CodegenDriver.cpp revision 062bf509a77fce9dfcb7e7b2e401cf2a124d83d5
1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This file contains codegen and support common to all supported
19 * ARM variants.  It is included by:
20 *
21 *        Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 * which combines this common code with specific support found in the
24 * applicable directory below this one.
25 */
26
27/*
28 * Mark garbage collection card. Skip if the value we're storing is null.
29 */
30static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
31{
32    int regCardBase = dvmCompilerAllocTemp(cUnit);
33    int regCardNo = dvmCompilerAllocTemp(cUnit);
34    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
35    loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable),
36                 regCardBase);
37    opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
38    storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
39                     kUnsignedByte);
40    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
41    target->defMask = ENCODE_ALL;
42    branchOver->generic.target = (LIR *)target;
43    dvmCompilerFreeTemp(cUnit, regCardBase);
44    dvmCompilerFreeTemp(cUnit, regCardNo);
45}
46
47static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
48                                     int srcSize, int tgtSize)
49{
50    /*
51     * Don't optimize the register usage since it calls out to template
52     * functions
53     */
54    RegLocation rlSrc;
55    RegLocation rlDest;
56    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
57    if (srcSize == 1) {
58        rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
59        loadValueDirectFixed(cUnit, rlSrc, r0);
60    } else {
61        rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
62        loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
63    }
64    LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
65    opReg(cUnit, kOpBlx, r2);
66    dvmCompilerClobberCallRegs(cUnit);
67    if (tgtSize == 1) {
68        RegLocation rlResult;
69        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
70        rlResult = dvmCompilerGetReturn(cUnit);
71        storeValue(cUnit, rlDest, rlResult);
72    } else {
73        RegLocation rlResult;
74        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
75        rlResult = dvmCompilerGetReturnWide(cUnit);
76        storeValueWide(cUnit, rlDest, rlResult);
77    }
78    return false;
79}
80
81static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
82                                    RegLocation rlDest, RegLocation rlSrc1,
83                                    RegLocation rlSrc2)
84{
85    RegLocation rlResult;
86    void* funct;
87
88    switch (mir->dalvikInsn.opcode) {
89        case OP_ADD_FLOAT_2ADDR:
90        case OP_ADD_FLOAT:
91            funct = (void*) __aeabi_fadd;
92            break;
93        case OP_SUB_FLOAT_2ADDR:
94        case OP_SUB_FLOAT:
95            funct = (void*) __aeabi_fsub;
96            break;
97        case OP_DIV_FLOAT_2ADDR:
98        case OP_DIV_FLOAT:
99            funct = (void*) __aeabi_fdiv;
100            break;
101        case OP_MUL_FLOAT_2ADDR:
102        case OP_MUL_FLOAT:
103            funct = (void*) __aeabi_fmul;
104            break;
105        case OP_REM_FLOAT_2ADDR:
106        case OP_REM_FLOAT:
107            funct = (void*) fmodf;
108            break;
109        case OP_NEG_FLOAT: {
110            genNegFloat(cUnit, rlDest, rlSrc1);
111            return false;
112        }
113        default:
114            return true;
115    }
116    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
117    loadValueDirectFixed(cUnit, rlSrc1, r0);
118    loadValueDirectFixed(cUnit, rlSrc2, r1);
119    LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
120    opReg(cUnit, kOpBlx, r2);
121    dvmCompilerClobberCallRegs(cUnit);
122    rlResult = dvmCompilerGetReturn(cUnit);
123    storeValue(cUnit, rlDest, rlResult);
124    return false;
125}
126
127static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
128                                     RegLocation rlDest, RegLocation rlSrc1,
129                                     RegLocation rlSrc2)
130{
131    RegLocation rlResult;
132    void* funct;
133
134    switch (mir->dalvikInsn.opcode) {
135        case OP_ADD_DOUBLE_2ADDR:
136        case OP_ADD_DOUBLE:
137            funct = (void*) __aeabi_dadd;
138            break;
139        case OP_SUB_DOUBLE_2ADDR:
140        case OP_SUB_DOUBLE:
141            funct = (void*) __aeabi_dsub;
142            break;
143        case OP_DIV_DOUBLE_2ADDR:
144        case OP_DIV_DOUBLE:
145            funct = (void*) __aeabi_ddiv;
146            break;
147        case OP_MUL_DOUBLE_2ADDR:
148        case OP_MUL_DOUBLE:
149            funct = (void*) __aeabi_dmul;
150            break;
151        case OP_REM_DOUBLE_2ADDR:
152        case OP_REM_DOUBLE:
153            funct = (void*) (double (*)(double, double)) fmod;
154            break;
155        case OP_NEG_DOUBLE: {
156            genNegDouble(cUnit, rlDest, rlSrc1);
157            return false;
158        }
159        default:
160            return true;
161    }
162    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
163    LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct);
164    loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
165    loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
166    opReg(cUnit, kOpBlx, r14lr);
167    dvmCompilerClobberCallRegs(cUnit);
168    rlResult = dvmCompilerGetReturnWide(cUnit);
169    storeValueWide(cUnit, rlDest, rlResult);
170#if defined(WITH_SELF_VERIFICATION)
171    cUnit->usesLinkRegister = true;
172#endif
173    return false;
174}
175
176static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
177{
178    Opcode opcode = mir->dalvikInsn.opcode;
179
180    switch (opcode) {
181        case OP_INT_TO_FLOAT:
182            return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
183        case OP_FLOAT_TO_INT:
184            return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
185        case OP_DOUBLE_TO_FLOAT:
186            return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
187        case OP_FLOAT_TO_DOUBLE:
188            return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
189        case OP_INT_TO_DOUBLE:
190            return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
191        case OP_DOUBLE_TO_INT:
192            return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
193        case OP_FLOAT_TO_LONG:
194            return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
195        case OP_LONG_TO_FLOAT:
196            return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
197        case OP_DOUBLE_TO_LONG:
198            return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
199        case OP_LONG_TO_DOUBLE:
200            return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
201        default:
202            return true;
203    }
204    return false;
205}
206
207#if defined(WITH_SELF_VERIFICATION)
208static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
209                          int dest, int src1)
210{
211     ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
212     insn->opcode = opcode;
213     insn->operands[0] = dest;
214     insn->operands[1] = src1;
215     setupResourceMasks(insn);
216     dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
217}
218
219/*
220 * Example where r14 (LR) is preserved around a heap access under
221 * self-verification mode in Thumb2:
222 *
223 * D/dalvikvm( 1538): 0x59414c5e (0026): ldr     r14, [r15pc, #220] <-hoisted
224 * D/dalvikvm( 1538): 0x59414c62 (002a): mla     r4, r0, r8, r4
225 * D/dalvikvm( 1538): 0x59414c66 (002e): adds    r3, r4, r3
226 * D/dalvikvm( 1538): 0x59414c6a (0032): push    <r5, r14>    ---+
227 * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1   0x5940f494      |
228 * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2   see above       <-MEM_OP_DECODE
229 * D/dalvikvm( 1538): 0x59414c70 (0038): ldr     r10, [r9, #0]   |
230 * D/dalvikvm( 1538): 0x59414c74 (003c): pop     <r5, r14>    ---+
231 * D/dalvikvm( 1538): 0x59414c78 (0040): mov     r11, r10
232 * D/dalvikvm( 1538): 0x59414c7a (0042): asr     r12, r11, #31
233 * D/dalvikvm( 1538): 0x59414c7e (0046): movs    r0, r2
234 * D/dalvikvm( 1538): 0x59414c80 (0048): movs    r1, r3
235 * D/dalvikvm( 1538): 0x59414c82 (004a): str     r2, [r5, #16]
236 * D/dalvikvm( 1538): 0x59414c84 (004c): mov     r2, r11
237 * D/dalvikvm( 1538): 0x59414c86 (004e): str     r3, [r5, #20]
238 * D/dalvikvm( 1538): 0x59414c88 (0050): mov     r3, r12
239 * D/dalvikvm( 1538): 0x59414c8a (0052): str     r11, [r5, #24]
240 * D/dalvikvm( 1538): 0x59414c8e (0056): str     r12, [r5, #28]
241 * D/dalvikvm( 1538): 0x59414c92 (005a): blx     r14             <-use of LR
242 *
243 */
244static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
245{
246    ArmLIR *thisLIR;
247    TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
248
249    for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
250         thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
251         thisLIR = NEXT_LIR(thisLIR)) {
252        if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
253            /*
254             * Push r5(FP) and r14(LR) onto stack. We need to make sure that
255             * SP is 8-byte aligned, and we use r5 as a temp to restore LR
256             * for Thumb-only target since LR cannot be directly accessed in
257             * Thumb mode. Another reason to choose r5 here is it is the Dalvik
258             * frame pointer and cannot be the target of the emulated heap
259             * load.
260             */
261            if (cUnit->usesLinkRegister) {
262                genSelfVerificationPreBranch(cUnit, thisLIR);
263            }
264
265            /* Branch to mem op decode template */
266            selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
267                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
268                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
269            selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
270                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
271                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
272
273            /* Restore LR */
274            if (cUnit->usesLinkRegister) {
275                genSelfVerificationPostBranch(cUnit, thisLIR);
276            }
277        }
278    }
279}
280#endif
281
282/* Generate conditional branch instructions */
283static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
284                                    ArmConditionCode cond,
285                                    ArmLIR *target)
286{
287    ArmLIR *branch = opCondBranch(cUnit, cond);
288    branch->generic.target = (LIR *) target;
289    return branch;
290}
291
292/* Generate a unconditional branch to go to the interpreter */
293static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
294                                  ArmLIR *pcrLabel)
295{
296    ArmLIR *branch = opNone(cUnit, kOpUncondBr);
297    return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
298}
299
300/* Load a wide field from an object instance */
301static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
302{
303    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
304    RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
305    RegLocation rlResult;
306    rlObj = loadValue(cUnit, rlObj, kCoreReg);
307    int regPtr = dvmCompilerAllocTemp(cUnit);
308
309    assert(rlDest.wide);
310
311    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
312                 NULL);/* null object? */
313    opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
314    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
315
316    HEAP_ACCESS_SHADOW(true);
317    loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
318    HEAP_ACCESS_SHADOW(false);
319
320    dvmCompilerFreeTemp(cUnit, regPtr);
321    storeValueWide(cUnit, rlDest, rlResult);
322}
323
324/* Store a wide field to an object instance */
325static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
326{
327    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
328    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
329    rlObj = loadValue(cUnit, rlObj, kCoreReg);
330    int regPtr;
331    rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
332    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
333                 NULL);/* null object? */
334    regPtr = dvmCompilerAllocTemp(cUnit);
335    opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
336
337    HEAP_ACCESS_SHADOW(true);
338    storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
339    HEAP_ACCESS_SHADOW(false);
340
341    dvmCompilerFreeTemp(cUnit, regPtr);
342}
343
344/*
345 * Load a field from an object instance
346 *
347 */
348static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
349                    int fieldOffset, bool isVolatile)
350{
351    RegLocation rlResult;
352    RegisterClass regClass = dvmCompilerRegClassBySize(size);
353    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
354    RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
355    rlObj = loadValue(cUnit, rlObj, kCoreReg);
356    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
357    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
358                 NULL);/* null object? */
359
360    HEAP_ACCESS_SHADOW(true);
361    loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
362                 size, rlObj.sRegLow);
363    HEAP_ACCESS_SHADOW(false);
364    if (isVolatile) {
365        dvmCompilerGenMemBarrier(cUnit, kSY);
366    }
367
368    storeValue(cUnit, rlDest, rlResult);
369}
370
371/*
372 * Store a field to an object instance
373 *
374 */
375static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
376                    int fieldOffset, bool isObject, bool isVolatile)
377{
378    RegisterClass regClass = dvmCompilerRegClassBySize(size);
379    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
380    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
381    rlObj = loadValue(cUnit, rlObj, kCoreReg);
382    rlSrc = loadValue(cUnit, rlSrc, regClass);
383    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
384                 NULL);/* null object? */
385
386    if (isVolatile) {
387        dvmCompilerGenMemBarrier(cUnit, kST);
388    }
389    HEAP_ACCESS_SHADOW(true);
390    storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
391    HEAP_ACCESS_SHADOW(false);
392    if (isVolatile) {
393        dvmCompilerGenMemBarrier(cUnit, kSY);
394    }
395    if (isObject) {
396        /* NOTE: marking card based on object head */
397        markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
398    }
399}
400
401
402/*
403 * Generate array load
404 */
405static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
406                        RegLocation rlArray, RegLocation rlIndex,
407                        RegLocation rlDest, int scale)
408{
409    RegisterClass regClass = dvmCompilerRegClassBySize(size);
410    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
411    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
412    RegLocation rlResult;
413    rlArray = loadValue(cUnit, rlArray, kCoreReg);
414    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
415    int regPtr;
416
417    /* null object? */
418    ArmLIR * pcrLabel = NULL;
419
420    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
421        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
422                                rlArray.lowReg, mir->offset, NULL);
423    }
424
425    regPtr = dvmCompilerAllocTemp(cUnit);
426
427    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
428        int regLen = dvmCompilerAllocTemp(cUnit);
429        /* Get len */
430        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
431        /* regPtr -> array data */
432        opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
433        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
434                       pcrLabel);
435        dvmCompilerFreeTemp(cUnit, regLen);
436    } else {
437        /* regPtr -> array data */
438        opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
439    }
440    if ((size == kLong) || (size == kDouble)) {
441        if (scale) {
442            int rNewIndex = dvmCompilerAllocTemp(cUnit);
443            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
444            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
445            dvmCompilerFreeTemp(cUnit, rNewIndex);
446        } else {
447            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
448        }
449        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
450
451        HEAP_ACCESS_SHADOW(true);
452        loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
453        HEAP_ACCESS_SHADOW(false);
454
455        dvmCompilerFreeTemp(cUnit, regPtr);
456        storeValueWide(cUnit, rlDest, rlResult);
457    } else {
458        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
459
460        HEAP_ACCESS_SHADOW(true);
461        loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
462                        scale, size);
463        HEAP_ACCESS_SHADOW(false);
464
465        dvmCompilerFreeTemp(cUnit, regPtr);
466        storeValue(cUnit, rlDest, rlResult);
467    }
468}
469
470/*
471 * Generate array store
472 *
473 */
474static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
475                        RegLocation rlArray, RegLocation rlIndex,
476                        RegLocation rlSrc, int scale)
477{
478    RegisterClass regClass = dvmCompilerRegClassBySize(size);
479    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
480    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
481
482    int regPtr;
483    rlArray = loadValue(cUnit, rlArray, kCoreReg);
484    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
485
486    if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
487        dvmCompilerClobber(cUnit, rlArray.lowReg);
488        regPtr = rlArray.lowReg;
489    } else {
490        regPtr = dvmCompilerAllocTemp(cUnit);
491        genRegCopy(cUnit, regPtr, rlArray.lowReg);
492    }
493
494    /* null object? */
495    ArmLIR * pcrLabel = NULL;
496
497    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
498        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
499                                mir->offset, NULL);
500    }
501
502    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
503        int regLen = dvmCompilerAllocTemp(cUnit);
504        //NOTE: max live temps(4) here.
505        /* Get len */
506        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
507        /* regPtr -> array data */
508        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
509        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
510                       pcrLabel);
511        dvmCompilerFreeTemp(cUnit, regLen);
512    } else {
513        /* regPtr -> array data */
514        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
515    }
516    /* at this point, regPtr points to array, 2 live temps */
517    if ((size == kLong) || (size == kDouble)) {
518        //TODO: need specific wide routine that can handle fp regs
519        if (scale) {
520            int rNewIndex = dvmCompilerAllocTemp(cUnit);
521            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
522            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
523            dvmCompilerFreeTemp(cUnit, rNewIndex);
524        } else {
525            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
526        }
527        rlSrc = loadValueWide(cUnit, rlSrc, regClass);
528
529        HEAP_ACCESS_SHADOW(true);
530        storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
531        HEAP_ACCESS_SHADOW(false);
532
533        dvmCompilerFreeTemp(cUnit, regPtr);
534    } else {
535        rlSrc = loadValue(cUnit, rlSrc, regClass);
536
537        HEAP_ACCESS_SHADOW(true);
538        storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
539                         scale, size);
540        HEAP_ACCESS_SHADOW(false);
541    }
542}
543
544/*
545 * Generate array object store
546 * Must use explicit register allocation here because of
547 * call-out to dvmCanPutArrayElement
548 */
549static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
550                              RegLocation rlArray, RegLocation rlIndex,
551                              RegLocation rlSrc, int scale)
552{
553    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
554    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
555
556    dvmCompilerFlushAllRegs(cUnit);
557
558    int regLen = r0;
559    int regPtr = r4PC;  /* Preserved across call */
560    int regArray = r1;
561    int regIndex = r7;  /* Preserved across call */
562
563    loadValueDirectFixed(cUnit, rlArray, regArray);
564    loadValueDirectFixed(cUnit, rlIndex, regIndex);
565
566    /* null object? */
567    ArmLIR * pcrLabel = NULL;
568
569    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
570        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
571                                mir->offset, NULL);
572    }
573
574    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
575        /* Get len */
576        loadWordDisp(cUnit, regArray, lenOffset, regLen);
577        /* regPtr -> array data */
578        opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
579        genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
580                       pcrLabel);
581    } else {
582        /* regPtr -> array data */
583        opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
584    }
585
586    /* Get object to store */
587    loadValueDirectFixed(cUnit, rlSrc, r0);
588    LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
589
590    /* Are we storing null?  If so, avoid check */
591    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
592
593    /* Make sure the types are compatible */
594    loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
595    loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
596    opReg(cUnit, kOpBlx, r2);
597    dvmCompilerClobberCallRegs(cUnit);
598
599    /*
600     * Using fixed registers here, and counting on r4 and r7 being
601     * preserved across the above call.  Tell the register allocation
602     * utilities about the regs we are using directly
603     */
604    dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
605    dvmCompilerLockTemp(cUnit, regIndex); // r7
606    dvmCompilerLockTemp(cUnit, r0);
607    dvmCompilerLockTemp(cUnit, r1);
608
609    /* Bad? - roll back and re-execute if so */
610    genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
611
612    /* Resume here - must reload element & array, regPtr & index preserved */
613    loadValueDirectFixed(cUnit, rlSrc, r0);
614    loadValueDirectFixed(cUnit, rlArray, r1);
615
616    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
617    target->defMask = ENCODE_ALL;
618    branchOver->generic.target = (LIR *) target;
619
620    HEAP_ACCESS_SHADOW(true);
621    storeBaseIndexed(cUnit, regPtr, regIndex, r0,
622                     scale, kWord);
623    HEAP_ACCESS_SHADOW(false);
624
625    dvmCompilerFreeTemp(cUnit, regPtr);
626    dvmCompilerFreeTemp(cUnit, regIndex);
627
628    /* NOTE: marking card here based on object head */
629    markCard(cUnit, r0, r1);
630}
631
632static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
633                           RegLocation rlDest, RegLocation rlSrc1,
634                           RegLocation rlShift)
635{
636    /*
637     * Don't mess with the regsiters here as there is a particular calling
638     * convention to the out-of-line handler.
639     */
640    RegLocation rlResult;
641
642    loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
643    loadValueDirect(cUnit, rlShift, r2);
644    switch( mir->dalvikInsn.opcode) {
645        case OP_SHL_LONG:
646        case OP_SHL_LONG_2ADDR:
647            genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
648            break;
649        case OP_SHR_LONG:
650        case OP_SHR_LONG_2ADDR:
651            genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
652            break;
653        case OP_USHR_LONG:
654        case OP_USHR_LONG_2ADDR:
655            genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
656            break;
657        default:
658            return true;
659    }
660    rlResult = dvmCompilerGetReturnWide(cUnit);
661    storeValueWide(cUnit, rlDest, rlResult);
662    return false;
663}
664
665static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
666                           RegLocation rlDest, RegLocation rlSrc1,
667                           RegLocation rlSrc2)
668{
669    RegLocation rlResult;
670    OpKind firstOp = kOpBkpt;
671    OpKind secondOp = kOpBkpt;
672    bool callOut = false;
673    void *callTgt;
674    int retReg = r0;
675
676    switch (mir->dalvikInsn.opcode) {
677        case OP_NOT_LONG:
678            rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
679            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
680            opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
681            opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
682            storeValueWide(cUnit, rlDest, rlResult);
683            return false;
684            break;
685        case OP_ADD_LONG:
686        case OP_ADD_LONG_2ADDR:
687            firstOp = kOpAdd;
688            secondOp = kOpAdc;
689            break;
690        case OP_SUB_LONG:
691        case OP_SUB_LONG_2ADDR:
692            firstOp = kOpSub;
693            secondOp = kOpSbc;
694            break;
695        case OP_MUL_LONG:
696        case OP_MUL_LONG_2ADDR:
697            genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
698            return false;
699        case OP_DIV_LONG:
700        case OP_DIV_LONG_2ADDR:
701            callOut = true;
702            retReg = r0;
703            callTgt = (void*)__aeabi_ldivmod;
704            break;
705        /* NOTE - result is in r2/r3 instead of r0/r1 */
706        case OP_REM_LONG:
707        case OP_REM_LONG_2ADDR:
708            callOut = true;
709            callTgt = (void*)__aeabi_ldivmod;
710            retReg = r2;
711            break;
712        case OP_AND_LONG_2ADDR:
713        case OP_AND_LONG:
714            firstOp = kOpAnd;
715            secondOp = kOpAnd;
716            break;
717        case OP_OR_LONG:
718        case OP_OR_LONG_2ADDR:
719            firstOp = kOpOr;
720            secondOp = kOpOr;
721            break;
722        case OP_XOR_LONG:
723        case OP_XOR_LONG_2ADDR:
724            firstOp = kOpXor;
725            secondOp = kOpXor;
726            break;
727        case OP_NEG_LONG: {
728            //TUNING: can improve this using Thumb2 code
729            int tReg = dvmCompilerAllocTemp(cUnit);
730            rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
731            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
732            loadConstantNoClobber(cUnit, tReg, 0);
733            opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
734                        tReg, rlSrc2.lowReg);
735            opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
736            genRegCopy(cUnit, rlResult.highReg, tReg);
737            storeValueWide(cUnit, rlDest, rlResult);
738            return false;
739        }
740        default:
741            LOGE("Invalid long arith op");
742            dvmCompilerAbort(cUnit);
743    }
744    if (!callOut) {
745        genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
746    } else {
747        // Adjust return regs in to handle case of rem returning r2/r3
748        dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
749        loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
750        LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt);
751        loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
752        opReg(cUnit, kOpBlx, r14lr);
753        dvmCompilerClobberCallRegs(cUnit);
754        if (retReg == r0)
755            rlResult = dvmCompilerGetReturnWide(cUnit);
756        else
757            rlResult = dvmCompilerGetReturnWideAlt(cUnit);
758        storeValueWide(cUnit, rlDest, rlResult);
759#if defined(WITH_SELF_VERIFICATION)
760        cUnit->usesLinkRegister = true;
761#endif
762    }
763    return false;
764}
765
766static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
767                          RegLocation rlDest, RegLocation rlSrc1,
768                          RegLocation rlSrc2)
769{
770    OpKind op = kOpBkpt;
771    bool callOut = false;
772    bool checkZero = false;
773    bool unary = false;
774    int retReg = r0;
775    int (*callTgt)(int, int);
776    RegLocation rlResult;
777    bool shiftOp = false;
778
779    switch (mir->dalvikInsn.opcode) {
780        case OP_NEG_INT:
781            op = kOpNeg;
782            unary = true;
783            break;
784        case OP_NOT_INT:
785            op = kOpMvn;
786            unary = true;
787            break;
788        case OP_ADD_INT:
789        case OP_ADD_INT_2ADDR:
790            op = kOpAdd;
791            break;
792        case OP_SUB_INT:
793        case OP_SUB_INT_2ADDR:
794            op = kOpSub;
795            break;
796        case OP_MUL_INT:
797        case OP_MUL_INT_2ADDR:
798            op = kOpMul;
799            break;
800        case OP_DIV_INT:
801        case OP_DIV_INT_2ADDR:
802            callOut = true;
803            checkZero = true;
804            callTgt = __aeabi_idiv;
805            retReg = r0;
806            break;
807        /* NOTE: returns in r1 */
808        case OP_REM_INT:
809        case OP_REM_INT_2ADDR:
810            callOut = true;
811            checkZero = true;
812            callTgt = __aeabi_idivmod;
813            retReg = r1;
814            break;
815        case OP_AND_INT:
816        case OP_AND_INT_2ADDR:
817            op = kOpAnd;
818            break;
819        case OP_OR_INT:
820        case OP_OR_INT_2ADDR:
821            op = kOpOr;
822            break;
823        case OP_XOR_INT:
824        case OP_XOR_INT_2ADDR:
825            op = kOpXor;
826            break;
827        case OP_SHL_INT:
828        case OP_SHL_INT_2ADDR:
829            shiftOp = true;
830            op = kOpLsl;
831            break;
832        case OP_SHR_INT:
833        case OP_SHR_INT_2ADDR:
834            shiftOp = true;
835            op = kOpAsr;
836            break;
837        case OP_USHR_INT:
838        case OP_USHR_INT_2ADDR:
839            shiftOp = true;
840            op = kOpLsr;
841            break;
842        default:
843            LOGE("Invalid word arith op: %#x(%d)",
844                 mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
845            dvmCompilerAbort(cUnit);
846    }
847    if (!callOut) {
848        rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
849        if (unary) {
850            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
851            opRegReg(cUnit, op, rlResult.lowReg,
852                     rlSrc1.lowReg);
853        } else {
854            rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
855            if (shiftOp) {
856                int tReg = dvmCompilerAllocTemp(cUnit);
857                opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
858                rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
859                opRegRegReg(cUnit, op, rlResult.lowReg,
860                            rlSrc1.lowReg, tReg);
861                dvmCompilerFreeTemp(cUnit, tReg);
862            } else {
863                rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
864                opRegRegReg(cUnit, op, rlResult.lowReg,
865                            rlSrc1.lowReg, rlSrc2.lowReg);
866            }
867        }
868        storeValue(cUnit, rlDest, rlResult);
869    } else {
870        RegLocation rlResult;
871        dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
872        loadValueDirectFixed(cUnit, rlSrc2, r1);
873        LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
874        loadValueDirectFixed(cUnit, rlSrc1, r0);
875        if (checkZero) {
876            genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
877        }
878        opReg(cUnit, kOpBlx, r2);
879        dvmCompilerClobberCallRegs(cUnit);
880        if (retReg == r0)
881            rlResult = dvmCompilerGetReturn(cUnit);
882        else
883            rlResult = dvmCompilerGetReturnAlt(cUnit);
884        storeValue(cUnit, rlDest, rlResult);
885    }
886    return false;
887}
888
889static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
890{
891    Opcode opcode = mir->dalvikInsn.opcode;
892    RegLocation rlDest;
893    RegLocation rlSrc1;
894    RegLocation rlSrc2;
895    /* Deduce sizes of operands */
896    if (mir->ssaRep->numUses == 2) {
897        rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
898        rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
899    } else if (mir->ssaRep->numUses == 3) {
900        rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
901        rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
902    } else {
903        rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
904        rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
905        assert(mir->ssaRep->numUses == 4);
906    }
907    if (mir->ssaRep->numDefs == 1) {
908        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
909    } else {
910        assert(mir->ssaRep->numDefs == 2);
911        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
912    }
913
914    if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
915        return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
916    }
917    if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
918        return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
919    }
920    if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
921        return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
922    }
923    if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
924        return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
925    }
926    if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
927        return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
928    }
929    if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
930        return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
931    }
932    if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
933        return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
934    }
935    if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
936        return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
937    }
938    if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
939        return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
940    }
941    if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
942        return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
943    }
944    return true;
945}
946
947/* Generate unconditional branch instructions */
948static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
949{
950    ArmLIR *branch = opNone(cUnit, kOpUncondBr);
951    branch->generic.target = (LIR *) target;
952    return branch;
953}
954
955/* Perform the actual operation for OP_RETURN_* */
956static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
957{
958    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
959                         TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
960#if defined(WITH_JIT_TUNING)
961    gDvmJit.returnOp++;
962#endif
963    int dPC = (int) (cUnit->method->insns + mir->offset);
964    /* Insert branch, but defer setting of target */
965    ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
966    /* Set up the place holder to reconstruct this Dalvik PC */
967    ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
968    pcrLabel->opcode = kArmPseudoPCReconstructionCell;
969    pcrLabel->operands[0] = dPC;
970    pcrLabel->operands[1] = mir->offset;
971    /* Insert the place holder to the growable list */
972    dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
973    /* Branch to the PC reconstruction code */
974    branch->generic.target = (LIR *) pcrLabel;
975}
976
977static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
978                                  DecodedInstruction *dInsn,
979                                  ArmLIR **pcrLabel)
980{
981    unsigned int i;
982    unsigned int regMask = 0;
983    RegLocation rlArg;
984    int numDone = 0;
985
986    /*
987     * Load arguments to r0..r4.  Note that these registers may contain
988     * live values, so we clobber them immediately after loading to prevent
989     * them from being used as sources for subsequent loads.
990     */
991    dvmCompilerLockAllTemps(cUnit);
992    for (i = 0; i < dInsn->vA; i++) {
993        regMask |= 1 << i;
994        rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
995        loadValueDirectFixed(cUnit, rlArg, i);
996    }
997    if (regMask) {
998        /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
999        opRegRegImm(cUnit, kOpSub, r7, r5FP,
1000                    sizeof(StackSaveArea) + (dInsn->vA << 2));
1001        /* generate null check */
1002        if (pcrLabel) {
1003            *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
1004                                     mir->offset, NULL);
1005        }
1006        storeMultiple(cUnit, r7, regMask);
1007    }
1008}
1009
1010static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
1011                                DecodedInstruction *dInsn,
1012                                ArmLIR **pcrLabel)
1013{
1014    int srcOffset = dInsn->vC << 2;
1015    int numArgs = dInsn->vA;
1016    int regMask;
1017
1018    /*
1019     * Note: here, all promoted registers will have been flushed
1020     * back to the Dalvik base locations, so register usage restrictins
1021     * are lifted.  All parms loaded from original Dalvik register
1022     * region - even though some might conceivably have valid copies
1023     * cached in a preserved register.
1024     */
1025    dvmCompilerLockAllTemps(cUnit);
1026
1027    /*
1028     * r4PC     : &r5FP[vC]
1029     * r7: &newFP[0]
1030     */
1031    opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset);
1032    /* load [r0 .. min(numArgs,4)] */
1033    regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
1034    /*
1035     * Protect the loadMultiple instruction from being reordered with other
1036     * Dalvik stack accesses.
1037     *
1038     * This code is also shared by the invoke jumbo instructions, and this
1039     * does not need to be done if the invoke jumbo has no arguments.
1040     */
1041    if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
1042
1043    opRegRegImm(cUnit, kOpSub, r7, r5FP,
1044                sizeof(StackSaveArea) + (numArgs << 2));
1045    /* generate null check */
1046    if (pcrLabel) {
1047        *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
1048                                 mir->offset, NULL);
1049    }
1050
1051    /*
1052     * Handle remaining 4n arguments:
1053     * store previously loaded 4 values and load the next 4 values
1054     */
1055    if (numArgs >= 8) {
1056        ArmLIR *loopLabel = NULL;
1057        /*
1058         * r0 contains "this" and it will be used later, so push it to the stack
1059         * first. Pushing r5FP is just for stack alignment purposes.
1060         */
1061        opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP));
1062        /* No need to generate the loop structure if numArgs <= 11 */
1063        if (numArgs > 11) {
1064            loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
1065            loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
1066            loopLabel->defMask = ENCODE_ALL;
1067        }
1068        storeMultiple(cUnit, r7, regMask);
1069        /*
1070         * Protect the loadMultiple instruction from being reordered with other
1071         * Dalvik stack accesses.
1072         */
1073        loadMultiple(cUnit, r4PC, regMask);
1074        /* No need to generate the loop structure if numArgs <= 11 */
1075        if (numArgs > 11) {
1076            opRegImm(cUnit, kOpSub, r5FP, 4);
1077            genConditionalBranch(cUnit, kArmCondNe, loopLabel);
1078        }
1079    }
1080
1081    /* Save the last batch of loaded values */
1082    if (numArgs != 0) storeMultiple(cUnit, r7, regMask);
1083
1084    /* Generate the loop epilogue - don't use r0 */
1085    if ((numArgs > 4) && (numArgs % 4)) {
1086        regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
1087        /*
1088         * Protect the loadMultiple instruction from being reordered with other
1089         * Dalvik stack accesses.
1090         */
1091        loadMultiple(cUnit, r4PC, regMask);
1092    }
1093    if (numArgs >= 8)
1094        opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP));
1095
1096    /* Save the modulo 4 arguments */
1097    if ((numArgs > 4) && (numArgs % 4)) {
1098        storeMultiple(cUnit, r7, regMask);
1099    }
1100}
1101
1102/*
1103 * Generate code to setup the call stack then jump to the chaining cell if it
1104 * is not a native method.
1105 */
1106static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
1107                                     BasicBlock *bb, ArmLIR *labelList,
1108                                     ArmLIR *pcrLabel,
1109                                     const Method *calleeMethod)
1110{
1111    /*
1112     * Note: all Dalvik register state should be flushed to
1113     * memory by the point, so register usage restrictions no
1114     * longer apply.  All temp & preserved registers may be used.
1115     */
1116    dvmCompilerLockAllTemps(cUnit);
1117    ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
1118
1119    /* r1 = &retChainingCell */
1120    ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1121
1122    /* r4PC = dalvikCallsite */
1123    loadConstant(cUnit, r4PC,
1124                 (int) (cUnit->method->insns + mir->offset));
1125    addrRetChain->generic.target = (LIR *) retChainingCell;
1126
1127    /* r7 = calleeMethod->registersSize */
1128    loadConstant(cUnit, r7, calleeMethod->registersSize);
1129    /*
1130     * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
1131     * r1 = &ChainingCell
1132     * r2 = calleeMethod->outsSize (to be loaded later for Java callees)
1133     * r4PC = callsiteDPC
1134     * r7 = calleeMethod->registersSize
1135     */
1136    if (dvmIsNativeMethod(calleeMethod)) {
1137        genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1138            TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
1139            TEMPLATE_INVOKE_METHOD_NATIVE);
1140#if defined(WITH_JIT_TUNING)
1141        gDvmJit.invokeNative++;
1142#endif
1143    } else {
1144        /* For Java callees, set up r2 to be calleeMethod->outsSize */
1145        loadConstant(cUnit, r2, calleeMethod->outsSize);
1146        genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1147            TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
1148            TEMPLATE_INVOKE_METHOD_CHAIN);
1149#if defined(WITH_JIT_TUNING)
1150        gDvmJit.invokeMonomorphic++;
1151#endif
1152        /* Branch to the chaining cell */
1153        genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1154    }
1155    /* Handle exceptions using the interpreter */
1156    genTrap(cUnit, mir->offset, pcrLabel);
1157}
1158
1159/*
1160 * Generate code to check the validity of a predicted chain and take actions
1161 * based on the result.
1162 *
1163 * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
1164 * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
1165 * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
1166 * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
1167 * 0x426a99b2 : blx_2   see above     --+
1168 * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
1169 * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
1170 * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
1171 * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
1172 * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
1173 * 0x426a99be : ldr     r7, [pc, #off]--+ dvmJitToPatchPredictedChain
1174 * 0x426a99c0 : blx     r7            --+
1175 * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
1176 * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
1177 * 0x426a99c6 : blx_2   see above     --+
1178 */
1179static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
1180                                   int methodIndex,
1181                                   ArmLIR *retChainingCell,
1182                                   ArmLIR *predChainingCell,
1183                                   ArmLIR *pcrLabel)
1184{
1185    /*
1186     * Note: all Dalvik register state should be flushed to
1187     * memory by the point, so register usage restrictions no
1188     * longer apply.  Lock temps to prevent them from being
1189     * allocated by utility routines.
1190     */
1191    dvmCompilerLockAllTemps(cUnit);
1192
1193    /*
1194     * For verbose printing, store the method pointer in operands[1] first as
1195     * operands[0] will be clobbered in dvmCompilerMIR2LIR.
1196     */
1197    predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
1198
1199    /* "this" is already left in r0 by genProcessArgs* */
1200
1201    /* r4PC = dalvikCallsite */
1202    loadConstant(cUnit, r4PC,
1203                 (int) (cUnit->method->insns + mir->offset));
1204
1205    /* r1 = &retChainingCell */
1206    ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1207    addrRetChain->generic.target = (LIR *) retChainingCell;
1208
1209    /* r2 = &predictedChainingCell */
1210    ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
1211    predictedChainingCell->generic.target = (LIR *) predChainingCell;
1212
1213    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1214        TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
1215        TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
1216
1217    /* return through lr - jump to the chaining cell */
1218    genUnconditionalBranch(cUnit, predChainingCell);
1219
1220    /*
1221     * null-check on "this" may have been eliminated, but we still need a PC-
1222     * reconstruction label for stack overflow bailout.
1223     */
1224    if (pcrLabel == NULL) {
1225        int dPC = (int) (cUnit->method->insns + mir->offset);
1226        pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
1227        pcrLabel->opcode = kArmPseudoPCReconstructionCell;
1228        pcrLabel->operands[0] = dPC;
1229        pcrLabel->operands[1] = mir->offset;
1230        /* Insert the place holder to the growable list */
1231        dvmInsertGrowableList(&cUnit->pcReconstructionList,
1232                              (intptr_t) pcrLabel);
1233    }
1234
1235    /* return through lr+2 - punt to the interpreter */
1236    genUnconditionalBranch(cUnit, pcrLabel);
1237
1238    /*
1239     * return through lr+4 - fully resolve the callee method.
1240     * r1 <- count
1241     * r2 <- &predictedChainCell
1242     * r3 <- this->class
1243     * r4 <- dPC
1244     * r7 <- this->class->vtable
1245     */
1246
1247    /* r0 <- calleeMethod */
1248    loadWordDisp(cUnit, r7, methodIndex * 4, r0);
1249
1250    /* Check if rechain limit is reached */
1251    ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
1252
1253    LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
1254
1255    genRegCopy(cUnit, r1, r6SELF);
1256
1257    /*
1258     * r0 = calleeMethod
1259     * r2 = &predictedChainingCell
1260     * r3 = class
1261     *
1262     * &returnChainingCell has been loaded into r1 but is not needed
1263     * when patching the chaining cell and will be clobbered upon
1264     * returning so it will be reconstructed again.
1265     */
1266    opReg(cUnit, kOpBlx, r7);
1267
1268    /* r1 = &retChainingCell */
1269    addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1270    addrRetChain->generic.target = (LIR *) retChainingCell;
1271
1272    bypassRechaining->generic.target = (LIR *) addrRetChain;
1273    /*
1274     * r0 = calleeMethod,
1275     * r1 = &ChainingCell,
1276     * r4PC = callsiteDPC,
1277     */
1278    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1279        TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
1280        TEMPLATE_INVOKE_METHOD_NO_OPT);
1281#if defined(WITH_JIT_TUNING)
1282    gDvmJit.invokePolymorphic++;
1283#endif
1284    /* Handle exceptions using the interpreter */
1285    genTrap(cUnit, mir->offset, pcrLabel);
1286}
1287
1288/* "this" pointer is already in r0 */
1289static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
1290                                        MIR *mir,
1291                                        void *calleeAddr,
1292                                        ArmLIR *retChainingCell)
1293{
1294    CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
1295    dvmCompilerLockAllTemps(cUnit);
1296
1297    loadClassPointer(cUnit, r1, (int) callsiteInfo);
1298
1299    loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2);
1300    /* Branch to the slow path if classes are not equal */
1301    opRegReg(cUnit, kOpCmp, r1, r2);
1302    /*
1303     * Set the misPredBranchOver target so that it will be generated when the
1304     * code for the non-optimized invoke is generated.
1305     */
1306    ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe);
1307
1308    /* r0 = the Dalvik PC of the callsite */
1309    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1310
1311    newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
1312    newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
1313    genUnconditionalBranch(cUnit, retChainingCell);
1314
1315    /* Target of slow path */
1316    ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
1317
1318    slowPathLabel->defMask = ENCODE_ALL;
1319    classCheck->generic.target = (LIR *) slowPathLabel;
1320
1321    // FIXME
1322    cUnit->printMe = true;
1323}
1324
1325static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
1326                                          MIR *mir,
1327                                          void *calleeAddr,
1328                                          ArmLIR *retChainingCell)
1329{
1330    /* r0 = the Dalvik PC of the callsite */
1331    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1332
1333    newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
1334    newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
1335    genUnconditionalBranch(cUnit, retChainingCell);
1336
1337    // FIXME
1338    cUnit->printMe = true;
1339}
1340
1341/* Geneate a branch to go back to the interpreter */
1342static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
1343{
1344    /* r0 = dalvik pc */
1345    dvmCompilerFlushAllRegs(cUnit);
1346    loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
1347    loadWordDisp(cUnit, r6SELF, offsetof(Thread,
1348                 jitToInterpEntries.dvmJitToInterpPunt), r1);
1349    opReg(cUnit, kOpBlx, r1);
1350}
1351
1352/*
1353 * Attempt to single step one instruction using the interpreter and return
1354 * to the compiled code for the next Dalvik instruction
1355 */
1356static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
1357{
1358    int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
1359    int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
1360
1361    // Single stepping is considered loop mode breaker
1362    if (cUnit->jitMode == kJitLoop) {
1363        cUnit->quitLoopMode = true;
1364        return;
1365    }
1366
1367    //If already optimized out, just ignore
1368    if (mir->dalvikInsn.opcode == OP_NOP)
1369        return;
1370
1371    //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
1372    dvmCompilerFlushAllRegs(cUnit);
1373
1374    if ((mir->next == NULL) || (flags & flagsToCheck)) {
1375       genPuntToInterp(cUnit, mir->offset);
1376       return;
1377    }
1378    int entryAddr = offsetof(Thread,
1379                             jitToInterpEntries.dvmJitToInterpSingleStep);
1380    loadWordDisp(cUnit, r6SELF, entryAddr, r2);
1381    /* r0 = dalvik pc */
1382    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1383    /* r1 = dalvik pc of following instruction */
1384    loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
1385    opReg(cUnit, kOpBlx, r2);
1386}
1387
1388#if defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
1389/*
1390 * To prevent a thread in a monitor wait from blocking the Jit from
1391 * resetting the code cache, heavyweight monitor lock will not
1392 * be allowed to return to an existing translation.  Instead, we will
1393 * handle them by branching to a handler, which will in turn call the
1394 * runtime lock routine and then branch directly back to the
1395 * interpreter main loop.  Given the high cost of the heavyweight
1396 * lock operation, this additional cost should be slight (especially when
1397 * considering that we expect the vast majority of lock operations to
1398 * use the fast-path thin lock bypass).
1399 */
1400static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
1401{
1402    bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
1403    genExportPC(cUnit, mir);
1404    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
1405    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1406    loadValueDirectFixed(cUnit, rlSrc, r1);
1407    genRegCopy(cUnit, r0, r6SELF);
1408    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
1409    if (isEnter) {
1410        /* Get dPC of next insn */
1411        loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
1412                 dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
1413        genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
1414    } else {
1415        LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
1416        /* Do the call */
1417        opReg(cUnit, kOpBlx, r2);
1418        /* Did we throw? */
1419        ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
1420        loadConstant(cUnit, r0,
1421                     (int) (cUnit->method->insns + mir->offset +
1422                     dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
1423        genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1424        ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1425        target->defMask = ENCODE_ALL;
1426        branchOver->generic.target = (LIR *) target;
1427        dvmCompilerClobberCallRegs(cUnit);
1428    }
1429}
1430#endif
1431
1432/*
1433 * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
1434 * punt to the interpreter.
1435 */
1436static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
1437{
1438    int rTemp = dvmCompilerAllocTemp(cUnit);
1439    ArmLIR *ld;
1440    ld = loadBaseDisp(cUnit, NULL, r6SELF,
1441                      offsetof(Thread, interpBreak.ctl.breakFlags),
1442                      rTemp, kUnsignedByte, INVALID_SREG);
1443    setMemRefType(ld, true /* isLoad */, kMustNotAlias);
1444    genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL);
1445}
1446
1447/*
1448 * The following are the first-level codegen routines that analyze the format
1449 * of each bytecode then either dispatch special purpose codegen routines
1450 * or produce corresponding Thumb instructions directly.
1451 */
1452
1453static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
1454                                       BasicBlock *bb, ArmLIR *labelList)
1455{
1456    /* backward branch? */
1457    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
1458
1459    if (backwardBranch &&
1460        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
1461        genSuspendPoll(cUnit, mir);
1462    }
1463
1464    int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
1465    /*
1466     * Things could be hoisted out of the taken block into the predecessor, so
1467     * make sure it is dominated by the predecessor.
1468     */
1469    if (numPredecessors == 1 && bb->taken->visited == false &&
1470        bb->taken->blockType == kDalvikByteCode) {
1471        cUnit->nextCodegenBlock = bb->taken;
1472    } else {
1473        /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
1474        genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1475    }
1476    return false;
1477}
1478
1479static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
1480{
1481    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1482    if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
1483        LOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1484        return true;
1485    }
1486    switch (dalvikOpcode) {
1487        case OP_RETURN_VOID_BARRIER:
1488            dvmCompilerGenMemBarrier(cUnit, kST);
1489            // Intentional fallthrough
1490        case OP_RETURN_VOID:
1491            genReturnCommon(cUnit,mir);
1492            break;
1493        case OP_UNUSED_73:
1494        case OP_UNUSED_79:
1495        case OP_UNUSED_7A:
1496        case OP_DISPATCH_FF:
1497            LOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1498            return true;
1499        case OP_NOP:
1500            break;
1501        default:
1502            return true;
1503    }
1504    return false;
1505}
1506
1507static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
1508{
1509    RegLocation rlDest;
1510    RegLocation rlResult;
1511    if (mir->ssaRep->numDefs == 2) {
1512        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1513    } else {
1514        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1515    }
1516
1517    switch (mir->dalvikInsn.opcode) {
1518        case OP_CONST:
1519        case OP_CONST_4: {
1520            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1521            loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1522            storeValue(cUnit, rlDest, rlResult);
1523            break;
1524        }
1525        case OP_CONST_WIDE_32: {
1526            //TUNING: single routine to load constant pair for support doubles
1527            //TUNING: load 0/-1 separately to avoid load dependency
1528            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1529            loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1530            opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
1531                        rlResult.lowReg, 31);
1532            storeValueWide(cUnit, rlDest, rlResult);
1533            break;
1534        }
1535        default:
1536            return true;
1537    }
1538    return false;
1539}
1540
1541static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
1542{
1543    RegLocation rlDest;
1544    RegLocation rlResult;
1545    if (mir->ssaRep->numDefs == 2) {
1546        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1547    } else {
1548        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1549    }
1550    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1551
1552    switch (mir->dalvikInsn.opcode) {
1553        case OP_CONST_HIGH16: {
1554            loadConstantNoClobber(cUnit, rlResult.lowReg,
1555                                  mir->dalvikInsn.vB << 16);
1556            storeValue(cUnit, rlDest, rlResult);
1557            break;
1558        }
1559        case OP_CONST_WIDE_HIGH16: {
1560            loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
1561                                  0, mir->dalvikInsn.vB << 16);
1562            storeValueWide(cUnit, rlDest, rlResult);
1563            break;
1564        }
1565        default:
1566            return true;
1567    }
1568    return false;
1569}
1570
1571static bool handleFmt20bc_Fmt40sc(CompilationUnit *cUnit, MIR *mir)
1572{
1573    /* For OP_THROW_VERIFICATION_ERROR & OP_THROW_VERIFICATION_ERROR_JUMBO */
1574    genInterpSingleStep(cUnit, mir);
1575    return false;
1576}
1577
1578static bool handleFmt21c_Fmt31c_Fmt41c(CompilationUnit *cUnit, MIR *mir)
1579{
1580    RegLocation rlResult;
1581    RegLocation rlDest;
1582    RegLocation rlSrc;
1583
1584    switch (mir->dalvikInsn.opcode) {
1585        case OP_CONST_STRING_JUMBO:
1586        case OP_CONST_STRING: {
1587            void *strPtr = (void*)
1588              (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
1589
1590            if (strPtr == NULL) {
1591                BAIL_LOOP_COMPILATION();
1592                LOGE("Unexpected null string");
1593                dvmAbort();
1594            }
1595
1596            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1597            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1598            loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
1599            storeValue(cUnit, rlDest, rlResult);
1600            break;
1601        }
1602        case OP_CONST_CLASS:
1603        case OP_CONST_CLASS_JUMBO: {
1604            void *classPtr = (void*)
1605              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1606
1607            if (classPtr == NULL) {
1608                BAIL_LOOP_COMPILATION();
1609                LOGE("Unexpected null class");
1610                dvmAbort();
1611            }
1612
1613            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1614            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1615            loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
1616            storeValue(cUnit, rlDest, rlResult);
1617            break;
1618        }
1619        case OP_SGET:
1620        case OP_SGET_VOLATILE:
1621        case OP_SGET_VOLATILE_JUMBO:
1622        case OP_SGET_JUMBO:
1623        case OP_SGET_OBJECT:
1624        case OP_SGET_OBJECT_VOLATILE:
1625        case OP_SGET_OBJECT_VOLATILE_JUMBO:
1626        case OP_SGET_OBJECT_JUMBO:
1627        case OP_SGET_BOOLEAN:
1628        case OP_SGET_BOOLEAN_JUMBO:
1629        case OP_SGET_CHAR:
1630        case OP_SGET_CHAR_JUMBO:
1631        case OP_SGET_BYTE:
1632        case OP_SGET_BYTE_JUMBO:
1633        case OP_SGET_SHORT:
1634        case OP_SGET_SHORT_JUMBO: {
1635            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1636            int tReg = dvmCompilerAllocTemp(cUnit);
1637            bool isVolatile;
1638            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1639                mir->meta.calleeMethod : cUnit->method;
1640            void *fieldPtr = (void*)
1641              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1642
1643            if (fieldPtr == NULL) {
1644                BAIL_LOOP_COMPILATION();
1645                LOGE("Unexpected null static field");
1646                dvmAbort();
1647            }
1648
1649            /*
1650             * On SMP systems, Dalvik opcodes found to be referencing
1651             * volatile fields are rewritten to their _VOLATILE variant.
1652             * However, this does not happen on non-SMP systems. The JIT
1653             * still needs to know about volatility to avoid unsafe
1654             * optimizations so we determine volatility based on either
1655             * the opcode or the field access flags.
1656             */
1657#if ANDROID_SMP != 0
1658            Opcode opcode = mir->dalvikInsn.opcode;
1659            isVolatile = (opcode == OP_SGET_VOLATILE) ||
1660                         (opcode == OP_SGET_VOLATILE_JUMBO) ||
1661                         (opcode == OP_SGET_OBJECT_VOLATILE) ||
1662                         (opcode == OP_SGET_OBJECT_VOLATILE_JUMBO);
1663            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1664#else
1665            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1666#endif
1667
1668            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1669            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1670            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1671
1672            if (isVolatile) {
1673                dvmCompilerGenMemBarrier(cUnit, kSY);
1674            }
1675            HEAP_ACCESS_SHADOW(true);
1676            loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
1677            HEAP_ACCESS_SHADOW(false);
1678
1679            storeValue(cUnit, rlDest, rlResult);
1680            break;
1681        }
1682        case OP_SGET_WIDE:
1683        case OP_SGET_WIDE_JUMBO: {
1684            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1685            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1686                mir->meta.calleeMethod : cUnit->method;
1687            void *fieldPtr = (void*)
1688              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1689
1690            if (fieldPtr == NULL) {
1691                BAIL_LOOP_COMPILATION();
1692                LOGE("Unexpected null static field");
1693                dvmAbort();
1694            }
1695
1696            int tReg = dvmCompilerAllocTemp(cUnit);
1697            rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1698            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1699            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1700
1701            HEAP_ACCESS_SHADOW(true);
1702            loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
1703            HEAP_ACCESS_SHADOW(false);
1704
1705            storeValueWide(cUnit, rlDest, rlResult);
1706            break;
1707        }
1708        case OP_SPUT:
1709        case OP_SPUT_VOLATILE:
1710        case OP_SPUT_VOLATILE_JUMBO:
1711        case OP_SPUT_JUMBO:
1712        case OP_SPUT_OBJECT:
1713        case OP_SPUT_OBJECT_VOLATILE:
1714        case OP_SPUT_OBJECT_VOLATILE_JUMBO:
1715        case OP_SPUT_OBJECT_JUMBO:
1716        case OP_SPUT_BOOLEAN:
1717        case OP_SPUT_BOOLEAN_JUMBO:
1718        case OP_SPUT_CHAR:
1719        case OP_SPUT_CHAR_JUMBO:
1720        case OP_SPUT_BYTE:
1721        case OP_SPUT_BYTE_JUMBO:
1722        case OP_SPUT_SHORT:
1723        case OP_SPUT_SHORT_JUMBO: {
1724            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1725            int tReg = dvmCompilerAllocTemp(cUnit);
1726            int objHead;
1727            bool isVolatile;
1728            bool isSputObject;
1729            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1730                mir->meta.calleeMethod : cUnit->method;
1731            void *fieldPtr = (void*)
1732              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1733            Opcode opcode = mir->dalvikInsn.opcode;
1734
1735            if (fieldPtr == NULL) {
1736                BAIL_LOOP_COMPILATION();
1737                LOGE("Unexpected null static field");
1738                dvmAbort();
1739            }
1740
1741#if ANDROID_SMP != 0
1742            isVolatile = (opcode == OP_SPUT_VOLATILE) ||
1743                         (opcode == OP_SPUT_VOLATILE_JUMBO) ||
1744                         (opcode == OP_SPUT_OBJECT_VOLATILE) ||
1745                         (opcode == OP_SPUT_OBJECT_VOLATILE_JUMBO);
1746            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1747#else
1748            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1749#endif
1750
1751            isSputObject = (opcode == OP_SPUT_OBJECT) ||
1752                           (opcode == OP_SPUT_OBJECT_JUMBO) ||
1753                           (opcode == OP_SPUT_OBJECT_VOLATILE) ||
1754                           (opcode == OP_SPUT_OBJECT_VOLATILE_JUMBO);
1755
1756            rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1757            rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
1758            loadConstant(cUnit, tReg,  (int) fieldPtr);
1759            if (isSputObject) {
1760                objHead = dvmCompilerAllocTemp(cUnit);
1761                loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
1762            }
1763            if (isVolatile) {
1764                dvmCompilerGenMemBarrier(cUnit, kST);
1765            }
1766            HEAP_ACCESS_SHADOW(true);
1767            storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
1768            dvmCompilerFreeTemp(cUnit, tReg);
1769            HEAP_ACCESS_SHADOW(false);
1770            if (isVolatile) {
1771                dvmCompilerGenMemBarrier(cUnit, kSY);
1772            }
1773            if (isSputObject) {
1774                /* NOTE: marking card based sfield->clazz */
1775                markCard(cUnit, rlSrc.lowReg, objHead);
1776                dvmCompilerFreeTemp(cUnit, objHead);
1777            }
1778
1779            break;
1780        }
1781        case OP_SPUT_WIDE:
1782        case OP_SPUT_WIDE_JUMBO: {
1783            int tReg = dvmCompilerAllocTemp(cUnit);
1784            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1785            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1786                mir->meta.calleeMethod : cUnit->method;
1787            void *fieldPtr = (void*)
1788              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1789
1790            if (fieldPtr == NULL) {
1791                BAIL_LOOP_COMPILATION();
1792                LOGE("Unexpected null static field");
1793                dvmAbort();
1794            }
1795
1796            rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1797            rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
1798            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1799
1800            HEAP_ACCESS_SHADOW(true);
1801            storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
1802            HEAP_ACCESS_SHADOW(false);
1803            break;
1804        }
1805        case OP_NEW_INSTANCE:
1806        case OP_NEW_INSTANCE_JUMBO: {
1807            /*
1808             * Obey the calling convention and don't mess with the register
1809             * usage.
1810             */
1811            ClassObject *classPtr = (ClassObject *)
1812              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1813
1814            if (classPtr == NULL) {
1815                BAIL_LOOP_COMPILATION();
1816                LOGE("Unexpected null class");
1817                dvmAbort();
1818            }
1819
1820            /*
1821             * If it is going to throw, it should not make to the trace to begin
1822             * with.  However, Alloc might throw, so we need to genExportPC()
1823             */
1824            assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
1825            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1826            genExportPC(cUnit, mir);
1827            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
1828            loadConstant(cUnit, r0, (int) classPtr);
1829            loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
1830            opReg(cUnit, kOpBlx, r2);
1831            dvmCompilerClobberCallRegs(cUnit);
1832            /* generate a branch over if allocation is successful */
1833            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
1834            /*
1835             * OOM exception needs to be thrown here and cannot re-execute
1836             */
1837            loadConstant(cUnit, r0,
1838                         (int) (cUnit->method->insns + mir->offset));
1839            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1840            /* noreturn */
1841
1842            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1843            target->defMask = ENCODE_ALL;
1844            branchOver->generic.target = (LIR *) target;
1845            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1846            rlResult = dvmCompilerGetReturn(cUnit);
1847            storeValue(cUnit, rlDest, rlResult);
1848            break;
1849        }
1850        case OP_CHECK_CAST:
1851        case OP_CHECK_CAST_JUMBO: {
1852            /*
1853             * Obey the calling convention and don't mess with the register
1854             * usage.
1855             */
1856            ClassObject *classPtr =
1857              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1858            /*
1859             * Note: It is possible that classPtr is NULL at this point,
1860             * even though this instruction has been successfully interpreted.
1861             * If the previous interpretation had a null source, the
1862             * interpreter would not have bothered to resolve the clazz.
1863             * Bail out to the interpreter in this case, and log it
1864             * so that we can tell if it happens frequently.
1865             */
1866            if (classPtr == NULL) {
1867                BAIL_LOOP_COMPILATION();
1868                LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
1869                genInterpSingleStep(cUnit, mir);
1870                return false;
1871            }
1872            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1873            loadConstant(cUnit, r1, (int) classPtr );
1874            rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1875            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
1876            /* Null? */
1877            ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
1878                                              rlSrc.lowReg, 0);
1879            /*
1880             *  rlSrc.lowReg now contains object->clazz.  Note that
1881             *  it could have been allocated r0, but we're okay so long
1882             *  as we don't do anything desctructive until r0 is loaded
1883             *  with clazz.
1884             */
1885            /* r0 now contains object->clazz */
1886            loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
1887            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
1888            opRegReg(cUnit, kOpCmp, r0, r1);
1889            ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
1890            opReg(cUnit, kOpBlx, r2);
1891            dvmCompilerClobberCallRegs(cUnit);
1892            /*
1893             * If null, check cast failed - punt to the interpreter.  Because
1894             * interpreter will be the one throwing, we don't need to
1895             * genExportPC() here.
1896             */
1897            genZeroCheck(cUnit, r0, mir->offset, NULL);
1898            /* check cast passed - branch target here */
1899            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1900            target->defMask = ENCODE_ALL;
1901            branch1->generic.target = (LIR *)target;
1902            branch2->generic.target = (LIR *)target;
1903            break;
1904        }
1905        case OP_SGET_WIDE_VOLATILE:
1906        case OP_SGET_WIDE_VOLATILE_JUMBO:
1907        case OP_SPUT_WIDE_VOLATILE:
1908        case OP_SPUT_WIDE_VOLATILE_JUMBO:
1909            genInterpSingleStep(cUnit, mir);
1910            break;
1911        default:
1912            return true;
1913    }
1914    return false;
1915}
1916
1917/*
1918 * A typical example of inlined getter/setter from a monomorphic callsite:
1919 *
1920 * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
1921 * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
1922 * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
1923 * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
1924 * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
1925 * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
1926 * D/dalvikvm(  289): L0x0003:
1927 * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
1928 *
1929 * Note the invoke-static and move-result-object with the (I) notation are
1930 * turned into no-op.
1931 */
1932static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
1933{
1934    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1935    RegLocation rlResult;
1936    switch (dalvikOpcode) {
1937        case OP_MOVE_EXCEPTION: {
1938            int exOffset = offsetof(Thread, exception);
1939            int resetReg = dvmCompilerAllocTemp(cUnit);
1940            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1941            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1942            loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg);
1943            loadConstant(cUnit, resetReg, 0);
1944            storeWordDisp(cUnit, r6SELF, exOffset, resetReg);
1945            storeValue(cUnit, rlDest, rlResult);
1946           break;
1947        }
1948        case OP_MOVE_RESULT:
1949        case OP_MOVE_RESULT_OBJECT: {
1950            /* An inlined move result is effectively no-op */
1951            if (mir->OptimizationFlags & MIR_INLINED)
1952                break;
1953            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1954            RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
1955            rlSrc.fp = rlDest.fp;
1956            storeValue(cUnit, rlDest, rlSrc);
1957            break;
1958        }
1959        case OP_MOVE_RESULT_WIDE: {
1960            /* An inlined move result is effectively no-op */
1961            if (mir->OptimizationFlags & MIR_INLINED)
1962                break;
1963            RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1964            RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
1965            rlSrc.fp = rlDest.fp;
1966            storeValueWide(cUnit, rlDest, rlSrc);
1967            break;
1968        }
1969        case OP_RETURN_WIDE: {
1970            RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1971            RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
1972            rlDest.fp = rlSrc.fp;
1973            storeValueWide(cUnit, rlDest, rlSrc);
1974            genReturnCommon(cUnit,mir);
1975            break;
1976        }
1977        case OP_RETURN:
1978        case OP_RETURN_OBJECT: {
1979            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1980            RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
1981            rlDest.fp = rlSrc.fp;
1982            storeValue(cUnit, rlDest, rlSrc);
1983            genReturnCommon(cUnit, mir);
1984            break;
1985        }
1986        case OP_MONITOR_EXIT:
1987        case OP_MONITOR_ENTER:
1988            genMonitor(cUnit, mir);
1989            break;
1990        case OP_THROW:
1991            genInterpSingleStep(cUnit, mir);
1992            break;
1993        default:
1994            return true;
1995    }
1996    return false;
1997}
1998
1999static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
2000{
2001    Opcode opcode = mir->dalvikInsn.opcode;
2002    RegLocation rlDest;
2003    RegLocation rlSrc;
2004    RegLocation rlResult;
2005
2006    if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
2007        return genArithOp( cUnit, mir );
2008    }
2009
2010    if (mir->ssaRep->numUses == 2)
2011        rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2012    else
2013        rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2014    if (mir->ssaRep->numDefs == 2)
2015        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2016    else
2017        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2018
2019    switch (opcode) {
2020        case OP_DOUBLE_TO_INT:
2021        case OP_INT_TO_FLOAT:
2022        case OP_FLOAT_TO_INT:
2023        case OP_DOUBLE_TO_FLOAT:
2024        case OP_FLOAT_TO_DOUBLE:
2025        case OP_INT_TO_DOUBLE:
2026        case OP_FLOAT_TO_LONG:
2027        case OP_LONG_TO_FLOAT:
2028        case OP_DOUBLE_TO_LONG:
2029        case OP_LONG_TO_DOUBLE:
2030            return genConversion(cUnit, mir);
2031        case OP_NEG_INT:
2032        case OP_NOT_INT:
2033            return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
2034        case OP_NEG_LONG:
2035        case OP_NOT_LONG:
2036            return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
2037        case OP_NEG_FLOAT:
2038            return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
2039        case OP_NEG_DOUBLE:
2040            return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
2041        case OP_MOVE_WIDE:
2042            storeValueWide(cUnit, rlDest, rlSrc);
2043            break;
2044        case OP_INT_TO_LONG:
2045            rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
2046            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2047            //TUNING: shouldn't loadValueDirect already check for phys reg?
2048            if (rlSrc.location == kLocPhysReg) {
2049                genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2050            } else {
2051                loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
2052            }
2053            opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
2054                        rlResult.lowReg, 31);
2055            storeValueWide(cUnit, rlDest, rlResult);
2056            break;
2057        case OP_LONG_TO_INT:
2058            rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
2059            rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
2060            // Intentional fallthrough
2061        case OP_MOVE:
2062        case OP_MOVE_OBJECT:
2063            storeValue(cUnit, rlDest, rlSrc);
2064            break;
2065        case OP_INT_TO_BYTE:
2066            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2067            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2068            opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
2069            storeValue(cUnit, rlDest, rlResult);
2070            break;
2071        case OP_INT_TO_SHORT:
2072            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2073            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2074            opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
2075            storeValue(cUnit, rlDest, rlResult);
2076            break;
2077        case OP_INT_TO_CHAR:
2078            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2079            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2080            opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
2081            storeValue(cUnit, rlDest, rlResult);
2082            break;
2083        case OP_ARRAY_LENGTH: {
2084            int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
2085            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2086            genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
2087                         mir->offset, NULL);
2088            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2089            loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
2090                         rlResult.lowReg);
2091            storeValue(cUnit, rlDest, rlResult);
2092            break;
2093        }
2094        default:
2095            return true;
2096    }
2097    return false;
2098}
2099
2100static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
2101{
2102    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2103    RegLocation rlDest;
2104    RegLocation rlResult;
2105    int BBBB = mir->dalvikInsn.vB;
2106    if (dalvikOpcode == OP_CONST_WIDE_16) {
2107        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2108        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2109        loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2110        //TUNING: do high separately to avoid load dependency
2111        opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
2112        storeValueWide(cUnit, rlDest, rlResult);
2113    } else if (dalvikOpcode == OP_CONST_16) {
2114        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2115        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
2116        loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2117        storeValue(cUnit, rlDest, rlResult);
2118    } else
2119        return true;
2120    return false;
2121}
2122
2123/* Compare agaist zero */
2124static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2125                         ArmLIR *labelList)
2126{
2127    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2128    ArmConditionCode cond;
2129    /* backward branch? */
2130    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2131
2132    if (backwardBranch &&
2133        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2134        genSuspendPoll(cUnit, mir);
2135    }
2136
2137    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2138    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2139
2140    opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
2141
2142//TUNING: break this out to allow use of Thumb2 CB[N]Z
2143    switch (dalvikOpcode) {
2144        case OP_IF_EQZ:
2145            cond = kArmCondEq;
2146            break;
2147        case OP_IF_NEZ:
2148            cond = kArmCondNe;
2149            break;
2150        case OP_IF_LTZ:
2151            cond = kArmCondLt;
2152            break;
2153        case OP_IF_GEZ:
2154            cond = kArmCondGe;
2155            break;
2156        case OP_IF_GTZ:
2157            cond = kArmCondGt;
2158            break;
2159        case OP_IF_LEZ:
2160            cond = kArmCondLe;
2161            break;
2162        default:
2163            cond = (ArmConditionCode)0;
2164            LOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
2165            dvmCompilerAbort(cUnit);
2166    }
2167    genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
2168    /* This mostly likely will be optimized away in a later phase */
2169    genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2170    return false;
2171}
2172
2173static bool isPowerOfTwo(int x)
2174{
2175    return (x & (x - 1)) == 0;
2176}
2177
2178// Returns true if no more than two bits are set in 'x'.
2179static bool isPopCountLE2(unsigned int x)
2180{
2181    x &= x - 1;
2182    return (x & (x - 1)) == 0;
2183}
2184
2185// Returns the index of the lowest set bit in 'x'.
2186static int lowestSetBit(unsigned int x) {
2187    int bit_posn = 0;
2188    while ((x & 0xf) == 0) {
2189        bit_posn += 4;
2190        x >>= 4;
2191    }
2192    while ((x & 1) == 0) {
2193        bit_posn++;
2194        x >>= 1;
2195    }
2196    return bit_posn;
2197}
2198
2199// Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
2200// and store the result in 'rlDest'.
2201static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
2202                             RegLocation rlSrc, RegLocation rlDest, int lit)
2203{
2204    if (lit < 2 || !isPowerOfTwo(lit)) {
2205        return false;
2206    }
2207    int k = lowestSetBit(lit);
2208    if (k >= 30) {
2209        // Avoid special cases.
2210        return false;
2211    }
2212    bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
2213    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2214    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2215    if (div) {
2216        int tReg = dvmCompilerAllocTemp(cUnit);
2217        if (lit == 2) {
2218            // Division by 2 is by far the most common division by constant.
2219            opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
2220            opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2221            opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2222        } else {
2223            opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
2224            opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
2225            opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2226            opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2227        }
2228    } else {
2229        int cReg = dvmCompilerAllocTemp(cUnit);
2230        loadConstant(cUnit, cReg, lit - 1);
2231        int tReg1 = dvmCompilerAllocTemp(cUnit);
2232        int tReg2 = dvmCompilerAllocTemp(cUnit);
2233        if (lit == 2) {
2234            opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
2235            opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2236            opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2237            opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2238        } else {
2239            opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
2240            opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
2241            opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2242            opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2243            opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2244        }
2245    }
2246    storeValue(cUnit, rlDest, rlResult);
2247    return true;
2248}
2249
2250// Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
2251// and store the result in 'rlDest'.
2252static bool handleEasyMultiply(CompilationUnit *cUnit,
2253                               RegLocation rlSrc, RegLocation rlDest, int lit)
2254{
2255    // Can we simplify this multiplication?
2256    bool powerOfTwo = false;
2257    bool popCountLE2 = false;
2258    bool powerOfTwoMinusOne = false;
2259    if (lit < 2) {
2260        // Avoid special cases.
2261        return false;
2262    } else if (isPowerOfTwo(lit)) {
2263        powerOfTwo = true;
2264    } else if (isPopCountLE2(lit)) {
2265        popCountLE2 = true;
2266    } else if (isPowerOfTwo(lit + 1)) {
2267        powerOfTwoMinusOne = true;
2268    } else {
2269        return false;
2270    }
2271    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2272    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2273    if (powerOfTwo) {
2274        // Shift.
2275        opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
2276                    lowestSetBit(lit));
2277    } else if (popCountLE2) {
2278        // Shift and add and shift.
2279        int firstBit = lowestSetBit(lit);
2280        int secondBit = lowestSetBit(lit ^ (1 << firstBit));
2281        genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
2282                                      firstBit, secondBit);
2283    } else {
2284        // Reverse subtract: (src << (shift + 1)) - src.
2285        assert(powerOfTwoMinusOne);
2286        // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
2287        int tReg = dvmCompilerAllocTemp(cUnit);
2288        opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
2289        opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
2290    }
2291    storeValue(cUnit, rlDest, rlResult);
2292    return true;
2293}
2294
2295static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
2296{
2297    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2298    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2299    RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2300    RegLocation rlResult;
2301    int lit = mir->dalvikInsn.vC;
2302    OpKind op = (OpKind)0;      /* Make gcc happy */
2303    int shiftOp = false;
2304    bool isDiv = false;
2305
2306    switch (dalvikOpcode) {
2307        case OP_RSUB_INT_LIT8:
2308        case OP_RSUB_INT: {
2309            int tReg;
2310            //TUNING: add support for use of Arm rsub op
2311            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2312            tReg = dvmCompilerAllocTemp(cUnit);
2313            loadConstant(cUnit, tReg, lit);
2314            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2315            opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
2316                        tReg, rlSrc.lowReg);
2317            storeValue(cUnit, rlDest, rlResult);
2318            return false;
2319            break;
2320        }
2321
2322        case OP_ADD_INT_LIT8:
2323        case OP_ADD_INT_LIT16:
2324            op = kOpAdd;
2325            break;
2326        case OP_MUL_INT_LIT8:
2327        case OP_MUL_INT_LIT16: {
2328            if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
2329                return false;
2330            }
2331            op = kOpMul;
2332            break;
2333        }
2334        case OP_AND_INT_LIT8:
2335        case OP_AND_INT_LIT16:
2336            op = kOpAnd;
2337            break;
2338        case OP_OR_INT_LIT8:
2339        case OP_OR_INT_LIT16:
2340            op = kOpOr;
2341            break;
2342        case OP_XOR_INT_LIT8:
2343        case OP_XOR_INT_LIT16:
2344            op = kOpXor;
2345            break;
2346        case OP_SHL_INT_LIT8:
2347            lit &= 31;
2348            shiftOp = true;
2349            op = kOpLsl;
2350            break;
2351        case OP_SHR_INT_LIT8:
2352            lit &= 31;
2353            shiftOp = true;
2354            op = kOpAsr;
2355            break;
2356        case OP_USHR_INT_LIT8:
2357            lit &= 31;
2358            shiftOp = true;
2359            op = kOpLsr;
2360            break;
2361
2362        case OP_DIV_INT_LIT8:
2363        case OP_DIV_INT_LIT16:
2364        case OP_REM_INT_LIT8:
2365        case OP_REM_INT_LIT16:
2366            if (lit == 0) {
2367                /* Let the interpreter deal with div by 0 */
2368                genInterpSingleStep(cUnit, mir);
2369                return false;
2370            }
2371            if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
2372                return false;
2373            }
2374            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2375            loadValueDirectFixed(cUnit, rlSrc, r0);
2376            dvmCompilerClobber(cUnit, r0);
2377            if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
2378                (dalvikOpcode == OP_DIV_INT_LIT16)) {
2379                LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
2380                isDiv = true;
2381            } else {
2382                LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
2383                isDiv = false;
2384            }
2385            loadConstant(cUnit, r1, lit);
2386            opReg(cUnit, kOpBlx, r2);
2387            dvmCompilerClobberCallRegs(cUnit);
2388            if (isDiv)
2389                rlResult = dvmCompilerGetReturn(cUnit);
2390            else
2391                rlResult = dvmCompilerGetReturnAlt(cUnit);
2392            storeValue(cUnit, rlDest, rlResult);
2393            return false;
2394            break;
2395        default:
2396            return true;
2397    }
2398    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2399    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2400    // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
2401    if (shiftOp && (lit == 0)) {
2402        genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2403    } else {
2404        opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
2405    }
2406    storeValue(cUnit, rlDest, rlResult);
2407    return false;
2408}
2409
2410static bool handleFmt22c_Fmt52c(CompilationUnit *cUnit, MIR *mir)
2411{
2412    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2413    int fieldOffset = -1;
2414    bool isVolatile = false;
2415    switch (dalvikOpcode) {
2416        /*
2417         * Wide volatiles currently handled via single step.
2418         * Add them here if generating in-line code.
2419         *     case OP_IGET_WIDE_VOLATILE:
2420         *     case OP_IGET_WIDE_VOLATILE_JUMBO:
2421         *     case OP_IPUT_WIDE_VOLATILE:
2422         *     case OP_IPUT_WIDE_VOLATILE_JUMBO:
2423         */
2424        case OP_IGET_VOLATILE:
2425        case OP_IGET_VOLATILE_JUMBO:
2426        case OP_IGET_OBJECT_VOLATILE:
2427        case OP_IGET_OBJECT_VOLATILE_JUMBO:
2428        case OP_IPUT_VOLATILE:
2429        case OP_IPUT_VOLATILE_JUMBO:
2430        case OP_IPUT_OBJECT_VOLATILE:
2431        case OP_IPUT_OBJECT_VOLATILE_JUMBO:
2432#if ANDROID_SMP != 0
2433            isVolatile = true;
2434        // NOTE: intentional fallthrough
2435#endif
2436        case OP_IGET:
2437        case OP_IGET_JUMBO:
2438        case OP_IGET_WIDE:
2439        case OP_IGET_WIDE_JUMBO:
2440        case OP_IGET_OBJECT:
2441        case OP_IGET_OBJECT_JUMBO:
2442        case OP_IGET_BOOLEAN:
2443        case OP_IGET_BOOLEAN_JUMBO:
2444        case OP_IGET_BYTE:
2445        case OP_IGET_BYTE_JUMBO:
2446        case OP_IGET_CHAR:
2447        case OP_IGET_CHAR_JUMBO:
2448        case OP_IGET_SHORT:
2449        case OP_IGET_SHORT_JUMBO:
2450        case OP_IPUT:
2451        case OP_IPUT_JUMBO:
2452        case OP_IPUT_WIDE:
2453        case OP_IPUT_WIDE_JUMBO:
2454        case OP_IPUT_OBJECT:
2455        case OP_IPUT_OBJECT_JUMBO:
2456        case OP_IPUT_BOOLEAN:
2457        case OP_IPUT_BOOLEAN_JUMBO:
2458        case OP_IPUT_BYTE:
2459        case OP_IPUT_BYTE_JUMBO:
2460        case OP_IPUT_CHAR:
2461        case OP_IPUT_CHAR_JUMBO:
2462        case OP_IPUT_SHORT:
2463        case OP_IPUT_SHORT_JUMBO: {
2464            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
2465                mir->meta.calleeMethod : cUnit->method;
2466            Field *fieldPtr =
2467                method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
2468
2469            if (fieldPtr == NULL) {
2470                BAIL_LOOP_COMPILATION();
2471                LOGE("Unexpected null instance field");
2472                dvmAbort();
2473            }
2474
2475#if ANDROID_SMP != 0
2476            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
2477#else
2478            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
2479#endif
2480            fieldOffset = ((InstField *)fieldPtr)->byteOffset;
2481            break;
2482        }
2483        default:
2484            break;
2485    }
2486
2487    switch (dalvikOpcode) {
2488        case OP_NEW_ARRAY:
2489        case OP_NEW_ARRAY_JUMBO: {
2490            // Generates a call - use explicit registers
2491            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2492            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2493            RegLocation rlResult;
2494            void *classPtr = (void*)
2495              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2496
2497            if (classPtr == NULL) {
2498                BAIL_LOOP_COMPILATION();
2499                LOGE("Unexpected null class");
2500                dvmAbort();
2501            }
2502
2503            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2504            genExportPC(cUnit, mir);
2505            loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
2506            loadConstant(cUnit, r0, (int) classPtr );
2507            LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
2508            /*
2509             * "len < 0": bail to the interpreter to re-execute the
2510             * instruction
2511             */
2512            genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
2513            loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
2514            opReg(cUnit, kOpBlx, r3);
2515            dvmCompilerClobberCallRegs(cUnit);
2516            /* generate a branch over if allocation is successful */
2517            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
2518            /*
2519             * OOM exception needs to be thrown here and cannot re-execute
2520             */
2521            loadConstant(cUnit, r0,
2522                         (int) (cUnit->method->insns + mir->offset));
2523            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2524            /* noreturn */
2525
2526            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2527            target->defMask = ENCODE_ALL;
2528            branchOver->generic.target = (LIR *) target;
2529            rlResult = dvmCompilerGetReturn(cUnit);
2530            storeValue(cUnit, rlDest, rlResult);
2531            break;
2532        }
2533        case OP_INSTANCE_OF:
2534        case OP_INSTANCE_OF_JUMBO: {
2535            // May generate a call - use explicit registers
2536            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2537            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2538            RegLocation rlResult;
2539            ClassObject *classPtr =
2540              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2541            /*
2542             * Note: It is possible that classPtr is NULL at this point,
2543             * even though this instruction has been successfully interpreted.
2544             * If the previous interpretation had a null source, the
2545             * interpreter would not have bothered to resolve the clazz.
2546             * Bail out to the interpreter in this case, and log it
2547             * so that we can tell if it happens frequently.
2548             */
2549            if (classPtr == NULL) {
2550                BAIL_LOOP_COMPILATION();
2551                ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
2552                genInterpSingleStep(cUnit, mir);
2553                break;
2554            }
2555            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2556            loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
2557            loadConstant(cUnit, r2, (int) classPtr );
2558            /* When taken r0 has NULL which can be used for store directly */
2559            ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
2560            /* r1 now contains object->clazz */
2561            loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
2562            /* r1 now contains object->clazz */
2563            LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
2564            loadConstant(cUnit, r0, 1);                /* Assume true */
2565            opRegReg(cUnit, kOpCmp, r1, r2);
2566            ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
2567            genRegCopy(cUnit, r0, r1);
2568            genRegCopy(cUnit, r1, r2);
2569            opReg(cUnit, kOpBlx, r3);
2570            dvmCompilerClobberCallRegs(cUnit);
2571            /* branch target here */
2572            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2573            target->defMask = ENCODE_ALL;
2574            rlResult = dvmCompilerGetReturn(cUnit);
2575            storeValue(cUnit, rlDest, rlResult);
2576            branch1->generic.target = (LIR *)target;
2577            branch2->generic.target = (LIR *)target;
2578            break;
2579        }
2580        case OP_IGET_WIDE:
2581        case OP_IGET_WIDE_JUMBO:
2582            genIGetWide(cUnit, mir, fieldOffset);
2583            break;
2584        case OP_IGET_VOLATILE:
2585        case OP_IGET_VOLATILE_JUMBO:
2586        case OP_IGET_OBJECT_VOLATILE:
2587        case OP_IGET_OBJECT_VOLATILE_JUMBO:
2588        case OP_IGET:
2589        case OP_IGET_JUMBO:
2590        case OP_IGET_OBJECT:
2591        case OP_IGET_OBJECT_JUMBO:
2592        case OP_IGET_BOOLEAN:
2593        case OP_IGET_BOOLEAN_JUMBO:
2594        case OP_IGET_BYTE:
2595        case OP_IGET_BYTE_JUMBO:
2596        case OP_IGET_CHAR:
2597        case OP_IGET_CHAR_JUMBO:
2598        case OP_IGET_SHORT:
2599        case OP_IGET_SHORT_JUMBO:
2600            genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
2601            break;
2602        case OP_IPUT_WIDE:
2603        case OP_IPUT_WIDE_JUMBO:
2604            genIPutWide(cUnit, mir, fieldOffset);
2605            break;
2606        case OP_IPUT_VOLATILE:
2607        case OP_IPUT_VOLATILE_JUMBO:
2608        case OP_IPUT:
2609        case OP_IPUT_JUMBO:
2610        case OP_IPUT_BOOLEAN:
2611        case OP_IPUT_BOOLEAN_JUMBO:
2612        case OP_IPUT_BYTE:
2613        case OP_IPUT_BYTE_JUMBO:
2614        case OP_IPUT_CHAR:
2615        case OP_IPUT_CHAR_JUMBO:
2616        case OP_IPUT_SHORT:
2617        case OP_IPUT_SHORT_JUMBO:
2618            genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
2619            break;
2620        case OP_IPUT_OBJECT_VOLATILE:
2621        case OP_IPUT_OBJECT_VOLATILE_JUMBO:
2622        case OP_IPUT_OBJECT:
2623        case OP_IPUT_OBJECT_JUMBO:
2624            genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
2625            break;
2626        case OP_IGET_WIDE_VOLATILE:
2627        case OP_IGET_WIDE_VOLATILE_JUMBO:
2628        case OP_IPUT_WIDE_VOLATILE:
2629        case OP_IPUT_WIDE_VOLATILE_JUMBO:
2630            genInterpSingleStep(cUnit, mir);
2631            break;
2632        default:
2633            return true;
2634    }
2635    return false;
2636}
2637
2638static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
2639{
2640    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2641    int fieldOffset =  mir->dalvikInsn.vC;
2642    switch (dalvikOpcode) {
2643        case OP_IGET_QUICK:
2644        case OP_IGET_OBJECT_QUICK:
2645            genIGet(cUnit, mir, kWord, fieldOffset, false);
2646            break;
2647        case OP_IPUT_QUICK:
2648            genIPut(cUnit, mir, kWord, fieldOffset, false, false);
2649            break;
2650        case OP_IPUT_OBJECT_QUICK:
2651            genIPut(cUnit, mir, kWord, fieldOffset, true, false);
2652            break;
2653        case OP_IGET_WIDE_QUICK:
2654            genIGetWide(cUnit, mir, fieldOffset);
2655            break;
2656        case OP_IPUT_WIDE_QUICK:
2657            genIPutWide(cUnit, mir, fieldOffset);
2658            break;
2659        default:
2660            return true;
2661    }
2662    return false;
2663
2664}
2665
2666/* Compare agaist zero */
2667static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2668                         ArmLIR *labelList)
2669{
2670    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2671    ArmConditionCode cond;
2672    /* backward branch? */
2673    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2674
2675    if (backwardBranch &&
2676        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2677        genSuspendPoll(cUnit, mir);
2678    }
2679
2680    RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2681    RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2682
2683    rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
2684    rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
2685
2686    opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
2687
2688    switch (dalvikOpcode) {
2689        case OP_IF_EQ:
2690            cond = kArmCondEq;
2691            break;
2692        case OP_IF_NE:
2693            cond = kArmCondNe;
2694            break;
2695        case OP_IF_LT:
2696            cond = kArmCondLt;
2697            break;
2698        case OP_IF_GE:
2699            cond = kArmCondGe;
2700            break;
2701        case OP_IF_GT:
2702            cond = kArmCondGt;
2703            break;
2704        case OP_IF_LE:
2705            cond = kArmCondLe;
2706            break;
2707        default:
2708            cond = (ArmConditionCode)0;
2709            LOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
2710            dvmCompilerAbort(cUnit);
2711    }
2712    genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
2713    /* This mostly likely will be optimized away in a later phase */
2714    genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2715    return false;
2716}
2717
2718static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
2719{
2720    Opcode opcode = mir->dalvikInsn.opcode;
2721
2722    switch (opcode) {
2723        case OP_MOVE_16:
2724        case OP_MOVE_OBJECT_16:
2725        case OP_MOVE_FROM16:
2726        case OP_MOVE_OBJECT_FROM16: {
2727            storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
2728                       dvmCompilerGetSrc(cUnit, mir, 0));
2729            break;
2730        }
2731        case OP_MOVE_WIDE_16:
2732        case OP_MOVE_WIDE_FROM16: {
2733            storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
2734                           dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
2735            break;
2736        }
2737        default:
2738            return true;
2739    }
2740    return false;
2741}
2742
2743static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
2744{
2745    Opcode opcode = mir->dalvikInsn.opcode;
2746    RegLocation rlSrc1;
2747    RegLocation rlSrc2;
2748    RegLocation rlDest;
2749
2750    if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
2751        return genArithOp( cUnit, mir );
2752    }
2753
2754    /* APUTs have 3 sources and no targets */
2755    if (mir->ssaRep->numDefs == 0) {
2756        if (mir->ssaRep->numUses == 3) {
2757            rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
2758            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
2759            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
2760        } else {
2761            assert(mir->ssaRep->numUses == 4);
2762            rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2763            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
2764            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
2765        }
2766    } else {
2767        /* Two sources and 1 dest.  Deduce the operand sizes */
2768        if (mir->ssaRep->numUses == 4) {
2769            rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2770            rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
2771        } else {
2772            assert(mir->ssaRep->numUses == 2);
2773            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2774            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2775        }
2776        if (mir->ssaRep->numDefs == 2) {
2777            rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2778        } else {
2779            assert(mir->ssaRep->numDefs == 1);
2780            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2781        }
2782    }
2783
2784
2785    switch (opcode) {
2786        case OP_CMPL_FLOAT:
2787        case OP_CMPG_FLOAT:
2788        case OP_CMPL_DOUBLE:
2789        case OP_CMPG_DOUBLE:
2790            return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2791        case OP_CMP_LONG:
2792            genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2793            break;
2794        case OP_AGET_WIDE:
2795            genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2796            break;
2797        case OP_AGET:
2798        case OP_AGET_OBJECT:
2799            genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2800            break;
2801        case OP_AGET_BOOLEAN:
2802            genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2803            break;
2804        case OP_AGET_BYTE:
2805            genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
2806            break;
2807        case OP_AGET_CHAR:
2808            genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2809            break;
2810        case OP_AGET_SHORT:
2811            genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2812            break;
2813        case OP_APUT_WIDE:
2814            genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2815            break;
2816        case OP_APUT:
2817            genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2818            break;
2819        case OP_APUT_OBJECT:
2820            genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
2821            break;
2822        case OP_APUT_SHORT:
2823        case OP_APUT_CHAR:
2824            genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2825            break;
2826        case OP_APUT_BYTE:
2827        case OP_APUT_BOOLEAN:
2828            genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2829            break;
2830        default:
2831            return true;
2832    }
2833    return false;
2834}
2835
2836/*
2837 * Find the matching case.
2838 *
2839 * return values:
2840 * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
2841 *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
2842 * r1 (high 32-bit): the branch offset of the matching case (only for indexes
2843 *    above MAX_CHAINED_SWITCH_CASES).
2844 *
2845 * Instructions around the call are:
2846 *
2847 * mov r2, pc
2848 * blx &findPackedSwitchIndex
2849 * mov pc, r0
2850 * .align4
2851 * chaining cell for case 0 [12 bytes]
2852 * chaining cell for case 1 [12 bytes]
2853 *               :
2854 * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
2855 * chaining cell for case default [8 bytes]
2856 * noChain exit
2857 */
2858static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
2859{
2860    int size;
2861    int firstKey;
2862    const int *entries;
2863    int index;
2864    int jumpIndex;
2865    int caseDPCOffset = 0;
2866    /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
2867    int chainingPC = (pc + 4) & ~3;
2868
2869    /*
2870     * Packed switch data format:
2871     *  ushort ident = 0x0100   magic value
2872     *  ushort size             number of entries in the table
2873     *  int first_key           first (and lowest) switch case value
2874     *  int targets[size]       branch targets, relative to switch opcode
2875     *
2876     * Total size is (4+size*2) 16-bit code units.
2877     */
2878    size = switchData[1];
2879    assert(size > 0);
2880
2881    firstKey = switchData[2];
2882    firstKey |= switchData[3] << 16;
2883
2884
2885    /* The entries are guaranteed to be aligned on a 32-bit boundary;
2886     * we can treat them as a native int array.
2887     */
2888    entries = (const int*) &switchData[4];
2889    assert(((u4)entries & 0x3) == 0);
2890
2891    index = testVal - firstKey;
2892
2893    /* Jump to the default cell */
2894    if (index < 0 || index >= size) {
2895        jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
2896    /* Jump to the non-chaining exit point */
2897    } else if (index >= MAX_CHAINED_SWITCH_CASES) {
2898        jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
2899        caseDPCOffset = entries[index];
2900    /* Jump to the inline chaining cell */
2901    } else {
2902        jumpIndex = index;
2903    }
2904
2905    chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
2906    return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
2907}
2908
2909/* See comments for findPackedSwitchIndex */
2910static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
2911{
2912    int size;
2913    const int *keys;
2914    const int *entries;
2915    int chainingPC = (pc + 4) & ~3;
2916    int i;
2917
2918    /*
2919     * Sparse switch data format:
2920     *  ushort ident = 0x0200   magic value
2921     *  ushort size             number of entries in the table; > 0
2922     *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
2923     *  int targets[size]       branch targets, relative to switch opcode
2924     *
2925     * Total size is (2+size*4) 16-bit code units.
2926     */
2927
2928    size = switchData[1];
2929    assert(size > 0);
2930
2931    /* The keys are guaranteed to be aligned on a 32-bit boundary;
2932     * we can treat them as a native int array.
2933     */
2934    keys = (const int*) &switchData[2];
2935    assert(((u4)keys & 0x3) == 0);
2936
2937    /* The entries are guaranteed to be aligned on a 32-bit boundary;
2938     * we can treat them as a native int array.
2939     */
2940    entries = keys + size;
2941    assert(((u4)entries & 0x3) == 0);
2942
2943    /*
2944     * Run through the list of keys, which are guaranteed to
2945     * be sorted low-to-high.
2946     *
2947     * Most tables have 3-4 entries.  Few have more than 10.  A binary
2948     * search here is probably not useful.
2949     */
2950    for (i = 0; i < size; i++) {
2951        int k = keys[i];
2952        if (k == testVal) {
2953            /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
2954            int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
2955                           i : MAX_CHAINED_SWITCH_CASES + 1;
2956            chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
2957            return (((s8) entries[i]) << 32) | (u8) chainingPC;
2958        } else if (k > testVal) {
2959            break;
2960        }
2961    }
2962    return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
2963           CHAIN_CELL_NORMAL_SIZE;
2964}
2965
2966static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
2967{
2968    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2969    switch (dalvikOpcode) {
2970        case OP_FILL_ARRAY_DATA: {
2971            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2972            // Making a call - use explicit registers
2973            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2974            genExportPC(cUnit, mir);
2975            loadValueDirectFixed(cUnit, rlSrc, r0);
2976            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
2977            loadConstant(cUnit, r1,
2978               (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
2979            opReg(cUnit, kOpBlx, r2);
2980            dvmCompilerClobberCallRegs(cUnit);
2981            /* generate a branch over if successful */
2982            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
2983            loadConstant(cUnit, r0,
2984                         (int) (cUnit->method->insns + mir->offset));
2985            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2986            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2987            target->defMask = ENCODE_ALL;
2988            branchOver->generic.target = (LIR *) target;
2989            break;
2990        }
2991        /*
2992         * Compute the goto target of up to
2993         * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
2994         * See the comment before findPackedSwitchIndex for the code layout.
2995         */
2996        case OP_PACKED_SWITCH:
2997        case OP_SPARSE_SWITCH: {
2998            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2999            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
3000            loadValueDirectFixed(cUnit, rlSrc, r1);
3001            dvmCompilerLockAllTemps(cUnit);
3002            if (dalvikOpcode == OP_PACKED_SWITCH) {
3003                LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
3004            } else {
3005                LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
3006            }
3007            /* r0 <- Addr of the switch data */
3008            loadConstant(cUnit, r0,
3009               (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
3010            /* r2 <- pc of the instruction following the blx */
3011            opRegReg(cUnit, kOpMov, r2, r15pc);
3012            opReg(cUnit, kOpBlx, r4PC);
3013            dvmCompilerClobberCallRegs(cUnit);
3014            /* pc <- computed goto target */
3015            opRegReg(cUnit, kOpMov, r15pc, r0);
3016            break;
3017        }
3018        default:
3019            return true;
3020    }
3021    return false;
3022}
3023
3024/*
3025 * See the example of predicted inlining listed before the
3026 * genValidationForPredictedInline function. The function here takes care the
3027 * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
3028 */
3029static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
3030                                               BasicBlock *bb,
3031                                               ArmLIR *labelList)
3032{
3033    BasicBlock *fallThrough = bb->fallThrough;
3034
3035    /* Bypass the move-result block if there is one */
3036    if (fallThrough->firstMIRInsn) {
3037        assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
3038        fallThrough = fallThrough->fallThrough;
3039    }
3040    /* Generate a branch over if the predicted inlining is correct */
3041    genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
3042
3043    /* Reset the register state */
3044    dvmCompilerResetRegPool(cUnit);
3045    dvmCompilerClobberAllRegs(cUnit);
3046    dvmCompilerResetNullCheck(cUnit);
3047
3048    /* Target for the slow invoke path */
3049    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3050    target->defMask = ENCODE_ALL;
3051    /* Hook up the target to the verification branch */
3052    mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
3053}
3054
3055static bool handleFmt35c_3rc_5rc(CompilationUnit *cUnit, MIR *mir,
3056                             BasicBlock *bb, ArmLIR *labelList)
3057{
3058    ArmLIR *retChainingCell = NULL;
3059    ArmLIR *pcrLabel = NULL;
3060
3061    /* An invoke with the MIR_INLINED is effectively a no-op */
3062    if (mir->OptimizationFlags & MIR_INLINED)
3063        return false;
3064
3065    if (bb->fallThrough != NULL)
3066        retChainingCell = &labelList[bb->fallThrough->id];
3067
3068    DecodedInstruction *dInsn = &mir->dalvikInsn;
3069    switch (mir->dalvikInsn.opcode) {
3070        /*
3071         * calleeMethod = this->clazz->vtable[
3072         *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
3073         * ]
3074         */
3075        case OP_INVOKE_VIRTUAL:
3076        case OP_INVOKE_VIRTUAL_RANGE:
3077        case OP_INVOKE_VIRTUAL_JUMBO: {
3078            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3079            int methodIndex =
3080                cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
3081                methodIndex;
3082
3083            /*
3084             * If the invoke has non-null misPredBranchOver, we need to generate
3085             * the non-inlined version of the invoke here to handle the
3086             * mispredicted case.
3087             */
3088            if (mir->meta.callsiteInfo->misPredBranchOver) {
3089                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3090            }
3091
3092            if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
3093                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3094            else
3095                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3096
3097            genInvokeVirtualCommon(cUnit, mir, methodIndex,
3098                                   retChainingCell,
3099                                   predChainingCell,
3100                                   pcrLabel);
3101            break;
3102        }
3103        /*
3104         * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
3105         *                ->pResMethods[BBBB]->methodIndex]
3106         */
3107        case OP_INVOKE_SUPER:
3108        case OP_INVOKE_SUPER_RANGE:
3109        case OP_INVOKE_SUPER_JUMBO: {
3110            /* Grab the method ptr directly from what the interpreter sees */
3111            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3112            assert(calleeMethod == cUnit->method->clazz->super->vtable[
3113                                     cUnit->method->clazz->pDvmDex->
3114                                       pResMethods[dInsn->vB]->methodIndex]);
3115
3116            if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
3117                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3118            else
3119                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3120
3121            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3122                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3123                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3124                assert(calleeAddr);
3125                genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3126                                              retChainingCell);
3127            } else {
3128                /* r0 = calleeMethod */
3129                loadConstant(cUnit, r0, (int) calleeMethod);
3130
3131                genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3132                                         calleeMethod);
3133            }
3134            break;
3135        }
3136        /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3137        case OP_INVOKE_DIRECT:
3138        case OP_INVOKE_DIRECT_RANGE:
3139        case OP_INVOKE_DIRECT_JUMBO: {
3140            /* Grab the method ptr directly from what the interpreter sees */
3141            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3142            assert(calleeMethod ==
3143                   cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3144
3145            if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
3146                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3147            else
3148                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3149
3150            /* r0 = calleeMethod */
3151            loadConstant(cUnit, r0, (int) calleeMethod);
3152
3153            genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3154                                     calleeMethod);
3155            break;
3156        }
3157        /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3158        case OP_INVOKE_STATIC:
3159        case OP_INVOKE_STATIC_RANGE:
3160        case OP_INVOKE_STATIC_JUMBO: {
3161            /* Grab the method ptr directly from what the interpreter sees */
3162            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3163            assert(calleeMethod ==
3164                   cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3165
3166            if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
3167                genProcessArgsNoRange(cUnit, mir, dInsn,
3168                                      NULL /* no null check */);
3169            else
3170                genProcessArgsRange(cUnit, mir, dInsn,
3171                                    NULL /* no null check */);
3172
3173            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3174                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3175                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3176                assert(calleeAddr);
3177                genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3178                                              retChainingCell);
3179            } else {
3180                /* r0 = calleeMethod */
3181                loadConstant(cUnit, r0, (int) calleeMethod);
3182
3183                genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3184                                         calleeMethod);
3185            }
3186            break;
3187        }
3188        /*
3189         * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
3190         *                    BBBB, method, method->clazz->pDvmDex)
3191         *
3192         * The following is an example of generated code for
3193         *      "invoke-interface v0"
3194         *
3195         * -------- dalvik offset: 0x0008 @ invoke-interface v0
3196         * 0x47357e36 : ldr     r0, [r5, #0]   --+
3197         * 0x47357e38 : sub     r7,r5,#24        |
3198         * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
3199         * 0x47357e3e : beq     0x47357e82       |
3200         * 0x47357e40 : stmia   r7, <r0>       --+
3201         * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
3202         * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
3203         * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
3204         * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
3205         * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
3206         * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
3207         * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
3208         * 0x47357e50 : mov     r8, r1         --+
3209         * 0x47357e52 : mov     r9, r2           |
3210         * 0x47357e54 : ldr     r2, [pc, #96]    |
3211         * 0x47357e56 : mov     r10, r3          |
3212         * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
3213         * 0x47357e5a : ldr     r3, [pc, #88]    |
3214         * 0x47357e5c : ldr     r7, [pc, #80]    |
3215         * 0x47357e5e : mov     r1, #1452        |
3216         * 0x47357e62 : blx     r7             --+
3217         * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
3218         * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
3219         * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
3220         * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
3221         * 0x47357e6c : blx_2   see above      --+     COMMON
3222         * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
3223         * 0x47357e70 : cmp     r1, #0         --> compare against 0
3224         * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
3225         * 0x47357e74 : ldr     r7, [pc, #off] --+
3226         * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
3227         * 0x47357e78 : mov     r3, r10          |
3228         * 0x47357e7a : blx     r7             --+
3229         * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
3230         * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
3231         * 0x47357e80 : blx_2   see above      --+
3232         * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
3233         * 0x47357e82 : ldr     r0, [pc, #56]
3234         * Exception_Handling:
3235         * 0x47357e84 : ldr     r1, [r6, #92]
3236         * 0x47357e86 : blx     r1
3237         * 0x47357e88 : .align4
3238         * -------- chaining cell (hot): 0x000b
3239         * 0x47357e88 : ldr     r0, [r6, #104]
3240         * 0x47357e8a : blx     r0
3241         * 0x47357e8c : data    0x19e2(6626)
3242         * 0x47357e8e : data    0x4257(16983)
3243         * 0x47357e90 : .align4
3244         * -------- chaining cell (predicted)
3245         * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
3246         * 0x47357e92 : data    0x0000(0)
3247         * 0x47357e94 : data    0x0000(0)      --> class
3248         * 0x47357e96 : data    0x0000(0)
3249         * 0x47357e98 : data    0x0000(0)      --> method
3250         * 0x47357e9a : data    0x0000(0)
3251         * 0x47357e9c : data    0x0000(0)      --> rechain count
3252         * 0x47357e9e : data    0x0000(0)
3253         * -------- end of chaining cells (0x006c)
3254         * 0x47357eb0 : .word (0xad03e369)
3255         * 0x47357eb4 : .word (0x28a90)
3256         * 0x47357eb8 : .word (0x41a63394)
3257         * 0x47357ebc : .word (0x425719dc)
3258         */
3259        case OP_INVOKE_INTERFACE:
3260        case OP_INVOKE_INTERFACE_RANGE:
3261        case OP_INVOKE_INTERFACE_JUMBO: {
3262            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3263
3264            /*
3265             * If the invoke has non-null misPredBranchOver, we need to generate
3266             * the non-inlined version of the invoke here to handle the
3267             * mispredicted case.
3268             */
3269            if (mir->meta.callsiteInfo->misPredBranchOver) {
3270                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3271            }
3272
3273            if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
3274                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3275            else
3276                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3277
3278            /* "this" is already left in r0 by genProcessArgs* */
3279
3280            /* r4PC = dalvikCallsite */
3281            loadConstant(cUnit, r4PC,
3282                         (int) (cUnit->method->insns + mir->offset));
3283
3284            /* r1 = &retChainingCell */
3285            ArmLIR *addrRetChain =
3286                opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
3287            addrRetChain->generic.target = (LIR *) retChainingCell;
3288
3289            /* r2 = &predictedChainingCell */
3290            ArmLIR *predictedChainingCell =
3291                opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
3292            predictedChainingCell->generic.target = (LIR *) predChainingCell;
3293
3294            genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3295                TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
3296                TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
3297
3298            /* return through lr - jump to the chaining cell */
3299            genUnconditionalBranch(cUnit, predChainingCell);
3300
3301            /*
3302             * null-check on "this" may have been eliminated, but we still need
3303             * a PC-reconstruction label for stack overflow bailout.
3304             */
3305            if (pcrLabel == NULL) {
3306                int dPC = (int) (cUnit->method->insns + mir->offset);
3307                pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
3308                pcrLabel->opcode = kArmPseudoPCReconstructionCell;
3309                pcrLabel->operands[0] = dPC;
3310                pcrLabel->operands[1] = mir->offset;
3311                /* Insert the place holder to the growable list */
3312                dvmInsertGrowableList(&cUnit->pcReconstructionList,
3313                                      (intptr_t) pcrLabel);
3314            }
3315
3316            /* return through lr+2 - punt to the interpreter */
3317            genUnconditionalBranch(cUnit, pcrLabel);
3318
3319            /*
3320             * return through lr+4 - fully resolve the callee method.
3321             * r1 <- count
3322             * r2 <- &predictedChainCell
3323             * r3 <- this->class
3324             * r4 <- dPC
3325             * r7 <- this->class->vtable
3326             */
3327
3328            /* Save count, &predictedChainCell, and class to high regs first */
3329            genRegCopy(cUnit, r8, r1);
3330            genRegCopy(cUnit, r9, r2);
3331            genRegCopy(cUnit, r10, r3);
3332
3333            /* r0 now contains this->clazz */
3334            genRegCopy(cUnit, r0, r3);
3335
3336            /* r1 = BBBB */
3337            loadConstant(cUnit, r1, dInsn->vB);
3338
3339            /* r2 = method (caller) */
3340            loadConstant(cUnit, r2, (int) cUnit->method);
3341
3342            /* r3 = pDvmDex */
3343            loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
3344
3345            LOAD_FUNC_ADDR(cUnit, r7,
3346                           (intptr_t) dvmFindInterfaceMethodInCache);
3347            opReg(cUnit, kOpBlx, r7);
3348            /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
3349
3350            dvmCompilerClobberCallRegs(cUnit);
3351            /* generate a branch over if the interface method is resolved */
3352            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
3353            /*
3354             * calleeMethod == NULL -> throw
3355             */
3356            loadConstant(cUnit, r0,
3357                         (int) (cUnit->method->insns + mir->offset));
3358            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3359            /* noreturn */
3360
3361            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3362            target->defMask = ENCODE_ALL;
3363            branchOver->generic.target = (LIR *) target;
3364
3365            genRegCopy(cUnit, r1, r8);
3366
3367            /* Check if rechain limit is reached */
3368            ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
3369                                                       r1, 0);
3370
3371            LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
3372
3373            genRegCopy(cUnit, r1, r6SELF);
3374            genRegCopy(cUnit, r2, r9);
3375            genRegCopy(cUnit, r3, r10);
3376
3377            /*
3378             * r0 = calleeMethod
3379             * r2 = &predictedChainingCell
3380             * r3 = class
3381             *
3382             * &returnChainingCell has been loaded into r1 but is not needed
3383             * when patching the chaining cell and will be clobbered upon
3384             * returning so it will be reconstructed again.
3385             */
3386            opReg(cUnit, kOpBlx, r7);
3387
3388            /* r1 = &retChainingCell */
3389            addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
3390            addrRetChain->generic.target = (LIR *) retChainingCell;
3391
3392            bypassRechaining->generic.target = (LIR *) addrRetChain;
3393
3394            /*
3395             * r0 = this, r1 = calleeMethod,
3396             * r1 = &ChainingCell,
3397             * r4PC = callsiteDPC,
3398             */
3399            genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3400                TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
3401                TEMPLATE_INVOKE_METHOD_NO_OPT);
3402#if defined(WITH_JIT_TUNING)
3403            gDvmJit.invokePolymorphic++;
3404#endif
3405            /* Handle exceptions using the interpreter */
3406            genTrap(cUnit, mir->offset, pcrLabel);
3407            break;
3408        }
3409        case OP_INVOKE_OBJECT_INIT_JUMBO:
3410        case OP_INVOKE_OBJECT_INIT_RANGE:
3411        case OP_FILLED_NEW_ARRAY:
3412        case OP_FILLED_NEW_ARRAY_RANGE:
3413        case OP_FILLED_NEW_ARRAY_JUMBO: {
3414            /* Just let the interpreter deal with these */
3415            genInterpSingleStep(cUnit, mir);
3416            break;
3417        }
3418        default:
3419            return true;
3420    }
3421    return false;
3422}
3423
3424static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
3425                               BasicBlock *bb, ArmLIR *labelList)
3426{
3427    ArmLIR *pcrLabel = NULL;
3428
3429    /* An invoke with the MIR_INLINED is effectively a no-op */
3430    if (mir->OptimizationFlags & MIR_INLINED)
3431        return false;
3432
3433    DecodedInstruction *dInsn = &mir->dalvikInsn;
3434    switch (mir->dalvikInsn.opcode) {
3435        /* calleeMethod = this->clazz->vtable[BBBB] */
3436        case OP_INVOKE_VIRTUAL_QUICK_RANGE:
3437        case OP_INVOKE_VIRTUAL_QUICK: {
3438            int methodIndex = dInsn->vB;
3439            ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
3440            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3441
3442            /*
3443             * If the invoke has non-null misPredBranchOver, we need to generate
3444             * the non-inlined version of the invoke here to handle the
3445             * mispredicted case.
3446             */
3447            if (mir->meta.callsiteInfo->misPredBranchOver) {
3448                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3449            }
3450
3451            if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
3452                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3453            else
3454                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3455
3456
3457            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3458                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3459                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3460                assert(calleeAddr);
3461                genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
3462                                            retChainingCell);
3463            }
3464
3465            genInvokeVirtualCommon(cUnit, mir, methodIndex,
3466                                   retChainingCell,
3467                                   predChainingCell,
3468                                   pcrLabel);
3469            break;
3470        }
3471        /* calleeMethod = method->clazz->super->vtable[BBBB] */
3472        case OP_INVOKE_SUPER_QUICK:
3473        case OP_INVOKE_SUPER_QUICK_RANGE: {
3474            /* Grab the method ptr directly from what the interpreter sees */
3475            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3476            assert(calleeMethod ==
3477                   cUnit->method->clazz->super->vtable[dInsn->vB]);
3478
3479            if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
3480                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3481            else
3482                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3483
3484            /* r0 = calleeMethod */
3485            loadConstant(cUnit, r0, (int) calleeMethod);
3486
3487            genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3488                                     calleeMethod);
3489            break;
3490        }
3491        default:
3492            return true;
3493    }
3494    return false;
3495}
3496
3497/*
3498 * This operation is complex enough that we'll do it partly inline
3499 * and partly with a handler.  NOTE: the handler uses hardcoded
3500 * values for string object offsets and must be revisitied if the
3501 * layout changes.
3502 */
3503static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
3504{
3505#if defined(USE_GLOBAL_STRING_DEFS)
3506    return handleExecuteInlineC(cUnit, mir);
3507#else
3508    ArmLIR *rollback;
3509    RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3510    RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
3511
3512    loadValueDirectFixed(cUnit, rlThis, r0);
3513    loadValueDirectFixed(cUnit, rlComp, r1);
3514    /* Test objects for NULL */
3515    rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
3516    genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
3517    /*
3518     * TUNING: we could check for object pointer equality before invoking
3519     * handler. Unclear whether the gain would be worth the added code size
3520     * expansion.
3521     */
3522    genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
3523    storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3524               dvmCompilerGetReturn(cUnit));
3525    return false;
3526#endif
3527}
3528
3529static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
3530{
3531#if defined(USE_GLOBAL_STRING_DEFS)
3532    return handleExecuteInlineC(cUnit, mir);
3533#else
3534    RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3535    RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
3536
3537    loadValueDirectFixed(cUnit, rlThis, r0);
3538    loadValueDirectFixed(cUnit, rlChar, r1);
3539    RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
3540    loadValueDirectFixed(cUnit, rlStart, r2);
3541    /* Test objects for NULL */
3542    genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
3543    genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
3544    storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3545               dvmCompilerGetReturn(cUnit));
3546    return false;
3547#endif
3548}
3549
3550// Generates an inlined String.isEmpty or String.length.
3551static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
3552                                            bool isEmpty)
3553{
3554    // dst = src.length();
3555    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3556    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3557    rlObj = loadValue(cUnit, rlObj, kCoreReg);
3558    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3559    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
3560    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
3561                 rlResult.lowReg);
3562    if (isEmpty) {
3563        // dst = (dst == 0);
3564        int tReg = dvmCompilerAllocTemp(cUnit);
3565        opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
3566        opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
3567    }
3568    storeValue(cUnit, rlDest, rlResult);
3569    return false;
3570}
3571
3572static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
3573{
3574    return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
3575}
3576
3577static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
3578{
3579    return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
3580}
3581
3582static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
3583{
3584    int contents = OFFSETOF_MEMBER(ArrayObject, contents);
3585    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3586    RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
3587    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3588    RegLocation rlResult;
3589    rlObj = loadValue(cUnit, rlObj, kCoreReg);
3590    rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3591    int regMax = dvmCompilerAllocTemp(cUnit);
3592    int regOff = dvmCompilerAllocTemp(cUnit);
3593    int regPtr = dvmCompilerAllocTemp(cUnit);
3594    ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
3595                                    mir->offset, NULL);
3596    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
3597    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
3598    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
3599    genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
3600    dvmCompilerFreeTemp(cUnit, regMax);
3601    opRegImm(cUnit, kOpAdd, regPtr, contents);
3602    opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
3603    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3604    loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
3605    storeValue(cUnit, rlDest, rlResult);
3606    return false;
3607}
3608
3609static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
3610{
3611    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3612    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
3613    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3614    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3615    int signReg = dvmCompilerAllocTemp(cUnit);
3616    /*
3617     * abs(x) = y<=x>>31, (x+y)^y.
3618     * Thumb2's IT block also yields 3 instructions, but imposes
3619     * scheduling constraints.
3620     */
3621    opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
3622    opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3623    opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3624    storeValue(cUnit, rlDest, rlResult);
3625    return false;
3626}
3627
3628static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
3629{
3630    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3631    RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3632    rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
3633    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3634    int signReg = dvmCompilerAllocTemp(cUnit);
3635    /*
3636     * abs(x) = y<=x>>31, (x+y)^y.
3637     * Thumb2 IT block allows slightly shorter sequence,
3638     * but introduces a scheduling barrier.  Stick with this
3639     * mechanism for now.
3640     */
3641    opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
3642    opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3643    opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
3644    opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3645    opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
3646    storeValueWide(cUnit, rlDest, rlResult);
3647    return false;
3648}
3649
3650static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
3651{
3652    // Just move from source to destination...
3653    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3654    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3655    storeValue(cUnit, rlDest, rlSrc);
3656    return false;
3657}
3658
3659static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
3660{
3661    // Just move from source to destination...
3662    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3663    RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3664    storeValueWide(cUnit, rlDest, rlSrc);
3665    return false;
3666}
3667
3668/*
3669 * JITs a call to a C function.
3670 * TODO: use this for faster native method invocation for simple native
3671 * methods (http://b/3069458).
3672 */
3673static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
3674{
3675    DecodedInstruction *dInsn = &mir->dalvikInsn;
3676    int operation = dInsn->vB;
3677    unsigned int i;
3678    const InlineOperation* inLineTable = dvmGetInlineOpsTable();
3679    uintptr_t fn = (int) inLineTable[operation].func;
3680    if (fn == 0) {
3681        dvmCompilerAbort(cUnit);
3682    }
3683    dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
3684    dvmCompilerClobberCallRegs(cUnit);
3685    dvmCompilerClobber(cUnit, r4PC);
3686    dvmCompilerClobber(cUnit, r7);
3687    int offset = offsetof(Thread, interpSave.retval);
3688    opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset);
3689    opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
3690    LOAD_FUNC_ADDR(cUnit, r4PC, fn);
3691    genExportPC(cUnit, mir);
3692    for (i=0; i < dInsn->vA; i++) {
3693        loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
3694    }
3695    opReg(cUnit, kOpBlx, r4PC);
3696    opRegImm(cUnit, kOpAdd, r13sp, 8);
3697    /* NULL? */
3698    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
3699    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
3700    genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3701    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3702    target->defMask = ENCODE_ALL;
3703    branchOver->generic.target = (LIR *) target;
3704    return false;
3705}
3706
3707/*
3708 * NOTE: Handles both range and non-range versions (arguments
3709 * have already been normalized by this point).
3710 */
3711static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
3712{
3713    DecodedInstruction *dInsn = &mir->dalvikInsn;
3714    assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
3715           dInsn->opcode == OP_EXECUTE_INLINE);
3716    switch (dInsn->vB) {
3717        case INLINE_EMPTYINLINEMETHOD:
3718            return false;  /* Nop */
3719
3720        /* These ones we potentially JIT inline. */
3721        case INLINE_STRING_LENGTH:
3722            return genInlinedStringLength(cUnit, mir);
3723        case INLINE_STRING_IS_EMPTY:
3724            return genInlinedStringIsEmpty(cUnit, mir);
3725        case INLINE_MATH_ABS_INT:
3726            return genInlinedAbsInt(cUnit, mir);
3727        case INLINE_MATH_ABS_LONG:
3728            return genInlinedAbsLong(cUnit, mir);
3729        case INLINE_MATH_MIN_INT:
3730            return genInlinedMinMaxInt(cUnit, mir, true);
3731        case INLINE_MATH_MAX_INT:
3732            return genInlinedMinMaxInt(cUnit, mir, false);
3733        case INLINE_STRING_CHARAT:
3734            return genInlinedStringCharAt(cUnit, mir);
3735        case INLINE_MATH_SQRT:
3736            return genInlineSqrt(cUnit, mir);
3737        case INLINE_MATH_ABS_FLOAT:
3738            return genInlinedAbsFloat(cUnit, mir);
3739        case INLINE_MATH_ABS_DOUBLE:
3740            return genInlinedAbsDouble(cUnit, mir);
3741        case INLINE_STRING_COMPARETO:
3742            return genInlinedCompareTo(cUnit, mir);
3743        case INLINE_STRING_FASTINDEXOF_II:
3744            return genInlinedFastIndexOf(cUnit, mir);
3745        case INLINE_FLOAT_TO_RAW_INT_BITS:
3746        case INLINE_INT_BITS_TO_FLOAT:
3747            return genInlinedIntFloatConversion(cUnit, mir);
3748        case INLINE_DOUBLE_TO_RAW_LONG_BITS:
3749        case INLINE_LONG_BITS_TO_DOUBLE:
3750            return genInlinedLongDoubleConversion(cUnit, mir);
3751
3752        /*
3753         * These ones we just JIT a call to a C function for.
3754         * TODO: special-case these in the other "invoke" call paths.
3755         */
3756        case INLINE_STRING_EQUALS:
3757        case INLINE_MATH_COS:
3758        case INLINE_MATH_SIN:
3759        case INLINE_FLOAT_TO_INT_BITS:
3760        case INLINE_DOUBLE_TO_LONG_BITS:
3761            return handleExecuteInlineC(cUnit, mir);
3762    }
3763    dvmCompilerAbort(cUnit);
3764    return false; // Not reachable; keeps compiler happy.
3765}
3766
3767static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
3768{
3769    //TUNING: We're using core regs here - not optimal when target is a double
3770    RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
3771    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3772    loadConstantNoClobber(cUnit, rlResult.lowReg,
3773                          mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
3774    loadConstantNoClobber(cUnit, rlResult.highReg,
3775                          (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
3776    storeValueWide(cUnit, rlDest, rlResult);
3777    return false;
3778}
3779
3780/*
3781 * The following are special processing routines that handle transfer of
3782 * controls between compiled code and the interpreter. Certain VM states like
3783 * Dalvik PC and special-purpose registers are reconstructed here.
3784 */
3785
3786/*
3787 * Insert a
3788 *    b   .+4
3789 *    nop
3790 * pair at the beginning of a chaining cell.  This serves as the
3791 * switch branch that selects between reverting to the interpreter or
3792 * not.  Once the cell is chained to a translation, the cell will
3793 * contain a 32-bit branch.  Subsequent chain/unchain operations will
3794 * then only alter that first 16-bits - the "b .+4" for unchaining,
3795 * and the restoration of the first half of the 32-bit branch for
3796 * rechaining.
3797 */
3798static void insertChainingSwitch(CompilationUnit *cUnit)
3799{
3800    ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
3801    newLIR2(cUnit, kThumbOrr, r0, r0);
3802    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3803    target->defMask = ENCODE_ALL;
3804    branch->generic.target = (LIR *) target;
3805}
3806
3807/* Chaining cell for code that may need warmup. */
3808static void handleNormalChainingCell(CompilationUnit *cUnit,
3809                                     unsigned int offset)
3810{
3811    /*
3812     * Use raw instruction constructors to guarantee that the generated
3813     * instructions fit the predefined cell size.
3814     */
3815    insertChainingSwitch(cUnit);
3816    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3817            offsetof(Thread,
3818                     jitToInterpEntries.dvmJitToInterpNormal) >> 2);
3819    newLIR1(cUnit, kThumbBlxR, r0);
3820    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3821}
3822
3823/*
3824 * Chaining cell for instructions that immediately following already translated
3825 * code.
3826 */
3827static void handleHotChainingCell(CompilationUnit *cUnit,
3828                                  unsigned int offset)
3829{
3830    /*
3831     * Use raw instruction constructors to guarantee that the generated
3832     * instructions fit the predefined cell size.
3833     */
3834    insertChainingSwitch(cUnit);
3835    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3836            offsetof(Thread,
3837                     jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
3838    newLIR1(cUnit, kThumbBlxR, r0);
3839    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3840}
3841
3842/* Chaining cell for branches that branch back into the same basic block */
3843static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
3844                                             unsigned int offset)
3845{
3846    /*
3847     * Use raw instruction constructors to guarantee that the generated
3848     * instructions fit the predefined cell size.
3849     */
3850    insertChainingSwitch(cUnit);
3851#if defined(WITH_SELF_VERIFICATION)
3852    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3853        offsetof(Thread,
3854                 jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
3855#else
3856    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3857        offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
3858#endif
3859    newLIR1(cUnit, kThumbBlxR, r0);
3860    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3861}
3862
3863/* Chaining cell for monomorphic method invocations. */
3864static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
3865                                              const Method *callee)
3866{
3867    /*
3868     * Use raw instruction constructors to guarantee that the generated
3869     * instructions fit the predefined cell size.
3870     */
3871    insertChainingSwitch(cUnit);
3872    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3873            offsetof(Thread,
3874                     jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
3875    newLIR1(cUnit, kThumbBlxR, r0);
3876    addWordData(cUnit, NULL, (int) (callee->insns));
3877}
3878
3879/* Chaining cell for monomorphic method invocations. */
3880static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
3881{
3882
3883    /* Should not be executed in the initial state */
3884    addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
3885    /* To be filled: class */
3886    addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
3887    /* To be filled: method */
3888    addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
3889    /*
3890     * Rechain count. The initial value of 0 here will trigger chaining upon
3891     * the first invocation of this callsite.
3892     */
3893    addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
3894}
3895
3896/* Load the Dalvik PC into r0 and jump to the specified target */
3897static void handlePCReconstruction(CompilationUnit *cUnit,
3898                                   ArmLIR *targetLabel)
3899{
3900    ArmLIR **pcrLabel =
3901        (ArmLIR **) cUnit->pcReconstructionList.elemList;
3902    int numElems = cUnit->pcReconstructionList.numUsed;
3903    int i;
3904
3905    /*
3906     * We should never reach here through fall-through code, so insert
3907     * a bomb to signal troubles immediately.
3908     */
3909    if (numElems) {
3910        newLIR0(cUnit, kThumbUndefined);
3911    }
3912
3913    for (i = 0; i < numElems; i++) {
3914        dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
3915        /* r0 = dalvik PC */
3916        loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
3917        genUnconditionalBranch(cUnit, targetLabel);
3918    }
3919}
3920
3921static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
3922    "kMirOpPhi",
3923    "kMirOpNullNRangeUpCheck",
3924    "kMirOpNullNRangeDownCheck",
3925    "kMirOpLowerBound",
3926    "kMirOpPunt",
3927    "kMirOpCheckInlinePrediction",
3928};
3929
3930/*
3931 * vA = arrayReg;
3932 * vB = idxReg;
3933 * vC = endConditionReg;
3934 * arg[0] = maxC
3935 * arg[1] = minC
3936 * arg[2] = loopBranchConditionCode
3937 */
3938static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
3939{
3940    /*
3941     * NOTE: these synthesized blocks don't have ssa names assigned
3942     * for Dalvik registers.  However, because they dominate the following
3943     * blocks we can simply use the Dalvik name w/ subscript 0 as the
3944     * ssa name.
3945     */
3946    DecodedInstruction *dInsn = &mir->dalvikInsn;
3947    const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3948    const int maxC = dInsn->arg[0];
3949    int regLength;
3950    RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3951    RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
3952
3953    /* regArray <- arrayRef */
3954    rlArray = loadValue(cUnit, rlArray, kCoreReg);
3955    rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
3956    genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
3957                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3958
3959    /* regLength <- len(arrayRef) */
3960    regLength = dvmCompilerAllocTemp(cUnit);
3961    loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
3962
3963    int delta = maxC;
3964    /*
3965     * If the loop end condition is ">=" instead of ">", then the largest value
3966     * of the index is "endCondition - 1".
3967     */
3968    if (dInsn->arg[2] == OP_IF_GE) {
3969        delta--;
3970    }
3971
3972    if (delta) {
3973        int tReg = dvmCompilerAllocTemp(cUnit);
3974        opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
3975        rlIdxEnd.lowReg = tReg;
3976        dvmCompilerFreeTemp(cUnit, tReg);
3977    }
3978    /* Punt if "regIdxEnd < len(Array)" is false */
3979    genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
3980                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3981}
3982
3983/*
3984 * vA = arrayReg;
3985 * vB = idxReg;
3986 * vC = endConditionReg;
3987 * arg[0] = maxC
3988 * arg[1] = minC
3989 * arg[2] = loopBranchConditionCode
3990 */
3991static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
3992{
3993    DecodedInstruction *dInsn = &mir->dalvikInsn;
3994    const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3995    const int regLength = dvmCompilerAllocTemp(cUnit);
3996    const int maxC = dInsn->arg[0];
3997    RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3998    RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
3999
4000    /* regArray <- arrayRef */
4001    rlArray = loadValue(cUnit, rlArray, kCoreReg);
4002    rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
4003    genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
4004                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
4005
4006    /* regLength <- len(arrayRef) */
4007    loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
4008
4009    if (maxC) {
4010        int tReg = dvmCompilerAllocTemp(cUnit);
4011        opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
4012        rlIdxInit.lowReg = tReg;
4013        dvmCompilerFreeTemp(cUnit, tReg);
4014    }
4015
4016    /* Punt if "regIdxInit < len(Array)" is false */
4017    genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
4018                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
4019}
4020
4021/*
4022 * vA = idxReg;
4023 * vB = minC;
4024 */
4025static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
4026{
4027    DecodedInstruction *dInsn = &mir->dalvikInsn;
4028    const int minC = dInsn->vB;
4029    RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
4030
4031    /* regIdx <- initial index value */
4032    rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
4033
4034    /* Punt if "regIdxInit + minC >= 0" is false */
4035    genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
4036                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
4037}
4038
4039/*
4040 * vC = this
4041 *
4042 * A predicted inlining target looks like the following, where instructions
4043 * between 0x4858de66 and 0x4858de72 are checking if the predicted class
4044 * matches "this", and the verificaion code is generated by this routine.
4045 *
4046 * (C) means the instruction is inlined from the callee, and (PI) means the
4047 * instruction is the predicted inlined invoke, whose corresponding
4048 * instructions are still generated to handle the mispredicted case.
4049 *
4050 * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
4051 * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
4052 * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
4053 * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
4054 * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
4055 * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
4056 * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
4057 * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
4058 * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
4059 * v4, v17, (#8)
4060 * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
4061 * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
4062 * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
4063 * +invoke-virtual-quick/range (PI) v17..v17
4064 * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
4065 * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
4066 * D/dalvikvm(   86): -------- BARRIER
4067 * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
4068 * D/dalvikvm(   86): -------- BARRIER
4069 * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
4070 * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
4071 * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
4072 * D/dalvikvm(   86): -------- BARRIER
4073 * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
4074 * D/dalvikvm(   86): -------- BARRIER
4075 * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
4076 * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
4077 * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
4078 * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
4079 * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
4080 * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
4081 * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
4082 * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
4083 * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
4084 * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
4085 * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
4086 * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
4087 * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
4088 * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
4089 * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
4090 * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
4091 * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
4092 * D/dalvikvm(   86): 0x4858deac (0048): .align4
4093 * D/dalvikvm(   86): L0x004f:
4094 * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
4095 * v4, (#0), (#0)
4096 * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
4097 * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
4098 * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
4099 * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
4100 * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
4101 * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
4102 * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
4103 * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
4104 * D/dalvikvm(   86): Exception_Handling:
4105 * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
4106 * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
4107 * D/dalvikvm(   86): 0x4858debc (0058): .align4
4108 * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
4109 * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
4110 * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
4111 * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
4112 * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
4113 * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
4114 * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
4115 * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
4116 * D/dalvikvm(   86): -------- chaining cell (predicted)
4117 * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
4118 * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
4119 * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
4120 * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
4121 * :
4122 */
4123static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
4124{
4125    CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
4126    RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
4127
4128    rlThis = loadValue(cUnit, rlThis, kCoreReg);
4129    int regPredictedClass = dvmCompilerAllocTemp(cUnit);
4130    loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
4131    genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
4132                 NULL);/* null object? */
4133    int regActualClass = dvmCompilerAllocTemp(cUnit);
4134    loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
4135    opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
4136    /*
4137     * Set the misPredBranchOver target so that it will be generated when the
4138     * code for the non-optimized invoke is generated.
4139     */
4140    callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
4141}
4142
4143/* Extended MIR instructions like PHI */
4144static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
4145{
4146    int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
4147    char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
4148                                        false);
4149    strcpy(msg, extendedMIROpNames[opOffset]);
4150    newLIR1(cUnit, kArmPseudoExtended, (int) msg);
4151
4152    switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
4153        case kMirOpPhi: {
4154            char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4155            newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
4156            break;
4157        }
4158        case kMirOpNullNRangeUpCheck: {
4159            genHoistedChecksForCountUpLoop(cUnit, mir);
4160            break;
4161        }
4162        case kMirOpNullNRangeDownCheck: {
4163            genHoistedChecksForCountDownLoop(cUnit, mir);
4164            break;
4165        }
4166        case kMirOpLowerBound: {
4167            genHoistedLowerBoundCheck(cUnit, mir);
4168            break;
4169        }
4170        case kMirOpPunt: {
4171            genUnconditionalBranch(cUnit,
4172                                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
4173            break;
4174        }
4175        case kMirOpCheckInlinePrediction: {
4176            genValidationForPredictedInline(cUnit, mir);
4177            break;
4178        }
4179        default:
4180            break;
4181    }
4182}
4183
4184/*
4185 * Create a PC-reconstruction cell for the starting offset of this trace.
4186 * Since the PCR cell is placed near the end of the compiled code which is
4187 * usually out of range for a conditional branch, we put two branches (one
4188 * branch over to the loop body and one layover branch to the actual PCR) at the
4189 * end of the entry block.
4190 */
4191static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
4192                                ArmLIR *bodyLabel)
4193{
4194    /* Set up the place holder to reconstruct this Dalvik PC */
4195    ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4196    pcrLabel->opcode = kArmPseudoPCReconstructionCell;
4197    pcrLabel->operands[0] =
4198        (int) (cUnit->method->insns + entry->startOffset);
4199    pcrLabel->operands[1] = entry->startOffset;
4200    /* Insert the place holder to the growable list */
4201    dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
4202
4203    /*
4204     * Next, create two branches - one branch over to the loop body and the
4205     * other branch to the PCR cell to punt.
4206     */
4207    ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4208    branchToBody->opcode = kThumbBUncond;
4209    branchToBody->generic.target = (LIR *) bodyLabel;
4210    setupResourceMasks(branchToBody);
4211    cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
4212
4213    ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4214    branchToPCR->opcode = kThumbBUncond;
4215    branchToPCR->generic.target = (LIR *) pcrLabel;
4216    setupResourceMasks(branchToPCR);
4217    cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
4218}
4219
4220#if defined(WITH_SELF_VERIFICATION)
4221static bool selfVerificationPuntOps(MIR *mir)
4222{
4223    DecodedInstruction *decInsn = &mir->dalvikInsn;
4224
4225    /*
4226     * All opcodes that can throw exceptions and use the
4227     * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
4228     * under self-verification mode.
4229     */
4230    switch (decInsn->opcode) {
4231        case OP_MONITOR_ENTER:
4232        case OP_MONITOR_EXIT:
4233        case OP_NEW_INSTANCE:
4234        case OP_NEW_INSTANCE_JUMBO:
4235        case OP_NEW_ARRAY:
4236        case OP_NEW_ARRAY_JUMBO:
4237        case OP_CHECK_CAST:
4238        case OP_CHECK_CAST_JUMBO:
4239        case OP_MOVE_EXCEPTION:
4240        case OP_FILL_ARRAY_DATA:
4241        case OP_EXECUTE_INLINE:
4242        case OP_EXECUTE_INLINE_RANGE:
4243            return true;
4244        default:
4245            return false;
4246    }
4247}
4248#endif
4249
4250void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
4251{
4252    /* Used to hold the labels of each block */
4253    ArmLIR *labelList =
4254        (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
4255    ArmLIR *headLIR = NULL;
4256    GrowableList chainingListByType[kChainingCellGap];
4257    int i;
4258
4259    /*
4260     * Initialize various types chaining lists.
4261     */
4262    for (i = 0; i < kChainingCellGap; i++) {
4263        dvmInitGrowableList(&chainingListByType[i], 2);
4264    }
4265
4266    /* Clear the visited flag for each block */
4267    dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
4268                                          kAllNodes, false /* isIterative */);
4269
4270    GrowableListIterator iterator;
4271    dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
4272
4273    /* Traces start with a profiling entry point.  Generate it here */
4274    cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
4275
4276    /* Handle the content in each basic block */
4277    for (i = 0; ; i++) {
4278        MIR *mir;
4279        BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
4280        if (bb == NULL) break;
4281        if (bb->visited == true) continue;
4282
4283        labelList[i].operands[0] = bb->startOffset;
4284
4285        if (bb->blockType >= kChainingCellGap) {
4286            if (bb->isFallThroughFromInvoke == true) {
4287                /* Align this block first since it is a return chaining cell */
4288                newLIR0(cUnit, kArmPseudoPseudoAlign4);
4289            }
4290            /*
4291             * Append the label pseudo LIR first. Chaining cells will be handled
4292             * separately afterwards.
4293             */
4294            dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
4295        }
4296
4297        if (bb->blockType == kEntryBlock) {
4298            labelList[i].opcode = kArmPseudoEntryBlock;
4299            if (bb->firstMIRInsn == NULL) {
4300                continue;
4301            } else {
4302              setupLoopEntryBlock(cUnit, bb,
4303                                  &labelList[bb->fallThrough->id]);
4304            }
4305        } else if (bb->blockType == kExitBlock) {
4306            labelList[i].opcode = kArmPseudoExitBlock;
4307            goto gen_fallthrough;
4308        } else if (bb->blockType == kDalvikByteCode) {
4309            if (bb->hidden == true) continue;
4310            labelList[i].opcode = kArmPseudoNormalBlockLabel;
4311            /* Reset the register state */
4312            dvmCompilerResetRegPool(cUnit);
4313            dvmCompilerClobberAllRegs(cUnit);
4314            dvmCompilerResetNullCheck(cUnit);
4315        } else {
4316            switch (bb->blockType) {
4317                case kChainingCellNormal:
4318                    labelList[i].opcode = kArmPseudoChainingCellNormal;
4319                    /* handle the codegen later */
4320                    dvmInsertGrowableList(
4321                        &chainingListByType[kChainingCellNormal], i);
4322                    break;
4323                case kChainingCellInvokeSingleton:
4324                    labelList[i].opcode =
4325                        kArmPseudoChainingCellInvokeSingleton;
4326                    labelList[i].operands[0] =
4327                        (int) bb->containingMethod;
4328                    /* handle the codegen later */
4329                    dvmInsertGrowableList(
4330                        &chainingListByType[kChainingCellInvokeSingleton], i);
4331                    break;
4332                case kChainingCellInvokePredicted:
4333                    labelList[i].opcode =
4334                        kArmPseudoChainingCellInvokePredicted;
4335                    /*
4336                     * Move the cached method pointer from operand 1 to 0.
4337                     * Operand 0 was clobbered earlier in this routine to store
4338                     * the block starting offset, which is not applicable to
4339                     * predicted chaining cell.
4340                     */
4341                    labelList[i].operands[0] = labelList[i].operands[1];
4342                    /* handle the codegen later */
4343                    dvmInsertGrowableList(
4344                        &chainingListByType[kChainingCellInvokePredicted], i);
4345                    break;
4346                case kChainingCellHot:
4347                    labelList[i].opcode =
4348                        kArmPseudoChainingCellHot;
4349                    /* handle the codegen later */
4350                    dvmInsertGrowableList(
4351                        &chainingListByType[kChainingCellHot], i);
4352                    break;
4353                case kPCReconstruction:
4354                    /* Make sure exception handling block is next */
4355                    labelList[i].opcode =
4356                        kArmPseudoPCReconstructionBlockLabel;
4357                    handlePCReconstruction(cUnit,
4358                                           &labelList[cUnit->puntBlock->id]);
4359                    break;
4360                case kExceptionHandling:
4361                    labelList[i].opcode = kArmPseudoEHBlockLabel;
4362                    if (cUnit->pcReconstructionList.numUsed) {
4363                        loadWordDisp(cUnit, r6SELF, offsetof(Thread,
4364                                     jitToInterpEntries.dvmJitToInterpPunt),
4365                                     r1);
4366                        opReg(cUnit, kOpBlx, r1);
4367                    }
4368                    break;
4369                case kChainingCellBackwardBranch:
4370                    labelList[i].opcode =
4371                        kArmPseudoChainingCellBackwardBranch;
4372                    /* handle the codegen later */
4373                    dvmInsertGrowableList(
4374                        &chainingListByType[kChainingCellBackwardBranch],
4375                        i);
4376                    break;
4377                default:
4378                    break;
4379            }
4380            continue;
4381        }
4382
4383        /*
4384         * Try to build a longer optimization unit. Currently if the previous
4385         * block ends with a goto, we continue adding instructions and don't
4386         * reset the register allocation pool.
4387         */
4388        for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
4389            bb = nextBB;
4390            bb->visited = true;
4391            cUnit->nextCodegenBlock = NULL;
4392
4393            for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
4394
4395                dvmCompilerResetRegPool(cUnit);
4396                if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
4397                    dvmCompilerClobberAllRegs(cUnit);
4398                }
4399
4400                if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
4401                    dvmCompilerResetDefTracking(cUnit);
4402                }
4403
4404                if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
4405                    handleExtendedMIR(cUnit, mir);
4406                    continue;
4407                }
4408
4409                Opcode dalvikOpcode = mir->dalvikInsn.opcode;
4410                InstructionFormat dalvikFormat =
4411                    dexGetFormatFromOpcode(dalvikOpcode);
4412                const char *note;
4413                if (mir->OptimizationFlags & MIR_INLINED) {
4414                    note = " (I)";
4415                } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
4416                    note = " (PI)";
4417                } else if (mir->OptimizationFlags & MIR_CALLEE) {
4418                    note = " (C)";
4419                } else {
4420                    note = NULL;
4421                }
4422
4423                ArmLIR *boundaryLIR;
4424
4425                /*
4426                 * Don't generate the boundary LIR unless we are debugging this
4427                 * trace or we need a scheduling barrier.
4428                 */
4429                if (headLIR == NULL || cUnit->printMe == true) {
4430                    boundaryLIR =
4431                        newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
4432                                mir->offset,
4433                                (int) dvmCompilerGetDalvikDisassembly(
4434                                    &mir->dalvikInsn, note));
4435                    /* Remember the first LIR for this block */
4436                    if (headLIR == NULL) {
4437                        headLIR = boundaryLIR;
4438                        /* Set the first boundaryLIR as a scheduling barrier */
4439                        headLIR->defMask = ENCODE_ALL;
4440                    }
4441                }
4442
4443                /*
4444                 * Don't generate the SSA annotation unless verbose mode is on
4445                 */
4446                if (cUnit->printMe && mir->ssaRep) {
4447                    char *ssaString = dvmCompilerGetSSAString(cUnit,
4448                                                              mir->ssaRep);
4449                    newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
4450                }
4451
4452                bool notHandled;
4453                /*
4454                 * Debugging: screen the opcode first to see if it is in the
4455                 * do[-not]-compile list
4456                 */
4457                bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
4458#if defined(WITH_SELF_VERIFICATION)
4459              if (singleStepMe == false) {
4460                  singleStepMe = selfVerificationPuntOps(mir);
4461              }
4462#endif
4463                if (singleStepMe || cUnit->allSingleStep) {
4464                    notHandled = false;
4465                    genInterpSingleStep(cUnit, mir);
4466                } else {
4467                    opcodeCoverage[dalvikOpcode]++;
4468                    switch (dalvikFormat) {
4469                        case kFmt10t:
4470                        case kFmt20t:
4471                        case kFmt30t:
4472                            notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
4473                                      mir, bb, labelList);
4474                            break;
4475                        case kFmt10x:
4476                            notHandled = handleFmt10x(cUnit, mir);
4477                            break;
4478                        case kFmt11n:
4479                        case kFmt31i:
4480                            notHandled = handleFmt11n_Fmt31i(cUnit, mir);
4481                            break;
4482                        case kFmt11x:
4483                            notHandled = handleFmt11x(cUnit, mir);
4484                            break;
4485                        case kFmt12x:
4486                            notHandled = handleFmt12x(cUnit, mir);
4487                            break;
4488                        case kFmt20bc:
4489                        case kFmt40sc:
4490                            notHandled = handleFmt20bc_Fmt40sc(cUnit, mir);
4491                            break;
4492                        case kFmt21c:
4493                        case kFmt31c:
4494                        case kFmt41c:
4495                            notHandled = handleFmt21c_Fmt31c_Fmt41c(cUnit, mir);
4496                            break;
4497                        case kFmt21h:
4498                            notHandled = handleFmt21h(cUnit, mir);
4499                            break;
4500                        case kFmt21s:
4501                            notHandled = handleFmt21s(cUnit, mir);
4502                            break;
4503                        case kFmt21t:
4504                            notHandled = handleFmt21t(cUnit, mir, bb,
4505                                                      labelList);
4506                            break;
4507                        case kFmt22b:
4508                        case kFmt22s:
4509                            notHandled = handleFmt22b_Fmt22s(cUnit, mir);
4510                            break;
4511                        case kFmt22c:
4512                        case kFmt52c:
4513                            notHandled = handleFmt22c_Fmt52c(cUnit, mir);
4514                            break;
4515                        case kFmt22cs:
4516                            notHandled = handleFmt22cs(cUnit, mir);
4517                            break;
4518                        case kFmt22t:
4519                            notHandled = handleFmt22t(cUnit, mir, bb,
4520                                                      labelList);
4521                            break;
4522                        case kFmt22x:
4523                        case kFmt32x:
4524                            notHandled = handleFmt22x_Fmt32x(cUnit, mir);
4525                            break;
4526                        case kFmt23x:
4527                            notHandled = handleFmt23x(cUnit, mir);
4528                            break;
4529                        case kFmt31t:
4530                            notHandled = handleFmt31t(cUnit, mir);
4531                            break;
4532                        case kFmt3rc:
4533                        case kFmt35c:
4534                        case kFmt5rc:
4535                            notHandled = handleFmt35c_3rc_5rc(cUnit, mir, bb,
4536                                                          labelList);
4537                            break;
4538                        case kFmt3rms:
4539                        case kFmt35ms:
4540                            notHandled = handleFmt35ms_3rms(cUnit, mir, bb,
4541                                                            labelList);
4542                            break;
4543                        case kFmt35mi:
4544                        case kFmt3rmi:
4545                            notHandled = handleExecuteInline(cUnit, mir);
4546                            break;
4547                        case kFmt51l:
4548                            notHandled = handleFmt51l(cUnit, mir);
4549                            break;
4550                        default:
4551                            notHandled = true;
4552                            break;
4553                    }
4554                }
4555                if (notHandled) {
4556                    LOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
4557                         mir->offset,
4558                         dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
4559                         dalvikFormat);
4560                    dvmCompilerAbort(cUnit);
4561                    break;
4562                }
4563            }
4564        }
4565
4566        if (bb->blockType == kEntryBlock) {
4567            dvmCompilerAppendLIR(cUnit,
4568                                 (LIR *) cUnit->loopAnalysis->branchToBody);
4569            dvmCompilerAppendLIR(cUnit,
4570                                 (LIR *) cUnit->loopAnalysis->branchToPCR);
4571        }
4572
4573        if (headLIR) {
4574            /*
4575             * Eliminate redundant loads/stores and delay stores into later
4576             * slots
4577             */
4578            dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
4579                                               cUnit->lastLIRInsn);
4580            /* Reset headLIR which is also the optimization boundary */
4581            headLIR = NULL;
4582        }
4583
4584gen_fallthrough:
4585        /*
4586         * Check if the block is terminated due to trace length constraint -
4587         * insert an unconditional branch to the chaining cell.
4588         */
4589        if (bb->needFallThroughBranch) {
4590            genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
4591        }
4592    }
4593
4594    /* Handle the chaining cells in predefined order */
4595    for (i = 0; i < kChainingCellGap; i++) {
4596        size_t j;
4597        int *blockIdList = (int *) chainingListByType[i].elemList;
4598
4599        cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
4600
4601        /* No chaining cells of this type */
4602        if (cUnit->numChainingCells[i] == 0)
4603            continue;
4604
4605        /* Record the first LIR for a new type of chaining cell */
4606        cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
4607
4608        for (j = 0; j < chainingListByType[i].numUsed; j++) {
4609            int blockId = blockIdList[j];
4610            BasicBlock *chainingBlock =
4611                (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
4612                                                         blockId);
4613
4614            /* Align this chaining cell first */
4615            newLIR0(cUnit, kArmPseudoPseudoAlign4);
4616
4617            /* Insert the pseudo chaining instruction */
4618            dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
4619
4620
4621            switch (chainingBlock->blockType) {
4622                case kChainingCellNormal:
4623                    handleNormalChainingCell(cUnit, chainingBlock->startOffset);
4624                    break;
4625                case kChainingCellInvokeSingleton:
4626                    handleInvokeSingletonChainingCell(cUnit,
4627                        chainingBlock->containingMethod);
4628                    break;
4629                case kChainingCellInvokePredicted:
4630                    handleInvokePredictedChainingCell(cUnit);
4631                    break;
4632                case kChainingCellHot:
4633                    handleHotChainingCell(cUnit, chainingBlock->startOffset);
4634                    break;
4635                case kChainingCellBackwardBranch:
4636                    handleBackwardBranchChainingCell(cUnit,
4637                        chainingBlock->startOffset);
4638                    break;
4639                default:
4640                    LOGE("Bad blocktype %d", chainingBlock->blockType);
4641                    dvmCompilerAbort(cUnit);
4642            }
4643        }
4644    }
4645
4646    /* Mark the bottom of chaining cells */
4647    cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
4648
4649    /*
4650     * Generate the branch to the dvmJitToInterpNoChain entry point at the end
4651     * of all chaining cells for the overflow cases.
4652     */
4653    if (cUnit->switchOverflowPad) {
4654        loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
4655        loadWordDisp(cUnit, r6SELF, offsetof(Thread,
4656                     jitToInterpEntries.dvmJitToInterpNoChain), r2);
4657        opRegReg(cUnit, kOpAdd, r1, r1);
4658        opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
4659#if defined(WITH_JIT_TUNING)
4660        loadConstant(cUnit, r0, kSwitchOverflow);
4661#endif
4662        opReg(cUnit, kOpBlx, r2);
4663    }
4664
4665    dvmCompilerApplyGlobalOptimizations(cUnit);
4666
4667#if defined(WITH_SELF_VERIFICATION)
4668    selfVerificationBranchInsertPass(cUnit);
4669#endif
4670}
4671
4672/*
4673 * Accept the work and start compiling.  Returns true if compilation
4674 * is attempted.
4675 */
4676bool dvmCompilerDoWork(CompilerWorkOrder *work)
4677{
4678    JitTraceDescription *desc;
4679    bool isCompile;
4680    bool success = true;
4681
4682    if (gDvmJit.codeCacheFull) {
4683        return false;
4684    }
4685
4686    switch (work->kind) {
4687        case kWorkOrderTrace:
4688            isCompile = true;
4689            /* Start compilation with maximally allowed trace length */
4690            desc = (JitTraceDescription *)work->info;
4691            success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4692                                        work->bailPtr, 0 /* no hints */);
4693            break;
4694        case kWorkOrderTraceDebug: {
4695            bool oldPrintMe = gDvmJit.printMe;
4696            gDvmJit.printMe = true;
4697            isCompile = true;
4698            /* Start compilation with maximally allowed trace length */
4699            desc = (JitTraceDescription *)work->info;
4700            success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4701                                        work->bailPtr, 0 /* no hints */);
4702            gDvmJit.printMe = oldPrintMe;
4703            break;
4704        }
4705        case kWorkOrderProfileMode:
4706            dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
4707            isCompile = false;
4708            break;
4709        default:
4710            isCompile = false;
4711            LOGE("Jit: unknown work order type");
4712            assert(0);  // Bail if debug build, discard otherwise
4713    }
4714    if (!success)
4715        work->result.codeAddress = NULL;
4716    return isCompile;
4717}
4718
4719/* Architectural-specific debugging helpers go here */
4720void dvmCompilerArchDump(void)
4721{
4722    /* Print compiled opcode in this VM instance */
4723    int i, start, streak;
4724    char buf[1024];
4725
4726    streak = i = 0;
4727    buf[0] = 0;
4728    while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
4729        i++;
4730    }
4731    if (i == kNumPackedOpcodes) {
4732        return;
4733    }
4734    for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
4735        if (opcodeCoverage[i]) {
4736            streak++;
4737        } else {
4738            if (streak == 1) {
4739                sprintf(buf+strlen(buf), "%x,", start);
4740            } else {
4741                sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
4742            }
4743            streak = 0;
4744            while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
4745                i++;
4746            }
4747            if (i < kNumPackedOpcodes) {
4748                streak = 1;
4749                start = i;
4750            }
4751        }
4752    }
4753    if (streak) {
4754        if (streak == 1) {
4755            sprintf(buf+strlen(buf), "%x", start);
4756        } else {
4757            sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
4758        }
4759    }
4760    if (strlen(buf)) {
4761        ALOGD("dalvik.vm.jit.op = %s", buf);
4762    }
4763}
4764
4765/* Common initialization routine for an architecture family */
4766bool dvmCompilerArchInit()
4767{
4768    int i;
4769
4770    for (i = 0; i < kArmLast; i++) {
4771        if (EncodingMap[i].opcode != i) {
4772            LOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
4773                 EncodingMap[i].name, i, EncodingMap[i].opcode);
4774            dvmAbort();  // OK to dvmAbort - build error
4775        }
4776    }
4777
4778    return dvmCompilerArchVariantInit();
4779}
4780
4781void *dvmCompilerGetInterpretTemplate()
4782{
4783      return (void*) ((int)gDvmJit.codeCache +
4784                      templateEntryOffsets[TEMPLATE_INTERPRET]);
4785}
4786
4787JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
4788{
4789    return DALVIK_JIT_ARM;
4790}
4791
4792/* Needed by the Assembler */
4793void dvmCompilerSetupResourceMasks(ArmLIR *lir)
4794{
4795    setupResourceMasks(lir);
4796}
4797
4798/* Needed by the ld/st optmizatons */
4799ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
4800{
4801    return genRegCopyNoInsert(cUnit, rDest, rSrc);
4802}
4803
4804/* Needed by the register allocator */
4805ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
4806{
4807    return genRegCopy(cUnit, rDest, rSrc);
4808}
4809
4810/* Needed by the register allocator */
4811void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
4812                            int srcLo, int srcHi)
4813{
4814    genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
4815}
4816
4817void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
4818                             int displacement, int rSrc, OpSize size)
4819{
4820    storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
4821}
4822
4823void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
4824                                 int displacement, int rSrcLo, int rSrcHi)
4825{
4826    storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
4827}
4828