Sync.cpp revision c1a4ab9c313d8a3d12007f2dbef7b5a6fa4ac2ef
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "Dalvik.h"
18
19#include <fcntl.h>
20#include <stdlib.h>
21#include <unistd.h>
22#include <pthread.h>
23#include <time.h>
24#include <errno.h>
25
26/*
27 * Every Object has a monitor associated with it, but not every Object is
28 * actually locked.  Even the ones that are locked do not need a
29 * full-fledged monitor until a) there is actual contention or b) wait()
30 * is called on the Object.
31 *
32 * For Dalvik, we have implemented a scheme similar to the one described
33 * in Bacon et al.'s "Thin locks: featherweight synchronization for Java"
34 * (ACM 1998).  Things are even easier for us, though, because we have
35 * a full 32 bits to work with.
36 *
37 * The two states of an Object's lock are referred to as "thin" and
38 * "fat".  A lock may transition from the "thin" state to the "fat"
39 * state and this transition is referred to as inflation.  Once a lock
40 * has been inflated it remains in the "fat" state indefinitely.
41 *
42 * The lock value itself is stored in Object.lock.  The LSB of the
43 * lock encodes its state.  When cleared, the lock is in the "thin"
44 * state and its bits are formatted as follows:
45 *
46 *    [31 ---- 19] [18 ---- 3] [2 ---- 1] [0]
47 *     lock count   thread id  hash state  0
48 *
49 * When set, the lock is in the "fat" state and its bits are formatted
50 * as follows:
51 *
52 *    [31 ---- 3] [2 ---- 1] [0]
53 *      pointer   hash state  1
54 *
55 * For an in-depth description of the mechanics of thin-vs-fat locking,
56 * read the paper referred to above.
57 */
58
59/*
60 * Monitors provide:
61 *  - mutually exclusive access to resources
62 *  - a way for multiple threads to wait for notification
63 *
64 * In effect, they fill the role of both mutexes and condition variables.
65 *
66 * Only one thread can own the monitor at any time.  There may be several
67 * threads waiting on it (the wait call unlocks it).  One or more waiting
68 * threads may be getting interrupted or notified at any given time.
69 *
70 * TODO: the various members of monitor are not SMP-safe.
71 */
72struct Monitor {
73    Thread*     owner;          /* which thread currently owns the lock? */
74    int         lockCount;      /* owner's recursive lock depth */
75    Object*     obj;            /* what object are we part of [debug only] */
76
77    Thread*     waitSet;	/* threads currently waiting on this monitor */
78
79    pthread_mutex_t lock;
80
81    Monitor*    next;
82
83    /*
84     * Who last acquired this monitor, when lock sampling is enabled.
85     * Even when enabled, ownerMethod may be NULL.
86     */
87    const Method* ownerMethod;
88    u4 ownerPc;
89};
90
91
92/*
93 * Create and initialize a monitor.
94 */
95Monitor* dvmCreateMonitor(Object* obj)
96{
97    Monitor* mon;
98
99    mon = (Monitor*) calloc(1, sizeof(Monitor));
100    if (mon == NULL) {
101        ALOGE("Unable to allocate monitor");
102        dvmAbort();
103    }
104    if (((u4)mon & 7) != 0) {
105        ALOGE("Misaligned monitor: %p", mon);
106        dvmAbort();
107    }
108    mon->obj = obj;
109    dvmInitMutex(&mon->lock);
110
111    /* replace the head of the list with the new monitor */
112    do {
113        mon->next = gDvm.monitorList;
114    } while (android_atomic_release_cas((int32_t)mon->next, (int32_t)mon,
115            (int32_t*)(void*)&gDvm.monitorList) != 0);
116
117    return mon;
118}
119
120/*
121 * Free the monitor list.  Only used when shutting the VM down.
122 */
123void dvmFreeMonitorList()
124{
125    Monitor* mon;
126    Monitor* nextMon;
127
128    mon = gDvm.monitorList;
129    while (mon != NULL) {
130        nextMon = mon->next;
131        free(mon);
132        mon = nextMon;
133    }
134}
135
136/*
137 * Get the object that a monitor is part of.
138 */
139Object* dvmGetMonitorObject(Monitor* mon)
140{
141    if (mon == NULL)
142        return NULL;
143    else
144        return mon->obj;
145}
146
147/*
148 * Returns the thread id of the thread owning the given lock.
149 */
150static u4 lockOwner(Object* obj)
151{
152    Thread *owner;
153    u4 lock;
154
155    assert(obj != NULL);
156    /*
157     * Since we're reading the lock value multiple times, latch it so
158     * that it doesn't change out from under us if we get preempted.
159     */
160    lock = obj->lock;
161    if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
162        return LW_LOCK_OWNER(lock);
163    } else {
164        owner = LW_MONITOR(lock)->owner;
165        return owner ? owner->threadId : 0;
166    }
167}
168
169/*
170 * Get the thread that holds the lock on the specified object.  The
171 * object may be unlocked, thin-locked, or fat-locked.
172 *
173 * The caller must lock the thread list before calling here.
174 */
175Thread* dvmGetObjectLockHolder(Object* obj)
176{
177    u4 threadId = lockOwner(obj);
178
179    if (threadId == 0)
180        return NULL;
181    return dvmGetThreadByThreadId(threadId);
182}
183
184/*
185 * Checks whether the given thread holds the given
186 * objects's lock.
187 */
188bool dvmHoldsLock(Thread* thread, Object* obj)
189{
190    if (thread == NULL || obj == NULL) {
191        return false;
192    } else {
193        return thread->threadId == lockOwner(obj);
194    }
195}
196
197/*
198 * Free the monitor associated with an object and make the object's lock
199 * thin again.  This is called during garbage collection.
200 */
201static void freeMonitor(Monitor *mon)
202{
203    assert(mon != NULL);
204    assert(mon->obj != NULL);
205    assert(LW_SHAPE(mon->obj->lock) == LW_SHAPE_FAT);
206
207    /* This lock is associated with an object
208     * that's being swept.  The only possible way
209     * anyone could be holding this lock would be
210     * if some JNI code locked but didn't unlock
211     * the object, in which case we've got some bad
212     * native code somewhere.
213     */
214    assert(pthread_mutex_trylock(&mon->lock) == 0);
215    assert(pthread_mutex_unlock(&mon->lock) == 0);
216    dvmDestroyMutex(&mon->lock);
217    free(mon);
218}
219
220/*
221 * Frees monitor objects belonging to unmarked objects.
222 */
223void dvmSweepMonitorList(Monitor** mon, int (*isUnmarkedObject)(void*))
224{
225    Monitor handle;
226    Monitor *prev, *curr;
227    Object *obj;
228
229    assert(mon != NULL);
230    assert(isUnmarkedObject != NULL);
231    prev = &handle;
232    prev->next = curr = *mon;
233    while (curr != NULL) {
234        obj = curr->obj;
235        if (obj != NULL && (*isUnmarkedObject)(obj) != 0) {
236            prev->next = curr->next;
237            freeMonitor(curr);
238            curr = prev->next;
239        } else {
240            prev = curr;
241            curr = curr->next;
242        }
243    }
244    *mon = handle.next;
245}
246
247static char *logWriteInt(char *dst, int value)
248{
249    *dst++ = EVENT_TYPE_INT;
250    set4LE((u1 *)dst, value);
251    return dst + 4;
252}
253
254static char *logWriteString(char *dst, const char *value, size_t len)
255{
256    *dst++ = EVENT_TYPE_STRING;
257    len = len < 32 ? len : 32;
258    set4LE((u1 *)dst, len);
259    dst += 4;
260    memcpy(dst, value, len);
261    return dst + len;
262}
263
264#define EVENT_LOG_TAG_dvm_lock_sample 20003
265
266static void logContentionEvent(Thread *self, u4 waitMs, u4 samplePercent,
267                               const char *ownerFileName, u4 ownerLineNumber)
268{
269    const StackSaveArea *saveArea;
270    const Method *meth;
271    u4 relativePc;
272    char eventBuffer[174];
273    const char *fileName;
274    char procName[33];
275    char *cp;
276    size_t len;
277    int fd;
278
279    saveArea = SAVEAREA_FROM_FP(self->interpSave.curFrame);
280    meth = saveArea->method;
281    cp = eventBuffer;
282
283    /* Emit the event list length, 1 byte. */
284    *cp++ = 9;
285
286    /* Emit the process name, <= 37 bytes. */
287    fd = open("/proc/self/cmdline", O_RDONLY);
288    memset(procName, 0, sizeof(procName));
289    read(fd, procName, sizeof(procName) - 1);
290    close(fd);
291    len = strlen(procName);
292    cp = logWriteString(cp, procName, len);
293
294    /* Emit the sensitive thread ("main thread") status, 5 bytes. */
295    bool isSensitive = false;
296    if (gDvm.isSensitiveThreadHook != NULL) {
297        isSensitive = gDvm.isSensitiveThreadHook();
298    }
299    cp = logWriteInt(cp, isSensitive);
300
301    /* Emit self thread name string, <= 37 bytes. */
302    std::string selfName = dvmGetThreadName(self);
303    cp = logWriteString(cp, selfName.c_str(), selfName.size());
304
305    /* Emit the wait time, 5 bytes. */
306    cp = logWriteInt(cp, waitMs);
307
308    /* Emit the source code file name, <= 37 bytes. */
309    fileName = dvmGetMethodSourceFile(meth);
310    if (fileName == NULL) fileName = "";
311    cp = logWriteString(cp, fileName, strlen(fileName));
312
313    /* Emit the source code line number, 5 bytes. */
314    relativePc = saveArea->xtra.currentPc - saveArea->method->insns;
315    cp = logWriteInt(cp, dvmLineNumFromPC(meth, relativePc));
316
317    /* Emit the lock owner source code file name, <= 37 bytes. */
318    if (ownerFileName == NULL) {
319        ownerFileName = "";
320    } else if (strcmp(fileName, ownerFileName) == 0) {
321        /* Common case, so save on log space. */
322        ownerFileName = "-";
323    }
324    cp = logWriteString(cp, ownerFileName, strlen(ownerFileName));
325
326    /* Emit the source code line number, 5 bytes. */
327    cp = logWriteInt(cp, ownerLineNumber);
328
329    /* Emit the sample percentage, 5 bytes. */
330    cp = logWriteInt(cp, samplePercent);
331
332    assert((size_t)(cp - eventBuffer) <= sizeof(eventBuffer));
333    android_btWriteLog(EVENT_LOG_TAG_dvm_lock_sample,
334                       EVENT_TYPE_LIST,
335                       eventBuffer,
336                       (size_t)(cp - eventBuffer));
337}
338
339/*
340 * Lock a monitor.
341 */
342static void lockMonitor(Thread* self, Monitor* mon)
343{
344    ThreadStatus oldStatus;
345    u4 waitThreshold, samplePercent;
346    u8 waitStart, waitEnd, waitMs;
347
348    if (mon->owner == self) {
349        mon->lockCount++;
350        return;
351    }
352    if (dvmTryLockMutex(&mon->lock) != 0) {
353        oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
354        waitThreshold = gDvm.lockProfThreshold;
355        if (waitThreshold) {
356            waitStart = dvmGetRelativeTimeUsec();
357        }
358
359        const Method* currentOwnerMethod = mon->ownerMethod;
360        u4 currentOwnerPc = mon->ownerPc;
361
362        dvmLockMutex(&mon->lock);
363        if (waitThreshold) {
364            waitEnd = dvmGetRelativeTimeUsec();
365        }
366        dvmChangeStatus(self, oldStatus);
367        if (waitThreshold) {
368            waitMs = (waitEnd - waitStart) / 1000;
369            if (waitMs >= waitThreshold) {
370                samplePercent = 100;
371            } else {
372                samplePercent = 100 * waitMs / waitThreshold;
373            }
374            if (samplePercent != 0 && ((u4)rand() % 100 < samplePercent)) {
375                const char* currentOwnerFileName = "no_method";
376                u4 currentOwnerLineNumber = 0;
377                if (currentOwnerMethod != NULL) {
378                    currentOwnerFileName = dvmGetMethodSourceFile(currentOwnerMethod);
379                    if (currentOwnerFileName == NULL) {
380                        currentOwnerFileName = "no_method_file";
381                    }
382                    currentOwnerLineNumber = dvmLineNumFromPC(currentOwnerMethod, currentOwnerPc);
383                }
384                logContentionEvent(self, waitMs, samplePercent,
385                                   currentOwnerFileName, currentOwnerLineNumber);
386            }
387        }
388    }
389    mon->owner = self;
390    assert(mon->lockCount == 0);
391
392    // When debugging, save the current monitor holder for future
393    // acquisition failures to use in sampled logging.
394    if (gDvm.lockProfThreshold > 0) {
395        mon->ownerMethod = NULL;
396        mon->ownerPc = 0;
397        if (self->interpSave.curFrame == NULL) {
398            return;
399        }
400        const StackSaveArea* saveArea = SAVEAREA_FROM_FP(self->interpSave.curFrame);
401        if (saveArea == NULL) {
402            return;
403        }
404        mon->ownerMethod = saveArea->method;
405        mon->ownerPc = (saveArea->xtra.currentPc - saveArea->method->insns);
406    }
407}
408
409/*
410 * Try to lock a monitor.
411 *
412 * Returns "true" on success.
413 */
414#ifdef WITH_COPYING_GC
415static bool tryLockMonitor(Thread* self, Monitor* mon)
416{
417    if (mon->owner == self) {
418        mon->lockCount++;
419        return true;
420    } else {
421        if (dvmTryLockMutex(&mon->lock) == 0) {
422            mon->owner = self;
423            assert(mon->lockCount == 0);
424            return true;
425        } else {
426            return false;
427        }
428    }
429}
430#endif
431
432/*
433 * Unlock a monitor.
434 *
435 * Returns true if the unlock succeeded.
436 * If the unlock failed, an exception will be pending.
437 */
438static bool unlockMonitor(Thread* self, Monitor* mon)
439{
440    assert(self != NULL);
441    assert(mon != NULL);
442    if (mon->owner == self) {
443        /*
444         * We own the monitor, so nobody else can be in here.
445         */
446        if (mon->lockCount == 0) {
447            mon->owner = NULL;
448            mon->ownerMethod = NULL;
449            mon->ownerPc = 0;
450            dvmUnlockMutex(&mon->lock);
451        } else {
452            mon->lockCount--;
453        }
454    } else {
455        /*
456         * We don't own this, so we're not allowed to unlock it.
457         * The JNI spec says that we should throw IllegalMonitorStateException
458         * in this case.
459         */
460        dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
461        return false;
462    }
463    return true;
464}
465
466/*
467 * Checks the wait set for circular structure.  Returns 0 if the list
468 * is not circular.  Otherwise, returns 1.  Used only by asserts.
469 */
470#ifndef NDEBUG
471static int waitSetCheck(Monitor *mon)
472{
473    Thread *fast, *slow;
474    size_t n;
475
476    assert(mon != NULL);
477    fast = slow = mon->waitSet;
478    n = 0;
479    for (;;) {
480        if (fast == NULL) return 0;
481        if (fast->waitNext == NULL) return 0;
482        if (fast == slow && n > 0) return 1;
483        n += 2;
484        fast = fast->waitNext->waitNext;
485        slow = slow->waitNext;
486    }
487}
488#endif
489
490/*
491 * Links a thread into a monitor's wait set.  The monitor lock must be
492 * held by the caller of this routine.
493 */
494static void waitSetAppend(Monitor *mon, Thread *thread)
495{
496    Thread *elt;
497
498    assert(mon != NULL);
499    assert(mon->owner == dvmThreadSelf());
500    assert(thread != NULL);
501    assert(thread->waitNext == NULL);
502    assert(waitSetCheck(mon) == 0);
503    if (mon->waitSet == NULL) {
504        mon->waitSet = thread;
505        return;
506    }
507    elt = mon->waitSet;
508    while (elt->waitNext != NULL) {
509        elt = elt->waitNext;
510    }
511    elt->waitNext = thread;
512}
513
514/*
515 * Unlinks a thread from a monitor's wait set.  The monitor lock must
516 * be held by the caller of this routine.
517 */
518static void waitSetRemove(Monitor *mon, Thread *thread)
519{
520    Thread *elt;
521
522    assert(mon != NULL);
523    assert(mon->owner == dvmThreadSelf());
524    assert(thread != NULL);
525    assert(waitSetCheck(mon) == 0);
526    if (mon->waitSet == NULL) {
527        return;
528    }
529    if (mon->waitSet == thread) {
530        mon->waitSet = thread->waitNext;
531        thread->waitNext = NULL;
532        return;
533    }
534    elt = mon->waitSet;
535    while (elt->waitNext != NULL) {
536        if (elt->waitNext == thread) {
537            elt->waitNext = thread->waitNext;
538            thread->waitNext = NULL;
539            return;
540        }
541        elt = elt->waitNext;
542    }
543}
544
545/*
546 * Converts the given relative waiting time into an absolute time.
547 */
548static void absoluteTime(s8 msec, s4 nsec, struct timespec *ts)
549{
550    s8 endSec;
551
552#ifdef HAVE_TIMEDWAIT_MONOTONIC
553    clock_gettime(CLOCK_MONOTONIC, ts);
554#else
555    {
556        struct timeval tv;
557        gettimeofday(&tv, NULL);
558        ts->tv_sec = tv.tv_sec;
559        ts->tv_nsec = tv.tv_usec * 1000;
560    }
561#endif
562    endSec = ts->tv_sec + msec / 1000;
563    if (endSec >= 0x7fffffff) {
564        ALOGV("NOTE: end time exceeds epoch");
565        endSec = 0x7ffffffe;
566    }
567    ts->tv_sec = endSec;
568    ts->tv_nsec = (ts->tv_nsec + (msec % 1000) * 1000000) + nsec;
569
570    /* catch rollover */
571    if (ts->tv_nsec >= 1000000000L) {
572        ts->tv_sec++;
573        ts->tv_nsec -= 1000000000L;
574    }
575}
576
577int dvmRelativeCondWait(pthread_cond_t* cond, pthread_mutex_t* mutex,
578                        s8 msec, s4 nsec)
579{
580    int ret;
581    struct timespec ts;
582    absoluteTime(msec, nsec, &ts);
583#if defined(HAVE_TIMEDWAIT_MONOTONIC)
584    ret = pthread_cond_timedwait_monotonic(cond, mutex, &ts);
585#else
586    ret = pthread_cond_timedwait(cond, mutex, &ts);
587#endif
588    assert(ret == 0 || ret == ETIMEDOUT);
589    return ret;
590}
591
592/*
593 * Wait on a monitor until timeout, interrupt, or notification.  Used for
594 * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
595 *
596 * If another thread calls Thread.interrupt(), we throw InterruptedException
597 * and return immediately if one of the following are true:
598 *  - blocked in wait(), wait(long), or wait(long, int) methods of Object
599 *  - blocked in join(), join(long), or join(long, int) methods of Thread
600 *  - blocked in sleep(long), or sleep(long, int) methods of Thread
601 * Otherwise, we set the "interrupted" flag.
602 *
603 * Checks to make sure that "nsec" is in the range 0-999999
604 * (i.e. fractions of a millisecond) and throws the appropriate
605 * exception if it isn't.
606 *
607 * The spec allows "spurious wakeups", and recommends that all code using
608 * Object.wait() do so in a loop.  This appears to derive from concerns
609 * about pthread_cond_wait() on multiprocessor systems.  Some commentary
610 * on the web casts doubt on whether these can/should occur.
611 *
612 * Since we're allowed to wake up "early", we clamp extremely long durations
613 * to return at the end of the 32-bit time epoch.
614 */
615static void waitMonitor(Thread* self, Monitor* mon, s8 msec, s4 nsec,
616    bool interruptShouldThrow)
617{
618    struct timespec ts;
619    bool wasInterrupted = false;
620    bool timed;
621    int ret;
622
623    assert(self != NULL);
624    assert(mon != NULL);
625
626    /* Make sure that we hold the lock. */
627    if (mon->owner != self) {
628        dvmThrowIllegalMonitorStateException(
629            "object not locked by thread before wait()");
630        return;
631    }
632
633    /*
634     * Enforce the timeout range.
635     */
636    if (msec < 0 || nsec < 0 || nsec > 999999) {
637        dvmThrowIllegalArgumentException("timeout arguments out of range");
638        return;
639    }
640
641    /*
642     * Compute absolute wakeup time, if necessary.
643     */
644    if (msec == 0 && nsec == 0) {
645        timed = false;
646    } else {
647        absoluteTime(msec, nsec, &ts);
648        timed = true;
649    }
650
651    /*
652     * Add ourselves to the set of threads waiting on this monitor, and
653     * release our hold.  We need to let it go even if we're a few levels
654     * deep in a recursive lock, and we need to restore that later.
655     *
656     * We append to the wait set ahead of clearing the count and owner
657     * fields so the subroutine can check that the calling thread owns
658     * the monitor.  Aside from that, the order of member updates is
659     * not order sensitive as we hold the pthread mutex.
660     */
661    waitSetAppend(mon, self);
662    int prevLockCount = mon->lockCount;
663    mon->lockCount = 0;
664    mon->owner = NULL;
665
666    const Method* savedMethod = mon->ownerMethod;
667    u4 savedPc = mon->ownerPc;
668    mon->ownerMethod = NULL;
669    mon->ownerPc = 0;
670
671    /*
672     * Update thread status.  If the GC wakes up, it'll ignore us, knowing
673     * that we won't touch any references in this state, and we'll check
674     * our suspend mode before we transition out.
675     */
676    if (timed)
677        dvmChangeStatus(self, THREAD_TIMED_WAIT);
678    else
679        dvmChangeStatus(self, THREAD_WAIT);
680
681    dvmLockMutex(&self->waitMutex);
682
683    /*
684     * Set waitMonitor to the monitor object we will be waiting on.
685     * When waitMonitor is non-NULL a notifying or interrupting thread
686     * must signal the thread's waitCond to wake it up.
687     */
688    assert(self->waitMonitor == NULL);
689    self->waitMonitor = mon;
690
691    /*
692     * Handle the case where the thread was interrupted before we called
693     * wait().
694     */
695    if (self->interrupted) {
696        wasInterrupted = true;
697        self->waitMonitor = NULL;
698        dvmUnlockMutex(&self->waitMutex);
699        goto done;
700    }
701
702    /*
703     * Release the monitor lock and wait for a notification or
704     * a timeout to occur.
705     */
706    dvmUnlockMutex(&mon->lock);
707
708    if (!timed) {
709        ret = pthread_cond_wait(&self->waitCond, &self->waitMutex);
710        assert(ret == 0);
711    } else {
712#ifdef HAVE_TIMEDWAIT_MONOTONIC
713        ret = pthread_cond_timedwait_monotonic(&self->waitCond, &self->waitMutex, &ts);
714#else
715        ret = pthread_cond_timedwait(&self->waitCond, &self->waitMutex, &ts);
716#endif
717        assert(ret == 0 || ret == ETIMEDOUT);
718    }
719    if (self->interrupted) {
720        wasInterrupted = true;
721    }
722
723    self->interrupted = false;
724    self->waitMonitor = NULL;
725
726    dvmUnlockMutex(&self->waitMutex);
727
728    /* Reacquire the monitor lock. */
729    lockMonitor(self, mon);
730
731done:
732    /*
733     * We remove our thread from wait set after restoring the count
734     * and owner fields so the subroutine can check that the calling
735     * thread owns the monitor. Aside from that, the order of member
736     * updates is not order sensitive as we hold the pthread mutex.
737     */
738    mon->owner = self;
739    mon->lockCount = prevLockCount;
740    mon->ownerMethod = savedMethod;
741    mon->ownerPc = savedPc;
742    waitSetRemove(mon, self);
743
744    /* set self->status back to THREAD_RUNNING, and self-suspend if needed */
745    dvmChangeStatus(self, THREAD_RUNNING);
746
747    if (wasInterrupted) {
748        /*
749         * We were interrupted while waiting, or somebody interrupted an
750         * un-interruptible thread earlier and we're bailing out immediately.
751         *
752         * The doc sayeth: "The interrupted status of the current thread is
753         * cleared when this exception is thrown."
754         */
755        self->interrupted = false;
756        if (interruptShouldThrow) {
757            dvmThrowInterruptedException(NULL);
758        }
759    }
760}
761
762/*
763 * Notify one thread waiting on this monitor.
764 */
765static void notifyMonitor(Thread* self, Monitor* mon)
766{
767    Thread* thread;
768
769    assert(self != NULL);
770    assert(mon != NULL);
771
772    /* Make sure that we hold the lock. */
773    if (mon->owner != self) {
774        dvmThrowIllegalMonitorStateException(
775            "object not locked by thread before notify()");
776        return;
777    }
778    /* Signal the first waiting thread in the wait set. */
779    while (mon->waitSet != NULL) {
780        thread = mon->waitSet;
781        mon->waitSet = thread->waitNext;
782        thread->waitNext = NULL;
783        dvmLockMutex(&thread->waitMutex);
784        /* Check to see if the thread is still waiting. */
785        if (thread->waitMonitor != NULL) {
786            pthread_cond_signal(&thread->waitCond);
787            dvmUnlockMutex(&thread->waitMutex);
788            return;
789        }
790        dvmUnlockMutex(&thread->waitMutex);
791    }
792}
793
794/*
795 * Notify all threads waiting on this monitor.
796 */
797static void notifyAllMonitor(Thread* self, Monitor* mon)
798{
799    Thread* thread;
800
801    assert(self != NULL);
802    assert(mon != NULL);
803
804    /* Make sure that we hold the lock. */
805    if (mon->owner != self) {
806        dvmThrowIllegalMonitorStateException(
807            "object not locked by thread before notifyAll()");
808        return;
809    }
810    /* Signal all threads in the wait set. */
811    while (mon->waitSet != NULL) {
812        thread = mon->waitSet;
813        mon->waitSet = thread->waitNext;
814        thread->waitNext = NULL;
815        dvmLockMutex(&thread->waitMutex);
816        /* Check to see if the thread is still waiting. */
817        if (thread->waitMonitor != NULL) {
818            pthread_cond_signal(&thread->waitCond);
819        }
820        dvmUnlockMutex(&thread->waitMutex);
821    }
822}
823
824/*
825 * Changes the shape of a monitor from thin to fat, preserving the
826 * internal lock state.  The calling thread must own the lock.
827 */
828static void inflateMonitor(Thread *self, Object *obj)
829{
830    Monitor *mon;
831    u4 thin;
832
833    assert(self != NULL);
834    assert(obj != NULL);
835    assert(LW_SHAPE(obj->lock) == LW_SHAPE_THIN);
836    assert(LW_LOCK_OWNER(obj->lock) == self->threadId);
837    /* Allocate and acquire a new monitor. */
838    mon = dvmCreateMonitor(obj);
839    lockMonitor(self, mon);
840    /* Propagate the lock state. */
841    thin = obj->lock;
842    mon->lockCount = LW_LOCK_COUNT(thin);
843    thin &= LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT;
844    thin |= (u4)mon | LW_SHAPE_FAT;
845    /* Publish the updated lock word. */
846    android_atomic_release_store(thin, (int32_t *)&obj->lock);
847}
848
849/*
850 * Implements monitorenter for "synchronized" stuff.
851 *
852 * This does not fail or throw an exception (unless deadlock prediction
853 * is enabled and set to "err" mode).
854 */
855void dvmLockObject(Thread* self, Object *obj)
856{
857    volatile u4 *thinp;
858    ThreadStatus oldStatus;
859    struct timespec tm;
860    long sleepDelayNs;
861    long minSleepDelayNs = 1000000;  /* 1 millisecond */
862    long maxSleepDelayNs = 1000000000;  /* 1 second */
863    u4 thin, newThin, threadId;
864
865    assert(self != NULL);
866    assert(obj != NULL);
867    threadId = self->threadId;
868    thinp = &obj->lock;
869retry:
870    thin = *thinp;
871    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
872        /*
873         * The lock is a thin lock.  The owner field is used to
874         * determine the acquire method, ordered by cost.
875         */
876        if (LW_LOCK_OWNER(thin) == threadId) {
877            /*
878             * The calling thread owns the lock.  Increment the
879             * value of the recursion count field.
880             */
881            obj->lock += 1 << LW_LOCK_COUNT_SHIFT;
882            if (LW_LOCK_COUNT(obj->lock) == LW_LOCK_COUNT_MASK) {
883                /*
884                 * The reacquisition limit has been reached.  Inflate
885                 * the lock so the next acquire will not overflow the
886                 * recursion count field.
887                 */
888                inflateMonitor(self, obj);
889            }
890        } else if (LW_LOCK_OWNER(thin) == 0) {
891            /*
892             * The lock is unowned.  Install the thread id of the
893             * calling thread into the owner field.  This is the
894             * common case.  In performance critical code the JIT
895             * will have tried this before calling out to the VM.
896             */
897            newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
898            if (android_atomic_acquire_cas(thin, newThin,
899                    (int32_t*)thinp) != 0) {
900                /*
901                 * The acquire failed.  Try again.
902                 */
903                goto retry;
904            }
905        } else {
906            ALOGV("(%d) spin on lock %p: %#x (%#x) %#x",
907                 threadId, &obj->lock, 0, *thinp, thin);
908            /*
909             * The lock is owned by another thread.  Notify the VM
910             * that we are about to wait.
911             */
912            oldStatus = dvmChangeStatus(self, THREAD_MONITOR);
913            /*
914             * Spin until the thin lock is released or inflated.
915             */
916            sleepDelayNs = 0;
917            for (;;) {
918                thin = *thinp;
919                /*
920                 * Check the shape of the lock word.  Another thread
921                 * may have inflated the lock while we were waiting.
922                 */
923                if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
924                    if (LW_LOCK_OWNER(thin) == 0) {
925                        /*
926                         * The lock has been released.  Install the
927                         * thread id of the calling thread into the
928                         * owner field.
929                         */
930                        newThin = thin | (threadId << LW_LOCK_OWNER_SHIFT);
931                        if (android_atomic_acquire_cas(thin, newThin,
932                                (int32_t *)thinp) == 0) {
933                            /*
934                             * The acquire succeed.  Break out of the
935                             * loop and proceed to inflate the lock.
936                             */
937                            break;
938                        }
939                    } else {
940                        /*
941                         * The lock has not been released.  Yield so
942                         * the owning thread can run.
943                         */
944                        if (sleepDelayNs == 0) {
945                            sched_yield();
946                            sleepDelayNs = minSleepDelayNs;
947                        } else {
948                            tm.tv_sec = 0;
949                            tm.tv_nsec = sleepDelayNs;
950                            nanosleep(&tm, NULL);
951                            /*
952                             * Prepare the next delay value.  Wrap to
953                             * avoid once a second polls for eternity.
954                             */
955                            if (sleepDelayNs < maxSleepDelayNs / 2) {
956                                sleepDelayNs *= 2;
957                            } else {
958                                sleepDelayNs = minSleepDelayNs;
959                            }
960                        }
961                    }
962                } else {
963                    /*
964                     * The thin lock was inflated by another thread.
965                     * Let the VM know we are no longer waiting and
966                     * try again.
967                     */
968                    ALOGV("(%d) lock %p surprise-fattened",
969                             threadId, &obj->lock);
970                    dvmChangeStatus(self, oldStatus);
971                    goto retry;
972                }
973            }
974            ALOGV("(%d) spin on lock done %p: %#x (%#x) %#x",
975                 threadId, &obj->lock, 0, *thinp, thin);
976            /*
977             * We have acquired the thin lock.  Let the VM know that
978             * we are no longer waiting.
979             */
980            dvmChangeStatus(self, oldStatus);
981            /*
982             * Fatten the lock.
983             */
984            inflateMonitor(self, obj);
985            ALOGV("(%d) lock %p fattened", threadId, &obj->lock);
986        }
987    } else {
988        /*
989         * The lock is a fat lock.
990         */
991        assert(LW_MONITOR(obj->lock) != NULL);
992        lockMonitor(self, LW_MONITOR(obj->lock));
993    }
994}
995
996/*
997 * Implements monitorexit for "synchronized" stuff.
998 *
999 * On failure, throws an exception and returns "false".
1000 */
1001bool dvmUnlockObject(Thread* self, Object *obj)
1002{
1003    u4 thin;
1004
1005    assert(self != NULL);
1006    assert(self->status == THREAD_RUNNING);
1007    assert(obj != NULL);
1008    /*
1009     * Cache the lock word as its value can change while we are
1010     * examining its state.
1011     */
1012    thin = *(volatile u4 *)&obj->lock;
1013    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1014        /*
1015         * The lock is thin.  We must ensure that the lock is owned
1016         * by the given thread before unlocking it.
1017         */
1018        if (LW_LOCK_OWNER(thin) == self->threadId) {
1019            /*
1020             * We are the lock owner.  It is safe to update the lock
1021             * without CAS as lock ownership guards the lock itself.
1022             */
1023            if (LW_LOCK_COUNT(thin) == 0) {
1024                /*
1025                 * The lock was not recursively acquired, the common
1026                 * case.  Unlock by clearing all bits except for the
1027                 * hash state.
1028                 */
1029                thin &= (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT);
1030                android_atomic_release_store(thin, (int32_t*)&obj->lock);
1031            } else {
1032                /*
1033                 * The object was recursively acquired.  Decrement the
1034                 * lock recursion count field.
1035                 */
1036                obj->lock -= 1 << LW_LOCK_COUNT_SHIFT;
1037            }
1038        } else {
1039            /*
1040             * We do not own the lock.  The JVM spec requires that we
1041             * throw an exception in this case.
1042             */
1043            dvmThrowIllegalMonitorStateException("unlock of unowned monitor");
1044            return false;
1045        }
1046    } else {
1047        /*
1048         * The lock is fat.  We must check to see if unlockMonitor has
1049         * raised any exceptions before continuing.
1050         */
1051        assert(LW_MONITOR(obj->lock) != NULL);
1052        if (!unlockMonitor(self, LW_MONITOR(obj->lock))) {
1053            /*
1054             * An exception has been raised.  Do not fall through.
1055             */
1056            return false;
1057        }
1058    }
1059    return true;
1060}
1061
1062/*
1063 * Object.wait().  Also called for class init.
1064 */
1065void dvmObjectWait(Thread* self, Object *obj, s8 msec, s4 nsec,
1066    bool interruptShouldThrow)
1067{
1068    Monitor* mon;
1069    u4 thin = *(volatile u4 *)&obj->lock;
1070
1071    /* If the lock is still thin, we need to fatten it.
1072     */
1073    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1074        /* Make sure that 'self' holds the lock.
1075         */
1076        if (LW_LOCK_OWNER(thin) != self->threadId) {
1077            dvmThrowIllegalMonitorStateException(
1078                "object not locked by thread before wait()");
1079            return;
1080        }
1081
1082        /* This thread holds the lock.  We need to fatten the lock
1083         * so 'self' can block on it.  Don't update the object lock
1084         * field yet, because 'self' needs to acquire the lock before
1085         * any other thread gets a chance.
1086         */
1087        inflateMonitor(self, obj);
1088        ALOGV("(%d) lock %p fattened by wait()", self->threadId, &obj->lock);
1089    }
1090    mon = LW_MONITOR(obj->lock);
1091    waitMonitor(self, mon, msec, nsec, interruptShouldThrow);
1092}
1093
1094/*
1095 * Object.notify().
1096 */
1097void dvmObjectNotify(Thread* self, Object *obj)
1098{
1099    u4 thin = *(volatile u4 *)&obj->lock;
1100
1101    /* If the lock is still thin, there aren't any waiters;
1102     * waiting on an object forces lock fattening.
1103     */
1104    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1105        /* Make sure that 'self' holds the lock.
1106         */
1107        if (LW_LOCK_OWNER(thin) != self->threadId) {
1108            dvmThrowIllegalMonitorStateException(
1109                "object not locked by thread before notify()");
1110            return;
1111        }
1112
1113        /* no-op;  there are no waiters to notify.
1114         */
1115    } else {
1116        /* It's a fat lock.
1117         */
1118        notifyMonitor(self, LW_MONITOR(thin));
1119    }
1120}
1121
1122/*
1123 * Object.notifyAll().
1124 */
1125void dvmObjectNotifyAll(Thread* self, Object *obj)
1126{
1127    u4 thin = *(volatile u4 *)&obj->lock;
1128
1129    /* If the lock is still thin, there aren't any waiters;
1130     * waiting on an object forces lock fattening.
1131     */
1132    if (LW_SHAPE(thin) == LW_SHAPE_THIN) {
1133        /* Make sure that 'self' holds the lock.
1134         */
1135        if (LW_LOCK_OWNER(thin) != self->threadId) {
1136            dvmThrowIllegalMonitorStateException(
1137                "object not locked by thread before notifyAll()");
1138            return;
1139        }
1140
1141        /* no-op;  there are no waiters to notify.
1142         */
1143    } else {
1144        /* It's a fat lock.
1145         */
1146        notifyAllMonitor(self, LW_MONITOR(thin));
1147    }
1148}
1149
1150/*
1151 * This implements java.lang.Thread.sleep(long msec, int nsec).
1152 *
1153 * The sleep is interruptible by other threads, which means we can't just
1154 * plop into an OS sleep call.  (We probably could if we wanted to send
1155 * signals around and rely on EINTR, but that's inefficient and relies
1156 * on native code respecting our signal mask.)
1157 *
1158 * We have to do all of this stuff for Object.wait() as well, so it's
1159 * easiest to just sleep on a private Monitor.
1160 *
1161 * It appears that we want sleep(0,0) to go through the motions of sleeping
1162 * for a very short duration, rather than just returning.
1163 */
1164void dvmThreadSleep(u8 msec, u4 nsec)
1165{
1166    Thread* self = dvmThreadSelf();
1167    Monitor* mon = gDvm.threadSleepMon;
1168
1169    /* sleep(0,0) wakes up immediately, wait(0,0) means wait forever; adjust */
1170    if (msec == 0 && nsec == 0)
1171        nsec++;
1172
1173    lockMonitor(self, mon);
1174    waitMonitor(self, mon, msec, nsec, true);
1175    unlockMonitor(self, mon);
1176}
1177
1178/*
1179 * Implement java.lang.Thread.interrupt().
1180 */
1181void dvmThreadInterrupt(Thread* thread)
1182{
1183    assert(thread != NULL);
1184
1185    dvmLockMutex(&thread->waitMutex);
1186
1187    /*
1188     * If the interrupted flag is already set no additional action is
1189     * required.
1190     */
1191    if (thread->interrupted == true) {
1192        dvmUnlockMutex(&thread->waitMutex);
1193        return;
1194    }
1195
1196    /*
1197     * Raise the "interrupted" flag.  This will cause it to bail early out
1198     * of the next wait() attempt, if it's not currently waiting on
1199     * something.
1200     */
1201    thread->interrupted = true;
1202
1203    /*
1204     * Is the thread waiting?
1205     *
1206     * Note that fat vs. thin doesn't matter here;  waitMonitor
1207     * is only set when a thread actually waits on a monitor,
1208     * which implies that the monitor has already been fattened.
1209     */
1210    if (thread->waitMonitor != NULL) {
1211        pthread_cond_signal(&thread->waitCond);
1212    }
1213
1214    dvmUnlockMutex(&thread->waitMutex);
1215}
1216
1217#ifndef WITH_COPYING_GC
1218u4 dvmIdentityHashCode(Object *obj)
1219{
1220    return (u4)obj;
1221}
1222#else
1223/*
1224 * Returns the identity hash code of the given object.
1225 */
1226u4 dvmIdentityHashCode(Object *obj)
1227{
1228    Thread *self, *thread;
1229    volatile u4 *lw;
1230    size_t size;
1231    u4 lock, owner, hashState;
1232
1233    if (obj == NULL) {
1234        /*
1235         * Null is defined to have an identity hash code of 0.
1236         */
1237        return 0;
1238    }
1239    lw = &obj->lock;
1240retry:
1241    hashState = LW_HASH_STATE(*lw);
1242    if (hashState == LW_HASH_STATE_HASHED) {
1243        /*
1244         * The object has been hashed but has not had its hash code
1245         * relocated by the garbage collector.  Use the raw object
1246         * address.
1247         */
1248        return (u4)obj >> 3;
1249    } else if (hashState == LW_HASH_STATE_HASHED_AND_MOVED) {
1250        /*
1251         * The object has been hashed and its hash code has been
1252         * relocated by the collector.  Use the value of the naturally
1253         * aligned word following the instance data.
1254         */
1255        assert(!dvmIsClassObject(obj));
1256        if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISARRAY)) {
1257            size = dvmArrayObjectSize((ArrayObject *)obj);
1258            size = (size + 2) & ~2;
1259        } else {
1260            size = obj->clazz->objectSize;
1261        }
1262        return *(u4 *)(((char *)obj) + size);
1263    } else if (hashState == LW_HASH_STATE_UNHASHED) {
1264        /*
1265         * The object has never been hashed.  Change the hash state to
1266         * hashed and use the raw object address.
1267         */
1268        self = dvmThreadSelf();
1269        if (self->threadId == lockOwner(obj)) {
1270            /*
1271             * We already own the lock so we can update the hash state
1272             * directly.
1273             */
1274            *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1275            return (u4)obj >> 3;
1276        }
1277        /*
1278         * We do not own the lock.  Try acquiring the lock.  Should
1279         * this fail, we must suspend the owning thread.
1280         */
1281        if (LW_SHAPE(*lw) == LW_SHAPE_THIN) {
1282            /*
1283             * If the lock is thin assume it is unowned.  We simulate
1284             * an acquire, update, and release with a single CAS.
1285             */
1286            lock = (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1287            if (android_atomic_acquire_cas(
1288                                0,
1289                                (int32_t)lock,
1290                                (int32_t *)lw) == 0) {
1291                /*
1292                 * A new lockword has been installed with a hash state
1293                 * of hashed.  Use the raw object address.
1294                 */
1295                return (u4)obj >> 3;
1296            }
1297        } else {
1298            if (tryLockMonitor(self, LW_MONITOR(*lw))) {
1299                /*
1300                 * The monitor lock has been acquired.  Change the
1301                 * hash state to hashed and use the raw object
1302                 * address.
1303                 */
1304                *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1305                unlockMonitor(self, LW_MONITOR(*lw));
1306                return (u4)obj >> 3;
1307            }
1308        }
1309        /*
1310         * At this point we have failed to acquire the lock.  We must
1311         * identify the owning thread and suspend it.
1312         */
1313        dvmLockThreadList(self);
1314        /*
1315         * Cache the lock word as its value can change between
1316         * determining its shape and retrieving its owner.
1317         */
1318        lock = *lw;
1319        if (LW_SHAPE(lock) == LW_SHAPE_THIN) {
1320            /*
1321             * Find the thread with the corresponding thread id.
1322             */
1323            owner = LW_LOCK_OWNER(lock);
1324            assert(owner != self->threadId);
1325            /*
1326             * If the lock has no owner do not bother scanning the
1327             * thread list and fall through to the failure handler.
1328             */
1329            thread = owner ? gDvm.threadList : NULL;
1330            while (thread != NULL) {
1331                if (thread->threadId == owner) {
1332                    break;
1333                }
1334                thread = thread->next;
1335            }
1336        } else {
1337            thread = LW_MONITOR(lock)->owner;
1338        }
1339        /*
1340         * If thread is NULL the object has been released since the
1341         * thread list lock was acquired.  Try again.
1342         */
1343        if (thread == NULL) {
1344            dvmUnlockThreadList();
1345            goto retry;
1346        }
1347        /*
1348         * Wait for the owning thread to suspend.
1349         */
1350        dvmSuspendThread(thread);
1351        if (dvmHoldsLock(thread, obj)) {
1352            /*
1353             * The owning thread has been suspended.  We can safely
1354             * change the hash state to hashed.
1355             */
1356            *lw |= (LW_HASH_STATE_HASHED << LW_HASH_STATE_SHIFT);
1357            dvmResumeThread(thread);
1358            dvmUnlockThreadList();
1359            return (u4)obj >> 3;
1360        }
1361        /*
1362         * The wrong thread has been suspended.  Try again.
1363         */
1364        dvmResumeThread(thread);
1365        dvmUnlockThreadList();
1366        goto retry;
1367    }
1368    ALOGE("object %p has an unknown hash state %#x", obj, hashState);
1369    dvmDumpThread(dvmThreadSelf(), false);
1370    dvmAbort();
1371    return 0;  /* Quiet the compiler. */
1372}
1373#endif  /* WITH_COPYING_GC */
1374