4)mon & 7) != 0) {
105        LOGE("Misaligned monitor: %p", mon);
106        dvmAbort();
107    }
108    mon->obj = obj;
109    dvmInitMutex(&mon->lock);
110
111    /* replace the head of the list with the new monitor */
112    do {
113        mon->next = gDvm.monitorList;
114    } while (android_atomic_release_cas((int32_t)mon->next, (int32_t)mon,
115            (int32_t*)(void*)&gDvm.monitorList) != 0);
116
117    return mon;
118}
119
120/*
121 * Free the monitor list.  Only used when shutting the VM down.
122 */
123void dvmFreeMonitorList()
124{
125    Monitor* mon;
126    Monitor* nextMon;
127
128    mon = gDvm.monitorList;
129    while (mon != NULL) {
130        nextMon = mon->next;
131        free(mon);
132        mon = nextMon;
133    }
134}
135
136/*
137 * Get the object that a monitor is part of.
138 */
139Object* dvmGetMonitorObject(Monitor* mon)
140{
141    if (mon == NULL)
142        return NULL;
143    else
144        return mon->obj;
145}
146
147/*
148 * Returns the thread id of the thread owning the given lock.
149 */
150static u4 lockOwner(Object* obj)
151{
152    Thread *owner;
153    u4 lock;
154
155    assert(obj != NULL);
156    /*
157     * Since we're reading the lock value multiple times, latch it so
158     * that it doesn't change out from under us if we get preempted.
159     */
160    lock = obj->lock;
161    if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
162        return LW_LOCK_OWNER(lock);
163    } else {
164        owner = LW_MONITOR(lock)->owner;
165        return owner ? owner->threadId : 0;
166    }
167}
168
169/*
170 * Get the thread that holds the lock on the specified object.  The
171 * object may be unlocked, thin-locked, or fat-locked.
172 *
173 * The caller must lock the thread list before calling here.
174 */
175Thread* dvmGetObjectLockHolder(Object* obj)
176{
177    u4 threadId = lockOwner(obj);
178
179    if (threadId == 0)
180        return NULL;
181    return dvmGetThreadByThreadId(threadId);
182}
183
184/*
185 * Checks whether the given thread holds the given
186 * objects's lock.
187 */
188bool dvmHoldsLock(Thread* thread, Object* obj)
189{
190    if (thread == NULL || obj == NULL) {
191        return false;
192    } else {
193        return thread->threadId == lockOwner(obj);
194    }
195}
196
197/*
198 * Free the monitor associated with an object and make the object's lock
199 * thin again.  This is called during garbage collection.
200 */
201static void freeMonitor(Monitor *mon)
202{
203    assert(mon != NULL);
204    assert(mon->obj != NULL);
205    assert(LW_SHAPE(mon->obj->lock) == LW_SHAPE_FAT);
206
207    /* This lock is associated with an object
208     * that's being swept.  The only possible way
209     * anyone could be holding this lock would be
210     * if some JNI code locked but didn't unlock
211     * the object, in which case we've got some bad
212     * native code somewhere.
213     */
214    assert(pthread_mutex_trylock(&mon->lock) == 0);
215    assert(pthread_mutex_unlock(&mon->lock) == 0);
216    dvmDestroyMutex(&mon->lock);
217    free(mon);
218}
219
220/*
221 * Frees monitor objects belonging to unmarked objects.
222 */
223void dvmSweepMonitorList(Monitor** mon, int (*isUnmarkedObject)(void*))
224{
225    Monitor handle;
226    Monitor *prev, *curr;
227    Object *obj;
228
229    assert(mon != NULL);
230    assert(isUnmarkedObject != NULL);
231    prev = &handle;
232    prev->next = curr = *mon;
233    while (curr != NULL) {
234        obj = curr->obj;
235        if (obj != NULL && (*isUnmarkedObject)(obj) != 0) {
236            prev->next = curr->next;
237            freeMonitor(curr);
238            curr = prev->next;
239        } else {
240            prev = curr;
241            curr = curr->next;
242        }
243    }
244    *mon = handle.next;
245}
246
247static char *logWriteInt(char *dst, int value)
248{
249    *dst++ = EVENT_TYPE_INT;
250    set4LE((u1 *)dst, value);
251    return dst + 4;
252}
253
254static char *logWriteString(char *dst, const char *value, size_t len)
255{
256    *dst++ = EVENT_TYPE_STRING;
257    len = len < 32 ? len : 32;
258    set4LE((u1 *)dst, len);
259    dst += 4;
260    memcpy(dst, value, len);
261    return dst + len;
262}
263
264#define EVENT_LOG_TAG_dvm_lock_sample 20003
265
266static void logContentionEvent(Thread *self, u4 waitMs, u4 samplePercent,
267                               const char *ownerFileName, u4 ownerLineNumber)
268{
269    const StackSaveArea *saveArea;
270    const Method *meth;
271    u4 relativePc;
272    char eventBuffer[174];
273    const char *fileName;
274    char procName[33];
275    char *cp;
276    size_t len;
277    int fd;
278
279    saveArea = SAVEAREA_FROM_FP(self->interpSave.curFrame);
280    meth = saveArea->method;
281    cp = eventBuffer;
282
283    /* Emit the event list length, 1 byte. */
284    *cp++ = 9;
285
286    /* Emit the process name, <= 37 bytes. */
287    fd = open("/proc/self/cmdline", O_RDONLY);
288    memset(procName, 0, sizeof(procName));
289    read(fd, procName, sizeof(procName) - 1);
290    close(fd);
291    len = strlen(procName);
292    cp = logWriteString(cp, procName, len);
293
294    /* Emit the sensitive thread ("main thread") status, 5 bytes. */
295    bool isSensitive = false;
296    if (gDvm.isSensitiveThreadHook != NULL) {
297        isSensitive = gDvm.isSensitiveThreadHook();
298    }
299    cp = logWriteInt(cp, isSensitive);
300
301    /* Emit self thread name string, <= 37 bytes. */
302    std::string selfName = dvmGetThreadName(self);
303    cp = logWriteString(cp, selfName.c_str(), selfName.size());
304
305    /* Emit the wait time, 5 bytes. */
306    cp = logWriteInt(cp, waitMs);
307
308    /* Emit the source code file name, <= 37 bytes. */
309    fileName = dvmGetMethodSourceFile(meth);
310    if (fileName == NULL) fileName = "";
311    cp = logWriteString(cp, fileName, strlen(fileName));
312
313    /* Emit the source code line number, 5 bytes. */
314    relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
315    cp = logWriteInt(cp, dvmLineNumFromPC(meth, relativePc));
316
317    /* Emit the lock owner source code file name, <= 37 bytes. */
318    if (ownerFileName == NULL) {
319        ownerFileName = "";
320    } else if (strcmp(fileName, ownerFileName) == 0) {
321        /* Common case, so save on log space. */
322        ownerFileName = "-";
323    }
324    cp = logWriteString(cp, ownerFileName, strlen(ownerFileName));
325
326    /* Emit the source code line number, 5 bytes. */
327    cp = logWriteInt(cp, ownerLineNumber);
328
329    /* Emit the sample percentage, 5 bytes. */
330    cp = logWriteInt(cp, samplePercent);
331
332    assert((size_t)(cp - eventBuffer) <= sizeof(eventBuffer));
333    android_btWriteLog(EVENT_LOG_TAG_dvm_lock_sample,
334                       EVENT_TYPE_LIST,
335                       eventBuffer,
336                       (size_t)(cp - eventBuffer));
337}
338
339/*
340 * Lock a monitor.
341 */
342static void lockMonitor(Thread* self, Monitor* mon)
343{
344    ThreadStatus oldStatus;
345    u4 waitThreshold, samplePercent;
346    u8 waitStart, waitEnd, waitMs;
347
348    if (mon->owner == self) {
349        mon->lockCount++;
350        return;
351    }
352    if (dvmTryLockMutex(&mon->lock) != 0) {
353        oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
354        waitThreshold = gDvm.lockProfThreshold;
355        if (waitThreshold) {
356            waitStart = dvmGetRelativeTimeUsec();
357        }
358        const char* currentOwnerFileName = mon->ownerFileName;
359        u4 currentOwnerLineNumber = mon->ownerLineNumber;
360
361        dvmLockMutex(&mon->lock);
362        if (waitThreshold) {
363            waitEnd = dvmGetRelativeTimeUsec();
364        }
365        dvmChangeStatus(self, oldStatus);
366        if (waitThreshold) {
367            waitMs = (waitEnd - waitStart) / 1000;
368            if (waitMs >= waitThreshold) {
369                samplePercent = 100;
370            } else {
371                samplePercent = 100 * waitMs / waitThreshold;
372            }
373            if (samplePercent != 0 && ((u4)rand() % 100 < samplePercent)) {
374                logContentionEvent(self, waitMs, samplePercent,
375                                   currentOwnerFileName, currentOwnerLineNumber);
376            }
377        }
378    }
379    mon->owner = self;
380    assert(mon->lockCount == 0);
381
382    // When debugging, save the current monitor holder for future
383    // acquisition failures to use in sampled logging.
384    if (gDvm.lockProfThreshold > 0) {
385        const StackSaveArea *saveArea;
386        const Method *meth;
387        mon->ownerLineNumber = 0;
388        if (self->interpSave.curFrame == NULL) {
389            mon->ownerFileName = "no_frame";
390        } else if ((saveArea =
391                   SAVEAREA_FROM_FP(self->interpSave.curFrame)) == NULL) {
392            mon->ownerFileName = "no_save_area";
393        } else if ((meth = saveArea->method) == NULL) {
394            mon->ownerFileName = "no_method";
395        } else {
396            u4 relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
397            mon->ownerFileName = (char*) dvmGetMethodSourceFile(meth);
398            if (mon->ownerFileName == NULL) {
399                mon->ownerFileName = "no_method_file";
400            } else {
401                mon->ownerLineNumber = dvmLineNumFromPC(meth, relativePc);
402            }
403        }
404    }
405}
406
407/*
408 * Try to lock a monitor.
409 *
410 * Returns "true" on success.
411 */
412#ifdef WITH_COPYING_GC
413static bool tryLockMonitor(Thread* self, Monitor* mon)
414{
415    if (mon->owner == self) {
416        mon->lockCount++;
417        return true;
418    } else {
419        if (dvmTryLockMutex(&mon->lock) == 0) {
420            mon->owner = self;
421            assert(mon->lockCount == 0);
422            return true;
423        } else {
424            return false;
425        }
426    }
427}
428#endif
429
430/*
431 * Unlock a monitor.
432 *
433 * Returns true if the unlock succeeded.
434 * If the unlock failed, an exception will be pending.
435 */
436static bool unlockMonitor(Thread* self, Monitor* mon)
437{
438    assert(self != NULL);
439    assert(mon != NULL);
440    if (mon->owner == self) {
441        /*
442         * We own the monitor, so nobody else can be in here.
443         */
444        if (mon->lockCount == 0) {
445            mon->owner = NULL;
446            mon->ownerFileName = "unlocked";
447            mon->ownerLineNumber = 0;
448            dvmUnlockMutex(&mon->lock);
449        } else {
450            mon->lockCount--;
451        }
452    } else {
453        /*
454         * We don't own this, so we're not allowed to unlock it.
455         * The JNI spec says that we should throw IllegalMonitorStateException
456         * in this case.
457         */
458        dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
459        return false;
460    }
461    return true;
462}
463
464/*
465 * Checks the wait set for circular structure.  Returns 0 if the list
466 * is not circular.  Otherwise, returns 1.  Used only by asserts.
467 */
468#ifndef NDEBUG
469static int waitSetCheck(Monitor *mon)
470{
471    Thread *fast, *slow;
472    size_t n;
473
474    assert(mon != NULL);
475    fast = slow = mon->waitSet;
476    n = 0;
477    for (;;) {
478        if (fast == NULL) return 0;
479        if (fast->waitNext == NULL) return 0;
480        if (fast == slow && n > 0) return 1;
481        n += 2;
482        fast = fast->waitNext->waitNext;
483        slow = slow->waitNext;
484    }
485}
486#endif
487
488/*
489 * Links a thread into a monitor's wait set.  The monitor lock must be
490 * held by the caller of this routine.
491 */
492static void waitSetAppend(Monitor *mon, Thread *thread)
493{
494    Thread *elt;
495
496    assert(mon != NULL);
497    assert(mon->owner == dvmThreadSelf());
498    assert(thread != NULL);
499    assert(thread->waitNext == NULL);
500    assert(waitSetCheck(mon) == 0);
501    if (mon->waitSet == NULL) {
502        mon->waitSet = thread;
503        return;
504    }
505    elt = mon->waitSet;
506    while (elt->waitNext != NULL) {
507        elt = elt->waitNext;
508    }
509    elt->waitNext = thread;
510}
511
512/*
513 * Unlinks a thread from a monitor's wait set.  The monitor lock must
514 * be held by the caller of this routine.
515 */
516static void waitSetRemove(Monitor *mon, Thread *thread)
517{
518    Thread *elt;
519
520    assert(mon != NULL);
521    assert(mon->owner == dvmThreadSelf());
522    assert(thread != NULL);
523    assert(waitSetCheck(mon) == 0);
524    if (mon->waitSet == NULL) {
525        return;
526    }
527    if (mon->waitSet == thread) {
528        mon->waitSet = thread->waitNext;
529        thread->waitNext = NULL;
530        return;
531    }
532    elt = mon->waitSet;
533    while (elt->waitNext != NULL) {
534        if (elt->waitNext == thread) {
535            elt->waitNext = thread->waitNext;
536            thread->waitNext = NULL;
537            return;
538        }
539        elt = elt->waitNext;
540    }
541}
542
543/*
544 * Converts the given relative waiting time into an absolute time.
545 */
546static void absoluteTime(s8 msec, s4 nsec, struct timespec *ts)
547{
548    s8 endSec;
549
550#ifdef HAVE_TIMEDWAIT_MONOTONIC
551    clock_gettime(CLOCK_MONOTONIC, ts);
552#else
553    {
554        struct timeval tv;
555        gettimeofday(&tv, NULL);
556        ts->tv_sec = tv.tv_sec;
557        ts->tv_nsec = tv.tv_usec * 1000;
558    }
559#endif
560    endSec = ts->tv_sec + msec / 1000;
561    if (endSec >= 0x7fffffff) {
562        ALOGV("NOTE: end time exceeds epoch");
563        endSec = 0x7ffffffe;
564    }
565    ts->tv_sec = endSec;
566    ts->tv_nsec = (ts->tv_nsec + (msec % 1000) * 1000000) + nsec;
567
568    /* catch rollover */
569    if (ts->tv_nsec >= 1000000000L) {
570        ts->tv_sec++;
571        ts->tv_nsec -= 1000000000L;
572    }
573}
574
575int dvmRelativeCondWait(pthread_cond_t* cond, pthread_mutex_t* mutex,
576                        s8 msec, s4 nsec)
577{
578    int ret;
579    struct timespec ts;
580    absoluteTime(msec, nsec, &ts);
581#if defined(HAVE_TIMEDWAIT_MONOTONIC)
582    ret = pthread_cond_timedwait_monotonic(cond, mutex, &ts);
583#else
584    ret = pthread_cond_timedwait(cond, mutex, &ts);
585#endif
586    assert(ret == 0 || ret == ETIMEDOUT);
587    return ret;
588}
589
590/*
591 * Wait on a monitor until timeout, interrupt, or notification.  Used for
592 * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
593 *
594 * If another thread calls Thread.interrupt(), we throw InterruptedException
595 * and return immediately if one of the following are true:
596 *  - blocked in wait(), wait(long), or wait(long, int) methods of Object
597 *  - blocked in join(), join(long), or join(long, int) methods of Thread
598 *  - blocked in sleep(long), or sleep(long, int) methods of Thread
599 * Otherwise, we set the "interrupted" flag.
600 *
601 * Checks to make sure that "nsec" is in the range 0-999999
602 * (i.e. fractions of a millisecond) and throws the appropriate
603 * exception if it isn't.
604 *
605 * The spec allows "spurious wakeups", and recommends that all code using
606 * Object.wait() do so in a loop.  This appears to derive from concerns
607 * about pthread_cond_wait() on multiprocessor systems.  Some commentary
608 * on the web casts doubt on whether these can/should occur.
609 *
610 * Since we're allowed to wake up "early", we clamp extremely long durations
611 * to return at the end of the 32-bit time epoch.
612 */
613static void waitMonitor(Thread* self, Monitor* mon, s8 msec, s4 nsec,
614    bool interruptShouldThrow)
615{
616    struct timespec ts;
617    bool wasInterrupted = false;
618    bool timed;
619    int ret;
620    const char *savedFileName;
621    u4 savedLineNumber;
622
623    assert(self != NULL);
624    assert(mon != NULL);
625
626    /* Make sure that we hold the lock. */
627    if (mon->owner != self) {
628        dvmThrowIllegalMonitorStateException(
629            "object not locked by thread before wait()");
630        return;
631    }
632
633    /*
634     * Enforce the timeout range.
635     */
636    if (msec < 0 || nsec < 0 || nsec > 999999) {
637        dvmThrowIllegalArgumentException("timeout arguments out of range");
638        return;
639    }
640
641    /*
642     * Compute absolute wakeup time, if necessary.
643     */
644    if (msec == 0 && nsec == 0) {
645        timed = false;
646    } else {
647        absoluteTime(msec, nsec, &ts);
648        timed = true;
649    }
650
651    /*
652     * Add ourselves to the set of threads waiting on this monitor, and
653     * release our hold.  We need to let it go even if we're a few levels
654     * deep in a recursive lock, and we need to restore that later.
655     *
656     * We append to the wait set ahead of clearing the count and owner
657     * fields so the subroutine can check that the calling thread owns
658     * the monitor.  Aside from that, the order of member updates is
659     * not order sensitive as we hold the pthread mutex.
660     */
661    waitSetAppend(mon, self);
662    int prevLockCount = mon->lockCount;
663    mon->lockCount = 0;
664    mon->owner = NULL;
665    savedFileName = mon->ownerFileName;
666    mon->ownerFileName = NULL;
667    savedLineNumber = mon->ownerLineNumber;
668    mon->ownerLineNumber = 0;
669
670    /*
671     * Update thread status.  If the GC wakes up, it'll ignore us, knowing
672     * that we won't touch any references in this state, and we'll check
673     * our suspend mode before we transition out.
674     */
675    if (timed)
676        dvmChangeStatus(self, THREAD_TIMED_WAIT);
677    else
678        dvmChangeStatus(self, THREAD_WAIT);
679
680    dvmLockMutex(&self->waitMutex);
681
682    /*
683     * Set waitMonitor to the monitor object we will be waiting on.
684     * When waitMonitor is non-NULL a notifying or interrupting thread
685     * must signal the thread's waitCond to wake it up.
686     */
687    assert(self->waitMonitor == NULL);
688    self->waitMonitor = mon;
689
690    /*
691     * Handle the case where the thread was interrupted before we called
692     * wait().
693     */
694    if (self->interrupted) {
695        wasInterrupted = true;
696        self->waitMonitor = NULL;
697        dvmUnlockMutex(&self->waitMutex);
698        goto done;
699    }
700
701    /*
702     * Release the monitor lock and wait for a notification or
703     * a timeout to occur.
704     */
705    dvmUnlockMutex(&mon->lock);
706
707    if (!timed) {
708        ret = pthread_cond_wait(&self->waitCond, &self->waitMutex);
709        assert(ret == 0);
710    } else {
711#ifdef HAVE_TIMEDWAIT_MONOTONIC
712        ret = pthread_cond_timedwait_monotonic(&self->waitCond, &self->waitMutex, &ts);
713#else
714        ret = pthread_cond_timedwait(&self->waitCond, &self->waitMutex, &ts);
715#endif
716        assert(ret == 0 || ret == ETIMEDOUT);
717    }
718    if (self->interrupted) {
719        wasInterrupted = true;
720    }
721
722    self->interrupted = false;
723    self->waitMonitor = NULL;
724
725    dvmUnlockMutex(&self->waitMutex);
726
727    /* Reacquire the monitor lock. */
728    lockMonitor(self, mon);
729
730done:
731    /*
732     * We remove our thread from wait set after restoring the count
733     * and owner fields so the subroutine can check that the calling
734     * thread owns the monitor. Aside from that, the order of member
735     * updates is not order sensitive as we hold the pthread mutex.
736     */
737    mon->owner = self;
738    mon->lockCount = prevLockCount;
739    mon->ownerFileName = savedFileName;
740    mon->ownerLineNumber = savedLineNumber;
741    waitSetRemove(mon, self);
742
743    /* set self->status back to THREAD_RUNNING, and self-suspend if needed */
744    dvmChangeStatus(self, THREAD_RUNNING);
745
746    if (wasInterrupted) {
747        /*
748         * We were interrupted while waiting, or somebody interrupted an
749         * un-interruptible thread earlier and we're bailing out immediately.
750         *
751         * The doc sayeth: "The interrupted status of the current thread is
752         * cleared when this exception is thrown."
753         */
754        self->interrupted = false;
755        if (interruptShouldThrow) {
756            dvmThrowInterruptedException(NULL);
757        }
758    }
759}
760
761/*
762 * Notify one thread waiting on this monitor.
763 */
764static void notifyMonitor(Thread* self, Monitor* mon)
765{
766    Thread* thread;
767
768    assert(self != NULL);
769    assert(mon != NULL);
770
771    /* Make sure that we hold the lock. */
772    if (mon->owner != self) {
773        dvmThrowIllegalMonitorStateException(
774            "object not locked by thread before notify()");
775        return;
776    }
777    /* Signal the first waiting thread in the wait set. */
778    while (mon->waitSet != NULL) {
779        thread = mon->waitSet;
780        mon->waitSet = thread->waitNext;
781        thread->waitNext = NULL;
782        dvmLockMutex(&thread->waitMutex);
783        /* Check to see if the thread is still waiting. */
784        if (thread->waitMonitor != NULL) {
785            pthread_cond_signal(&thread->waitCond);
786            dvmUnlockMutex(&thread->waitMutex);
787            return;
788        }
789        dvmUnlockMutex(&thread->waitMutex);
790    }
791}
792
793/*
794 * Notify all threads waiting on this monitor.
795 */
796static void notifyAllMonitor(Thread* self, Monitor* mon)
797{
798    Thread* thread;
799
800    assert(self != NULL);
801    assert(mon != NULL);
802
803    /* Make sure that we hold the lock. */
804    if (mon->owner != self) {
805        dvmThrowIllegalMonitorStateException(
806            "object not locked by thread before notifyAll()");
807        return;
808    }
809    /* Signal all threads in the wait set. */
810    while (mon->waitSet != NULL) {
811        thread = mon->waitSet;
812        mon->waitSet = thread->waitNext;
813        thread->waitNext = NULL;
814        dvmLockMutex(&thread->waitMutex);
815        /* Check to see if the thread is still waiting. */
816        if (thread->waitMonitor != NULL) {
817            pthread_cond_signal(&thread->waitCond);
818        }
819        dvmUnlockMutex(&thread->waitMutex);
820    }
821}
822
823/*
824 * Changes the shape of a monitor from thin to fat, preserving the
825 * internal lock state.  The calling thread must own the lock.
826 */
827static void inflateMonitor(Thread *self, Object *obj)
828{
829    Monitor *mon;
830    u4 thin;
831
832    assert(self != NULL);
833    assert(obj != NULL);
834    assert(LW_SHAPE(obj->lock) == LW_SHAPE_THIN);
835    assert(LW_LOCK_OWNER(obj->lock) == self->threadId);
836    /* Allocate and acquire a new monitor. */
837    mon = dvmCreateMonitor(obj);
838    lockMonitor(self, mon);
839    /* Propagate the lock state. */
840    thin = obj->lock;
841    mon->lockCount = LW_LOCK_COUNT(thin);
842    thin &= LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT;
843    thin |= (u4)mon | LW_SHAPE_FAT;
844    /* Publish the updated lock word. */
845    android_atomic_release_store(thin, (int32_t *)&obj->lock);
846}
847
848/*
849 * Implements monitorenter for "synchronized" stuff.
850 *
851 * This does not fail or throw an exception (unless deadlock prediction
852 * is enabled and set to "err" mode).
853 */
854void dvmLockObject(Thread* self, Object *obj)
855{
856    volatile u4 *thinp;
857    ThreadStatus oldStatus;
858    struct timespec tm;
859    long sleepDelayNs;
860    long minSleepDelayNs = 1000000;  /* 1 millisecond */
861    long maxSleepDelayNs = 1000000000;  /* 1 second */
862    u4 thin, newThin, threadId;
863
864    assert(self != NULL);
865    assert(obj != NULL);
866    threadId = self->threadId;
867    thinp = &obj->lock;
868retry:
869    thin = *thinp;
870    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
871        /*
872         * The lock is a thin lock.  The owner field is used to
873         * determine the acquire method, ordered by cost.
874         */
875        if (LW_LOCK_OWNER(thin) == threadId) {
876            /*
877             * The calling thread owns the lock.  Increment the
878             * value of the recursion count field.
879             */
880            obj->lock += 1 << LW_LOCK_COUNT_SHIFT;
881            if (LW_LOCK_COUNT(obj->lock) == LW_LOCK_COUNT_MASK) {
882                /*
883                 * The reacquisition limit has been reached.  Inflate
884                 * the lock so the next acquire will not overflow the
885                 * recursion count field.
886                 */
887                inflateMonitor(self, obj);
888            }
889        } else if (LW_LOCK_OWNER(thin) == 0) {
890            /*
891             * The lock is unowned.  Install the thread id of the
892             * calling thread into the owner field.  This is the
893             * common case.  In performance critical code the JIT
894             * will have tried this before calling out to the VM.
895             */
896            newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
897            if (android_atomic_acquire_cas(thin, newThin,
898                    (int32_t*)thinp) != 0) {
899                /*
900                 * The acquire failed.  Try again.
901                 */
902                goto retry;
903            }
904        } else {
905            ALOGV("(%d) spin on lock %p: %#x (%#x) %#x",
906                 threadId, &obj->lock, 0, *thinp, thin);
907            /*
908             * The lock is owned by another thread.  Notify the VM
909             * that we are about to wait.
910             */
911            oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
912            /*
913             * Spin until the thin lock is released or inflated.
914             */
915            sleepDelayNs = 0;
916            for (;;) {
917                thin = *thinp;
918                /*
919                 * Check the shape of the lock word.  Another thread
920                 * may have inflated the lock while we were waiting.
921                 */
922                if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
923                    if (LW_LOCK_OWNER(thin) == 0) {
924                        /*
925                         * The lock has been released.  Install the
926                         * thread id of the calling thread into the
927                         * owner field.
928                         */
929                        newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
930                        if (android_atomic_acquire_cas(thin, newThin,
931                                (int32_t *)thinp) == 0) {
932                            /*
933                             * The acquire succeed.  Break out of the
934                             * loop and proceed to inflate the lock.
935                             */
936                            break;
937                        }
938                    } else {
939                        /*
940                         * The lock has not been released.  Yield so
941                         * the owning thread can run.
942                         */
943                        if (sleepDelayNs == 0) {
944                            sched_yield();
945                            sleepDelayNs = minSleepDelayNs;
946                        } else {
947                            tm.tv_sec = 0;
948                            tm.tv_nsec = sleepDelayNs;
949                            nanosleep(&tm, NULL);
950                            /*
951                             * Prepare the next delay value.  Wrap to
952                             * avoid once a second polls for eternity.
953                             */
954                            if (sleepDelayNs < maxSleepDelayNs / 2) {
955                                sleepDelayNs *= 2;
956                            } else {
957                                sleepDelayNs = minSleepDelayNs;
958                            }
959                        }
960                    }
961                } else {
962                    /*
963                     * The thin lock was inflated by another thread.
964                     * Let the VM know we are no longer waiting and
965                     * try again.
966                     */
967                    ALOGV("(%d) lock %p surprise-fattened",
968                             threadId, &obj->lock);
969                    dvmChangeStatus(self, oldStatus);
970                    goto retry;
971                }
972            }
973            ALOGV("(%d) spin on lock done %p: %#x (%#x) %#x",
974                 threadId, &obj->lock, 0, *thinp, thin);
975            /*
976             * We have acquired the thin lock.  Let the VM know that
977             * we are no longer waiting.
978             */
979            dvmChangeStatus(self, oldStatus);
980            /*
981             * Fatten the lock.
982             */
983            inflateMonitor(self, obj);
984            ALOGV("(%d) lock %p fattened", threadId, &obj->lock);
985        }
986    } else {
987        /*
988         * The lock is a fat lock.
989         */
990        assert(LW_MONITOR(obj->lock) != NULL);
991        lockMonitor(self, LW_MONITOR(obj->lock));
992    }
993}
994
995/*
996 * Implements monitorexit for "synchronized" stuff.
997 *
998 * On failure, throws an exception and returns "false".
999 */
1000bool dvmUnlockObject(Thread* self, Object *obj)
1001{
1002    u4 thin;
1003
1004    assert(self != NULL);
1005    assert(self->status == THREAD_RUNNING);
1006    assert(obj != NULL);
1007    /*
1008     * Cache the lock word as its value can change while we are
1009     * examining its state.
1010     */
1011    thin = *(volatile u4 *)&obj->lock;
1012    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1013        /*
1014         * The lock is thin.  We must ensure that the lock is owned
1015         * by the given thread before unlocking it.
1016         */
1017        if (LW_LOCK_OWNER(thin) == self->threadId) {
1018            /*
1019             * We are the lock owner.  It is safe to update the lock
1020             * without CAS as lock ownership guards the lock itself.
1021             */
1022            if (LW_LOCK_COUNT(thin) == 0) {
1023                /*
1024                 * The lock was not recursively acquired, the common
1025                 * case.  Unlock by clearing all bits except for the
1026                 * hash state.
1027                 */
1028                thin &= (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT);
1029                android_atomic_release_store(thin, (int32_t*)&obj->lock);
1030            } else {
1031                /*
1032                 * The object was recursively acquired.  Decrement the
1033                 * lock recursion count field.
1034                 */
1035                obj->lock -= 1 << LW_LOCK_COUNT_SHIFT;
1036            }
1037        } else {
1038            /*
1039             * We do not own the lock.  The JVM spec requires that we
1040             * throw an exception in this case.
1041             */
1042            dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
1043            return false;
1044        }
1045    } else {
1046        /*
1047         * The lock is fat.  We must check to see if unlockMonitor has
1048         * raised any exceptions before continuing.
1049         */
1050        assert(LW_MONITOR(obj->lock) != NULL);
1051        if (!unlockMonitor(self, LW_MONITOR(obj->lock))) {
1052            /*
1053             * An exception has been raised.  Do not fall through.
1054             */
1055            return false;
1056        }
1057    }
1058    return true;
1059}
1060
1061/*
1062 * Object.wait().  Also called for class init.
1063 */
1064void dvmObjectWait(Thread* self, Object *obj, s8 msec, s4 nsec,
1065    bool interruptShouldThrow)
1066{
1067    Monitor* mon;
1068    u4 thin = *(volatile u4 *)&obj->lock;
1069
1070    /* If the lock is still thin, we need to fatten it.
1071     */
1072    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1073        /* Make sure that 'self' holds the lock.
1074         */
1075        if (LW_LOCK_OWNER(thin) != self->threadId) {
1076            dvmThrowIllegalMonitorStateException(
1077                "object not locked by thread before wait()");
1078            return;
1079        }
1080
1081        /* This thread holds the lock.  We need to fatten the lock
1082         * so 'self' can block on it.  Don't update the object lock
1083         * field yet, because 'self' needs to acquire the lock before
1084         * any other thread gets a chance.
1085         */
1086        inflateMonitor(self, obj);
1087        ALOGV("(%d) lock %p fattened by wait()", self->threadId, &obj->lock);
1088    }
1089    mon = LW_MONITOR(obj->lock);
1090    waitMonitor(self, mon, msec, nsec, interruptShouldThrow);
1091}
1092
1093/*
1094 * Object.notify().
1095 */
1096void dvmObjectNotify(Thread* self, Object *obj)
1097{
1098    u4 thin = *(volatile u4 *)&obj->lock;
1099
1100    /* If the lock is still thin, there aren't any waiters;
1101     * waiting on an object forces lock fattening.
1102     */
1103    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1104        /* Make sure that 'self' holds the lock.
1105         */
1106        if (LW_LOCK_OWNER(thin) != self->threadId) {
1107            dvmThrowIllegalMonitorStateException(
1108                "object not locked by thread before notify()");
1109            return;
1110        }
1111
1112        /* no-op;  there are no waiters to notify.
1113         */
1114    } else {
1115        /* It's a fat lock.
1116         */
1117        notifyMonitor(self, LW_MONITOR(thin));
1118    }
1119}
1120
1121/*
1122 * Object.notifyAll().
1123 */
1124void dvmObjectNotifyAll(Thread* self, Object *obj)
1125{
1126    u4 thin = *(volatile u4 *)&obj->lock;
1127
1128    /* If the lock is still thin, there aren't any waiters;
1129     * waiting on an object forces lock fattening.
1130     */
1131    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1132        /* Make sure that 'self' holds the lock.
1133         */
1134        if (LW_LOCK_OWNER(thin) != self->threadId) {
1135            dvmThrowIllegalMonitorStateException(
1136                "object not locked by thread before notifyAll()");
1137            return;
1138        }
1139
1140        /* no-op;  there are no waiters to notify.
1141         */
1142    } else {
1143        /* It's a fat lock.
1144         */
1145        notifyAllMonitor(self, LW_MONITOR(thin));
1146    }
1147}
1148
1149/*
1150 * This implements java.lang.Thread.sleep(long msec, int nsec).
1151 *
1152 * The sleep is interruptible by other threads, which means we can't just
1153 * plop into an OS sleep call.  (We probably could if we wanted to send
1154 * signals around and rely on EINTR, but that's inefficient and relies
1155 * on native code respecting our signal mask.)
1156 *
1157 * We have to do all of this stuff for Object.wait() as well, so it's
1158 * easiest to just sleep on a private Monitor.
1159 *
1160 * It appears that we want sleep(0,0) to go through the motions of sleeping
1161 * for a very short duration, rather than just returning.
1162 */
1163void dvmThreadSleep(u8 msec, u4 nsec)
1164{
1165    Thread* self = dvmThreadSelf();
1166    Monitor* mon = gDvm.threadSleepMon;
1167
1168    /* sleep(0,0) wakes up immediately, wait(0,0) means wait forever; adjust */
1169    if (msec == 0 && nsec == 0)
1170        nsec++;
1171
1172    lockMonitor(self, mon);
1173    waitMonitor(self, mon, msec, nsec, true);
1174    unlockMonitor(self, mon);
1175}
1176
1177/*
1178 * Implement java.lang.Thread.interrupt().
1179 */
1180void dvmThreadInterrupt(Thread* thread)
1181{
1182    assert(thread != NULL);
1183
1184    dvmLockMutex(&thread->waitMutex);
1185
1186    /*
1187     * If the interrupted flag is already set no additional action is
1188     * required.
1189     */
1190    if (thread->interrupted == true) {
1191        dvmUnlockMutex(&thread->waitMutex);
1192        return;
1193    }
1194
1195    /*
1196     * Raise the "interrupted" flag.  This will cause it to bail early out
1197     * of the next wait() attempt, if it's not currently waiting on
1198     * something.
1199     */
1200    thread->interrupted = true;
1201
1202    /*
1203     * Is the thread waiting?
1204     *
1205     * Note that fat vs. thin doesn't matter here;  waitMonitor
1206     * is only set when a thread actually waits on a monitor,
1207     * which implies that the monitor has already been fattened.
1208     */
1209    if (thread->waitMonitor != NULL) {
1210        pthread_cond_signal(&thread->waitCond);
1211    }
1212
1213    dvmUnlockMutex(&thread->waitMutex);
1214}
1215
1216#ifndef WITH_COPYING_GC
1217u4 dvmIdentityHashCode(Object *obj)
1218{
1219    return (u4)obj;
1220}
1221#else
1222/*
1223 * Returns the identity hash code of the given object.
1224 */
1225u4 dvmIdentityHashCode(Object *obj)
1226{
1227    Thread *self, *thread;
1228    volatile u4 *lw;
1229    size_t size;
1230    u4 lock, owner, hashState;
1231
1232    if (obj == NULL) {
1233        /*
1234         * Null is defined to have an identity hash code of 0.
1235         */
1236        return 0;
1237    }
1238    lw = &obj->lock;
1239retry:
1240    hashState = LW_HASH_STATE(*lw);
1241    if (hashState == LW_HASH_STATE_HASHED) {
1242        /*
1243         * The object has been hashed but has not had its hash code
1244         * relocated by the garbage collector.  Use the raw object
1245         * address.
1246         */
1247        return (u4)obj >> 3;
1248    } else if (hashState == LW_HASH_STATE_HASHED_AND_MOVED) {
1249        /*
1250         * The object has been hashed and its hash code has been
1251         * relocated by the collector.  Use the value of the naturally
1252         * aligned word following the instance data.
1253         */
1254        assert(!dvmIsClassObject(obj));
1255        if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISARRAY)) {
1256            size = dvmArrayObjectSize((ArrayObject *)obj);
1257            size = (size + 2) & ~2;
1258        } else {
1259            size = obj->clazz->objectSize;
1260        }
1261        return *(u4 *)(((char *)obj) + size);
1262    } else if (hashState == LW_HASH_STATE_UNHASHED) {
1263        /*
1264         * The object has never been hashed.  Change the hash state to
1265         * hashed and use the raw object address.
1266         */
1267        self = dvmThreadSelf();
1268        if (self->threadId == lockOwner(obj)) {
1269            /*
1270             * We already own the lock so we can update the hash state
1271             * directly.
1272             */
1273            *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1274            return (u4)obj >> 3;
1275        }
1276        /*
1277         * We do not own the lock.  Try acquiring the lock.  Should
1278         * this fail, we must suspend the owning thread.
1279         */
1280        if (LW_SHAPE(*lw) == LW_SHAPE_THIN) {
1281            /*
1282             * If the lock is thin assume it is unowned.  We simulate
1283             * an acquire, update, and release with a single CAS.
1284             */
1285            lock = (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1286            if (android_atomic_acquire_cas(
1287                                0,
1288                                (int32_t)lock,
1289                                (int32_t *)lw) == 0) {
1290                /*
1291                 * A new lockword has been installed with a hash state
1292                 * of hashed.  Use the raw object address.
1293                 */
1294                return (u4)obj >> 3;
1295            }
1296        } else {
1297            if (tryLockMonitor(self, LW_MONITOR(*lw))) {
1298                /*
1299                 * The monitor lock has been acquired.  Change the
1300                 * hash state to hashed and use the raw object
1301                 * address.
1302                 */
1303                *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1304                unlockMonitor(self, LW_MONITOR(*lw));
1305                return (u4)obj >> 3;
1306            }
1307        }
1308        /*
1309         * At this point we have failed to acquire the lock.  We must
1310         * identify the owning thread and suspend it.
1311         */
1312        dvmLockThreadList(self);
1313        /*
1314         * Cache the lock word as its value can change between
1315         * determining its shape and retrieving its owner.
1316         */
1317        lock = *lw;
1318        if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
1319            /*
1320             * Find the thread with the corresponding thread id.
1321             */
1322            owner = LW_LOCK_OWNER(lock);
1323            assert(owner != self->threadId);
1324            /*
1325             * If the lock has no owner do not bother scanning the
1326             * thread list and fall through to the failure handler.
1327             */
1328            thread = owner ? gDvm.threadList : NULL;
1329            while (thread != NULL) {
1330                if (thread->threadId == owner) {
1331                    break;
1332                }
1333                thread = thread->next;
1334            }
1335        } else {
1336            thread = LW_MONITOR(lock)->owner;
1337        }
1338        /*
1339         * If thread is NULL the object has been released since the
1340         * thread list lock was acquired.  Try again.
1341         */
1342        if (thread == NULL) {
1343            dvmUnlockThreadList();
1344            goto retry;
1345        }
1346        /*
1347         * Wait for the owning thread to suspend.
1348         */
1349        dvmSuspendThread(thread);
1350        if (dvmHoldsLock(thread, obj)) {
1351            /*
1352             * The owning thread has been suspended.  We can safely
1353             * change the hash state to hashed.
1354             */
1355            *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1356            dvmResumeThread(thread);
1357            dvmUnlockThreadList();
1358            return (u4)obj >> 3;
1359        }
1360        /*
1361         * The wrong thread has been suspended.  Try again.
1362         */
1363        dvmResumeThread(thread);
1364        dvmUnlockThreadList();
1365        goto retry;
1366    }
1367    LOGE("object %p has an unknown hash state %#x", obj, hashState);
1368    dvmDumpThread(dvmThreadSelf(), false);
1369    dvmAbort();
1370    return 0;  /* Quiet the compiler. */
1371}
1372#endif  /* WITH_COPYING_GC */
1373