CodegenDriver.cpp revision c1a4ab9c313d8a3d12007f2dbef7b5a6fa4ac2ef
1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This file contains codegen and support common to all supported
19 * ARM variants.  It is included by:
20 *
21 *        Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 * which combines this common code with specific support found in the
24 * applicable directory below this one.
25 */
26
27/*
28 * Mark garbage collection card. Skip if the value we're storing is null.
29 */
30static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
31{
32    int regCardBase = dvmCompilerAllocTemp(cUnit);
33    int regCardNo = dvmCompilerAllocTemp(cUnit);
34    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
35    loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable),
36                 regCardBase);
37    opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
38    storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
39                     kUnsignedByte);
40    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
41    target->defMask = ENCODE_ALL;
42    branchOver->generic.target = (LIR *)target;
43    dvmCompilerFreeTemp(cUnit, regCardBase);
44    dvmCompilerFreeTemp(cUnit, regCardNo);
45}
46
47static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
48                                     int srcSize, int tgtSize)
49{
50    /*
51     * Don't optimize the register usage since it calls out to template
52     * functions
53     */
54    RegLocation rlSrc;
55    RegLocation rlDest;
56    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
57    if (srcSize == 1) {
58        rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
59        loadValueDirectFixed(cUnit, rlSrc, r0);
60    } else {
61        rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
62        loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
63    }
64    LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
65    opReg(cUnit, kOpBlx, r2);
66    dvmCompilerClobberCallRegs(cUnit);
67    if (tgtSize == 1) {
68        RegLocation rlResult;
69        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
70        rlResult = dvmCompilerGetReturn(cUnit);
71        storeValue(cUnit, rlDest, rlResult);
72    } else {
73        RegLocation rlResult;
74        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
75        rlResult = dvmCompilerGetReturnWide(cUnit);
76        storeValueWide(cUnit, rlDest, rlResult);
77    }
78    return false;
79}
80
81static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
82                                    RegLocation rlDest, RegLocation rlSrc1,
83                                    RegLocation rlSrc2)
84{
85    RegLocation rlResult;
86    void* funct;
87
88    switch (mir->dalvikInsn.opcode) {
89        case OP_ADD_FLOAT_2ADDR:
90        case OP_ADD_FLOAT:
91            funct = (void*) __aeabi_fadd;
92            break;
93        case OP_SUB_FLOAT_2ADDR:
94        case OP_SUB_FLOAT:
95            funct = (void*) __aeabi_fsub;
96            break;
97        case OP_DIV_FLOAT_2ADDR:
98        case OP_DIV_FLOAT:
99            funct = (void*) __aeabi_fdiv;
100            break;
101        case OP_MUL_FLOAT_2ADDR:
102        case OP_MUL_FLOAT:
103            funct = (void*) __aeabi_fmul;
104            break;
105        case OP_REM_FLOAT_2ADDR:
106        case OP_REM_FLOAT:
107            funct = (void*) fmodf;
108            break;
109        case OP_NEG_FLOAT: {
110            genNegFloat(cUnit, rlDest, rlSrc1);
111            return false;
112        }
113        default:
114            return true;
115    }
116    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
117    loadValueDirectFixed(cUnit, rlSrc1, r0);
118    loadValueDirectFixed(cUnit, rlSrc2, r1);
119    LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
120    opReg(cUnit, kOpBlx, r2);
121    dvmCompilerClobberCallRegs(cUnit);
122    rlResult = dvmCompilerGetReturn(cUnit);
123    storeValue(cUnit, rlDest, rlResult);
124    return false;
125}
126
127static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
128                                     RegLocation rlDest, RegLocation rlSrc1,
129                                     RegLocation rlSrc2)
130{
131    RegLocation rlResult;
132    void* funct;
133
134    switch (mir->dalvikInsn.opcode) {
135        case OP_ADD_DOUBLE_2ADDR:
136        case OP_ADD_DOUBLE:
137            funct = (void*) __aeabi_dadd;
138            break;
139        case OP_SUB_DOUBLE_2ADDR:
140        case OP_SUB_DOUBLE:
141            funct = (void*) __aeabi_dsub;
142            break;
143        case OP_DIV_DOUBLE_2ADDR:
144        case OP_DIV_DOUBLE:
145            funct = (void*) __aeabi_ddiv;
146            break;
147        case OP_MUL_DOUBLE_2ADDR:
148        case OP_MUL_DOUBLE:
149            funct = (void*) __aeabi_dmul;
150            break;
151        case OP_REM_DOUBLE_2ADDR:
152        case OP_REM_DOUBLE:
153            funct = (void*) (double (*)(double, double)) fmod;
154            break;
155        case OP_NEG_DOUBLE: {
156            genNegDouble(cUnit, rlDest, rlSrc1);
157            return false;
158        }
159        default:
160            return true;
161    }
162    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
163    LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct);
164    loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
165    loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
166    opReg(cUnit, kOpBlx, r14lr);
167    dvmCompilerClobberCallRegs(cUnit);
168    rlResult = dvmCompilerGetReturnWide(cUnit);
169    storeValueWide(cUnit, rlDest, rlResult);
170#if defined(WITH_SELF_VERIFICATION)
171    cUnit->usesLinkRegister = true;
172#endif
173    return false;
174}
175
176static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
177{
178    Opcode opcode = mir->dalvikInsn.opcode;
179
180    switch (opcode) {
181        case OP_INT_TO_FLOAT:
182            return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
183        case OP_FLOAT_TO_INT:
184            return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
185        case OP_DOUBLE_TO_FLOAT:
186            return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
187        case OP_FLOAT_TO_DOUBLE:
188            return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
189        case OP_INT_TO_DOUBLE:
190            return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
191        case OP_DOUBLE_TO_INT:
192            return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
193        case OP_FLOAT_TO_LONG:
194            return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
195        case OP_LONG_TO_FLOAT:
196            return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
197        case OP_DOUBLE_TO_LONG:
198            return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
199        case OP_LONG_TO_DOUBLE:
200            return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
201        default:
202            return true;
203    }
204    return false;
205}
206
207#if defined(WITH_SELF_VERIFICATION)
208static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
209                          int dest, int src1)
210{
211     ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
212     insn->opcode = opcode;
213     insn->operands[0] = dest;
214     insn->operands[1] = src1;
215     setupResourceMasks(insn);
216     dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
217}
218
219/*
220 * Example where r14 (LR) is preserved around a heap access under
221 * self-verification mode in Thumb2:
222 *
223 * D/dalvikvm( 1538): 0x59414c5e (0026): ldr     r14, [r15pc, #220] <-hoisted
224 * D/dalvikvm( 1538): 0x59414c62 (002a): mla     r4, r0, r8, r4
225 * D/dalvikvm( 1538): 0x59414c66 (002e): adds    r3, r4, r3
226 * D/dalvikvm( 1538): 0x59414c6a (0032): push    <r5, r14>    ---+
227 * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1   0x5940f494      |
228 * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2   see above       <-MEM_OP_DECODE
229 * D/dalvikvm( 1538): 0x59414c70 (0038): ldr     r10, [r9, #0]   |
230 * D/dalvikvm( 1538): 0x59414c74 (003c): pop     <r5, r14>    ---+
231 * D/dalvikvm( 1538): 0x59414c78 (0040): mov     r11, r10
232 * D/dalvikvm( 1538): 0x59414c7a (0042): asr     r12, r11, #31
233 * D/dalvikvm( 1538): 0x59414c7e (0046): movs    r0, r2
234 * D/dalvikvm( 1538): 0x59414c80 (0048): movs    r1, r3
235 * D/dalvikvm( 1538): 0x59414c82 (004a): str     r2, [r5, #16]
236 * D/dalvikvm( 1538): 0x59414c84 (004c): mov     r2, r11
237 * D/dalvikvm( 1538): 0x59414c86 (004e): str     r3, [r5, #20]
238 * D/dalvikvm( 1538): 0x59414c88 (0050): mov     r3, r12
239 * D/dalvikvm( 1538): 0x59414c8a (0052): str     r11, [r5, #24]
240 * D/dalvikvm( 1538): 0x59414c8e (0056): str     r12, [r5, #28]
241 * D/dalvikvm( 1538): 0x59414c92 (005a): blx     r14             <-use of LR
242 *
243 */
244static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
245{
246    ArmLIR *thisLIR;
247    TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
248
249    for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
250         thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
251         thisLIR = NEXT_LIR(thisLIR)) {
252        if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
253            /*
254             * Push r5(FP) and r14(LR) onto stack. We need to make sure that
255             * SP is 8-byte aligned, and we use r5 as a temp to restore LR
256             * for Thumb-only target since LR cannot be directly accessed in
257             * Thumb mode. Another reason to choose r5 here is it is the Dalvik
258             * frame pointer and cannot be the target of the emulated heap
259             * load.
260             */
261            if (cUnit->usesLinkRegister) {
262                genSelfVerificationPreBranch(cUnit, thisLIR);
263            }
264
265            /* Branch to mem op decode template */
266            selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
267                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
268                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
269            selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
270                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
271                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
272
273            /* Restore LR */
274            if (cUnit->usesLinkRegister) {
275                genSelfVerificationPostBranch(cUnit, thisLIR);
276            }
277        }
278    }
279}
280#endif
281
282/* Generate conditional branch instructions */
283static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
284                                    ArmConditionCode cond,
285                                    ArmLIR *target)
286{
287    ArmLIR *branch = opCondBranch(cUnit, cond);
288    branch->generic.target = (LIR *) target;
289    return branch;
290}
291
292/* Generate a unconditional branch to go to the interpreter */
293static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
294                                  ArmLIR *pcrLabel)
295{
296    ArmLIR *branch = opNone(cUnit, kOpUncondBr);
297    return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
298}
299
300/* Load a wide field from an object instance */
301static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
302{
303    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
304    RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
305    RegLocation rlResult;
306    rlObj = loadValue(cUnit, rlObj, kCoreReg);
307    int regPtr = dvmCompilerAllocTemp(cUnit);
308
309    assert(rlDest.wide);
310
311    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
312                 NULL);/* null object? */
313    opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
314    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
315
316    HEAP_ACCESS_SHADOW(true);
317    loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
318    HEAP_ACCESS_SHADOW(false);
319
320    dvmCompilerFreeTemp(cUnit, regPtr);
321    storeValueWide(cUnit, rlDest, rlResult);
322}
323
324/* Store a wide field to an object instance */
325static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
326{
327    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
328    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
329    rlObj = loadValue(cUnit, rlObj, kCoreReg);
330    int regPtr;
331    rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
332    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
333                 NULL);/* null object? */
334    regPtr = dvmCompilerAllocTemp(cUnit);
335    opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
336
337    HEAP_ACCESS_SHADOW(true);
338    storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
339    HEAP_ACCESS_SHADOW(false);
340
341    dvmCompilerFreeTemp(cUnit, regPtr);
342}
343
344/*
345 * Load a field from an object instance
346 *
347 */
348static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
349                    int fieldOffset, bool isVolatile)
350{
351    RegLocation rlResult;
352    RegisterClass regClass = dvmCompilerRegClassBySize(size);
353    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
354    RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
355    rlObj = loadValue(cUnit, rlObj, kCoreReg);
356    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
357    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
358                 NULL);/* null object? */
359
360    HEAP_ACCESS_SHADOW(true);
361    loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
362                 size, rlObj.sRegLow);
363    HEAP_ACCESS_SHADOW(false);
364    if (isVolatile) {
365        dvmCompilerGenMemBarrier(cUnit, kSY);
366    }
367
368    storeValue(cUnit, rlDest, rlResult);
369}
370
371/*
372 * Store a field to an object instance
373 *
374 */
375static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
376                    int fieldOffset, bool isObject, bool isVolatile)
377{
378    RegisterClass regClass = dvmCompilerRegClassBySize(size);
379    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
380    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
381    rlObj = loadValue(cUnit, rlObj, kCoreReg);
382    rlSrc = loadValue(cUnit, rlSrc, regClass);
383    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
384                 NULL);/* null object? */
385
386    if (isVolatile) {
387        dvmCompilerGenMemBarrier(cUnit, kST);
388    }
389    HEAP_ACCESS_SHADOW(true);
390    storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
391    HEAP_ACCESS_SHADOW(false);
392    if (isVolatile) {
393        dvmCompilerGenMemBarrier(cUnit, kSY);
394    }
395    if (isObject) {
396        /* NOTE: marking card based on object head */
397        markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
398    }
399}
400
401
402/*
403 * Generate array load
404 */
405static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
406                        RegLocation rlArray, RegLocation rlIndex,
407                        RegLocation rlDest, int scale)
408{
409    RegisterClass regClass = dvmCompilerRegClassBySize(size);
410    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
411    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
412    RegLocation rlResult;
413    rlArray = loadValue(cUnit, rlArray, kCoreReg);
414    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
415    int regPtr;
416
417    /* null object? */
418    ArmLIR * pcrLabel = NULL;
419
420    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
421        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
422                                rlArray.lowReg, mir->offset, NULL);
423    }
424
425    regPtr = dvmCompilerAllocTemp(cUnit);
426
427    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
428        int regLen = dvmCompilerAllocTemp(cUnit);
429        /* Get len */
430        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
431        /* regPtr -> array data */
432        opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
433        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
434                       pcrLabel);
435        dvmCompilerFreeTemp(cUnit, regLen);
436    } else {
437        /* regPtr -> array data */
438        opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
439    }
440    if ((size == kLong) || (size == kDouble)) {
441        if (scale) {
442            int rNewIndex = dvmCompilerAllocTemp(cUnit);
443            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
444            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
445            dvmCompilerFreeTemp(cUnit, rNewIndex);
446        } else {
447            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
448        }
449        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
450
451        HEAP_ACCESS_SHADOW(true);
452        loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
453        HEAP_ACCESS_SHADOW(false);
454
455        dvmCompilerFreeTemp(cUnit, regPtr);
456        storeValueWide(cUnit, rlDest, rlResult);
457    } else {
458        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
459
460        HEAP_ACCESS_SHADOW(true);
461        loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
462                        scale, size);
463        HEAP_ACCESS_SHADOW(false);
464
465        dvmCompilerFreeTemp(cUnit, regPtr);
466        storeValue(cUnit, rlDest, rlResult);
467    }
468}
469
470/*
471 * Generate array store
472 *
473 */
474static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
475                        RegLocation rlArray, RegLocation rlIndex,
476                        RegLocation rlSrc, int scale)
477{
478    RegisterClass regClass = dvmCompilerRegClassBySize(size);
479    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
480    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
481
482    int regPtr;
483    rlArray = loadValue(cUnit, rlArray, kCoreReg);
484    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
485
486    if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
487        dvmCompilerClobber(cUnit, rlArray.lowReg);
488        regPtr = rlArray.lowReg;
489    } else {
490        regPtr = dvmCompilerAllocTemp(cUnit);
491        genRegCopy(cUnit, regPtr, rlArray.lowReg);
492    }
493
494    /* null object? */
495    ArmLIR * pcrLabel = NULL;
496
497    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
498        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
499                                mir->offset, NULL);
500    }
501
502    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
503        int regLen = dvmCompilerAllocTemp(cUnit);
504        //NOTE: max live temps(4) here.
505        /* Get len */
506        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
507        /* regPtr -> array data */
508        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
509        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
510                       pcrLabel);
511        dvmCompilerFreeTemp(cUnit, regLen);
512    } else {
513        /* regPtr -> array data */
514        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
515    }
516    /* at this point, regPtr points to array, 2 live temps */
517    if ((size == kLong) || (size == kDouble)) {
518        //TODO: need specific wide routine that can handle fp regs
519        if (scale) {
520            int rNewIndex = dvmCompilerAllocTemp(cUnit);
521            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
522            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
523            dvmCompilerFreeTemp(cUnit, rNewIndex);
524        } else {
525            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
526        }
527        rlSrc = loadValueWide(cUnit, rlSrc, regClass);
528
529        HEAP_ACCESS_SHADOW(true);
530        storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
531        HEAP_ACCESS_SHADOW(false);
532
533        dvmCompilerFreeTemp(cUnit, regPtr);
534    } else {
535        rlSrc = loadValue(cUnit, rlSrc, regClass);
536
537        HEAP_ACCESS_SHADOW(true);
538        storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
539                         scale, size);
540        HEAP_ACCESS_SHADOW(false);
541    }
542}
543
544/*
545 * Generate array object store
546 * Must use explicit register allocation here because of
547 * call-out to dvmCanPutArrayElement
548 */
549static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
550                              RegLocation rlArray, RegLocation rlIndex,
551                              RegLocation rlSrc, int scale)
552{
553    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
554    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
555
556    dvmCompilerFlushAllRegs(cUnit);
557
558    int regLen = r0;
559    int regPtr = r4PC;  /* Preserved across call */
560    int regArray = r1;
561    int regIndex = r7;  /* Preserved across call */
562
563    loadValueDirectFixed(cUnit, rlArray, regArray);
564    loadValueDirectFixed(cUnit, rlIndex, regIndex);
565
566    /* null object? */
567    ArmLIR * pcrLabel = NULL;
568
569    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
570        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
571                                mir->offset, NULL);
572    }
573
574    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
575        /* Get len */
576        loadWordDisp(cUnit, regArray, lenOffset, regLen);
577        /* regPtr -> array data */
578        opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
579        genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
580                       pcrLabel);
581    } else {
582        /* regPtr -> array data */
583        opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
584    }
585
586    /* Get object to store */
587    loadValueDirectFixed(cUnit, rlSrc, r0);
588    LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
589
590    /* Are we storing null?  If so, avoid check */
591    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
592
593    /* Make sure the types are compatible */
594    loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
595    loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
596    opReg(cUnit, kOpBlx, r2);
597    dvmCompilerClobberCallRegs(cUnit);
598
599    /*
600     * Using fixed registers here, and counting on r4 and r7 being
601     * preserved across the above call.  Tell the register allocation
602     * utilities about the regs we are using directly
603     */
604    dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
605    dvmCompilerLockTemp(cUnit, regIndex); // r7
606    dvmCompilerLockTemp(cUnit, r0);
607    dvmCompilerLockTemp(cUnit, r1);
608
609    /* Bad? - roll back and re-execute if so */
610    genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
611
612    /* Resume here - must reload element & array, regPtr & index preserved */
613    loadValueDirectFixed(cUnit, rlSrc, r0);
614    loadValueDirectFixed(cUnit, rlArray, r1);
615
616    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
617    target->defMask = ENCODE_ALL;
618    branchOver->generic.target = (LIR *) target;
619
620    HEAP_ACCESS_SHADOW(true);
621    storeBaseIndexed(cUnit, regPtr, regIndex, r0,
622                     scale, kWord);
623    HEAP_ACCESS_SHADOW(false);
624
625    dvmCompilerFreeTemp(cUnit, regPtr);
626    dvmCompilerFreeTemp(cUnit, regIndex);
627
628    /* NOTE: marking card here based on object head */
629    markCard(cUnit, r0, r1);
630}
631
632static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
633                           RegLocation rlDest, RegLocation rlSrc1,
634                           RegLocation rlShift)
635{
636    /*
637     * Don't mess with the regsiters here as there is a particular calling
638     * convention to the out-of-line handler.
639     */
640    RegLocation rlResult;
641
642    loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
643    loadValueDirect(cUnit, rlShift, r2);
644    switch( mir->dalvikInsn.opcode) {
645        case OP_SHL_LONG:
646        case OP_SHL_LONG_2ADDR:
647            genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
648            break;
649        case OP_SHR_LONG:
650        case OP_SHR_LONG_2ADDR:
651            genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
652            break;
653        case OP_USHR_LONG:
654        case OP_USHR_LONG_2ADDR:
655            genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
656            break;
657        default:
658            return true;
659    }
660    rlResult = dvmCompilerGetReturnWide(cUnit);
661    storeValueWide(cUnit, rlDest, rlResult);
662    return false;
663}
664
665static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
666                           RegLocation rlDest, RegLocation rlSrc1,
667                           RegLocation rlSrc2)
668{
669    RegLocation rlResult;
670    OpKind firstOp = kOpBkpt;
671    OpKind secondOp = kOpBkpt;
672    bool callOut = false;
673    void *callTgt;
674    int retReg = r0;
675
676    switch (mir->dalvikInsn.opcode) {
677        case OP_NOT_LONG:
678            rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
679            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
680            opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
681            opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
682            storeValueWide(cUnit, rlDest, rlResult);
683            return false;
684            break;
685        case OP_ADD_LONG:
686        case OP_ADD_LONG_2ADDR:
687            firstOp = kOpAdd;
688            secondOp = kOpAdc;
689            break;
690        case OP_SUB_LONG:
691        case OP_SUB_LONG_2ADDR:
692            firstOp = kOpSub;
693            secondOp = kOpSbc;
694            break;
695        case OP_MUL_LONG:
696        case OP_MUL_LONG_2ADDR:
697            genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
698            return false;
699        case OP_DIV_LONG:
700        case OP_DIV_LONG_2ADDR:
701            callOut = true;
702            retReg = r0;
703            callTgt = (void*)__aeabi_ldivmod;
704            break;
705        /* NOTE - result is in r2/r3 instead of r0/r1 */
706        case OP_REM_LONG:
707        case OP_REM_LONG_2ADDR:
708            callOut = true;
709            callTgt = (void*)__aeabi_ldivmod;
710            retReg = r2;
711            break;
712        case OP_AND_LONG_2ADDR:
713        case OP_AND_LONG:
714            firstOp = kOpAnd;
715            secondOp = kOpAnd;
716            break;
717        case OP_OR_LONG:
718        case OP_OR_LONG_2ADDR:
719            firstOp = kOpOr;
720            secondOp = kOpOr;
721            break;
722        case OP_XOR_LONG:
723        case OP_XOR_LONG_2ADDR:
724            firstOp = kOpXor;
725            secondOp = kOpXor;
726            break;
727        case OP_NEG_LONG: {
728            //TUNING: can improve this using Thumb2 code
729            int tReg = dvmCompilerAllocTemp(cUnit);
730            rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
731            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
732            loadConstantNoClobber(cUnit, tReg, 0);
733            opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
734                        tReg, rlSrc2.lowReg);
735            opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
736            genRegCopy(cUnit, rlResult.highReg, tReg);
737            storeValueWide(cUnit, rlDest, rlResult);
738            return false;
739        }
740        default:
741            ALOGE("Invalid long arith op");
742            dvmCompilerAbort(cUnit);
743    }
744    if (!callOut) {
745        genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
746    } else {
747        // Adjust return regs in to handle case of rem returning r2/r3
748        dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
749        loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
750        LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt);
751        loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
752        opReg(cUnit, kOpBlx, r14lr);
753        dvmCompilerClobberCallRegs(cUnit);
754        if (retReg == r0)
755            rlResult = dvmCompilerGetReturnWide(cUnit);
756        else
757            rlResult = dvmCompilerGetReturnWideAlt(cUnit);
758        storeValueWide(cUnit, rlDest, rlResult);
759#if defined(WITH_SELF_VERIFICATION)
760        cUnit->usesLinkRegister = true;
761#endif
762    }
763    return false;
764}
765
766static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
767                          RegLocation rlDest, RegLocation rlSrc1,
768                          RegLocation rlSrc2)
769{
770    OpKind op = kOpBkpt;
771    bool callOut = false;
772    bool checkZero = false;
773    bool unary = false;
774    int retReg = r0;
775    int (*callTgt)(int, int);
776    RegLocation rlResult;
777    bool shiftOp = false;
778
779    switch (mir->dalvikInsn.opcode) {
780        case OP_NEG_INT:
781            op = kOpNeg;
782            unary = true;
783            break;
784        case OP_NOT_INT:
785            op = kOpMvn;
786            unary = true;
787            break;
788        case OP_ADD_INT:
789        case OP_ADD_INT_2ADDR:
790            op = kOpAdd;
791            break;
792        case OP_SUB_INT:
793        case OP_SUB_INT_2ADDR:
794            op = kOpSub;
795            break;
796        case OP_MUL_INT:
797        case OP_MUL_INT_2ADDR:
798            op = kOpMul;
799            break;
800        case OP_DIV_INT:
801        case OP_DIV_INT_2ADDR:
802            callOut = true;
803            checkZero = true;
804            callTgt = __aeabi_idiv;
805            retReg = r0;
806            break;
807        /* NOTE: returns in r1 */
808        case OP_REM_INT:
809        case OP_REM_INT_2ADDR:
810            callOut = true;
811            checkZero = true;
812            callTgt = __aeabi_idivmod;
813            retReg = r1;
814            break;
815        case OP_AND_INT:
816        case OP_AND_INT_2ADDR:
817            op = kOpAnd;
818            break;
819        case OP_OR_INT:
820        case OP_OR_INT_2ADDR:
821            op = kOpOr;
822            break;
823        case OP_XOR_INT:
824        case OP_XOR_INT_2ADDR:
825            op = kOpXor;
826            break;
827        case OP_SHL_INT:
828        case OP_SHL_INT_2ADDR:
829            shiftOp = true;
830            op = kOpLsl;
831            break;
832        case OP_SHR_INT:
833        case OP_SHR_INT_2ADDR:
834            shiftOp = true;
835            op = kOpAsr;
836            break;
837        case OP_USHR_INT:
838        case OP_USHR_INT_2ADDR:
839            shiftOp = true;
840            op = kOpLsr;
841            break;
842        default:
843            ALOGE("Invalid word arith op: %#x(%d)",
844                 mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
845            dvmCompilerAbort(cUnit);
846    }
847    if (!callOut) {
848        rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
849        if (unary) {
850            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
851            opRegReg(cUnit, op, rlResult.lowReg,
852                     rlSrc1.lowReg);
853        } else {
854            rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
855            if (shiftOp) {
856                int tReg = dvmCompilerAllocTemp(cUnit);
857                opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
858                rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
859                opRegRegReg(cUnit, op, rlResult.lowReg,
860                            rlSrc1.lowReg, tReg);
861                dvmCompilerFreeTemp(cUnit, tReg);
862            } else {
863                rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
864                opRegRegReg(cUnit, op, rlResult.lowReg,
865                            rlSrc1.lowReg, rlSrc2.lowReg);
866            }
867        }
868        storeValue(cUnit, rlDest, rlResult);
869    } else {
870        RegLocation rlResult;
871        dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
872        loadValueDirectFixed(cUnit, rlSrc2, r1);
873        LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
874        loadValueDirectFixed(cUnit, rlSrc1, r0);
875        if (checkZero) {
876            genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
877        }
878        opReg(cUnit, kOpBlx, r2);
879        dvmCompilerClobberCallRegs(cUnit);
880        if (retReg == r0)
881            rlResult = dvmCompilerGetReturn(cUnit);
882        else
883            rlResult = dvmCompilerGetReturnAlt(cUnit);
884        storeValue(cUnit, rlDest, rlResult);
885    }
886    return false;
887}
888
889static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
890{
891    Opcode opcode = mir->dalvikInsn.opcode;
892    RegLocation rlDest;
893    RegLocation rlSrc1;
894    RegLocation rlSrc2;
895    /* Deduce sizes of operands */
896    if (mir->ssaRep->numUses == 2) {
897        rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
898        rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
899    } else if (mir->ssaRep->numUses == 3) {
900        rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
901        rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
902    } else {
903        rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
904        rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
905        assert(mir->ssaRep->numUses == 4);
906    }
907    if (mir->ssaRep->numDefs == 1) {
908        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
909    } else {
910        assert(mir->ssaRep->numDefs == 2);
911        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
912    }
913
914    if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
915        return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
916    }
917    if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
918        return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
919    }
920    if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
921        return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
922    }
923    if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
924        return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
925    }
926    if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
927        return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
928    }
929    if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
930        return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
931    }
932    if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
933        return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
934    }
935    if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
936        return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
937    }
938    if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
939        return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
940    }
941    if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
942        return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
943    }
944    return true;
945}
946
947/* Generate unconditional branch instructions */
948static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
949{
950    ArmLIR *branch = opNone(cUnit, kOpUncondBr);
951    branch->generic.target = (LIR *) target;
952    return branch;
953}
954
955/* Perform the actual operation for OP_RETURN_* */
956static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
957{
958    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
959                         TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
960#if defined(WITH_JIT_TUNING)
961    gDvmJit.returnOp++;
962#endif
963    int dPC = (int) (cUnit->method->insns + mir->offset);
964    /* Insert branch, but defer setting of target */
965    ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
966    /* Set up the place holder to reconstruct this Dalvik PC */
967    ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
968    pcrLabel->opcode = kArmPseudoPCReconstructionCell;
969    pcrLabel->operands[0] = dPC;
970    pcrLabel->operands[1] = mir->offset;
971    /* Insert the place holder to the growable list */
972    dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
973    /* Branch to the PC reconstruction code */
974    branch->generic.target = (LIR *) pcrLabel;
975}
976
977static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
978                                  DecodedInstruction *dInsn,
979                                  ArmLIR **pcrLabel)
980{
981    unsigned int i;
982    unsigned int regMask = 0;
983    RegLocation rlArg;
984    int numDone = 0;
985
986    /*
987     * Load arguments to r0..r4.  Note that these registers may contain
988     * live values, so we clobber them immediately after loading to prevent
989     * them from being used as sources for subsequent loads.
990     */
991    dvmCompilerLockAllTemps(cUnit);
992    for (i = 0; i < dInsn->vA; i++) {
993        regMask |= 1 << i;
994        rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
995        loadValueDirectFixed(cUnit, rlArg, i);
996    }
997    if (regMask) {
998        /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
999        opRegRegImm(cUnit, kOpSub, r7, r5FP,
1000                    sizeof(StackSaveArea) + (dInsn->vA << 2));
1001        /* generate null check */
1002        if (pcrLabel) {
1003            *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
1004                                     mir->offset, NULL);
1005        }
1006        storeMultiple(cUnit, r7, regMask);
1007    }
1008}
1009
1010static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
1011                                DecodedInstruction *dInsn,
1012                                ArmLIR **pcrLabel)
1013{
1014    int srcOffset = dInsn->vC << 2;
1015    int numArgs = dInsn->vA;
1016    int regMask;
1017
1018    /*
1019     * Note: here, all promoted registers will have been flushed
1020     * back to the Dalvik base locations, so register usage restrictins
1021     * are lifted.  All parms loaded from original Dalvik register
1022     * region - even though some might conceivably have valid copies
1023     * cached in a preserved register.
1024     */
1025    dvmCompilerLockAllTemps(cUnit);
1026
1027    /*
1028     * r4PC     : &r5FP[vC]
1029     * r7: &newFP[0]
1030     */
1031    opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset);
1032    /* load [r0 .. min(numArgs,4)] */
1033    regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
1034    /*
1035     * Protect the loadMultiple instruction from being reordered with other
1036     * Dalvik stack accesses.
1037     */
1038    if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
1039
1040    opRegRegImm(cUnit, kOpSub, r7, r5FP,
1041                sizeof(StackSaveArea) + (numArgs << 2));
1042    /* generate null check */
1043    if (pcrLabel) {
1044        *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
1045                                 mir->offset, NULL);
1046    }
1047
1048    /*
1049     * Handle remaining 4n arguments:
1050     * store previously loaded 4 values and load the next 4 values
1051     */
1052    if (numArgs >= 8) {
1053        ArmLIR *loopLabel = NULL;
1054        /*
1055         * r0 contains "this" and it will be used later, so push it to the stack
1056         * first. Pushing r5FP is just for stack alignment purposes.
1057         */
1058        opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP));
1059        /* No need to generate the loop structure if numArgs <= 11 */
1060        if (numArgs > 11) {
1061            loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
1062            loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
1063            loopLabel->defMask = ENCODE_ALL;
1064        }
1065        storeMultiple(cUnit, r7, regMask);
1066        /*
1067         * Protect the loadMultiple instruction from being reordered with other
1068         * Dalvik stack accesses.
1069         */
1070        loadMultiple(cUnit, r4PC, regMask);
1071        /* No need to generate the loop structure if numArgs <= 11 */
1072        if (numArgs > 11) {
1073            opRegImm(cUnit, kOpSub, r5FP, 4);
1074            genConditionalBranch(cUnit, kArmCondNe, loopLabel);
1075        }
1076    }
1077
1078    /* Save the last batch of loaded values */
1079    if (numArgs != 0) storeMultiple(cUnit, r7, regMask);
1080
1081    /* Generate the loop epilogue - don't use r0 */
1082    if ((numArgs > 4) && (numArgs % 4)) {
1083        regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
1084        /*
1085         * Protect the loadMultiple instruction from being reordered with other
1086         * Dalvik stack accesses.
1087         */
1088        loadMultiple(cUnit, r4PC, regMask);
1089    }
1090    if (numArgs >= 8)
1091        opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP));
1092
1093    /* Save the modulo 4 arguments */
1094    if ((numArgs > 4) && (numArgs % 4)) {
1095        storeMultiple(cUnit, r7, regMask);
1096    }
1097}
1098
1099/*
1100 * Generate code to setup the call stack then jump to the chaining cell if it
1101 * is not a native method.
1102 */
1103static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
1104                                     BasicBlock *bb, ArmLIR *labelList,
1105                                     ArmLIR *pcrLabel,
1106                                     const Method *calleeMethod)
1107{
1108    /*
1109     * Note: all Dalvik register state should be flushed to
1110     * memory by the point, so register usage restrictions no
1111     * longer apply.  All temp & preserved registers may be used.
1112     */
1113    dvmCompilerLockAllTemps(cUnit);
1114    ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
1115
1116    /* r1 = &retChainingCell */
1117    ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1118
1119    /* r4PC = dalvikCallsite */
1120    loadConstant(cUnit, r4PC,
1121                 (int) (cUnit->method->insns + mir->offset));
1122    addrRetChain->generic.target = (LIR *) retChainingCell;
1123
1124    /* r7 = calleeMethod->registersSize */
1125    loadConstant(cUnit, r7, calleeMethod->registersSize);
1126    /*
1127     * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
1128     * r1 = &ChainingCell
1129     * r2 = calleeMethod->outsSize (to be loaded later for Java callees)
1130     * r4PC = callsiteDPC
1131     * r7 = calleeMethod->registersSize
1132     */
1133    if (dvmIsNativeMethod(calleeMethod)) {
1134        genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1135            TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
1136            TEMPLATE_INVOKE_METHOD_NATIVE);
1137#if defined(WITH_JIT_TUNING)
1138        gDvmJit.invokeNative++;
1139#endif
1140    } else {
1141        /* For Java callees, set up r2 to be calleeMethod->outsSize */
1142        loadConstant(cUnit, r2, calleeMethod->outsSize);
1143        genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1144            TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
1145            TEMPLATE_INVOKE_METHOD_CHAIN);
1146#if defined(WITH_JIT_TUNING)
1147        gDvmJit.invokeMonomorphic++;
1148#endif
1149        /* Branch to the chaining cell */
1150        genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1151    }
1152    /* Handle exceptions using the interpreter */
1153    genTrap(cUnit, mir->offset, pcrLabel);
1154}
1155
1156/*
1157 * Generate code to check the validity of a predicted chain and take actions
1158 * based on the result.
1159 *
1160 * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
1161 * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
1162 * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
1163 * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
1164 * 0x426a99b2 : blx_2   see above     --+
1165 * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
1166 * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
1167 * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
1168 * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
1169 * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
1170 * 0x426a99be : ldr     r7, [pc, #off]--+ dvmJitToPatchPredictedChain
1171 * 0x426a99c0 : blx     r7            --+
1172 * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
1173 * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
1174 * 0x426a99c6 : blx_2   see above     --+
1175 */
1176static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
1177                                   int methodIndex,
1178                                   ArmLIR *retChainingCell,
1179                                   ArmLIR *predChainingCell,
1180                                   ArmLIR *pcrLabel)
1181{
1182    /*
1183     * Note: all Dalvik register state should be flushed to
1184     * memory by the point, so register usage restrictions no
1185     * longer apply.  Lock temps to prevent them from being
1186     * allocated by utility routines.
1187     */
1188    dvmCompilerLockAllTemps(cUnit);
1189
1190    /*
1191     * For verbose printing, store the method pointer in operands[1] first as
1192     * operands[0] will be clobbered in dvmCompilerMIR2LIR.
1193     */
1194    predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
1195
1196    /* "this" is already left in r0 by genProcessArgs* */
1197
1198    /* r4PC = dalvikCallsite */
1199    loadConstant(cUnit, r4PC,
1200                 (int) (cUnit->method->insns + mir->offset));
1201
1202    /* r1 = &retChainingCell */
1203    ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1204    addrRetChain->generic.target = (LIR *) retChainingCell;
1205
1206    /* r2 = &predictedChainingCell */
1207    ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
1208    predictedChainingCell->generic.target = (LIR *) predChainingCell;
1209
1210    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1211        TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
1212        TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
1213
1214    /* return through lr - jump to the chaining cell */
1215    genUnconditionalBranch(cUnit, predChainingCell);
1216
1217    /*
1218     * null-check on "this" may have been eliminated, but we still need a PC-
1219     * reconstruction label for stack overflow bailout.
1220     */
1221    if (pcrLabel == NULL) {
1222        int dPC = (int) (cUnit->method->insns + mir->offset);
1223        pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
1224        pcrLabel->opcode = kArmPseudoPCReconstructionCell;
1225        pcrLabel->operands[0] = dPC;
1226        pcrLabel->operands[1] = mir->offset;
1227        /* Insert the place holder to the growable list */
1228        dvmInsertGrowableList(&cUnit->pcReconstructionList,
1229                              (intptr_t) pcrLabel);
1230    }
1231
1232    /* return through lr+2 - punt to the interpreter */
1233    genUnconditionalBranch(cUnit, pcrLabel);
1234
1235    /*
1236     * return through lr+4 - fully resolve the callee method.
1237     * r1 <- count
1238     * r2 <- &predictedChainCell
1239     * r3 <- this->class
1240     * r4 <- dPC
1241     * r7 <- this->class->vtable
1242     */
1243
1244    /* r0 <- calleeMethod */
1245    loadWordDisp(cUnit, r7, methodIndex * 4, r0);
1246
1247    /* Check if rechain limit is reached */
1248    ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
1249
1250    LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
1251
1252    genRegCopy(cUnit, r1, r6SELF);
1253
1254    /*
1255     * r0 = calleeMethod
1256     * r2 = &predictedChainingCell
1257     * r3 = class
1258     *
1259     * &returnChainingCell has been loaded into r1 but is not needed
1260     * when patching the chaining cell and will be clobbered upon
1261     * returning so it will be reconstructed again.
1262     */
1263    opReg(cUnit, kOpBlx, r7);
1264
1265    /* r1 = &retChainingCell */
1266    addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1267    addrRetChain->generic.target = (LIR *) retChainingCell;
1268
1269    bypassRechaining->generic.target = (LIR *) addrRetChain;
1270    /*
1271     * r0 = calleeMethod,
1272     * r1 = &ChainingCell,
1273     * r4PC = callsiteDPC,
1274     */
1275    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1276        TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
1277        TEMPLATE_INVOKE_METHOD_NO_OPT);
1278#if defined(WITH_JIT_TUNING)
1279    gDvmJit.invokePolymorphic++;
1280#endif
1281    /* Handle exceptions using the interpreter */
1282    genTrap(cUnit, mir->offset, pcrLabel);
1283}
1284
1285/* "this" pointer is already in r0 */
1286static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
1287                                        MIR *mir,
1288                                        void *calleeAddr,
1289                                        ArmLIR *retChainingCell)
1290{
1291    CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
1292    dvmCompilerLockAllTemps(cUnit);
1293
1294    loadClassPointer(cUnit, r1, (int) callsiteInfo);
1295
1296    loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2);
1297    /* Branch to the slow path if classes are not equal */
1298    opRegReg(cUnit, kOpCmp, r1, r2);
1299    /*
1300     * Set the misPredBranchOver target so that it will be generated when the
1301     * code for the non-optimized invoke is generated.
1302     */
1303    ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe);
1304
1305    /* r0 = the Dalvik PC of the callsite */
1306    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1307
1308    newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
1309    newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
1310    genUnconditionalBranch(cUnit, retChainingCell);
1311
1312    /* Target of slow path */
1313    ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
1314
1315    slowPathLabel->defMask = ENCODE_ALL;
1316    classCheck->generic.target = (LIR *) slowPathLabel;
1317
1318    // FIXME
1319    cUnit->printMe = true;
1320}
1321
1322static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
1323                                          MIR *mir,
1324                                          void *calleeAddr,
1325                                          ArmLIR *retChainingCell)
1326{
1327    /* r0 = the Dalvik PC of the callsite */
1328    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1329
1330    newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
1331    newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
1332    genUnconditionalBranch(cUnit, retChainingCell);
1333
1334    // FIXME
1335    cUnit->printMe = true;
1336}
1337
1338/* Geneate a branch to go back to the interpreter */
1339static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
1340{
1341    /* r0 = dalvik pc */
1342    dvmCompilerFlushAllRegs(cUnit);
1343    loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
1344    loadWordDisp(cUnit, r6SELF, offsetof(Thread,
1345                 jitToInterpEntries.dvmJitToInterpPunt), r1);
1346    opReg(cUnit, kOpBlx, r1);
1347}
1348
1349/*
1350 * Attempt to single step one instruction using the interpreter and return
1351 * to the compiled code for the next Dalvik instruction
1352 */
1353static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
1354{
1355    int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
1356    int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
1357
1358    // Single stepping is considered loop mode breaker
1359    if (cUnit->jitMode == kJitLoop) {
1360        cUnit->quitLoopMode = true;
1361        return;
1362    }
1363
1364    //If already optimized out, just ignore
1365    if (mir->dalvikInsn.opcode == OP_NOP)
1366        return;
1367
1368    //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
1369    dvmCompilerFlushAllRegs(cUnit);
1370
1371    if ((mir->next == NULL) || (flags & flagsToCheck)) {
1372       genPuntToInterp(cUnit, mir->offset);
1373       return;
1374    }
1375    int entryAddr = offsetof(Thread,
1376                             jitToInterpEntries.dvmJitToInterpSingleStep);
1377    loadWordDisp(cUnit, r6SELF, entryAddr, r2);
1378    /* r0 = dalvik pc */
1379    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1380    /* r1 = dalvik pc of following instruction */
1381    loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
1382    opReg(cUnit, kOpBlx, r2);
1383}
1384
1385#if defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
1386/*
1387 * To prevent a thread in a monitor wait from blocking the Jit from
1388 * resetting the code cache, heavyweight monitor lock will not
1389 * be allowed to return to an existing translation.  Instead, we will
1390 * handle them by branching to a handler, which will in turn call the
1391 * runtime lock routine and then branch directly back to the
1392 * interpreter main loop.  Given the high cost of the heavyweight
1393 * lock operation, this additional cost should be slight (especially when
1394 * considering that we expect the vast majority of lock operations to
1395 * use the fast-path thin lock bypass).
1396 */
1397static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
1398{
1399    bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
1400    genExportPC(cUnit, mir);
1401    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
1402    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1403    loadValueDirectFixed(cUnit, rlSrc, r1);
1404    genRegCopy(cUnit, r0, r6SELF);
1405    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
1406    if (isEnter) {
1407        /* Get dPC of next insn */
1408        loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
1409                 dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
1410        genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
1411    } else {
1412        LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
1413        /* Do the call */
1414        opReg(cUnit, kOpBlx, r2);
1415        /* Did we throw? */
1416        ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
1417        loadConstant(cUnit, r0,
1418                     (int) (cUnit->method->insns + mir->offset +
1419                     dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
1420        genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1421        ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1422        target->defMask = ENCODE_ALL;
1423        branchOver->generic.target = (LIR *) target;
1424        dvmCompilerClobberCallRegs(cUnit);
1425    }
1426}
1427#endif
1428
1429/*
1430 * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
1431 * punt to the interpreter.
1432 */
1433static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
1434{
1435    int rTemp = dvmCompilerAllocTemp(cUnit);
1436    ArmLIR *ld;
1437    ld = loadBaseDisp(cUnit, NULL, r6SELF,
1438                      offsetof(Thread, interpBreak.ctl.breakFlags),
1439                      rTemp, kUnsignedByte, INVALID_SREG);
1440    setMemRefType(ld, true /* isLoad */, kMustNotAlias);
1441    genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL);
1442}
1443
1444/*
1445 * The following are the first-level codegen routines that analyze the format
1446 * of each bytecode then either dispatch special purpose codegen routines
1447 * or produce corresponding Thumb instructions directly.
1448 */
1449
1450static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
1451                                       BasicBlock *bb, ArmLIR *labelList)
1452{
1453    /* backward branch? */
1454    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
1455
1456    if (backwardBranch &&
1457        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
1458        genSuspendPoll(cUnit, mir);
1459    }
1460
1461    int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
1462    /*
1463     * Things could be hoisted out of the taken block into the predecessor, so
1464     * make sure it is dominated by the predecessor.
1465     */
1466    if (numPredecessors == 1 && bb->taken->visited == false &&
1467        bb->taken->blockType == kDalvikByteCode) {
1468        cUnit->nextCodegenBlock = bb->taken;
1469    } else {
1470        /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
1471        genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1472    }
1473    return false;
1474}
1475
1476static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
1477{
1478    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1479    if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
1480        ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1481        return true;
1482    }
1483    switch (dalvikOpcode) {
1484        case OP_RETURN_VOID_BARRIER:
1485            dvmCompilerGenMemBarrier(cUnit, kST);
1486            // Intentional fallthrough
1487        case OP_RETURN_VOID:
1488            genReturnCommon(cUnit,mir);
1489            break;
1490        case OP_UNUSED_73:
1491        case OP_UNUSED_79:
1492        case OP_UNUSED_7A:
1493        case OP_UNUSED_FF:
1494            ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1495            return true;
1496        case OP_NOP:
1497            break;
1498        default:
1499            return true;
1500    }
1501    return false;
1502}
1503
1504static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
1505{
1506    RegLocation rlDest;
1507    RegLocation rlResult;
1508    if (mir->ssaRep->numDefs == 2) {
1509        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1510    } else {
1511        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1512    }
1513
1514    switch (mir->dalvikInsn.opcode) {
1515        case OP_CONST:
1516        case OP_CONST_4: {
1517            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1518            loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1519            storeValue(cUnit, rlDest, rlResult);
1520            break;
1521        }
1522        case OP_CONST_WIDE_32: {
1523            //TUNING: single routine to load constant pair for support doubles
1524            //TUNING: load 0/-1 separately to avoid load dependency
1525            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1526            loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1527            opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
1528                        rlResult.lowReg, 31);
1529            storeValueWide(cUnit, rlDest, rlResult);
1530            break;
1531        }
1532        default:
1533            return true;
1534    }
1535    return false;
1536}
1537
1538static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
1539{
1540    RegLocation rlDest;
1541    RegLocation rlResult;
1542    if (mir->ssaRep->numDefs == 2) {
1543        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1544    } else {
1545        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1546    }
1547    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1548
1549    switch (mir->dalvikInsn.opcode) {
1550        case OP_CONST_HIGH16: {
1551            loadConstantNoClobber(cUnit, rlResult.lowReg,
1552                                  mir->dalvikInsn.vB << 16);
1553            storeValue(cUnit, rlDest, rlResult);
1554            break;
1555        }
1556        case OP_CONST_WIDE_HIGH16: {
1557            loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
1558                                  0, mir->dalvikInsn.vB << 16);
1559            storeValueWide(cUnit, rlDest, rlResult);
1560            break;
1561        }
1562        default:
1563            return true;
1564    }
1565    return false;
1566}
1567
1568static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
1569{
1570    /* For OP_THROW_VERIFICATION_ERROR */
1571    genInterpSingleStep(cUnit, mir);
1572    return false;
1573}
1574
1575static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
1576{
1577    RegLocation rlResult;
1578    RegLocation rlDest;
1579    RegLocation rlSrc;
1580
1581    switch (mir->dalvikInsn.opcode) {
1582        case OP_CONST_STRING_JUMBO:
1583        case OP_CONST_STRING: {
1584            void *strPtr = (void*)
1585              (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
1586
1587            if (strPtr == NULL) {
1588                BAIL_LOOP_COMPILATION();
1589                ALOGE("Unexpected null string");
1590                dvmAbort();
1591            }
1592
1593            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1594            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1595            loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
1596            storeValue(cUnit, rlDest, rlResult);
1597            break;
1598        }
1599        case OP_CONST_CLASS: {
1600            void *classPtr = (void*)
1601              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1602
1603            if (classPtr == NULL) {
1604                BAIL_LOOP_COMPILATION();
1605                ALOGE("Unexpected null class");
1606                dvmAbort();
1607            }
1608
1609            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1610            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1611            loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
1612            storeValue(cUnit, rlDest, rlResult);
1613            break;
1614        }
1615        case OP_SGET:
1616        case OP_SGET_VOLATILE:
1617        case OP_SGET_OBJECT:
1618        case OP_SGET_OBJECT_VOLATILE:
1619        case OP_SGET_BOOLEAN:
1620        case OP_SGET_CHAR:
1621        case OP_SGET_BYTE:
1622        case OP_SGET_SHORT: {
1623            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1624            int tReg = dvmCompilerAllocTemp(cUnit);
1625            bool isVolatile;
1626            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1627                mir->meta.calleeMethod : cUnit->method;
1628            void *fieldPtr = (void*)
1629              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1630
1631            if (fieldPtr == NULL) {
1632                BAIL_LOOP_COMPILATION();
1633                ALOGE("Unexpected null static field");
1634                dvmAbort();
1635            }
1636
1637            /*
1638             * On SMP systems, Dalvik opcodes found to be referencing
1639             * volatile fields are rewritten to their _VOLATILE variant.
1640             * However, this does not happen on non-SMP systems. The JIT
1641             * still needs to know about volatility to avoid unsafe
1642             * optimizations so we determine volatility based on either
1643             * the opcode or the field access flags.
1644             */
1645#if ANDROID_SMP != 0
1646            Opcode opcode = mir->dalvikInsn.opcode;
1647            isVolatile = (opcode == OP_SGET_VOLATILE) ||
1648                         (opcode == OP_SGET_OBJECT_VOLATILE);
1649            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1650#else
1651            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1652#endif
1653
1654            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1655            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1656            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1657
1658            if (isVolatile) {
1659                dvmCompilerGenMemBarrier(cUnit, kSY);
1660            }
1661            HEAP_ACCESS_SHADOW(true);
1662            loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
1663            HEAP_ACCESS_SHADOW(false);
1664
1665            storeValue(cUnit, rlDest, rlResult);
1666            break;
1667        }
1668        case OP_SGET_WIDE: {
1669            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1670            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1671                mir->meta.calleeMethod : cUnit->method;
1672            void *fieldPtr = (void*)
1673              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1674
1675            if (fieldPtr == NULL) {
1676                BAIL_LOOP_COMPILATION();
1677                ALOGE("Unexpected null static field");
1678                dvmAbort();
1679            }
1680
1681            int tReg = dvmCompilerAllocTemp(cUnit);
1682            rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1683            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1684            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1685
1686            HEAP_ACCESS_SHADOW(true);
1687            loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
1688            HEAP_ACCESS_SHADOW(false);
1689
1690            storeValueWide(cUnit, rlDest, rlResult);
1691            break;
1692        }
1693        case OP_SPUT:
1694        case OP_SPUT_VOLATILE:
1695        case OP_SPUT_OBJECT:
1696        case OP_SPUT_OBJECT_VOLATILE:
1697        case OP_SPUT_BOOLEAN:
1698        case OP_SPUT_CHAR:
1699        case OP_SPUT_BYTE:
1700        case OP_SPUT_SHORT: {
1701            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1702            int tReg = dvmCompilerAllocTemp(cUnit);
1703            int objHead;
1704            bool isVolatile;
1705            bool isSputObject;
1706            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1707                mir->meta.calleeMethod : cUnit->method;
1708            void *fieldPtr = (void*)
1709              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1710            Opcode opcode = mir->dalvikInsn.opcode;
1711
1712            if (fieldPtr == NULL) {
1713                BAIL_LOOP_COMPILATION();
1714                ALOGE("Unexpected null static field");
1715                dvmAbort();
1716            }
1717
1718#if ANDROID_SMP != 0
1719            isVolatile = (opcode == OP_SPUT_VOLATILE) ||
1720                         (opcode == OP_SPUT_OBJECT_VOLATILE);
1721            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1722#else
1723            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1724#endif
1725
1726            isSputObject = (opcode == OP_SPUT_OBJECT) ||
1727                           (opcode == OP_SPUT_OBJECT_VOLATILE);
1728
1729            rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1730            rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
1731            loadConstant(cUnit, tReg,  (int) fieldPtr);
1732            if (isSputObject) {
1733                objHead = dvmCompilerAllocTemp(cUnit);
1734                loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
1735            }
1736            if (isVolatile) {
1737                dvmCompilerGenMemBarrier(cUnit, kST);
1738            }
1739            HEAP_ACCESS_SHADOW(true);
1740            storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
1741            dvmCompilerFreeTemp(cUnit, tReg);
1742            HEAP_ACCESS_SHADOW(false);
1743            if (isVolatile) {
1744                dvmCompilerGenMemBarrier(cUnit, kSY);
1745            }
1746            if (isSputObject) {
1747                /* NOTE: marking card based sfield->clazz */
1748                markCard(cUnit, rlSrc.lowReg, objHead);
1749                dvmCompilerFreeTemp(cUnit, objHead);
1750            }
1751
1752            break;
1753        }
1754        case OP_SPUT_WIDE: {
1755            int tReg = dvmCompilerAllocTemp(cUnit);
1756            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1757            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1758                mir->meta.calleeMethod : cUnit->method;
1759            void *fieldPtr = (void*)
1760              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1761
1762            if (fieldPtr == NULL) {
1763                BAIL_LOOP_COMPILATION();
1764                ALOGE("Unexpected null static field");
1765                dvmAbort();
1766            }
1767
1768            rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1769            rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
1770            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1771
1772            HEAP_ACCESS_SHADOW(true);
1773            storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
1774            HEAP_ACCESS_SHADOW(false);
1775            break;
1776        }
1777        case OP_NEW_INSTANCE: {
1778            /*
1779             * Obey the calling convention and don't mess with the register
1780             * usage.
1781             */
1782            ClassObject *classPtr = (ClassObject *)
1783              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1784
1785            if (classPtr == NULL) {
1786                BAIL_LOOP_COMPILATION();
1787                ALOGE("Unexpected null class");
1788                dvmAbort();
1789            }
1790
1791            /*
1792             * If it is going to throw, it should not make to the trace to begin
1793             * with.  However, Alloc might throw, so we need to genExportPC()
1794             */
1795            assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
1796            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1797            genExportPC(cUnit, mir);
1798            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
1799            loadConstant(cUnit, r0, (int) classPtr);
1800            loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
1801            opReg(cUnit, kOpBlx, r2);
1802            dvmCompilerClobberCallRegs(cUnit);
1803            /* generate a branch over if allocation is successful */
1804            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
1805            /*
1806             * OOM exception needs to be thrown here and cannot re-execute
1807             */
1808            loadConstant(cUnit, r0,
1809                         (int) (cUnit->method->insns + mir->offset));
1810            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1811            /* noreturn */
1812
1813            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1814            target->defMask = ENCODE_ALL;
1815            branchOver->generic.target = (LIR *) target;
1816            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1817            rlResult = dvmCompilerGetReturn(cUnit);
1818            storeValue(cUnit, rlDest, rlResult);
1819            break;
1820        }
1821        case OP_CHECK_CAST: {
1822            /*
1823             * Obey the calling convention and don't mess with the register
1824             * usage.
1825             */
1826            ClassObject *classPtr =
1827              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1828            /*
1829             * Note: It is possible that classPtr is NULL at this point,
1830             * even though this instruction has been successfully interpreted.
1831             * If the previous interpretation had a null source, the
1832             * interpreter would not have bothered to resolve the clazz.
1833             * Bail out to the interpreter in this case, and log it
1834             * so that we can tell if it happens frequently.
1835             */
1836            if (classPtr == NULL) {
1837                BAIL_LOOP_COMPILATION();
1838                LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
1839                genInterpSingleStep(cUnit, mir);
1840                return false;
1841            }
1842            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1843            loadConstant(cUnit, r1, (int) classPtr );
1844            rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1845            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
1846            /* Null? */
1847            ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
1848                                              rlSrc.lowReg, 0);
1849            /*
1850             *  rlSrc.lowReg now contains object->clazz.  Note that
1851             *  it could have been allocated r0, but we're okay so long
1852             *  as we don't do anything desctructive until r0 is loaded
1853             *  with clazz.
1854             */
1855            /* r0 now contains object->clazz */
1856            loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
1857            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
1858            opRegReg(cUnit, kOpCmp, r0, r1);
1859            ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
1860            opReg(cUnit, kOpBlx, r2);
1861            dvmCompilerClobberCallRegs(cUnit);
1862            /*
1863             * If null, check cast failed - punt to the interpreter.  Because
1864             * interpreter will be the one throwing, we don't need to
1865             * genExportPC() here.
1866             */
1867            genZeroCheck(cUnit, r0, mir->offset, NULL);
1868            /* check cast passed - branch target here */
1869            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1870            target->defMask = ENCODE_ALL;
1871            branch1->generic.target = (LIR *)target;
1872            branch2->generic.target = (LIR *)target;
1873            break;
1874        }
1875        case OP_SGET_WIDE_VOLATILE:
1876        case OP_SPUT_WIDE_VOLATILE:
1877            genInterpSingleStep(cUnit, mir);
1878            break;
1879        default:
1880            return true;
1881    }
1882    return false;
1883}
1884
1885/*
1886 * A typical example of inlined getter/setter from a monomorphic callsite:
1887 *
1888 * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
1889 * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
1890 * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
1891 * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
1892 * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
1893 * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
1894 * D/dalvikvm(  289): L0x0003:
1895 * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
1896 *
1897 * Note the invoke-static and move-result-object with the (I) notation are
1898 * turned into no-op.
1899 */
1900static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
1901{
1902    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1903    RegLocation rlResult;
1904    switch (dalvikOpcode) {
1905        case OP_MOVE_EXCEPTION: {
1906            int exOffset = offsetof(Thread, exception);
1907            int resetReg = dvmCompilerAllocTemp(cUnit);
1908            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1909            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1910            loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg);
1911            loadConstant(cUnit, resetReg, 0);
1912            storeWordDisp(cUnit, r6SELF, exOffset, resetReg);
1913            storeValue(cUnit, rlDest, rlResult);
1914           break;
1915        }
1916        case OP_MOVE_RESULT:
1917        case OP_MOVE_RESULT_OBJECT: {
1918            /* An inlined move result is effectively no-op */
1919            if (mir->OptimizationFlags & MIR_INLINED)
1920                break;
1921            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1922            RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
1923            rlSrc.fp = rlDest.fp;
1924            storeValue(cUnit, rlDest, rlSrc);
1925            break;
1926        }
1927        case OP_MOVE_RESULT_WIDE: {
1928            /* An inlined move result is effectively no-op */
1929            if (mir->OptimizationFlags & MIR_INLINED)
1930                break;
1931            RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1932            RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
1933            rlSrc.fp = rlDest.fp;
1934            storeValueWide(cUnit, rlDest, rlSrc);
1935            break;
1936        }
1937        case OP_RETURN_WIDE: {
1938            RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1939            RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
1940            rlDest.fp = rlSrc.fp;
1941            storeValueWide(cUnit, rlDest, rlSrc);
1942            genReturnCommon(cUnit,mir);
1943            break;
1944        }
1945        case OP_RETURN:
1946        case OP_RETURN_OBJECT: {
1947            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1948            RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
1949            rlDest.fp = rlSrc.fp;
1950            storeValue(cUnit, rlDest, rlSrc);
1951            genReturnCommon(cUnit, mir);
1952            break;
1953        }
1954        case OP_MONITOR_EXIT:
1955        case OP_MONITOR_ENTER:
1956            genMonitor(cUnit, mir);
1957            break;
1958        case OP_THROW:
1959            genInterpSingleStep(cUnit, mir);
1960            break;
1961        default:
1962            return true;
1963    }
1964    return false;
1965}
1966
1967static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
1968{
1969    Opcode opcode = mir->dalvikInsn.opcode;
1970    RegLocation rlDest;
1971    RegLocation rlSrc;
1972    RegLocation rlResult;
1973
1974    if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
1975        return genArithOp( cUnit, mir );
1976    }
1977
1978    if (mir->ssaRep->numUses == 2)
1979        rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1980    else
1981        rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1982    if (mir->ssaRep->numDefs == 2)
1983        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1984    else
1985        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1986
1987    switch (opcode) {
1988        case OP_DOUBLE_TO_INT:
1989        case OP_INT_TO_FLOAT:
1990        case OP_FLOAT_TO_INT:
1991        case OP_DOUBLE_TO_FLOAT:
1992        case OP_FLOAT_TO_DOUBLE:
1993        case OP_INT_TO_DOUBLE:
1994        case OP_FLOAT_TO_LONG:
1995        case OP_LONG_TO_FLOAT:
1996        case OP_DOUBLE_TO_LONG:
1997        case OP_LONG_TO_DOUBLE:
1998            return genConversion(cUnit, mir);
1999        case OP_NEG_INT:
2000        case OP_NOT_INT:
2001            return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
2002        case OP_NEG_LONG:
2003        case OP_NOT_LONG:
2004            return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
2005        case OP_NEG_FLOAT:
2006            return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
2007        case OP_NEG_DOUBLE:
2008            return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
2009        case OP_MOVE_WIDE:
2010            storeValueWide(cUnit, rlDest, rlSrc);
2011            break;
2012        case OP_INT_TO_LONG:
2013            rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
2014            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2015            //TUNING: shouldn't loadValueDirect already check for phys reg?
2016            if (rlSrc.location == kLocPhysReg) {
2017                genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2018            } else {
2019                loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
2020            }
2021            opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
2022                        rlResult.lowReg, 31);
2023            storeValueWide(cUnit, rlDest, rlResult);
2024            break;
2025        case OP_LONG_TO_INT:
2026            rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
2027            rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
2028            // Intentional fallthrough
2029        case OP_MOVE:
2030        case OP_MOVE_OBJECT:
2031            storeValue(cUnit, rlDest, rlSrc);
2032            break;
2033        case OP_INT_TO_BYTE:
2034            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2035            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2036            opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
2037            storeValue(cUnit, rlDest, rlResult);
2038            break;
2039        case OP_INT_TO_SHORT:
2040            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2041            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2042            opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
2043            storeValue(cUnit, rlDest, rlResult);
2044            break;
2045        case OP_INT_TO_CHAR:
2046            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2047            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2048            opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
2049            storeValue(cUnit, rlDest, rlResult);
2050            break;
2051        case OP_ARRAY_LENGTH: {
2052            int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
2053            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2054            genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
2055                         mir->offset, NULL);
2056            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2057            loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
2058                         rlResult.lowReg);
2059            storeValue(cUnit, rlDest, rlResult);
2060            break;
2061        }
2062        default:
2063            return true;
2064    }
2065    return false;
2066}
2067
2068static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
2069{
2070    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2071    RegLocation rlDest;
2072    RegLocation rlResult;
2073    int BBBB = mir->dalvikInsn.vB;
2074    if (dalvikOpcode == OP_CONST_WIDE_16) {
2075        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2076        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2077        loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2078        //TUNING: do high separately to avoid load dependency
2079        opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
2080        storeValueWide(cUnit, rlDest, rlResult);
2081    } else if (dalvikOpcode == OP_CONST_16) {
2082        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2083        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
2084        loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2085        storeValue(cUnit, rlDest, rlResult);
2086    } else
2087        return true;
2088    return false;
2089}
2090
2091/* Compare agaist zero */
2092static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2093                         ArmLIR *labelList)
2094{
2095    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2096    ArmConditionCode cond;
2097    /* backward branch? */
2098    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2099
2100    if (backwardBranch &&
2101        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2102        genSuspendPoll(cUnit, mir);
2103    }
2104
2105    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2106    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2107
2108    opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
2109
2110//TUNING: break this out to allow use of Thumb2 CB[N]Z
2111    switch (dalvikOpcode) {
2112        case OP_IF_EQZ:
2113            cond = kArmCondEq;
2114            break;
2115        case OP_IF_NEZ:
2116            cond = kArmCondNe;
2117            break;
2118        case OP_IF_LTZ:
2119            cond = kArmCondLt;
2120            break;
2121        case OP_IF_GEZ:
2122            cond = kArmCondGe;
2123            break;
2124        case OP_IF_GTZ:
2125            cond = kArmCondGt;
2126            break;
2127        case OP_IF_LEZ:
2128            cond = kArmCondLe;
2129            break;
2130        default:
2131            cond = (ArmConditionCode)0;
2132            ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
2133            dvmCompilerAbort(cUnit);
2134    }
2135    genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
2136    /* This mostly likely will be optimized away in a later phase */
2137    genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2138    return false;
2139}
2140
2141static bool isPowerOfTwo(int x)
2142{
2143    return (x & (x - 1)) == 0;
2144}
2145
2146// Returns true if no more than two bits are set in 'x'.
2147static bool isPopCountLE2(unsigned int x)
2148{
2149    x &= x - 1;
2150    return (x & (x - 1)) == 0;
2151}
2152
2153// Returns the index of the lowest set bit in 'x'.
2154static int lowestSetBit(unsigned int x) {
2155    int bit_posn = 0;
2156    while ((x & 0xf) == 0) {
2157        bit_posn += 4;
2158        x >>= 4;
2159    }
2160    while ((x & 1) == 0) {
2161        bit_posn++;
2162        x >>= 1;
2163    }
2164    return bit_posn;
2165}
2166
2167// Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
2168// and store the result in 'rlDest'.
2169static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
2170                             RegLocation rlSrc, RegLocation rlDest, int lit)
2171{
2172    if (lit < 2 || !isPowerOfTwo(lit)) {
2173        return false;
2174    }
2175    int k = lowestSetBit(lit);
2176    if (k >= 30) {
2177        // Avoid special cases.
2178        return false;
2179    }
2180    bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
2181    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2182    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2183    if (div) {
2184        int tReg = dvmCompilerAllocTemp(cUnit);
2185        if (lit == 2) {
2186            // Division by 2 is by far the most common division by constant.
2187            opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
2188            opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2189            opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2190        } else {
2191            opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
2192            opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
2193            opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2194            opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2195        }
2196    } else {
2197        int cReg = dvmCompilerAllocTemp(cUnit);
2198        loadConstant(cUnit, cReg, lit - 1);
2199        int tReg1 = dvmCompilerAllocTemp(cUnit);
2200        int tReg2 = dvmCompilerAllocTemp(cUnit);
2201        if (lit == 2) {
2202            opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
2203            opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2204            opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2205            opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2206        } else {
2207            opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
2208            opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
2209            opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2210            opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2211            opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2212        }
2213    }
2214    storeValue(cUnit, rlDest, rlResult);
2215    return true;
2216}
2217
2218// Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
2219// and store the result in 'rlDest'.
2220static bool handleEasyMultiply(CompilationUnit *cUnit,
2221                               RegLocation rlSrc, RegLocation rlDest, int lit)
2222{
2223    // Can we simplify this multiplication?
2224    bool powerOfTwo = false;
2225    bool popCountLE2 = false;
2226    bool powerOfTwoMinusOne = false;
2227    if (lit < 2) {
2228        // Avoid special cases.
2229        return false;
2230    } else if (isPowerOfTwo(lit)) {
2231        powerOfTwo = true;
2232    } else if (isPopCountLE2(lit)) {
2233        popCountLE2 = true;
2234    } else if (isPowerOfTwo(lit + 1)) {
2235        powerOfTwoMinusOne = true;
2236    } else {
2237        return false;
2238    }
2239    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2240    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2241    if (powerOfTwo) {
2242        // Shift.
2243        opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
2244                    lowestSetBit(lit));
2245    } else if (popCountLE2) {
2246        // Shift and add and shift.
2247        int firstBit = lowestSetBit(lit);
2248        int secondBit = lowestSetBit(lit ^ (1 << firstBit));
2249        genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
2250                                      firstBit, secondBit);
2251    } else {
2252        // Reverse subtract: (src << (shift + 1)) - src.
2253        assert(powerOfTwoMinusOne);
2254        // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
2255        int tReg = dvmCompilerAllocTemp(cUnit);
2256        opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
2257        opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
2258    }
2259    storeValue(cUnit, rlDest, rlResult);
2260    return true;
2261}
2262
2263static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
2264{
2265    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2266    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2267    RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2268    RegLocation rlResult;
2269    int lit = mir->dalvikInsn.vC;
2270    OpKind op = (OpKind)0;      /* Make gcc happy */
2271    int shiftOp = false;
2272    bool isDiv = false;
2273
2274    switch (dalvikOpcode) {
2275        case OP_RSUB_INT_LIT8:
2276        case OP_RSUB_INT: {
2277            int tReg;
2278            //TUNING: add support for use of Arm rsub op
2279            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2280            tReg = dvmCompilerAllocTemp(cUnit);
2281            loadConstant(cUnit, tReg, lit);
2282            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2283            opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
2284                        tReg, rlSrc.lowReg);
2285            storeValue(cUnit, rlDest, rlResult);
2286            return false;
2287            break;
2288        }
2289
2290        case OP_ADD_INT_LIT8:
2291        case OP_ADD_INT_LIT16:
2292            op = kOpAdd;
2293            break;
2294        case OP_MUL_INT_LIT8:
2295        case OP_MUL_INT_LIT16: {
2296            if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
2297                return false;
2298            }
2299            op = kOpMul;
2300            break;
2301        }
2302        case OP_AND_INT_LIT8:
2303        case OP_AND_INT_LIT16:
2304            op = kOpAnd;
2305            break;
2306        case OP_OR_INT_LIT8:
2307        case OP_OR_INT_LIT16:
2308            op = kOpOr;
2309            break;
2310        case OP_XOR_INT_LIT8:
2311        case OP_XOR_INT_LIT16:
2312            op = kOpXor;
2313            break;
2314        case OP_SHL_INT_LIT8:
2315            lit &= 31;
2316            shiftOp = true;
2317            op = kOpLsl;
2318            break;
2319        case OP_SHR_INT_LIT8:
2320            lit &= 31;
2321            shiftOp = true;
2322            op = kOpAsr;
2323            break;
2324        case OP_USHR_INT_LIT8:
2325            lit &= 31;
2326            shiftOp = true;
2327            op = kOpLsr;
2328            break;
2329
2330        case OP_DIV_INT_LIT8:
2331        case OP_DIV_INT_LIT16:
2332        case OP_REM_INT_LIT8:
2333        case OP_REM_INT_LIT16:
2334            if (lit == 0) {
2335                /* Let the interpreter deal with div by 0 */
2336                genInterpSingleStep(cUnit, mir);
2337                return false;
2338            }
2339            if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
2340                return false;
2341            }
2342            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2343            loadValueDirectFixed(cUnit, rlSrc, r0);
2344            dvmCompilerClobber(cUnit, r0);
2345            if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
2346                (dalvikOpcode == OP_DIV_INT_LIT16)) {
2347                LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
2348                isDiv = true;
2349            } else {
2350                LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
2351                isDiv = false;
2352            }
2353            loadConstant(cUnit, r1, lit);
2354            opReg(cUnit, kOpBlx, r2);
2355            dvmCompilerClobberCallRegs(cUnit);
2356            if (isDiv)
2357                rlResult = dvmCompilerGetReturn(cUnit);
2358            else
2359                rlResult = dvmCompilerGetReturnAlt(cUnit);
2360            storeValue(cUnit, rlDest, rlResult);
2361            return false;
2362            break;
2363        default:
2364            return true;
2365    }
2366    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2367    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2368    // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
2369    if (shiftOp && (lit == 0)) {
2370        genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2371    } else {
2372        opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
2373    }
2374    storeValue(cUnit, rlDest, rlResult);
2375    return false;
2376}
2377
2378static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
2379{
2380    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2381    int fieldOffset = -1;
2382    bool isVolatile = false;
2383    switch (dalvikOpcode) {
2384        /*
2385         * Wide volatiles currently handled via single step.
2386         * Add them here if generating in-line code.
2387         *     case OP_IGET_WIDE_VOLATILE:
2388         *     case OP_IPUT_WIDE_VOLATILE:
2389         */
2390        case OP_IGET_VOLATILE:
2391        case OP_IGET_OBJECT_VOLATILE:
2392        case OP_IPUT_VOLATILE:
2393        case OP_IPUT_OBJECT_VOLATILE:
2394#if ANDROID_SMP != 0
2395            isVolatile = true;
2396        // NOTE: intentional fallthrough
2397#endif
2398        case OP_IGET:
2399        case OP_IGET_WIDE:
2400        case OP_IGET_OBJECT:
2401        case OP_IGET_BOOLEAN:
2402        case OP_IGET_BYTE:
2403        case OP_IGET_CHAR:
2404        case OP_IGET_SHORT:
2405        case OP_IPUT:
2406        case OP_IPUT_WIDE:
2407        case OP_IPUT_OBJECT:
2408        case OP_IPUT_BOOLEAN:
2409        case OP_IPUT_BYTE:
2410        case OP_IPUT_CHAR:
2411        case OP_IPUT_SHORT: {
2412            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
2413                mir->meta.calleeMethod : cUnit->method;
2414            Field *fieldPtr =
2415                method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
2416
2417            if (fieldPtr == NULL) {
2418                BAIL_LOOP_COMPILATION();
2419                ALOGE("Unexpected null instance field");
2420                dvmAbort();
2421            }
2422
2423#if ANDROID_SMP != 0
2424            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
2425#else
2426            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
2427#endif
2428            fieldOffset = ((InstField *)fieldPtr)->byteOffset;
2429            break;
2430        }
2431        default:
2432            break;
2433    }
2434
2435    switch (dalvikOpcode) {
2436        case OP_NEW_ARRAY: {
2437            // Generates a call - use explicit registers
2438            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2439            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2440            RegLocation rlResult;
2441            void *classPtr = (void*)
2442              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2443
2444            if (classPtr == NULL) {
2445                BAIL_LOOP_COMPILATION();
2446                ALOGE("Unexpected null class");
2447                dvmAbort();
2448            }
2449
2450            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2451            genExportPC(cUnit, mir);
2452            loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
2453            loadConstant(cUnit, r0, (int) classPtr );
2454            LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
2455            /*
2456             * "len < 0": bail to the interpreter to re-execute the
2457             * instruction
2458             */
2459            genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
2460            loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
2461            opReg(cUnit, kOpBlx, r3);
2462            dvmCompilerClobberCallRegs(cUnit);
2463            /* generate a branch over if allocation is successful */
2464            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
2465            /*
2466             * OOM exception needs to be thrown here and cannot re-execute
2467             */
2468            loadConstant(cUnit, r0,
2469                         (int) (cUnit->method->insns + mir->offset));
2470            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2471            /* noreturn */
2472
2473            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2474            target->defMask = ENCODE_ALL;
2475            branchOver->generic.target = (LIR *) target;
2476            rlResult = dvmCompilerGetReturn(cUnit);
2477            storeValue(cUnit, rlDest, rlResult);
2478            break;
2479        }
2480        case OP_INSTANCE_OF: {
2481            // May generate a call - use explicit registers
2482            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2483            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2484            RegLocation rlResult;
2485            ClassObject *classPtr =
2486              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2487            /*
2488             * Note: It is possible that classPtr is NULL at this point,
2489             * even though this instruction has been successfully interpreted.
2490             * If the previous interpretation had a null source, the
2491             * interpreter would not have bothered to resolve the clazz.
2492             * Bail out to the interpreter in this case, and log it
2493             * so that we can tell if it happens frequently.
2494             */
2495            if (classPtr == NULL) {
2496                BAIL_LOOP_COMPILATION();
2497                ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
2498                genInterpSingleStep(cUnit, mir);
2499                break;
2500            }
2501            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2502            loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
2503            loadConstant(cUnit, r2, (int) classPtr );
2504            /* When taken r0 has NULL which can be used for store directly */
2505            ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
2506            /* r1 now contains object->clazz */
2507            loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
2508            /* r1 now contains object->clazz */
2509            LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
2510            loadConstant(cUnit, r0, 1);                /* Assume true */
2511            opRegReg(cUnit, kOpCmp, r1, r2);
2512            ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
2513            genRegCopy(cUnit, r0, r1);
2514            genRegCopy(cUnit, r1, r2);
2515            opReg(cUnit, kOpBlx, r3);
2516            dvmCompilerClobberCallRegs(cUnit);
2517            /* branch target here */
2518            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2519            target->defMask = ENCODE_ALL;
2520            rlResult = dvmCompilerGetReturn(cUnit);
2521            storeValue(cUnit, rlDest, rlResult);
2522            branch1->generic.target = (LIR *)target;
2523            branch2->generic.target = (LIR *)target;
2524            break;
2525        }
2526        case OP_IGET_WIDE:
2527            genIGetWide(cUnit, mir, fieldOffset);
2528            break;
2529        case OP_IGET_VOLATILE:
2530        case OP_IGET_OBJECT_VOLATILE:
2531        case OP_IGET:
2532        case OP_IGET_OBJECT:
2533        case OP_IGET_BOOLEAN:
2534        case OP_IGET_BYTE:
2535        case OP_IGET_CHAR:
2536        case OP_IGET_SHORT:
2537            genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
2538            break;
2539        case OP_IPUT_WIDE:
2540            genIPutWide(cUnit, mir, fieldOffset);
2541            break;
2542        case OP_IPUT_VOLATILE:
2543        case OP_IPUT:
2544        case OP_IPUT_BOOLEAN:
2545        case OP_IPUT_BYTE:
2546        case OP_IPUT_CHAR:
2547        case OP_IPUT_SHORT:
2548            genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
2549            break;
2550        case OP_IPUT_OBJECT_VOLATILE:
2551        case OP_IPUT_OBJECT:
2552            genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
2553            break;
2554        case OP_IGET_WIDE_VOLATILE:
2555        case OP_IPUT_WIDE_VOLATILE:
2556            genInterpSingleStep(cUnit, mir);
2557            break;
2558        default:
2559            return true;
2560    }
2561    return false;
2562}
2563
2564static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
2565{
2566    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2567    int fieldOffset =  mir->dalvikInsn.vC;
2568    switch (dalvikOpcode) {
2569        case OP_IGET_QUICK:
2570        case OP_IGET_OBJECT_QUICK:
2571            genIGet(cUnit, mir, kWord, fieldOffset, false);
2572            break;
2573        case OP_IPUT_QUICK:
2574            genIPut(cUnit, mir, kWord, fieldOffset, false, false);
2575            break;
2576        case OP_IPUT_OBJECT_QUICK:
2577            genIPut(cUnit, mir, kWord, fieldOffset, true, false);
2578            break;
2579        case OP_IGET_WIDE_QUICK:
2580            genIGetWide(cUnit, mir, fieldOffset);
2581            break;
2582        case OP_IPUT_WIDE_QUICK:
2583            genIPutWide(cUnit, mir, fieldOffset);
2584            break;
2585        default:
2586            return true;
2587    }
2588    return false;
2589
2590}
2591
2592/* Compare agaist zero */
2593static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2594                         ArmLIR *labelList)
2595{
2596    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2597    ArmConditionCode cond;
2598    /* backward branch? */
2599    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2600
2601    if (backwardBranch &&
2602        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2603        genSuspendPoll(cUnit, mir);
2604    }
2605
2606    RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2607    RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2608
2609    rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
2610    rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
2611
2612    opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
2613
2614    switch (dalvikOpcode) {
2615        case OP_IF_EQ:
2616            cond = kArmCondEq;
2617            break;
2618        case OP_IF_NE:
2619            cond = kArmCondNe;
2620            break;
2621        case OP_IF_LT:
2622            cond = kArmCondLt;
2623            break;
2624        case OP_IF_GE:
2625            cond = kArmCondGe;
2626            break;
2627        case OP_IF_GT:
2628            cond = kArmCondGt;
2629            break;
2630        case OP_IF_LE:
2631            cond = kArmCondLe;
2632            break;
2633        default:
2634            cond = (ArmConditionCode)0;
2635            ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
2636            dvmCompilerAbort(cUnit);
2637    }
2638    genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
2639    /* This mostly likely will be optimized away in a later phase */
2640    genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2641    return false;
2642}
2643
2644static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
2645{
2646    Opcode opcode = mir->dalvikInsn.opcode;
2647
2648    switch (opcode) {
2649        case OP_MOVE_16:
2650        case OP_MOVE_OBJECT_16:
2651        case OP_MOVE_FROM16:
2652        case OP_MOVE_OBJECT_FROM16: {
2653            storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
2654                       dvmCompilerGetSrc(cUnit, mir, 0));
2655            break;
2656        }
2657        case OP_MOVE_WIDE_16:
2658        case OP_MOVE_WIDE_FROM16: {
2659            storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
2660                           dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
2661            break;
2662        }
2663        default:
2664            return true;
2665    }
2666    return false;
2667}
2668
2669static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
2670{
2671    Opcode opcode = mir->dalvikInsn.opcode;
2672    RegLocation rlSrc1;
2673    RegLocation rlSrc2;
2674    RegLocation rlDest;
2675
2676    if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
2677        return genArithOp( cUnit, mir );
2678    }
2679
2680    /* APUTs have 3 sources and no targets */
2681    if (mir->ssaRep->numDefs == 0) {
2682        if (mir->ssaRep->numUses == 3) {
2683            rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
2684            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
2685            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
2686        } else {
2687            assert(mir->ssaRep->numUses == 4);
2688            rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2689            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
2690            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
2691        }
2692    } else {
2693        /* Two sources and 1 dest.  Deduce the operand sizes */
2694        if (mir->ssaRep->numUses == 4) {
2695            rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2696            rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
2697        } else {
2698            assert(mir->ssaRep->numUses == 2);
2699            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2700            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2701        }
2702        if (mir->ssaRep->numDefs == 2) {
2703            rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2704        } else {
2705            assert(mir->ssaRep->numDefs == 1);
2706            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2707        }
2708    }
2709
2710
2711    switch (opcode) {
2712        case OP_CMPL_FLOAT:
2713        case OP_CMPG_FLOAT:
2714        case OP_CMPL_DOUBLE:
2715        case OP_CMPG_DOUBLE:
2716            return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2717        case OP_CMP_LONG:
2718            genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2719            break;
2720        case OP_AGET_WIDE:
2721            genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2722            break;
2723        case OP_AGET:
2724        case OP_AGET_OBJECT:
2725            genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2726            break;
2727        case OP_AGET_BOOLEAN:
2728            genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2729            break;
2730        case OP_AGET_BYTE:
2731            genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
2732            break;
2733        case OP_AGET_CHAR:
2734            genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2735            break;
2736        case OP_AGET_SHORT:
2737            genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2738            break;
2739        case OP_APUT_WIDE:
2740            genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2741            break;
2742        case OP_APUT:
2743            genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2744            break;
2745        case OP_APUT_OBJECT:
2746            genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
2747            break;
2748        case OP_APUT_SHORT:
2749        case OP_APUT_CHAR:
2750            genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2751            break;
2752        case OP_APUT_BYTE:
2753        case OP_APUT_BOOLEAN:
2754            genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2755            break;
2756        default:
2757            return true;
2758    }
2759    return false;
2760}
2761
2762/*
2763 * Find the matching case.
2764 *
2765 * return values:
2766 * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
2767 *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
2768 * r1 (high 32-bit): the branch offset of the matching case (only for indexes
2769 *    above MAX_CHAINED_SWITCH_CASES).
2770 *
2771 * Instructions around the call are:
2772 *
2773 * mov r2, pc
2774 * blx &findPackedSwitchIndex
2775 * mov pc, r0
2776 * .align4
2777 * chaining cell for case 0 [12 bytes]
2778 * chaining cell for case 1 [12 bytes]
2779 *               :
2780 * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
2781 * chaining cell for case default [8 bytes]
2782 * noChain exit
2783 */
2784static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
2785{
2786    int size;
2787    int firstKey;
2788    const int *entries;
2789    int index;
2790    int jumpIndex;
2791    int caseDPCOffset = 0;
2792    /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
2793    int chainingPC = (pc + 4) & ~3;
2794
2795    /*
2796     * Packed switch data format:
2797     *  ushort ident = 0x0100   magic value
2798     *  ushort size             number of entries in the table
2799     *  int first_key           first (and lowest) switch case value
2800     *  int targets[size]       branch targets, relative to switch opcode
2801     *
2802     * Total size is (4+size*2) 16-bit code units.
2803     */
2804    size = switchData[1];
2805    assert(size > 0);
2806
2807    firstKey = switchData[2];
2808    firstKey |= switchData[3] << 16;
2809
2810
2811    /* The entries are guaranteed to be aligned on a 32-bit boundary;
2812     * we can treat them as a native int array.
2813     */
2814    entries = (const int*) &switchData[4];
2815    assert(((u4)entries & 0x3) == 0);
2816
2817    index = testVal - firstKey;
2818
2819    /* Jump to the default cell */
2820    if (index < 0 || index >= size) {
2821        jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
2822    /* Jump to the non-chaining exit point */
2823    } else if (index >= MAX_CHAINED_SWITCH_CASES) {
2824        jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
2825        caseDPCOffset = entries[index];
2826    /* Jump to the inline chaining cell */
2827    } else {
2828        jumpIndex = index;
2829    }
2830
2831    chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
2832    return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
2833}
2834
2835/* See comments for findPackedSwitchIndex */
2836static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
2837{
2838    int size;
2839    const int *keys;
2840    const int *entries;
2841    int chainingPC = (pc + 4) & ~3;
2842    int i;
2843
2844    /*
2845     * Sparse switch data format:
2846     *  ushort ident = 0x0200   magic value
2847     *  ushort size             number of entries in the table; > 0
2848     *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
2849     *  int targets[size]       branch targets, relative to switch opcode
2850     *
2851     * Total size is (2+size*4) 16-bit code units.
2852     */
2853
2854    size = switchData[1];
2855    assert(size > 0);
2856
2857    /* The keys are guaranteed to be aligned on a 32-bit boundary;
2858     * we can treat them as a native int array.
2859     */
2860    keys = (const int*) &switchData[2];
2861    assert(((u4)keys & 0x3) == 0);
2862
2863    /* The entries are guaranteed to be aligned on a 32-bit boundary;
2864     * we can treat them as a native int array.
2865     */
2866    entries = keys + size;
2867    assert(((u4)entries & 0x3) == 0);
2868
2869    /*
2870     * Run through the list of keys, which are guaranteed to
2871     * be sorted low-to-high.
2872     *
2873     * Most tables have 3-4 entries.  Few have more than 10.  A binary
2874     * search here is probably not useful.
2875     */
2876    for (i = 0; i < size; i++) {
2877        int k = keys[i];
2878        if (k == testVal) {
2879            /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
2880            int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
2881                           i : MAX_CHAINED_SWITCH_CASES + 1;
2882            chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
2883            return (((s8) entries[i]) << 32) | (u8) chainingPC;
2884        } else if (k > testVal) {
2885            break;
2886        }
2887    }
2888    return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
2889           CHAIN_CELL_NORMAL_SIZE;
2890}
2891
2892static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
2893{
2894    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2895    switch (dalvikOpcode) {
2896        case OP_FILL_ARRAY_DATA: {
2897            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2898            // Making a call - use explicit registers
2899            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2900            genExportPC(cUnit, mir);
2901            loadValueDirectFixed(cUnit, rlSrc, r0);
2902            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
2903            loadConstant(cUnit, r1,
2904               (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
2905            opReg(cUnit, kOpBlx, r2);
2906            dvmCompilerClobberCallRegs(cUnit);
2907            /* generate a branch over if successful */
2908            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
2909            loadConstant(cUnit, r0,
2910                         (int) (cUnit->method->insns + mir->offset));
2911            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2912            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2913            target->defMask = ENCODE_ALL;
2914            branchOver->generic.target = (LIR *) target;
2915            break;
2916        }
2917        /*
2918         * Compute the goto target of up to
2919         * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
2920         * See the comment before findPackedSwitchIndex for the code layout.
2921         */
2922        case OP_PACKED_SWITCH:
2923        case OP_SPARSE_SWITCH: {
2924            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2925            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2926            loadValueDirectFixed(cUnit, rlSrc, r1);
2927            dvmCompilerLockAllTemps(cUnit);
2928            if (dalvikOpcode == OP_PACKED_SWITCH) {
2929                LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
2930            } else {
2931                LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
2932            }
2933            /* r0 <- Addr of the switch data */
2934            loadConstant(cUnit, r0,
2935               (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
2936            /* r2 <- pc of the instruction following the blx */
2937            opRegReg(cUnit, kOpMov, r2, r15pc);
2938            opReg(cUnit, kOpBlx, r4PC);
2939            dvmCompilerClobberCallRegs(cUnit);
2940            /* pc <- computed goto target */
2941            opRegReg(cUnit, kOpMov, r15pc, r0);
2942            break;
2943        }
2944        default:
2945            return true;
2946    }
2947    return false;
2948}
2949
2950/*
2951 * See the example of predicted inlining listed before the
2952 * genValidationForPredictedInline function. The function here takes care the
2953 * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
2954 */
2955static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
2956                                               BasicBlock *bb,
2957                                               ArmLIR *labelList)
2958{
2959    BasicBlock *fallThrough = bb->fallThrough;
2960
2961    /* Bypass the move-result block if there is one */
2962    if (fallThrough->firstMIRInsn) {
2963        assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
2964        fallThrough = fallThrough->fallThrough;
2965    }
2966    /* Generate a branch over if the predicted inlining is correct */
2967    genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
2968
2969    /* Reset the register state */
2970    dvmCompilerResetRegPool(cUnit);
2971    dvmCompilerClobberAllRegs(cUnit);
2972    dvmCompilerResetNullCheck(cUnit);
2973
2974    /* Target for the slow invoke path */
2975    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2976    target->defMask = ENCODE_ALL;
2977    /* Hook up the target to the verification branch */
2978    mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
2979}
2980
2981static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir,
2982                             BasicBlock *bb, ArmLIR *labelList)
2983{
2984    ArmLIR *retChainingCell = NULL;
2985    ArmLIR *pcrLabel = NULL;
2986
2987    /* An invoke with the MIR_INLINED is effectively a no-op */
2988    if (mir->OptimizationFlags & MIR_INLINED)
2989        return false;
2990
2991    if (bb->fallThrough != NULL)
2992        retChainingCell = &labelList[bb->fallThrough->id];
2993
2994    DecodedInstruction *dInsn = &mir->dalvikInsn;
2995    switch (mir->dalvikInsn.opcode) {
2996        /*
2997         * calleeMethod = this->clazz->vtable[
2998         *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
2999         * ]
3000         */
3001        case OP_INVOKE_VIRTUAL:
3002        case OP_INVOKE_VIRTUAL_RANGE: {
3003            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3004            int methodIndex =
3005                cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
3006                methodIndex;
3007
3008            /*
3009             * If the invoke has non-null misPredBranchOver, we need to generate
3010             * the non-inlined version of the invoke here to handle the
3011             * mispredicted case.
3012             */
3013            if (mir->meta.callsiteInfo->misPredBranchOver) {
3014                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3015            }
3016
3017            if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
3018                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3019            else
3020                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3021
3022            genInvokeVirtualCommon(cUnit, mir, methodIndex,
3023                                   retChainingCell,
3024                                   predChainingCell,
3025                                   pcrLabel);
3026            break;
3027        }
3028        /*
3029         * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
3030         *                ->pResMethods[BBBB]->methodIndex]
3031         */
3032        case OP_INVOKE_SUPER:
3033        case OP_INVOKE_SUPER_RANGE: {
3034            /* Grab the method ptr directly from what the interpreter sees */
3035            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3036            assert(calleeMethod == cUnit->method->clazz->super->vtable[
3037                                     cUnit->method->clazz->pDvmDex->
3038                                       pResMethods[dInsn->vB]->methodIndex]);
3039
3040            if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
3041                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3042            else
3043                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3044
3045            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3046                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3047                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3048                assert(calleeAddr);
3049                genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3050                                              retChainingCell);
3051            } else {
3052                /* r0 = calleeMethod */
3053                loadConstant(cUnit, r0, (int) calleeMethod);
3054
3055                genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3056                                         calleeMethod);
3057            }
3058            break;
3059        }
3060        /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3061        case OP_INVOKE_DIRECT:
3062        case OP_INVOKE_DIRECT_RANGE: {
3063            /* Grab the method ptr directly from what the interpreter sees */
3064            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3065            assert(calleeMethod ==
3066                   cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3067
3068            if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
3069                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3070            else
3071                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3072
3073            /* r0 = calleeMethod */
3074            loadConstant(cUnit, r0, (int) calleeMethod);
3075
3076            genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3077                                     calleeMethod);
3078            break;
3079        }
3080        /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3081        case OP_INVOKE_STATIC:
3082        case OP_INVOKE_STATIC_RANGE: {
3083            /* Grab the method ptr directly from what the interpreter sees */
3084            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3085            assert(calleeMethod ==
3086                   cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3087
3088            if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
3089                genProcessArgsNoRange(cUnit, mir, dInsn,
3090                                      NULL /* no null check */);
3091            else
3092                genProcessArgsRange(cUnit, mir, dInsn,
3093                                    NULL /* no null check */);
3094
3095            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3096                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3097                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3098                assert(calleeAddr);
3099                genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3100                                              retChainingCell);
3101            } else {
3102                /* r0 = calleeMethod */
3103                loadConstant(cUnit, r0, (int) calleeMethod);
3104
3105                genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3106                                         calleeMethod);
3107            }
3108            break;
3109        }
3110        /*
3111         * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
3112         *                    BBBB, method, method->clazz->pDvmDex)
3113         *
3114         * The following is an example of generated code for
3115         *      "invoke-interface v0"
3116         *
3117         * -------- dalvik offset: 0x0008 @ invoke-interface v0
3118         * 0x47357e36 : ldr     r0, [r5, #0]   --+
3119         * 0x47357e38 : sub     r7,r5,#24        |
3120         * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
3121         * 0x47357e3e : beq     0x47357e82       |
3122         * 0x47357e40 : stmia   r7, <r0>       --+
3123         * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
3124         * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
3125         * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
3126         * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
3127         * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
3128         * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
3129         * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
3130         * 0x47357e50 : mov     r8, r1         --+
3131         * 0x47357e52 : mov     r9, r2           |
3132         * 0x47357e54 : ldr     r2, [pc, #96]    |
3133         * 0x47357e56 : mov     r10, r3          |
3134         * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
3135         * 0x47357e5a : ldr     r3, [pc, #88]    |
3136         * 0x47357e5c : ldr     r7, [pc, #80]    |
3137         * 0x47357e5e : mov     r1, #1452        |
3138         * 0x47357e62 : blx     r7             --+
3139         * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
3140         * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
3141         * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
3142         * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
3143         * 0x47357e6c : blx_2   see above      --+     COMMON
3144         * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
3145         * 0x47357e70 : cmp     r1, #0         --> compare against 0
3146         * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
3147         * 0x47357e74 : ldr     r7, [pc, #off] --+
3148         * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
3149         * 0x47357e78 : mov     r3, r10          |
3150         * 0x47357e7a : blx     r7             --+
3151         * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
3152         * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
3153         * 0x47357e80 : blx_2   see above      --+
3154         * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
3155         * 0x47357e82 : ldr     r0, [pc, #56]
3156         * Exception_Handling:
3157         * 0x47357e84 : ldr     r1, [r6, #92]
3158         * 0x47357e86 : blx     r1
3159         * 0x47357e88 : .align4
3160         * -------- chaining cell (hot): 0x000b
3161         * 0x47357e88 : ldr     r0, [r6, #104]
3162         * 0x47357e8a : blx     r0
3163         * 0x47357e8c : data    0x19e2(6626)
3164         * 0x47357e8e : data    0x4257(16983)
3165         * 0x47357e90 : .align4
3166         * -------- chaining cell (predicted)
3167         * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
3168         * 0x47357e92 : data    0x0000(0)
3169         * 0x47357e94 : data    0x0000(0)      --> class
3170         * 0x47357e96 : data    0x0000(0)
3171         * 0x47357e98 : data    0x0000(0)      --> method
3172         * 0x47357e9a : data    0x0000(0)
3173         * 0x47357e9c : data    0x0000(0)      --> rechain count
3174         * 0x47357e9e : data    0x0000(0)
3175         * -------- end of chaining cells (0x006c)
3176         * 0x47357eb0 : .word (0xad03e369)
3177         * 0x47357eb4 : .word (0x28a90)
3178         * 0x47357eb8 : .word (0x41a63394)
3179         * 0x47357ebc : .word (0x425719dc)
3180         */
3181        case OP_INVOKE_INTERFACE:
3182        case OP_INVOKE_INTERFACE_RANGE: {
3183            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3184
3185            /*
3186             * If the invoke has non-null misPredBranchOver, we need to generate
3187             * the non-inlined version of the invoke here to handle the
3188             * mispredicted case.
3189             */
3190            if (mir->meta.callsiteInfo->misPredBranchOver) {
3191                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3192            }
3193
3194            if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
3195                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3196            else
3197                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3198
3199            /* "this" is already left in r0 by genProcessArgs* */
3200
3201            /* r4PC = dalvikCallsite */
3202            loadConstant(cUnit, r4PC,
3203                         (int) (cUnit->method->insns + mir->offset));
3204
3205            /* r1 = &retChainingCell */
3206            ArmLIR *addrRetChain =
3207                opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
3208            addrRetChain->generic.target = (LIR *) retChainingCell;
3209
3210            /* r2 = &predictedChainingCell */
3211            ArmLIR *predictedChainingCell =
3212                opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
3213            predictedChainingCell->generic.target = (LIR *) predChainingCell;
3214
3215            genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3216                TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
3217                TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
3218
3219            /* return through lr - jump to the chaining cell */
3220            genUnconditionalBranch(cUnit, predChainingCell);
3221
3222            /*
3223             * null-check on "this" may have been eliminated, but we still need
3224             * a PC-reconstruction label for stack overflow bailout.
3225             */
3226            if (pcrLabel == NULL) {
3227                int dPC = (int) (cUnit->method->insns + mir->offset);
3228                pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
3229                pcrLabel->opcode = kArmPseudoPCReconstructionCell;
3230                pcrLabel->operands[0] = dPC;
3231                pcrLabel->operands[1] = mir->offset;
3232                /* Insert the place holder to the growable list */
3233                dvmInsertGrowableList(&cUnit->pcReconstructionList,
3234                                      (intptr_t) pcrLabel);
3235            }
3236
3237            /* return through lr+2 - punt to the interpreter */
3238            genUnconditionalBranch(cUnit, pcrLabel);
3239
3240            /*
3241             * return through lr+4 - fully resolve the callee method.
3242             * r1 <- count
3243             * r2 <- &predictedChainCell
3244             * r3 <- this->class
3245             * r4 <- dPC
3246             * r7 <- this->class->vtable
3247             */
3248
3249            /* Save count, &predictedChainCell, and class to high regs first */
3250            genRegCopy(cUnit, r8, r1);
3251            genRegCopy(cUnit, r9, r2);
3252            genRegCopy(cUnit, r10, r3);
3253
3254            /* r0 now contains this->clazz */
3255            genRegCopy(cUnit, r0, r3);
3256
3257            /* r1 = BBBB */
3258            loadConstant(cUnit, r1, dInsn->vB);
3259
3260            /* r2 = method (caller) */
3261            loadConstant(cUnit, r2, (int) cUnit->method);
3262
3263            /* r3 = pDvmDex */
3264            loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
3265
3266            LOAD_FUNC_ADDR(cUnit, r7,
3267                           (intptr_t) dvmFindInterfaceMethodInCache);
3268            opReg(cUnit, kOpBlx, r7);
3269            /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
3270
3271            dvmCompilerClobberCallRegs(cUnit);
3272            /* generate a branch over if the interface method is resolved */
3273            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
3274            /*
3275             * calleeMethod == NULL -> throw
3276             */
3277            loadConstant(cUnit, r0,
3278                         (int) (cUnit->method->insns + mir->offset));
3279            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3280            /* noreturn */
3281
3282            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3283            target->defMask = ENCODE_ALL;
3284            branchOver->generic.target = (LIR *) target;
3285
3286            genRegCopy(cUnit, r1, r8);
3287
3288            /* Check if rechain limit is reached */
3289            ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
3290                                                       r1, 0);
3291
3292            LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
3293
3294            genRegCopy(cUnit, r1, r6SELF);
3295            genRegCopy(cUnit, r2, r9);
3296            genRegCopy(cUnit, r3, r10);
3297
3298            /*
3299             * r0 = calleeMethod
3300             * r2 = &predictedChainingCell
3301             * r3 = class
3302             *
3303             * &returnChainingCell has been loaded into r1 but is not needed
3304             * when patching the chaining cell and will be clobbered upon
3305             * returning so it will be reconstructed again.
3306             */
3307            opReg(cUnit, kOpBlx, r7);
3308
3309            /* r1 = &retChainingCell */
3310            addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
3311            addrRetChain->generic.target = (LIR *) retChainingCell;
3312
3313            bypassRechaining->generic.target = (LIR *) addrRetChain;
3314
3315            /*
3316             * r0 = this, r1 = calleeMethod,
3317             * r1 = &ChainingCell,
3318             * r4PC = callsiteDPC,
3319             */
3320            genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3321                TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
3322                TEMPLATE_INVOKE_METHOD_NO_OPT);
3323#if defined(WITH_JIT_TUNING)
3324            gDvmJit.invokePolymorphic++;
3325#endif
3326            /* Handle exceptions using the interpreter */
3327            genTrap(cUnit, mir->offset, pcrLabel);
3328            break;
3329        }
3330        case OP_INVOKE_OBJECT_INIT_RANGE:
3331        case OP_FILLED_NEW_ARRAY:
3332        case OP_FILLED_NEW_ARRAY_RANGE: {
3333            /* Just let the interpreter deal with these */
3334            genInterpSingleStep(cUnit, mir);
3335            break;
3336        }
3337        default:
3338            return true;
3339    }
3340    return false;
3341}
3342
3343static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
3344                               BasicBlock *bb, ArmLIR *labelList)
3345{
3346    ArmLIR *pcrLabel = NULL;
3347
3348    /* An invoke with the MIR_INLINED is effectively a no-op */
3349    if (mir->OptimizationFlags & MIR_INLINED)
3350        return false;
3351
3352    DecodedInstruction *dInsn = &mir->dalvikInsn;
3353    switch (mir->dalvikInsn.opcode) {
3354        /* calleeMethod = this->clazz->vtable[BBBB] */
3355        case OP_INVOKE_VIRTUAL_QUICK_RANGE:
3356        case OP_INVOKE_VIRTUAL_QUICK: {
3357            int methodIndex = dInsn->vB;
3358            ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
3359            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3360
3361            /*
3362             * If the invoke has non-null misPredBranchOver, we need to generate
3363             * the non-inlined version of the invoke here to handle the
3364             * mispredicted case.
3365             */
3366            if (mir->meta.callsiteInfo->misPredBranchOver) {
3367                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3368            }
3369
3370            if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
3371                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3372            else
3373                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3374
3375
3376            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3377                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3378                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3379                assert(calleeAddr);
3380                genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
3381                                            retChainingCell);
3382            }
3383
3384            genInvokeVirtualCommon(cUnit, mir, methodIndex,
3385                                   retChainingCell,
3386                                   predChainingCell,
3387                                   pcrLabel);
3388            break;
3389        }
3390        /* calleeMethod = method->clazz->super->vtable[BBBB] */
3391        case OP_INVOKE_SUPER_QUICK:
3392        case OP_INVOKE_SUPER_QUICK_RANGE: {
3393            /* Grab the method ptr directly from what the interpreter sees */
3394            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3395            assert(calleeMethod ==
3396                   cUnit->method->clazz->super->vtable[dInsn->vB]);
3397
3398            if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
3399                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3400            else
3401                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3402
3403            /* r0 = calleeMethod */
3404            loadConstant(cUnit, r0, (int) calleeMethod);
3405
3406            genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3407                                     calleeMethod);
3408            break;
3409        }
3410        default:
3411            return true;
3412    }
3413    return false;
3414}
3415
3416/*
3417 * This operation is complex enough that we'll do it partly inline
3418 * and partly with a handler.  NOTE: the handler uses hardcoded
3419 * values for string object offsets and must be revisitied if the
3420 * layout changes.
3421 */
3422static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
3423{
3424#if defined(USE_GLOBAL_STRING_DEFS)
3425    return handleExecuteInlineC(cUnit, mir);
3426#else
3427    ArmLIR *rollback;
3428    RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3429    RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
3430
3431    loadValueDirectFixed(cUnit, rlThis, r0);
3432    loadValueDirectFixed(cUnit, rlComp, r1);
3433    /* Test objects for NULL */
3434    rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
3435    genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
3436    /*
3437     * TUNING: we could check for object pointer equality before invoking
3438     * handler. Unclear whether the gain would be worth the added code size
3439     * expansion.
3440     */
3441    genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
3442    storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3443               dvmCompilerGetReturn(cUnit));
3444    return false;
3445#endif
3446}
3447
3448static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
3449{
3450#if defined(USE_GLOBAL_STRING_DEFS)
3451    return handleExecuteInlineC(cUnit, mir);
3452#else
3453    RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3454    RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
3455
3456    loadValueDirectFixed(cUnit, rlThis, r0);
3457    loadValueDirectFixed(cUnit, rlChar, r1);
3458    RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
3459    loadValueDirectFixed(cUnit, rlStart, r2);
3460    /* Test objects for NULL */
3461    genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
3462    genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
3463    storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3464               dvmCompilerGetReturn(cUnit));
3465    return false;
3466#endif
3467}
3468
3469// Generates an inlined String.isEmpty or String.length.
3470static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
3471                                            bool isEmpty)
3472{
3473    // dst = src.length();
3474    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3475    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3476    rlObj = loadValue(cUnit, rlObj, kCoreReg);
3477    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3478    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
3479    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
3480                 rlResult.lowReg);
3481    if (isEmpty) {
3482        // dst = (dst == 0);
3483        int tReg = dvmCompilerAllocTemp(cUnit);
3484        opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
3485        opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
3486    }
3487    storeValue(cUnit, rlDest, rlResult);
3488    return false;
3489}
3490
3491static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
3492{
3493    return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
3494}
3495
3496static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
3497{
3498    return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
3499}
3500
3501static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
3502{
3503    int contents = OFFSETOF_MEMBER(ArrayObject, contents);
3504    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3505    RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
3506    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3507    RegLocation rlResult;
3508    rlObj = loadValue(cUnit, rlObj, kCoreReg);
3509    rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3510    int regMax = dvmCompilerAllocTemp(cUnit);
3511    int regOff = dvmCompilerAllocTemp(cUnit);
3512    int regPtr = dvmCompilerAllocTemp(cUnit);
3513    ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
3514                                    mir->offset, NULL);
3515    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
3516    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
3517    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
3518    genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
3519    dvmCompilerFreeTemp(cUnit, regMax);
3520    opRegImm(cUnit, kOpAdd, regPtr, contents);
3521    opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
3522    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3523    loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
3524    storeValue(cUnit, rlDest, rlResult);
3525    return false;
3526}
3527
3528static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
3529{
3530    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3531    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
3532    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3533    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3534    int signReg = dvmCompilerAllocTemp(cUnit);
3535    /*
3536     * abs(x) = y<=x>>31, (x+y)^y.
3537     * Thumb2's IT block also yields 3 instructions, but imposes
3538     * scheduling constraints.
3539     */
3540    opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
3541    opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3542    opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3543    storeValue(cUnit, rlDest, rlResult);
3544    return false;
3545}
3546
3547static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
3548{
3549    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3550    RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3551    rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
3552    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3553    int signReg = dvmCompilerAllocTemp(cUnit);
3554    /*
3555     * abs(x) = y<=x>>31, (x+y)^y.
3556     * Thumb2 IT block allows slightly shorter sequence,
3557     * but introduces a scheduling barrier.  Stick with this
3558     * mechanism for now.
3559     */
3560    opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
3561    opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3562    opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
3563    opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3564    opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
3565    storeValueWide(cUnit, rlDest, rlResult);
3566    return false;
3567}
3568
3569static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
3570{
3571    // Just move from source to destination...
3572    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3573    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3574    storeValue(cUnit, rlDest, rlSrc);
3575    return false;
3576}
3577
3578static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
3579{
3580    // Just move from source to destination...
3581    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3582    RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3583    storeValueWide(cUnit, rlDest, rlSrc);
3584    return false;
3585}
3586
3587/*
3588 * JITs a call to a C function.
3589 * TODO: use this for faster native method invocation for simple native
3590 * methods (http://b/3069458).
3591 */
3592static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
3593{
3594    DecodedInstruction *dInsn = &mir->dalvikInsn;
3595    int operation = dInsn->vB;
3596    unsigned int i;
3597    const InlineOperation* inLineTable = dvmGetInlineOpsTable();
3598    uintptr_t fn = (int) inLineTable[operation].func;
3599    if (fn == 0) {
3600        dvmCompilerAbort(cUnit);
3601    }
3602    dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
3603    dvmCompilerClobberCallRegs(cUnit);
3604    dvmCompilerClobber(cUnit, r4PC);
3605    dvmCompilerClobber(cUnit, r7);
3606    int offset = offsetof(Thread, interpSave.retval);
3607    opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset);
3608    opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
3609    LOAD_FUNC_ADDR(cUnit, r4PC, fn);
3610    genExportPC(cUnit, mir);
3611    for (i=0; i < dInsn->vA; i++) {
3612        loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
3613    }
3614    opReg(cUnit, kOpBlx, r4PC);
3615    opRegImm(cUnit, kOpAdd, r13sp, 8);
3616    /* NULL? */
3617    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
3618    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
3619    genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3620    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3621    target->defMask = ENCODE_ALL;
3622    branchOver->generic.target = (LIR *) target;
3623    return false;
3624}
3625
3626/*
3627 * NOTE: Handles both range and non-range versions (arguments
3628 * have already been normalized by this point).
3629 */
3630static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
3631{
3632    DecodedInstruction *dInsn = &mir->dalvikInsn;
3633    assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
3634           dInsn->opcode == OP_EXECUTE_INLINE);
3635    switch (dInsn->vB) {
3636        case INLINE_EMPTYINLINEMETHOD:
3637            return false;  /* Nop */
3638
3639        /* These ones we potentially JIT inline. */
3640        case INLINE_STRING_LENGTH:
3641            return genInlinedStringLength(cUnit, mir);
3642        case INLINE_STRING_IS_EMPTY:
3643            return genInlinedStringIsEmpty(cUnit, mir);
3644        case INLINE_MATH_ABS_INT:
3645            return genInlinedAbsInt(cUnit, mir);
3646        case INLINE_MATH_ABS_LONG:
3647            return genInlinedAbsLong(cUnit, mir);
3648        case INLINE_MATH_MIN_INT:
3649            return genInlinedMinMaxInt(cUnit, mir, true);
3650        case INLINE_MATH_MAX_INT:
3651            return genInlinedMinMaxInt(cUnit, mir, false);
3652        case INLINE_STRING_CHARAT:
3653            return genInlinedStringCharAt(cUnit, mir);
3654        case INLINE_MATH_SQRT:
3655            return genInlineSqrt(cUnit, mir);
3656        case INLINE_MATH_ABS_FLOAT:
3657            return genInlinedAbsFloat(cUnit, mir);
3658        case INLINE_MATH_ABS_DOUBLE:
3659            return genInlinedAbsDouble(cUnit, mir);
3660        case INLINE_STRING_COMPARETO:
3661            return genInlinedCompareTo(cUnit, mir);
3662        case INLINE_STRING_FASTINDEXOF_II:
3663            return genInlinedFastIndexOf(cUnit, mir);
3664        case INLINE_FLOAT_TO_RAW_INT_BITS:
3665        case INLINE_INT_BITS_TO_FLOAT:
3666            return genInlinedIntFloatConversion(cUnit, mir);
3667        case INLINE_DOUBLE_TO_RAW_LONG_BITS:
3668        case INLINE_LONG_BITS_TO_DOUBLE:
3669            return genInlinedLongDoubleConversion(cUnit, mir);
3670
3671        /*
3672         * These ones we just JIT a call to a C function for.
3673         * TODO: special-case these in the other "invoke" call paths.
3674         */
3675        case INLINE_STRING_EQUALS:
3676        case INLINE_MATH_COS:
3677        case INLINE_MATH_SIN:
3678        case INLINE_FLOAT_TO_INT_BITS:
3679        case INLINE_DOUBLE_TO_LONG_BITS:
3680            return handleExecuteInlineC(cUnit, mir);
3681    }
3682    dvmCompilerAbort(cUnit);
3683    return false; // Not reachable; keeps compiler happy.
3684}
3685
3686static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
3687{
3688    //TUNING: We're using core regs here - not optimal when target is a double
3689    RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
3690    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3691    loadConstantNoClobber(cUnit, rlResult.lowReg,
3692                          mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
3693    loadConstantNoClobber(cUnit, rlResult.highReg,
3694                          (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
3695    storeValueWide(cUnit, rlDest, rlResult);
3696    return false;
3697}
3698
3699/*
3700 * The following are special processing routines that handle transfer of
3701 * controls between compiled code and the interpreter. Certain VM states like
3702 * Dalvik PC and special-purpose registers are reconstructed here.
3703 */
3704
3705/*
3706 * Insert a
3707 *    b   .+4
3708 *    nop
3709 * pair at the beginning of a chaining cell.  This serves as the
3710 * switch branch that selects between reverting to the interpreter or
3711 * not.  Once the cell is chained to a translation, the cell will
3712 * contain a 32-bit branch.  Subsequent chain/unchain operations will
3713 * then only alter that first 16-bits - the "b .+4" for unchaining,
3714 * and the restoration of the first half of the 32-bit branch for
3715 * rechaining.
3716 */
3717static void insertChainingSwitch(CompilationUnit *cUnit)
3718{
3719    ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
3720    newLIR2(cUnit, kThumbOrr, r0, r0);
3721    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3722    target->defMask = ENCODE_ALL;
3723    branch->generic.target = (LIR *) target;
3724}
3725
3726/* Chaining cell for code that may need warmup. */
3727static void handleNormalChainingCell(CompilationUnit *cUnit,
3728                                     unsigned int offset)
3729{
3730    /*
3731     * Use raw instruction constructors to guarantee that the generated
3732     * instructions fit the predefined cell size.
3733     */
3734    insertChainingSwitch(cUnit);
3735    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3736            offsetof(Thread,
3737                     jitToInterpEntries.dvmJitToInterpNormal) >> 2);
3738    newLIR1(cUnit, kThumbBlxR, r0);
3739    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3740}
3741
3742/*
3743 * Chaining cell for instructions that immediately following already translated
3744 * code.
3745 */
3746static void handleHotChainingCell(CompilationUnit *cUnit,
3747                                  unsigned int offset)
3748{
3749    /*
3750     * Use raw instruction constructors to guarantee that the generated
3751     * instructions fit the predefined cell size.
3752     */
3753    insertChainingSwitch(cUnit);
3754    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3755            offsetof(Thread,
3756                     jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
3757    newLIR1(cUnit, kThumbBlxR, r0);
3758    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3759}
3760
3761/* Chaining cell for branches that branch back into the same basic block */
3762static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
3763                                             unsigned int offset)
3764{
3765    /*
3766     * Use raw instruction constructors to guarantee that the generated
3767     * instructions fit the predefined cell size.
3768     */
3769    insertChainingSwitch(cUnit);
3770#if defined(WITH_SELF_VERIFICATION)
3771    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3772        offsetof(Thread,
3773                 jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
3774#else
3775    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3776        offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
3777#endif
3778    newLIR1(cUnit, kThumbBlxR, r0);
3779    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3780}
3781
3782/* Chaining cell for monomorphic method invocations. */
3783static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
3784                                              const Method *callee)
3785{
3786    /*
3787     * Use raw instruction constructors to guarantee that the generated
3788     * instructions fit the predefined cell size.
3789     */
3790    insertChainingSwitch(cUnit);
3791    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3792            offsetof(Thread,
3793                     jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
3794    newLIR1(cUnit, kThumbBlxR, r0);
3795    addWordData(cUnit, NULL, (int) (callee->insns));
3796}
3797
3798/* Chaining cell for monomorphic method invocations. */
3799static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
3800{
3801
3802    /* Should not be executed in the initial state */
3803    addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
3804    /* To be filled: class */
3805    addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
3806    /* To be filled: method */
3807    addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
3808    /*
3809     * Rechain count. The initial value of 0 here will trigger chaining upon
3810     * the first invocation of this callsite.
3811     */
3812    addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
3813}
3814
3815/* Load the Dalvik PC into r0 and jump to the specified target */
3816static void handlePCReconstruction(CompilationUnit *cUnit,
3817                                   ArmLIR *targetLabel)
3818{
3819    ArmLIR **pcrLabel =
3820        (ArmLIR **) cUnit->pcReconstructionList.elemList;
3821    int numElems = cUnit->pcReconstructionList.numUsed;
3822    int i;
3823
3824    /*
3825     * We should never reach here through fall-through code, so insert
3826     * a bomb to signal troubles immediately.
3827     */
3828    if (numElems) {
3829        newLIR0(cUnit, kThumbUndefined);
3830    }
3831
3832    for (i = 0; i < numElems; i++) {
3833        dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
3834        /* r0 = dalvik PC */
3835        loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
3836        genUnconditionalBranch(cUnit, targetLabel);
3837    }
3838}
3839
3840static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
3841    "kMirOpPhi",
3842    "kMirOpNullNRangeUpCheck",
3843    "kMirOpNullNRangeDownCheck",
3844    "kMirOpLowerBound",
3845    "kMirOpPunt",
3846    "kMirOpCheckInlinePrediction",
3847};
3848
3849/*
3850 * vA = arrayReg;
3851 * vB = idxReg;
3852 * vC = endConditionReg;
3853 * arg[0] = maxC
3854 * arg[1] = minC
3855 * arg[2] = loopBranchConditionCode
3856 */
3857static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
3858{
3859    /*
3860     * NOTE: these synthesized blocks don't have ssa names assigned
3861     * for Dalvik registers.  However, because they dominate the following
3862     * blocks we can simply use the Dalvik name w/ subscript 0 as the
3863     * ssa name.
3864     */
3865    DecodedInstruction *dInsn = &mir->dalvikInsn;
3866    const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3867    const int maxC = dInsn->arg[0];
3868    int regLength;
3869    RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3870    RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
3871
3872    /* regArray <- arrayRef */
3873    rlArray = loadValue(cUnit, rlArray, kCoreReg);
3874    rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
3875    genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
3876                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3877
3878    /* regLength <- len(arrayRef) */
3879    regLength = dvmCompilerAllocTemp(cUnit);
3880    loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
3881
3882    int delta = maxC;
3883    /*
3884     * If the loop end condition is ">=" instead of ">", then the largest value
3885     * of the index is "endCondition - 1".
3886     */
3887    if (dInsn->arg[2] == OP_IF_GE) {
3888        delta--;
3889    }
3890
3891    if (delta) {
3892        int tReg = dvmCompilerAllocTemp(cUnit);
3893        opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
3894        rlIdxEnd.lowReg = tReg;
3895        dvmCompilerFreeTemp(cUnit, tReg);
3896    }
3897    /* Punt if "regIdxEnd < len(Array)" is false */
3898    genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
3899                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3900}
3901
3902/*
3903 * vA = arrayReg;
3904 * vB = idxReg;
3905 * vC = endConditionReg;
3906 * arg[0] = maxC
3907 * arg[1] = minC
3908 * arg[2] = loopBranchConditionCode
3909 */
3910static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
3911{
3912    DecodedInstruction *dInsn = &mir->dalvikInsn;
3913    const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3914    const int regLength = dvmCompilerAllocTemp(cUnit);
3915    const int maxC = dInsn->arg[0];
3916    RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3917    RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
3918
3919    /* regArray <- arrayRef */
3920    rlArray = loadValue(cUnit, rlArray, kCoreReg);
3921    rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
3922    genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
3923                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3924
3925    /* regLength <- len(arrayRef) */
3926    loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
3927
3928    if (maxC) {
3929        int tReg = dvmCompilerAllocTemp(cUnit);
3930        opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
3931        rlIdxInit.lowReg = tReg;
3932        dvmCompilerFreeTemp(cUnit, tReg);
3933    }
3934
3935    /* Punt if "regIdxInit < len(Array)" is false */
3936    genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
3937                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3938}
3939
3940/*
3941 * vA = idxReg;
3942 * vB = minC;
3943 */
3944static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
3945{
3946    DecodedInstruction *dInsn = &mir->dalvikInsn;
3947    const int minC = dInsn->vB;
3948    RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
3949
3950    /* regIdx <- initial index value */
3951    rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3952
3953    /* Punt if "regIdxInit + minC >= 0" is false */
3954    genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
3955                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3956}
3957
3958/*
3959 * vC = this
3960 *
3961 * A predicted inlining target looks like the following, where instructions
3962 * between 0x4858de66 and 0x4858de72 are checking if the predicted class
3963 * matches "this", and the verificaion code is generated by this routine.
3964 *
3965 * (C) means the instruction is inlined from the callee, and (PI) means the
3966 * instruction is the predicted inlined invoke, whose corresponding
3967 * instructions are still generated to handle the mispredicted case.
3968 *
3969 * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
3970 * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
3971 * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
3972 * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
3973 * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
3974 * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
3975 * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
3976 * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
3977 * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
3978 * v4, v17, (#8)
3979 * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
3980 * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
3981 * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
3982 * +invoke-virtual-quick/range (PI) v17..v17
3983 * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
3984 * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
3985 * D/dalvikvm(   86): -------- BARRIER
3986 * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
3987 * D/dalvikvm(   86): -------- BARRIER
3988 * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
3989 * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
3990 * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
3991 * D/dalvikvm(   86): -------- BARRIER
3992 * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
3993 * D/dalvikvm(   86): -------- BARRIER
3994 * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
3995 * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
3996 * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
3997 * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
3998 * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
3999 * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
4000 * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
4001 * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
4002 * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
4003 * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
4004 * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
4005 * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
4006 * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
4007 * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
4008 * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
4009 * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
4010 * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
4011 * D/dalvikvm(   86): 0x4858deac (0048): .align4
4012 * D/dalvikvm(   86): L0x004f:
4013 * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
4014 * v4, (#0), (#0)
4015 * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
4016 * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
4017 * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
4018 * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
4019 * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
4020 * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
4021 * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
4022 * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
4023 * D/dalvikvm(   86): Exception_Handling:
4024 * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
4025 * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
4026 * D/dalvikvm(   86): 0x4858debc (0058): .align4
4027 * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
4028 * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
4029 * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
4030 * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
4031 * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
4032 * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
4033 * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
4034 * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
4035 * D/dalvikvm(   86): -------- chaining cell (predicted)
4036 * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
4037 * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
4038 * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
4039 * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
4040 * :
4041 */
4042static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
4043{
4044    CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
4045    RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
4046
4047    rlThis = loadValue(cUnit, rlThis, kCoreReg);
4048    int regPredictedClass = dvmCompilerAllocTemp(cUnit);
4049    loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
4050    genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
4051                 NULL);/* null object? */
4052    int regActualClass = dvmCompilerAllocTemp(cUnit);
4053    loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
4054    opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
4055    /*
4056     * Set the misPredBranchOver target so that it will be generated when the
4057     * code for the non-optimized invoke is generated.
4058     */
4059    callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
4060}
4061
4062/* Extended MIR instructions like PHI */
4063static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
4064{
4065    int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
4066    char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
4067                                        false);
4068    strcpy(msg, extendedMIROpNames[opOffset]);
4069    newLIR1(cUnit, kArmPseudoExtended, (int) msg);
4070
4071    switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
4072        case kMirOpPhi: {
4073            char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4074            newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
4075            break;
4076        }
4077        case kMirOpNullNRangeUpCheck: {
4078            genHoistedChecksForCountUpLoop(cUnit, mir);
4079            break;
4080        }
4081        case kMirOpNullNRangeDownCheck: {
4082            genHoistedChecksForCountDownLoop(cUnit, mir);
4083            break;
4084        }
4085        case kMirOpLowerBound: {
4086            genHoistedLowerBoundCheck(cUnit, mir);
4087            break;
4088        }
4089        case kMirOpPunt: {
4090            genUnconditionalBranch(cUnit,
4091                                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
4092            break;
4093        }
4094        case kMirOpCheckInlinePrediction: {
4095            genValidationForPredictedInline(cUnit, mir);
4096            break;
4097        }
4098        default:
4099            break;
4100    }
4101}
4102
4103/*
4104 * Create a PC-reconstruction cell for the starting offset of this trace.
4105 * Since the PCR cell is placed near the end of the compiled code which is
4106 * usually out of range for a conditional branch, we put two branches (one
4107 * branch over to the loop body and one layover branch to the actual PCR) at the
4108 * end of the entry block.
4109 */
4110static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
4111                                ArmLIR *bodyLabel)
4112{
4113    /* Set up the place holder to reconstruct this Dalvik PC */
4114    ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4115    pcrLabel->opcode = kArmPseudoPCReconstructionCell;
4116    pcrLabel->operands[0] =
4117        (int) (cUnit->method->insns + entry->startOffset);
4118    pcrLabel->operands[1] = entry->startOffset;
4119    /* Insert the place holder to the growable list */
4120    dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
4121
4122    /*
4123     * Next, create two branches - one branch over to the loop body and the
4124     * other branch to the PCR cell to punt.
4125     */
4126    ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4127    branchToBody->opcode = kThumbBUncond;
4128    branchToBody->generic.target = (LIR *) bodyLabel;
4129    setupResourceMasks(branchToBody);
4130    cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
4131
4132    ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4133    branchToPCR->opcode = kThumbBUncond;
4134    branchToPCR->generic.target = (LIR *) pcrLabel;
4135    setupResourceMasks(branchToPCR);
4136    cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
4137}
4138
4139#if defined(WITH_SELF_VERIFICATION)
4140static bool selfVerificationPuntOps(MIR *mir)
4141{
4142    DecodedInstruction *decInsn = &mir->dalvikInsn;
4143
4144    /*
4145     * All opcodes that can throw exceptions and use the
4146     * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
4147     * under self-verification mode.
4148     */
4149    switch (decInsn->opcode) {
4150        case OP_MONITOR_ENTER:
4151        case OP_MONITOR_EXIT:
4152        case OP_NEW_INSTANCE:
4153        case OP_NEW_ARRAY:
4154        case OP_CHECK_CAST:
4155        case OP_MOVE_EXCEPTION:
4156        case OP_FILL_ARRAY_DATA:
4157        case OP_EXECUTE_INLINE:
4158        case OP_EXECUTE_INLINE_RANGE:
4159            return true;
4160        default:
4161            return false;
4162    }
4163}
4164#endif
4165
4166void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
4167{
4168    /* Used to hold the labels of each block */
4169    ArmLIR *labelList =
4170        (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
4171    ArmLIR *headLIR = NULL;
4172    GrowableList chainingListByType[kChainingCellGap];
4173    int i;
4174
4175    /*
4176     * Initialize various types chaining lists.
4177     */
4178    for (i = 0; i < kChainingCellGap; i++) {
4179        dvmInitGrowableList(&chainingListByType[i], 2);
4180    }
4181
4182    /* Clear the visited flag for each block */
4183    dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
4184                                          kAllNodes, false /* isIterative */);
4185
4186    GrowableListIterator iterator;
4187    dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
4188
4189    /* Traces start with a profiling entry point.  Generate it here */
4190    cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
4191
4192    /* Handle the content in each basic block */
4193    for (i = 0; ; i++) {
4194        MIR *mir;
4195        BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
4196        if (bb == NULL) break;
4197        if (bb->visited == true) continue;
4198
4199        labelList[i].operands[0] = bb->startOffset;
4200
4201        if (bb->blockType >= kChainingCellGap) {
4202            if (bb->isFallThroughFromInvoke == true) {
4203                /* Align this block first since it is a return chaining cell */
4204                newLIR0(cUnit, kArmPseudoPseudoAlign4);
4205            }
4206            /*
4207             * Append the label pseudo LIR first. Chaining cells will be handled
4208             * separately afterwards.
4209             */
4210            dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
4211        }
4212
4213        if (bb->blockType == kEntryBlock) {
4214            labelList[i].opcode = kArmPseudoEntryBlock;
4215            if (bb->firstMIRInsn == NULL) {
4216                continue;
4217            } else {
4218              setupLoopEntryBlock(cUnit, bb,
4219                                  &labelList[bb->fallThrough->id]);
4220            }
4221        } else if (bb->blockType == kExitBlock) {
4222            labelList[i].opcode = kArmPseudoExitBlock;
4223            goto gen_fallthrough;
4224        } else if (bb->blockType == kDalvikByteCode) {
4225            if (bb->hidden == true) continue;
4226            labelList[i].opcode = kArmPseudoNormalBlockLabel;
4227            /* Reset the register state */
4228            dvmCompilerResetRegPool(cUnit);
4229            dvmCompilerClobberAllRegs(cUnit);
4230            dvmCompilerResetNullCheck(cUnit);
4231        } else {
4232            switch (bb->blockType) {
4233                case kChainingCellNormal:
4234                    labelList[i].opcode = kArmPseudoChainingCellNormal;
4235                    /* handle the codegen later */
4236                    dvmInsertGrowableList(
4237                        &chainingListByType[kChainingCellNormal], i);
4238                    break;
4239                case kChainingCellInvokeSingleton:
4240                    labelList[i].opcode =
4241                        kArmPseudoChainingCellInvokeSingleton;
4242                    labelList[i].operands[0] =
4243                        (int) bb->containingMethod;
4244                    /* handle the codegen later */
4245                    dvmInsertGrowableList(
4246                        &chainingListByType[kChainingCellInvokeSingleton], i);
4247                    break;
4248                case kChainingCellInvokePredicted:
4249                    labelList[i].opcode =
4250                        kArmPseudoChainingCellInvokePredicted;
4251                    /*
4252                     * Move the cached method pointer from operand 1 to 0.
4253                     * Operand 0 was clobbered earlier in this routine to store
4254                     * the block starting offset, which is not applicable to
4255                     * predicted chaining cell.
4256                     */
4257                    labelList[i].operands[0] = labelList[i].operands[1];
4258                    /* handle the codegen later */
4259                    dvmInsertGrowableList(
4260                        &chainingListByType[kChainingCellInvokePredicted], i);
4261                    break;
4262                case kChainingCellHot:
4263                    labelList[i].opcode =
4264                        kArmPseudoChainingCellHot;
4265                    /* handle the codegen later */
4266                    dvmInsertGrowableList(
4267                        &chainingListByType[kChainingCellHot], i);
4268                    break;
4269                case kPCReconstruction:
4270                    /* Make sure exception handling block is next */
4271                    labelList[i].opcode =
4272                        kArmPseudoPCReconstructionBlockLabel;
4273                    handlePCReconstruction(cUnit,
4274                                           &labelList[cUnit->puntBlock->id]);
4275                    break;
4276                case kExceptionHandling:
4277                    labelList[i].opcode = kArmPseudoEHBlockLabel;
4278                    if (cUnit->pcReconstructionList.numUsed) {
4279                        loadWordDisp(cUnit, r6SELF, offsetof(Thread,
4280                                     jitToInterpEntries.dvmJitToInterpPunt),
4281                                     r1);
4282                        opReg(cUnit, kOpBlx, r1);
4283                    }
4284                    break;
4285                case kChainingCellBackwardBranch:
4286                    labelList[i].opcode =
4287                        kArmPseudoChainingCellBackwardBranch;
4288                    /* handle the codegen later */
4289                    dvmInsertGrowableList(
4290                        &chainingListByType[kChainingCellBackwardBranch],
4291                        i);
4292                    break;
4293                default:
4294                    break;
4295            }
4296            continue;
4297        }
4298
4299        /*
4300         * Try to build a longer optimization unit. Currently if the previous
4301         * block ends with a goto, we continue adding instructions and don't
4302         * reset the register allocation pool.
4303         */
4304        for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
4305            bb = nextBB;
4306            bb->visited = true;
4307            cUnit->nextCodegenBlock = NULL;
4308
4309            for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
4310
4311                dvmCompilerResetRegPool(cUnit);
4312                if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
4313                    dvmCompilerClobberAllRegs(cUnit);
4314                }
4315
4316                if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
4317                    dvmCompilerResetDefTracking(cUnit);
4318                }
4319
4320                if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
4321                    handleExtendedMIR(cUnit, mir);
4322                    continue;
4323                }
4324
4325                Opcode dalvikOpcode = mir->dalvikInsn.opcode;
4326                InstructionFormat dalvikFormat =
4327                    dexGetFormatFromOpcode(dalvikOpcode);
4328                const char *note;
4329                if (mir->OptimizationFlags & MIR_INLINED) {
4330                    note = " (I)";
4331                } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
4332                    note = " (PI)";
4333                } else if (mir->OptimizationFlags & MIR_CALLEE) {
4334                    note = " (C)";
4335                } else {
4336                    note = NULL;
4337                }
4338
4339                ArmLIR *boundaryLIR;
4340
4341                /*
4342                 * Don't generate the boundary LIR unless we are debugging this
4343                 * trace or we need a scheduling barrier.
4344                 */
4345                if (headLIR == NULL || cUnit->printMe == true) {
4346                    boundaryLIR =
4347                        newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
4348                                mir->offset,
4349                                (int) dvmCompilerGetDalvikDisassembly(
4350                                    &mir->dalvikInsn, note));
4351                    /* Remember the first LIR for this block */
4352                    if (headLIR == NULL) {
4353                        headLIR = boundaryLIR;
4354                        /* Set the first boundaryLIR as a scheduling barrier */
4355                        headLIR->defMask = ENCODE_ALL;
4356                    }
4357                }
4358
4359                /*
4360                 * Don't generate the SSA annotation unless verbose mode is on
4361                 */
4362                if (cUnit->printMe && mir->ssaRep) {
4363                    char *ssaString = dvmCompilerGetSSAString(cUnit,
4364                                                              mir->ssaRep);
4365                    newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
4366                }
4367
4368                bool notHandled;
4369                /*
4370                 * Debugging: screen the opcode first to see if it is in the
4371                 * do[-not]-compile list
4372                 */
4373                bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
4374#if defined(WITH_SELF_VERIFICATION)
4375              if (singleStepMe == false) {
4376                  singleStepMe = selfVerificationPuntOps(mir);
4377              }
4378#endif
4379                if (singleStepMe || cUnit->allSingleStep) {
4380                    notHandled = false;
4381                    genInterpSingleStep(cUnit, mir);
4382                } else {
4383                    opcodeCoverage[dalvikOpcode]++;
4384                    switch (dalvikFormat) {
4385                        case kFmt10t:
4386                        case kFmt20t:
4387                        case kFmt30t:
4388                            notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
4389                                      mir, bb, labelList);
4390                            break;
4391                        case kFmt10x:
4392                            notHandled = handleFmt10x(cUnit, mir);
4393                            break;
4394                        case kFmt11n:
4395                        case kFmt31i:
4396                            notHandled = handleFmt11n_Fmt31i(cUnit, mir);
4397                            break;
4398                        case kFmt11x:
4399                            notHandled = handleFmt11x(cUnit, mir);
4400                            break;
4401                        case kFmt12x:
4402                            notHandled = handleFmt12x(cUnit, mir);
4403                            break;
4404                        case kFmt20bc:
4405                            notHandled = handleFmt20bc(cUnit, mir);
4406                            break;
4407                        case kFmt21c:
4408                        case kFmt31c:
4409                            notHandled = handleFmt21c_Fmt31c(cUnit, mir);
4410                            break;
4411                        case kFmt21h:
4412                            notHandled = handleFmt21h(cUnit, mir);
4413                            break;
4414                        case kFmt21s:
4415                            notHandled = handleFmt21s(cUnit, mir);
4416                            break;
4417                        case kFmt21t:
4418                            notHandled = handleFmt21t(cUnit, mir, bb,
4419                                                      labelList);
4420                            break;
4421                        case kFmt22b:
4422                        case kFmt22s:
4423                            notHandled = handleFmt22b_Fmt22s(cUnit, mir);
4424                            break;
4425                        case kFmt22c:
4426                            notHandled = handleFmt22c(cUnit, mir);
4427                            break;
4428                        case kFmt22cs:
4429                            notHandled = handleFmt22cs(cUnit, mir);
4430                            break;
4431                        case kFmt22t:
4432                            notHandled = handleFmt22t(cUnit, mir, bb,
4433                                                      labelList);
4434                            break;
4435                        case kFmt22x:
4436                        case kFmt32x:
4437                            notHandled = handleFmt22x_Fmt32x(cUnit, mir);
4438                            break;
4439                        case kFmt23x:
4440                            notHandled = handleFmt23x(cUnit, mir);
4441                            break;
4442                        case kFmt31t:
4443                            notHandled = handleFmt31t(cUnit, mir);
4444                            break;
4445                        case kFmt3rc:
4446                        case kFmt35c:
4447                            notHandled = handleFmt35c_3rc(cUnit, mir, bb,
4448                                                          labelList);
4449                            break;
4450                        case kFmt3rms:
4451                        case kFmt35ms:
4452                            notHandled = handleFmt35ms_3rms(cUnit, mir, bb,
4453                                                            labelList);
4454                            break;
4455                        case kFmt35mi:
4456                        case kFmt3rmi:
4457                            notHandled = handleExecuteInline(cUnit, mir);
4458                            break;
4459                        case kFmt51l:
4460                            notHandled = handleFmt51l(cUnit, mir);
4461                            break;
4462                        default:
4463                            notHandled = true;
4464                            break;
4465                    }
4466                }
4467                if (notHandled) {
4468                    ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
4469                         mir->offset,
4470                         dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
4471                         dalvikFormat);
4472                    dvmCompilerAbort(cUnit);
4473                    break;
4474                }
4475            }
4476        }
4477
4478        if (bb->blockType == kEntryBlock) {
4479            dvmCompilerAppendLIR(cUnit,
4480                                 (LIR *) cUnit->loopAnalysis->branchToBody);
4481            dvmCompilerAppendLIR(cUnit,
4482                                 (LIR *) cUnit->loopAnalysis->branchToPCR);
4483        }
4484
4485        if (headLIR) {
4486            /*
4487             * Eliminate redundant loads/stores and delay stores into later
4488             * slots
4489             */
4490            dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
4491                                               cUnit->lastLIRInsn);
4492            /* Reset headLIR which is also the optimization boundary */
4493            headLIR = NULL;
4494        }
4495
4496gen_fallthrough:
4497        /*
4498         * Check if the block is terminated due to trace length constraint -
4499         * insert an unconditional branch to the chaining cell.
4500         */
4501        if (bb->needFallThroughBranch) {
4502            genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
4503        }
4504    }
4505
4506    /* Handle the chaining cells in predefined order */
4507    for (i = 0; i < kChainingCellGap; i++) {
4508        size_t j;
4509        int *blockIdList = (int *) chainingListByType[i].elemList;
4510
4511        cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
4512
4513        /* No chaining cells of this type */
4514        if (cUnit->numChainingCells[i] == 0)
4515            continue;
4516
4517        /* Record the first LIR for a new type of chaining cell */
4518        cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
4519
4520        for (j = 0; j < chainingListByType[i].numUsed; j++) {
4521            int blockId = blockIdList[j];
4522            BasicBlock *chainingBlock =
4523                (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
4524                                                         blockId);
4525
4526            /* Align this chaining cell first */
4527            newLIR0(cUnit, kArmPseudoPseudoAlign4);
4528
4529            /* Insert the pseudo chaining instruction */
4530            dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
4531
4532
4533            switch (chainingBlock->blockType) {
4534                case kChainingCellNormal:
4535                    handleNormalChainingCell(cUnit, chainingBlock->startOffset);
4536                    break;
4537                case kChainingCellInvokeSingleton:
4538                    handleInvokeSingletonChainingCell(cUnit,
4539                        chainingBlock->containingMethod);
4540                    break;
4541                case kChainingCellInvokePredicted:
4542                    handleInvokePredictedChainingCell(cUnit);
4543                    break;
4544                case kChainingCellHot:
4545                    handleHotChainingCell(cUnit, chainingBlock->startOffset);
4546                    break;
4547                case kChainingCellBackwardBranch:
4548                    handleBackwardBranchChainingCell(cUnit,
4549                        chainingBlock->startOffset);
4550                    break;
4551                default:
4552                    ALOGE("Bad blocktype %d", chainingBlock->blockType);
4553                    dvmCompilerAbort(cUnit);
4554            }
4555        }
4556    }
4557
4558    /* Mark the bottom of chaining cells */
4559    cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
4560
4561    /*
4562     * Generate the branch to the dvmJitToInterpNoChain entry point at the end
4563     * of all chaining cells for the overflow cases.
4564     */
4565    if (cUnit->switchOverflowPad) {
4566        loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
4567        loadWordDisp(cUnit, r6SELF, offsetof(Thread,
4568                     jitToInterpEntries.dvmJitToInterpNoChain), r2);
4569        opRegReg(cUnit, kOpAdd, r1, r1);
4570        opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
4571#if defined(WITH_JIT_TUNING)
4572        loadConstant(cUnit, r0, kSwitchOverflow);
4573#endif
4574        opReg(cUnit, kOpBlx, r2);
4575    }
4576
4577    dvmCompilerApplyGlobalOptimizations(cUnit);
4578
4579#if defined(WITH_SELF_VERIFICATION)
4580    selfVerificationBranchInsertPass(cUnit);
4581#endif
4582}
4583
4584/*
4585 * Accept the work and start compiling.  Returns true if compilation
4586 * is attempted.
4587 */
4588bool dvmCompilerDoWork(CompilerWorkOrder *work)
4589{
4590    JitTraceDescription *desc;
4591    bool isCompile;
4592    bool success = true;
4593
4594    if (gDvmJit.codeCacheFull) {
4595        return false;
4596    }
4597
4598    switch (work->kind) {
4599        case kWorkOrderTrace:
4600            isCompile = true;
4601            /* Start compilation with maximally allowed trace length */
4602            desc = (JitTraceDescription *)work->info;
4603            success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4604                                        work->bailPtr, 0 /* no hints */);
4605            break;
4606        case kWorkOrderTraceDebug: {
4607            bool oldPrintMe = gDvmJit.printMe;
4608            gDvmJit.printMe = true;
4609            isCompile = true;
4610            /* Start compilation with maximally allowed trace length */
4611            desc = (JitTraceDescription *)work->info;
4612            success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4613                                        work->bailPtr, 0 /* no hints */);
4614            gDvmJit.printMe = oldPrintMe;
4615            break;
4616        }
4617        case kWorkOrderProfileMode:
4618            dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
4619            isCompile = false;
4620            break;
4621        default:
4622            isCompile = false;
4623            ALOGE("Jit: unknown work order type");
4624            assert(0);  // Bail if debug build, discard otherwise
4625    }
4626    if (!success)
4627        work->result.codeAddress = NULL;
4628    return isCompile;
4629}
4630
4631/* Architectural-specific debugging helpers go here */
4632void dvmCompilerArchDump(void)
4633{
4634    /* Print compiled opcode in this VM instance */
4635    int i, start, streak;
4636    char buf[1024];
4637
4638    streak = i = 0;
4639    buf[0] = 0;
4640    while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
4641        i++;
4642    }
4643    if (i == kNumPackedOpcodes) {
4644        return;
4645    }
4646    for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
4647        if (opcodeCoverage[i]) {
4648            streak++;
4649        } else {
4650            if (streak == 1) {
4651                sprintf(buf+strlen(buf), "%x,", start);
4652            } else {
4653                sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
4654            }
4655            streak = 0;
4656            while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
4657                i++;
4658            }
4659            if (i < kNumPackedOpcodes) {
4660                streak = 1;
4661                start = i;
4662            }
4663        }
4664    }
4665    if (streak) {
4666        if (streak == 1) {
4667            sprintf(buf+strlen(buf), "%x", start);
4668        } else {
4669            sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
4670        }
4671    }
4672    if (strlen(buf)) {
4673        ALOGD("dalvik.vm.jit.op = %s", buf);
4674    }
4675}
4676
4677/* Common initialization routine for an architecture family */
4678bool dvmCompilerArchInit()
4679{
4680    int i;
4681
4682    for (i = 0; i < kArmLast; i++) {
4683        if (EncodingMap[i].opcode != i) {
4684            ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
4685                 EncodingMap[i].name, i, EncodingMap[i].opcode);
4686            dvmAbort();  // OK to dvmAbort - build error
4687        }
4688    }
4689
4690    return dvmCompilerArchVariantInit();
4691}
4692
4693void *dvmCompilerGetInterpretTemplate()
4694{
4695      return (void*) ((int)gDvmJit.codeCache +
4696                      templateEntryOffsets[TEMPLATE_INTERPRET]);
4697}
4698
4699JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
4700{
4701    return DALVIK_JIT_ARM;
4702}
4703
4704/* Needed by the Assembler */
4705void dvmCompilerSetupResourceMasks(ArmLIR *lir)
4706{
4707    setupResourceMasks(lir);
4708}
4709
4710/* Needed by the ld/st optmizatons */
4711ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
4712{
4713    return genRegCopyNoInsert(cUnit, rDest, rSrc);
4714}
4715
4716/* Needed by the register allocator */
4717ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
4718{
4719    return genRegCopy(cUnit, rDest, rSrc);
4720}
4721
4722/* Needed by the register allocator */
4723void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
4724                            int srcLo, int srcHi)
4725{
4726    genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
4727}
4728
4729void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
4730                             int displacement, int rSrc, OpSize size)
4731{
4732    storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
4733}
4734
4735void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
4736                                 int displacement, int rSrcLo, int rSrcHi)
4737{
4738    storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
4739}
4740