CodegenCommon.cpp revision c1a4ab9c313d8a3d12007f2dbef7b5a6fa4ac2ef
1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This file contains codegen and support common to all supported
19 * ARM variants.  It is included by:
20 *
21 *        Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 * which combines this common code with specific support found in the
24 * applicable directory below this one.
25 */
26
27#include "compiler/Loop.h"
28
29/* Array holding the entry offset of each template relative to the first one */
30static intptr_t templateEntryOffsets[TEMPLATE_LAST_MARK];
31
32/* Track exercised opcodes */
33static int opcodeCoverage[kNumPackedOpcodes];
34
35static void setMemRefType(ArmLIR *lir, bool isLoad, int memType)
36{
37    u8 *maskPtr;
38    u8 mask = ENCODE_MEM;;
39    assert(EncodingMap[lir->opcode].flags & (IS_LOAD | IS_STORE));
40    if (isLoad) {
41        maskPtr = &lir->useMask;
42    } else {
43        maskPtr = &lir->defMask;
44    }
45    /* Clear out the memref flags */
46    *maskPtr &= ~mask;
47    /* ..and then add back the one we need */
48    switch(memType) {
49        case kLiteral:
50            assert(isLoad);
51            *maskPtr |= ENCODE_LITERAL;
52            break;
53        case kDalvikReg:
54            *maskPtr |= ENCODE_DALVIK_REG;
55            break;
56        case kHeapRef:
57            *maskPtr |= ENCODE_HEAP_REF;
58            break;
59        case kMustNotAlias:
60            /* Currently only loads can be marked as kMustNotAlias */
61            assert(!(EncodingMap[lir->opcode].flags & IS_STORE));
62            *maskPtr |= ENCODE_MUST_NOT_ALIAS;
63            break;
64        default:
65            ALOGE("Jit: invalid memref kind - %d", memType);
66            assert(0);  // Bail if debug build, set worst-case in the field
67            *maskPtr |= ENCODE_ALL;
68    }
69}
70
71/*
72 * Mark load/store instructions that access Dalvik registers through r5FP +
73 * offset.
74 */
75static void annotateDalvikRegAccess(ArmLIR *lir, int regId, bool isLoad)
76{
77    setMemRefType(lir, isLoad, kDalvikReg);
78
79    /*
80     * Store the Dalvik register id in aliasInfo. Mark he MSB if it is a 64-bit
81     * access.
82     */
83    lir->aliasInfo = regId;
84    if (DOUBLEREG(lir->operands[0])) {
85        lir->aliasInfo |= 0x80000000;
86    }
87}
88
89/*
90 * Decode the register id.
91 */
92static inline u8 getRegMaskCommon(int reg)
93{
94    u8 seed;
95    int shift;
96    int regId = reg & 0x1f;
97
98    /*
99     * Each double register is equal to a pair of single-precision FP registers
100     */
101    seed = DOUBLEREG(reg) ? 3 : 1;
102    /* FP register starts at bit position 16 */
103    shift = FPREG(reg) ? kFPReg0 : 0;
104    /* Expand the double register id into single offset */
105    shift += regId;
106    return (seed << shift);
107}
108
109/* External version of getRegMaskCommon */
110u8 dvmGetRegResourceMask(int reg)
111{
112    return getRegMaskCommon(reg);
113}
114
115/*
116 * Mark the corresponding bit(s).
117 */
118static inline void setupRegMask(u8 *mask, int reg)
119{
120    *mask |= getRegMaskCommon(reg);
121}
122
123/*
124 * Set up the proper fields in the resource mask
125 */
126static void setupResourceMasks(ArmLIR *lir)
127{
128    int opcode = lir->opcode;
129    int flags;
130
131    if (opcode <= 0) {
132        lir->useMask = lir->defMask = 0;
133        return;
134    }
135
136    flags = EncodingMap[lir->opcode].flags;
137
138    /* Set up the mask for resources that are updated */
139    if (flags & (IS_LOAD | IS_STORE)) {
140        /* Default to heap - will catch specialized classes later */
141        setMemRefType(lir, flags & IS_LOAD, kHeapRef);
142    }
143
144    /*
145     * Conservatively assume the branch here will call out a function that in
146     * turn will trash everything.
147     */
148    if (flags & IS_BRANCH) {
149        lir->defMask = lir->useMask = ENCODE_ALL;
150        return;
151    }
152
153    if (flags & REG_DEF0) {
154        setupRegMask(&lir->defMask, lir->operands[0]);
155    }
156
157    if (flags & REG_DEF1) {
158        setupRegMask(&lir->defMask, lir->operands[1]);
159    }
160
161    if (flags & REG_DEF_SP) {
162        lir->defMask |= ENCODE_REG_SP;
163    }
164
165    if (flags & REG_DEF_LR) {
166        lir->defMask |= ENCODE_REG_LR;
167    }
168
169    if (flags & REG_DEF_LIST0) {
170        lir->defMask |= ENCODE_REG_LIST(lir->operands[0]);
171    }
172
173    if (flags & REG_DEF_LIST1) {
174        lir->defMask |= ENCODE_REG_LIST(lir->operands[1]);
175    }
176
177    if (flags & SETS_CCODES) {
178        lir->defMask |= ENCODE_CCODE;
179    }
180
181    /* Conservatively treat the IT block */
182    if (flags & IS_IT) {
183        lir->defMask = ENCODE_ALL;
184    }
185
186    if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) {
187        int i;
188
189        for (i = 0; i < 4; i++) {
190            if (flags & (1 << (kRegUse0 + i))) {
191                setupRegMask(&lir->useMask, lir->operands[i]);
192            }
193        }
194    }
195
196    if (flags & REG_USE_PC) {
197        lir->useMask |= ENCODE_REG_PC;
198    }
199
200    if (flags & REG_USE_SP) {
201        lir->useMask |= ENCODE_REG_SP;
202    }
203
204    if (flags & REG_USE_LIST0) {
205        lir->useMask |= ENCODE_REG_LIST(lir->operands[0]);
206    }
207
208    if (flags & REG_USE_LIST1) {
209        lir->useMask |= ENCODE_REG_LIST(lir->operands[1]);
210    }
211
212    if (flags & USES_CCODES) {
213        lir->useMask |= ENCODE_CCODE;
214    }
215
216    /* Fixup for kThumbPush/lr and kThumbPop/pc */
217    if (opcode == kThumbPush || opcode == kThumbPop) {
218        u8 r8Mask = getRegMaskCommon(r8);
219        if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) {
220            lir->useMask &= ~r8Mask;
221            lir->useMask |= ENCODE_REG_LR;
222        } else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) {
223            lir->defMask &= ~r8Mask;
224            lir->defMask |= ENCODE_REG_PC;
225        }
226    }
227}
228
229/*
230 * Set up the accurate resource mask for branch instructions
231 */
232static void relaxBranchMasks(ArmLIR *lir)
233{
234    int flags = EncodingMap[lir->opcode].flags;
235
236    /* Make sure only branch instructions are passed here */
237    assert(flags & IS_BRANCH);
238
239    lir->useMask = lir->defMask = ENCODE_REG_PC;
240
241    if (flags & REG_DEF_LR) {
242        lir->defMask |= ENCODE_REG_LR;
243    }
244
245    if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) {
246        int i;
247
248        for (i = 0; i < 4; i++) {
249            if (flags & (1 << (kRegUse0 + i))) {
250                setupRegMask(&lir->useMask, lir->operands[i]);
251            }
252        }
253    }
254
255    if (flags & USES_CCODES) {
256        lir->useMask |= ENCODE_CCODE;
257    }
258}
259
260/*
261 * The following are building blocks to construct low-level IRs with 0 - 4
262 * operands.
263 */
264static ArmLIR *newLIR0(CompilationUnit *cUnit, ArmOpcode opcode)
265{
266    ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
267    assert(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & NO_OPERAND));
268    insn->opcode = opcode;
269    setupResourceMasks(insn);
270    dvmCompilerAppendLIR(cUnit, (LIR *) insn);
271    return insn;
272}
273
274static ArmLIR *newLIR1(CompilationUnit *cUnit, ArmOpcode opcode,
275                           int dest)
276{
277    ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
278    assert(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_UNARY_OP));
279    insn->opcode = opcode;
280    insn->operands[0] = dest;
281    setupResourceMasks(insn);
282    dvmCompilerAppendLIR(cUnit, (LIR *) insn);
283    return insn;
284}
285
286static ArmLIR *newLIR2(CompilationUnit *cUnit, ArmOpcode opcode,
287                           int dest, int src1)
288{
289    ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
290    assert(isPseudoOpcode(opcode) ||
291           (EncodingMap[opcode].flags & IS_BINARY_OP));
292    insn->opcode = opcode;
293    insn->operands[0] = dest;
294    insn->operands[1] = src1;
295    setupResourceMasks(insn);
296    dvmCompilerAppendLIR(cUnit, (LIR *) insn);
297    return insn;
298}
299
300static ArmLIR *newLIR3(CompilationUnit *cUnit, ArmOpcode opcode,
301                           int dest, int src1, int src2)
302{
303    ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
304    if (!(EncodingMap[opcode].flags & IS_TERTIARY_OP)) {
305        ALOGE("Bad LIR3: %s[%d]",EncodingMap[opcode].name,opcode);
306    }
307    assert(isPseudoOpcode(opcode) ||
308           (EncodingMap[opcode].flags & IS_TERTIARY_OP));
309    insn->opcode = opcode;
310    insn->operands[0] = dest;
311    insn->operands[1] = src1;
312    insn->operands[2] = src2;
313    setupResourceMasks(insn);
314    dvmCompilerAppendLIR(cUnit, (LIR *) insn);
315    return insn;
316}
317
318#if defined(_ARMV7_A) || defined(_ARMV7_A_NEON)
319static ArmLIR *newLIR4(CompilationUnit *cUnit, ArmOpcode opcode,
320                           int dest, int src1, int src2, int info)
321{
322    ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
323    assert(isPseudoOpcode(opcode) ||
324           (EncodingMap[opcode].flags & IS_QUAD_OP));
325    insn->opcode = opcode;
326    insn->operands[0] = dest;
327    insn->operands[1] = src1;
328    insn->operands[2] = src2;
329    insn->operands[3] = info;
330    setupResourceMasks(insn);
331    dvmCompilerAppendLIR(cUnit, (LIR *) insn);
332    return insn;
333}
334#endif
335
336/*
337 * If the next instruction is a move-result or move-result-long,
338 * return the target Dalvik sReg[s] and convert the next to a
339 * nop.  Otherwise, return INVALID_SREG.  Used to optimize method inlining.
340 */
341static RegLocation inlinedTarget(CompilationUnit *cUnit, MIR *mir,
342                                  bool fpHint)
343{
344    if (mir->next &&
345        ((mir->next->dalvikInsn.opcode == OP_MOVE_RESULT) ||
346         (mir->next->dalvikInsn.opcode == OP_MOVE_RESULT_OBJECT))) {
347        mir->next->dalvikInsn.opcode = OP_NOP;
348        return dvmCompilerGetDest(cUnit, mir->next, 0);
349    } else {
350        RegLocation res = LOC_DALVIK_RETURN_VAL;
351        res.fp = fpHint;
352        return res;
353    }
354}
355
356/*
357 * Search the existing constants in the literal pool for an exact or close match
358 * within specified delta (greater or equal to 0).
359 */
360static ArmLIR *scanLiteralPool(LIR *dataTarget, int value, unsigned int delta)
361{
362    while (dataTarget) {
363        if (((unsigned) (value - ((ArmLIR *) dataTarget)->operands[0])) <=
364            delta)
365            return (ArmLIR *) dataTarget;
366        dataTarget = dataTarget->next;
367    }
368    return NULL;
369}
370
371/*
372 * The following are building blocks to insert constants into the pool or
373 * instruction streams.
374 */
375
376/* Add a 32-bit constant either in the constant pool or mixed with code */
377static ArmLIR *addWordData(CompilationUnit *cUnit, LIR **constantListP,
378                           int value)
379{
380    /* Add the constant to the literal pool */
381    if (constantListP) {
382        ArmLIR *newValue = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
383        newValue->operands[0] = value;
384        newValue->generic.next = *constantListP;
385        *constantListP = (LIR *) newValue;
386        return newValue;
387    } else {
388        /* Add the constant in the middle of code stream */
389        newLIR1(cUnit, kArm16BitData, (value & 0xffff));
390        newLIR1(cUnit, kArm16BitData, (value >> 16));
391    }
392    return NULL;
393}
394
395static RegLocation inlinedTargetWide(CompilationUnit *cUnit, MIR *mir,
396                                      bool fpHint)
397{
398    if (mir->next &&
399        (mir->next->dalvikInsn.opcode == OP_MOVE_RESULT_WIDE)) {
400        mir->next->dalvikInsn.opcode = OP_NOP;
401        return dvmCompilerGetDestWide(cUnit, mir->next, 0, 1);
402    } else {
403        RegLocation res = LOC_DALVIK_RETURN_VAL_WIDE;
404        res.fp = fpHint;
405        return res;
406    }
407}
408
409
410/*
411 * Generate an kArmPseudoBarrier marker to indicate the boundary of special
412 * blocks.
413 */
414static void genBarrier(CompilationUnit *cUnit)
415{
416    ArmLIR *barrier = newLIR0(cUnit, kArmPseudoBarrier);
417    /* Mark all resources as being clobbered */
418    barrier->defMask = -1;
419}
420
421/* Create the PC reconstruction slot if not already done */
422static ArmLIR *genCheckCommon(CompilationUnit *cUnit, int dOffset,
423                              ArmLIR *branch,
424                              ArmLIR *pcrLabel)
425{
426    /* Forget all def info (because we might rollback here.  Bug #2367397 */
427    dvmCompilerResetDefTracking(cUnit);
428
429    /* Set up the place holder to reconstruct this Dalvik PC */
430    if (pcrLabel == NULL) {
431        int dPC = (int) (cUnit->method->insns + dOffset);
432        pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
433        pcrLabel->opcode = kArmPseudoPCReconstructionCell;
434        pcrLabel->operands[0] = dPC;
435        pcrLabel->operands[1] = dOffset;
436        /* Insert the place holder to the growable list */
437        dvmInsertGrowableList(&cUnit->pcReconstructionList,
438                              (intptr_t) pcrLabel);
439    }
440    /* Branch to the PC reconstruction code */
441    branch->generic.target = (LIR *) pcrLabel;
442
443    /* Clear the conservative flags for branches that punt to the interpreter */
444    relaxBranchMasks(branch);
445
446    return pcrLabel;
447}
448