Interp.cpp revision 8faec7e782eca1fd6a2ad071c30b939c77c82662
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * Main interpreter entry point and support functions.
19 *
20 * The entry point selects the "standard" or "debug" interpreter and
21 * facilitates switching between them.  The standard interpreter may
22 * use the "fast" or "portable" implementation.
23 *
24 * Some debugger support functions are included here.
25 */
26#include "Dalvik.h"
27#include "interp/InterpDefs.h"
28#if defined(WITH_JIT)
29#include "interp/Jit.h"
30#endif
31
32
33/*
34 * ===========================================================================
35 *      Debugger support
36 * ===========================================================================
37 */
38
39// fwd
40static BreakpointSet* dvmBreakpointSetAlloc();
41static void dvmBreakpointSetFree(BreakpointSet* pSet);
42
43#if defined(WITH_JIT)
44/* Target-specific save/restore */
45extern "C" void dvmJitCalleeSave(double *saveArea);
46extern "C" void dvmJitCalleeRestore(double *saveArea);
47/* Interpreter entry points from compiled code */
48extern "C" void dvmJitToInterpNormal();
49extern "C" void dvmJitToInterpNoChain();
50extern "C" void dvmJitToInterpPunt();
51extern "C" void dvmJitToInterpSingleStep();
52extern "C" void dvmJitToInterpTraceSelect();
53#if defined(WITH_SELF_VERIFICATION)
54extern "C" void dvmJitToInterpBackwardBranch();
55#endif
56#endif
57
58/*
59 * Initialize global breakpoint structures.
60 */
61bool dvmBreakpointStartup()
62{
63    gDvm.breakpointSet = dvmBreakpointSetAlloc();
64    return (gDvm.breakpointSet != NULL);
65}
66
67/*
68 * Free resources.
69 */
70void dvmBreakpointShutdown()
71{
72    dvmBreakpointSetFree(gDvm.breakpointSet);
73}
74
75
76/*
77 * This represents a breakpoint inserted in the instruction stream.
78 *
79 * The debugger may ask us to create the same breakpoint multiple times.
80 * We only remove the breakpoint when the last instance is cleared.
81 */
82struct Breakpoint {
83    Method*     method;                 /* method we're associated with */
84    u2*         addr;                   /* absolute memory address */
85    u1          originalOpcode;         /* original 8-bit opcode value */
86    int         setCount;               /* #of times this breakpoint was set */
87};
88
89/*
90 * Set of breakpoints.
91 */
92struct BreakpointSet {
93    /* grab lock before reading or writing anything else in here */
94    pthread_mutex_t lock;
95
96    /* vector of breakpoint structures */
97    int         alloc;
98    int         count;
99    Breakpoint* breakpoints;
100};
101
102/*
103 * Initialize a BreakpointSet.  Initially empty.
104 */
105static BreakpointSet* dvmBreakpointSetAlloc()
106{
107    BreakpointSet* pSet = (BreakpointSet*) calloc(1, sizeof(*pSet));
108
109    dvmInitMutex(&pSet->lock);
110    /* leave the rest zeroed -- will alloc on first use */
111
112    return pSet;
113}
114
115/*
116 * Free storage associated with a BreakpointSet.
117 */
118static void dvmBreakpointSetFree(BreakpointSet* pSet)
119{
120    if (pSet == NULL)
121        return;
122
123    free(pSet->breakpoints);
124    free(pSet);
125}
126
127/*
128 * Lock the breakpoint set.
129 *
130 * It's not currently necessary to switch to VMWAIT in the event of
131 * contention, because nothing in here can block.  However, it's possible
132 * that the bytecode-updater code could become fancier in the future, so
133 * we do the trylock dance as a bit of future-proofing.
134 */
135static void dvmBreakpointSetLock(BreakpointSet* pSet)
136{
137    if (dvmTryLockMutex(&pSet->lock) != 0) {
138        Thread* self = dvmThreadSelf();
139        ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
140        dvmLockMutex(&pSet->lock);
141        dvmChangeStatus(self, oldStatus);
142    }
143}
144
145/*
146 * Unlock the breakpoint set.
147 */
148static void dvmBreakpointSetUnlock(BreakpointSet* pSet)
149{
150    dvmUnlockMutex(&pSet->lock);
151}
152
153/*
154 * Return the #of breakpoints.
155 */
156static int dvmBreakpointSetCount(const BreakpointSet* pSet)
157{
158    return pSet->count;
159}
160
161/*
162 * See if we already have an entry for this address.
163 *
164 * The BreakpointSet's lock must be acquired before calling here.
165 *
166 * Returns the index of the breakpoint entry, or -1 if not found.
167 */
168static int dvmBreakpointSetFind(const BreakpointSet* pSet, const u2* addr)
169{
170    int i;
171
172    for (i = 0; i < pSet->count; i++) {
173        Breakpoint* pBreak = &pSet->breakpoints[i];
174        if (pBreak->addr == addr)
175            return i;
176    }
177
178    return -1;
179}
180
181/*
182 * Retrieve the opcode that was originally at the specified location.
183 *
184 * The BreakpointSet's lock must be acquired before calling here.
185 *
186 * Returns "true" with the opcode in *pOrig on success.
187 */
188static bool dvmBreakpointSetOriginalOpcode(const BreakpointSet* pSet,
189    const u2* addr, u1* pOrig)
190{
191    int idx = dvmBreakpointSetFind(pSet, addr);
192    if (idx < 0)
193        return false;
194
195    *pOrig = pSet->breakpoints[idx].originalOpcode;
196    return true;
197}
198
199/*
200 * Check the opcode.  If it's a "magic" NOP, indicating the start of
201 * switch or array data in the instruction stream, we don't want to set
202 * a breakpoint.
203 *
204 * This can happen because the line number information dx generates
205 * associates the switch data with the switch statement's line number,
206 * and some debuggers put breakpoints at every address associated with
207 * a given line.  The result is that the breakpoint stomps on the NOP
208 * instruction that doubles as a data table magic number, and an explicit
209 * check in the interpreter results in an exception being thrown.
210 *
211 * We don't want to simply refuse to add the breakpoint to the table,
212 * because that confuses the housekeeping.  We don't want to reject the
213 * debugger's event request, and we want to be sure that there's exactly
214 * one un-set operation for every set op.
215 */
216static bool instructionIsMagicNop(const u2* addr)
217{
218    u2 curVal = *addr;
219    return ((GET_OPCODE(curVal)) == OP_NOP && (curVal >> 8) != 0);
220}
221
222/*
223 * Add a breakpoint at a specific address.  If the address is already
224 * present in the table, this just increments the count.
225 *
226 * For a new entry, this will extract and preserve the current opcode from
227 * the instruction stream, and replace it with a breakpoint opcode.
228 *
229 * The BreakpointSet's lock must be acquired before calling here.
230 *
231 * Returns "true" on success.
232 */
233static bool dvmBreakpointSetAdd(BreakpointSet* pSet, Method* method,
234    unsigned int instrOffset)
235{
236    const int kBreakpointGrowth = 10;
237    const u2* addr = method->insns + instrOffset;
238    int idx = dvmBreakpointSetFind(pSet, addr);
239    Breakpoint* pBreak;
240
241    if (idx < 0) {
242        if (pSet->count == pSet->alloc) {
243            int newSize = pSet->alloc + kBreakpointGrowth;
244            Breakpoint* newVec;
245
246            LOGV("+++ increasing breakpoint set size to %d", newSize);
247
248            /* pSet->breakpoints will be NULL on first entry */
249            newVec = (Breakpoint*)realloc(pSet->breakpoints, newSize * sizeof(Breakpoint));
250            if (newVec == NULL)
251                return false;
252
253            pSet->breakpoints = newVec;
254            pSet->alloc = newSize;
255        }
256
257        pBreak = &pSet->breakpoints[pSet->count++];
258        pBreak->method = method;
259        pBreak->addr = (u2*)addr;
260        pBreak->originalOpcode = *(u1*)addr;
261        pBreak->setCount = 1;
262
263        /*
264         * Change the opcode.  We must ensure that the BreakpointSet
265         * updates happen before we change the opcode.
266         *
267         * If the method has not been verified, we do NOT insert the
268         * breakpoint yet, since that will screw up the verifier.  The
269         * debugger is allowed to insert breakpoints in unverified code,
270         * but since we don't execute unverified code we don't need to
271         * alter the bytecode yet.
272         *
273         * The class init code will "flush" all pending opcode writes
274         * before verification completes.
275         */
276        assert(*(u1*)addr != OP_BREAKPOINT);
277        if (dvmIsClassVerified(method->clazz)) {
278            LOGV("Class %s verified, adding breakpoint at %p",
279                method->clazz->descriptor, addr);
280            if (instructionIsMagicNop(addr)) {
281                LOGV("Refusing to set breakpoint on %04x at %s.%s + %#x",
282                    *addr, method->clazz->descriptor, method->name,
283                    instrOffset);
284            } else {
285                ANDROID_MEMBAR_FULL();
286                dvmDexChangeDex1(method->clazz->pDvmDex, (u1*)addr,
287                    OP_BREAKPOINT);
288            }
289        } else {
290            LOGV("Class %s NOT verified, deferring breakpoint at %p",
291                method->clazz->descriptor, addr);
292        }
293    } else {
294        /*
295         * Breakpoint already exists, just increase the count.
296         */
297        pBreak = &pSet->breakpoints[idx];
298        pBreak->setCount++;
299    }
300
301    return true;
302}
303
304/*
305 * Remove one instance of the specified breakpoint.  When the count
306 * reaches zero, the entry is removed from the table, and the original
307 * opcode is restored.
308 *
309 * The BreakpointSet's lock must be acquired before calling here.
310 */
311static void dvmBreakpointSetRemove(BreakpointSet* pSet, Method* method,
312    unsigned int instrOffset)
313{
314    const u2* addr = method->insns + instrOffset;
315    int idx = dvmBreakpointSetFind(pSet, addr);
316
317    if (idx < 0) {
318        /* breakpoint not found in set -- unexpected */
319        if (*(u1*)addr == OP_BREAKPOINT) {
320            LOGE("Unable to restore breakpoint opcode (%s.%s +%#x)",
321                method->clazz->descriptor, method->name, instrOffset);
322            dvmAbort();
323        } else {
324            LOGW("Breakpoint was already restored? (%s.%s +%#x)",
325                method->clazz->descriptor, method->name, instrOffset);
326        }
327    } else {
328        Breakpoint* pBreak = &pSet->breakpoints[idx];
329        if (pBreak->setCount == 1) {
330            /*
331             * Must restore opcode before removing set entry.
332             *
333             * If the breakpoint was never flushed, we could be ovewriting
334             * a value with the same value.  Not a problem, though we
335             * could end up causing a copy-on-write here when we didn't
336             * need to.  (Not worth worrying about.)
337             */
338            dvmDexChangeDex1(method->clazz->pDvmDex, (u1*)addr,
339                pBreak->originalOpcode);
340            ANDROID_MEMBAR_FULL();
341
342            if (idx != pSet->count-1) {
343                /* shift down */
344                memmove(&pSet->breakpoints[idx], &pSet->breakpoints[idx+1],
345                    (pSet->count-1 - idx) * sizeof(pSet->breakpoints[0]));
346            }
347            pSet->count--;
348            pSet->breakpoints[pSet->count].addr = (u2*) 0xdecadead; // debug
349        } else {
350            pBreak->setCount--;
351            assert(pBreak->setCount > 0);
352        }
353    }
354}
355
356/*
357 * Flush any breakpoints associated with methods in "clazz".  We want to
358 * change the opcode, which might not have happened when the breakpoint
359 * was initially set because the class was in the process of being
360 * verified.
361 *
362 * The BreakpointSet's lock must be acquired before calling here.
363 */
364static void dvmBreakpointSetFlush(BreakpointSet* pSet, ClassObject* clazz)
365{
366    int i;
367    for (i = 0; i < pSet->count; i++) {
368        Breakpoint* pBreak = &pSet->breakpoints[i];
369        if (pBreak->method->clazz == clazz) {
370            /*
371             * The breakpoint is associated with a method in this class.
372             * It might already be there or it might not; either way,
373             * flush it out.
374             */
375            LOGV("Flushing breakpoint at %p for %s",
376                pBreak->addr, clazz->descriptor);
377            if (instructionIsMagicNop(pBreak->addr)) {
378                LOGV("Refusing to flush breakpoint on %04x at %s.%s + %#x",
379                    *pBreak->addr, pBreak->method->clazz->descriptor,
380                    pBreak->method->name, pBreak->addr - pBreak->method->insns);
381            } else {
382                dvmDexChangeDex1(clazz->pDvmDex, (u1*)pBreak->addr,
383                    OP_BREAKPOINT);
384            }
385        }
386    }
387}
388
389
390/*
391 * Do any debugger-attach-time initialization.
392 */
393void dvmInitBreakpoints()
394{
395    /* quick sanity check */
396    BreakpointSet* pSet = gDvm.breakpointSet;
397    dvmBreakpointSetLock(pSet);
398    if (dvmBreakpointSetCount(pSet) != 0) {
399        LOGW("WARNING: %d leftover breakpoints", dvmBreakpointSetCount(pSet));
400        /* generally not good, but we can keep going */
401    }
402    dvmBreakpointSetUnlock(pSet);
403}
404
405/*
406 * Add an address to the list, putting it in the first non-empty slot.
407 *
408 * Sometimes the debugger likes to add two entries for one breakpoint.
409 * We add two entries here, so that we get the right behavior when it's
410 * removed twice.
411 *
412 * This will only be run from the JDWP thread, and it will happen while
413 * we are updating the event list, which is synchronized.  We're guaranteed
414 * to be the only one adding entries, and the lock ensures that nobody
415 * will be trying to remove them while we're in here.
416 *
417 * "addr" is the absolute address of the breakpoint bytecode.
418 */
419void dvmAddBreakAddr(Method* method, unsigned int instrOffset)
420{
421    BreakpointSet* pSet = gDvm.breakpointSet;
422    dvmBreakpointSetLock(pSet);
423    dvmBreakpointSetAdd(pSet, method, instrOffset);
424    dvmBreakpointSetUnlock(pSet);
425}
426
427/*
428 * Remove an address from the list by setting the entry to NULL.
429 *
430 * This can be called from the JDWP thread (because the debugger has
431 * cancelled the breakpoint) or from an event thread (because it's a
432 * single-shot breakpoint, e.g. "run to line").  We only get here as
433 * the result of removing an entry from the event list, which is
434 * synchronized, so it should not be possible for two threads to be
435 * updating breakpoints at the same time.
436 */
437void dvmClearBreakAddr(Method* method, unsigned int instrOffset)
438{
439    BreakpointSet* pSet = gDvm.breakpointSet;
440    dvmBreakpointSetLock(pSet);
441    dvmBreakpointSetRemove(pSet, method, instrOffset);
442    dvmBreakpointSetUnlock(pSet);
443}
444
445/*
446 * Get the original opcode from under a breakpoint.
447 *
448 * On SMP hardware it's possible one core might try to execute a breakpoint
449 * after another core has cleared it.  We need to handle the case where
450 * there's no entry in the breakpoint set.  (The memory barriers in the
451 * locks and in the breakpoint update code should ensure that, once we've
452 * observed the absence of a breakpoint entry, we will also now observe
453 * the restoration of the original opcode.  The fact that we're holding
454 * the lock prevents other threads from confusing things further.)
455 */
456u1 dvmGetOriginalOpcode(const u2* addr)
457{
458    BreakpointSet* pSet = gDvm.breakpointSet;
459    u1 orig = 0;
460
461    dvmBreakpointSetLock(pSet);
462    if (!dvmBreakpointSetOriginalOpcode(pSet, addr, &orig)) {
463        orig = *(u1*)addr;
464        if (orig == OP_BREAKPOINT) {
465            LOGE("GLITCH: can't find breakpoint, opcode is still set");
466            dvmAbort();
467        }
468    }
469    dvmBreakpointSetUnlock(pSet);
470
471    return orig;
472}
473
474/*
475 * Flush any breakpoints associated with methods in "clazz".
476 *
477 * We don't want to modify the bytecode of a method before the verifier
478 * gets a chance to look at it, so we postpone opcode replacement until
479 * after verification completes.
480 */
481void dvmFlushBreakpoints(ClassObject* clazz)
482{
483    BreakpointSet* pSet = gDvm.breakpointSet;
484
485    if (pSet == NULL)
486        return;
487
488    assert(dvmIsClassVerified(clazz));
489    dvmBreakpointSetLock(pSet);
490    dvmBreakpointSetFlush(pSet, clazz);
491    dvmBreakpointSetUnlock(pSet);
492}
493
494/*
495 * Add a single step event.  Currently this is a global item.
496 *
497 * We set up some initial values based on the thread's current state.  This
498 * won't work well if the thread is running, so it's up to the caller to
499 * verify that it's suspended.
500 *
501 * This is only called from the JDWP thread.
502 */
503bool dvmAddSingleStep(Thread* thread, int size, int depth)
504{
505    StepControl* pCtrl = &gDvm.stepControl;
506
507    if (pCtrl->active && thread != pCtrl->thread) {
508        LOGW("WARNING: single-step active for %p; adding %p",
509            pCtrl->thread, thread);
510
511        /*
512         * Keep going, overwriting previous.  This can happen if you
513         * suspend a thread in Object.wait, hit the single-step key, then
514         * switch to another thread and do the same thing again.
515         * The first thread's step is still pending.
516         *
517         * TODO: consider making single-step per-thread.  Adds to the
518         * overhead, but could be useful in rare situations.
519         */
520    }
521
522    pCtrl->size = static_cast<JdwpStepSize>(size);
523    pCtrl->depth = static_cast<JdwpStepDepth>(depth);
524    pCtrl->thread = thread;
525
526    /*
527     * We may be stepping into or over method calls, or running until we
528     * return from the current method.  To make this work we need to track
529     * the current line, current method, and current stack depth.  We need
530     * to be checking these after most instructions, notably those that
531     * call methods, return from methods, or are on a different line from the
532     * previous instruction.
533     *
534     * We have to start with a snapshot of the current state.  If we're in
535     * an interpreted method, everything we need is in the current frame.  If
536     * we're in a native method, possibly with some extra JNI frames pushed
537     * on by PushLocalFrame, we want to use the topmost native method.
538     */
539    const StackSaveArea* saveArea;
540    u4* fp;
541    u4* prevFp = NULL;
542
543    for (fp = thread->interpSave.curFrame; fp != NULL;
544         fp = saveArea->prevFrame) {
545        const Method* method;
546
547        saveArea = SAVEAREA_FROM_FP(fp);
548        method = saveArea->method;
549
550        if (!dvmIsBreakFrame((u4*)fp) && !dvmIsNativeMethod(method))
551            break;
552        prevFp = fp;
553    }
554    if (fp == NULL) {
555        LOGW("Unexpected: step req in native-only threadid=%d",
556            thread->threadId);
557        return false;
558    }
559    if (prevFp != NULL) {
560        /*
561         * First interpreted frame wasn't the one at the bottom.  Break
562         * frames are only inserted when calling from native->interp, so we
563         * don't need to worry about one being here.
564         */
565        LOGV("##### init step while in native method");
566        fp = prevFp;
567        assert(!dvmIsBreakFrame((u4*)fp));
568        assert(dvmIsNativeMethod(SAVEAREA_FROM_FP(fp)->method));
569        saveArea = SAVEAREA_FROM_FP(fp);
570    }
571
572    /*
573     * Pull the goodies out.  "xtra.currentPc" should be accurate since
574     * we update it on every instruction while the debugger is connected.
575     */
576    pCtrl->method = saveArea->method;
577    // Clear out any old address set
578    if (pCtrl->pAddressSet != NULL) {
579        // (discard const)
580        free((void *)pCtrl->pAddressSet);
581        pCtrl->pAddressSet = NULL;
582    }
583    if (dvmIsNativeMethod(pCtrl->method)) {
584        pCtrl->line = -1;
585    } else {
586        pCtrl->line = dvmLineNumFromPC(saveArea->method,
587                        saveArea->xtra.currentPc - saveArea->method->insns);
588        pCtrl->pAddressSet
589                = dvmAddressSetForLine(saveArea->method, pCtrl->line);
590    }
591    pCtrl->frameDepth =
592        dvmComputeVagueFrameDepth(thread, thread->interpSave.curFrame);
593    pCtrl->active = true;
594
595    LOGV("##### step init: thread=%p meth=%p '%s' line=%d frameDepth=%d depth=%s size=%s",
596        pCtrl->thread, pCtrl->method, pCtrl->method->name,
597        pCtrl->line, pCtrl->frameDepth,
598        dvmJdwpStepDepthStr(pCtrl->depth),
599        dvmJdwpStepSizeStr(pCtrl->size));
600
601    return true;
602}
603
604/*
605 * Disable a single step event.
606 */
607void dvmClearSingleStep(Thread* thread)
608{
609    UNUSED_PARAMETER(thread);
610
611    gDvm.stepControl.active = false;
612}
613
614/*
615 * The interpreter just threw.  Handle any special subMode requirements.
616 * All interpSave state must be valid on entry.
617 */
618void dvmReportExceptionThrow(Thread* self, Object* exception)
619{
620    const Method* curMethod = self->interpSave.method;
621#if defined(WITH_JIT)
622    if (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild) {
623        dvmJitEndTraceSelect(self, self->interpSave.pc);
624    }
625    if (self->interpBreak.ctl.breakFlags & kInterpSingleStep) {
626        /* Discard any single-step native returns to translation */
627        self->jitResumeNPC = NULL;
628    }
629#endif
630    if (self->interpBreak.ctl.subMode & kSubModeDebuggerActive) {
631        void *catchFrame;
632        int offset = self->interpSave.pc - curMethod->insns;
633        int catchRelPc = dvmFindCatchBlock(self, offset, exception,
634                                           true, &catchFrame);
635        dvmDbgPostException(self->interpSave.curFrame, offset, catchFrame,
636                            catchRelPc, exception);
637    }
638}
639
640/*
641 * The interpreter is preparing to do an invoke (both native & normal).
642 * Handle any special subMode requirements.  All interpSave state
643 * must be valid on entry.
644 */
645void dvmReportInvoke(Thread* self, const Method* methodToCall)
646{
647    TRACE_METHOD_ENTER(self, methodToCall);
648}
649
650/*
651 * The interpreter is preparing to do a native invoke. Handle any
652 * special subMode requirements.  NOTE: for a native invoke,
653 * dvmReportInvoke() and dvmReportPreNativeInvoke() will both
654 * be called prior to the invoke.  fp is the Dalvik FP of the calling
655 * method.
656 */
657void dvmReportPreNativeInvoke(const Method* methodToCall, Thread* self, u4* fp)
658{
659#if defined(WITH_JIT)
660    /*
661     * Actively building a trace?  If so, end it now.   The trace
662     * builder can't follow into or through a native method.
663     */
664    if (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild) {
665        dvmCheckJit(self->interpSave.pc, self);
666    }
667#endif
668    if (self->interpBreak.ctl.subMode & kSubModeDebuggerActive) {
669        Object* thisPtr = dvmGetThisPtr(self->interpSave.method, fp);
670        assert(thisPtr == NULL || dvmIsHeapAddress(thisPtr));
671        dvmDbgPostLocationEvent(methodToCall, -1, thisPtr, DBG_METHOD_ENTRY);
672    }
673}
674
675/*
676 * The interpreter has returned from a native invoke. Handle any
677 * special subMode requirements.  fp is the Dalvik FP of the calling
678 * method.
679 */
680void dvmReportPostNativeInvoke(const Method* methodToCall, Thread* self, u4* fp)
681{
682    if (self->interpBreak.ctl.subMode & kSubModeDebuggerActive) {
683        Object* thisPtr = dvmGetThisPtr(self->interpSave.method, fp);
684        assert(thisPtr == NULL || dvmIsHeapAddress(thisPtr));
685        dvmDbgPostLocationEvent(methodToCall, -1, thisPtr, DBG_METHOD_EXIT);
686    }
687    if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) {
688        dvmFastNativeMethodTraceExit(methodToCall, self);
689    }
690}
691
692/*
693 * The interpreter has returned from a normal method.  Handle any special
694 * subMode requirements.  All interpSave state must be valid on entry.
695 */
696void dvmReportReturn(Thread* self)
697{
698    TRACE_METHOD_EXIT(self, self->interpSave.method);
699#if defined(WITH_JIT)
700    if (dvmIsBreakFrame(self->interpSave.curFrame) &&
701        (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild)) {
702        dvmCheckJit(self->interpSave.pc, self);
703    }
704#endif
705}
706
707/*
708 * Update the debugger on interesting events, such as hitting a breakpoint
709 * or a single-step point.  This is called from the top of the interpreter
710 * loop, before the current instruction is processed.
711 *
712 * Set "methodEntry" if we've just entered the method.  This detects
713 * method exit by checking to see if the next instruction is "return".
714 *
715 * This can't catch native method entry/exit, so we have to handle that
716 * at the point of invocation.  We also need to catch it in dvmCallMethod
717 * if we want to capture native->native calls made through JNI.
718 *
719 * Notes to self:
720 * - Don't want to switch to VMWAIT while posting events to the debugger.
721 *   Let the debugger code decide if we need to change state.
722 * - We may want to check for debugger-induced thread suspensions on
723 *   every instruction.  That would make a "suspend all" more responsive
724 *   and reduce the chances of multiple simultaneous events occurring.
725 *   However, it could change the behavior some.
726 *
727 * TODO: method entry/exit events are probably less common than location
728 * breakpoints.  We may be able to speed things up a bit if we don't query
729 * the event list unless we know there's at least one lurking within.
730 */
731static void updateDebugger(const Method* method, const u2* pc, const u4* fp,
732                           Thread* self)
733{
734    int eventFlags = 0;
735
736    /*
737     * Update xtra.currentPc on every instruction.  We need to do this if
738     * there's a chance that we could get suspended.  This can happen if
739     * eventFlags != 0 here, or somebody manually requests a suspend
740     * (which gets handled at PERIOD_CHECKS time).  One place where this
741     * needs to be correct is in dvmAddSingleStep().
742     */
743    dvmExportPC(pc, fp);
744
745    if (self->debugIsMethodEntry) {
746        eventFlags |= DBG_METHOD_ENTRY;
747        self->debugIsMethodEntry = false;
748    }
749
750    /*
751     * See if we have a breakpoint here.
752     *
753     * Depending on the "mods" associated with event(s) on this address,
754     * we may or may not actually send a message to the debugger.
755     */
756    if (GET_OPCODE(*pc) == OP_BREAKPOINT) {
757        LOGV("+++ breakpoint hit at %p", pc);
758        eventFlags |= DBG_BREAKPOINT;
759    }
760
761    /*
762     * If the debugger is single-stepping one of our threads, check to
763     * see if we're that thread and we've reached a step point.
764     */
765    const StepControl* pCtrl = &gDvm.stepControl;
766    if (pCtrl->active && pCtrl->thread == self) {
767        int frameDepth;
768        bool doStop = false;
769        const char* msg = NULL;
770
771        assert(!dvmIsNativeMethod(method));
772
773        if (pCtrl->depth == SD_INTO) {
774            /*
775             * Step into method calls.  We break when the line number
776             * or method pointer changes.  If we're in SS_MIN mode, we
777             * always stop.
778             */
779            if (pCtrl->method != method) {
780                doStop = true;
781                msg = "new method";
782            } else if (pCtrl->size == SS_MIN) {
783                doStop = true;
784                msg = "new instruction";
785            } else if (!dvmAddressSetGet(
786                    pCtrl->pAddressSet, pc - method->insns)) {
787                doStop = true;
788                msg = "new line";
789            }
790        } else if (pCtrl->depth == SD_OVER) {
791            /*
792             * Step over method calls.  We break when the line number is
793             * different and the frame depth is <= the original frame
794             * depth.  (We can't just compare on the method, because we
795             * might get unrolled past it by an exception, and it's tricky
796             * to identify recursion.)
797             */
798            frameDepth = dvmComputeVagueFrameDepth(self, fp);
799            if (frameDepth < pCtrl->frameDepth) {
800                /* popped up one or more frames, always trigger */
801                doStop = true;
802                msg = "method pop";
803            } else if (frameDepth == pCtrl->frameDepth) {
804                /* same depth, see if we moved */
805                if (pCtrl->size == SS_MIN) {
806                    doStop = true;
807                    msg = "new instruction";
808                } else if (!dvmAddressSetGet(pCtrl->pAddressSet,
809                            pc - method->insns)) {
810                    doStop = true;
811                    msg = "new line";
812                }
813            }
814        } else {
815            assert(pCtrl->depth == SD_OUT);
816            /*
817             * Return from the current method.  We break when the frame
818             * depth pops up.
819             *
820             * This differs from the "method exit" break in that it stops
821             * with the PC at the next instruction in the returned-to
822             * function, rather than the end of the returning function.
823             */
824            frameDepth = dvmComputeVagueFrameDepth(self, fp);
825            if (frameDepth < pCtrl->frameDepth) {
826                doStop = true;
827                msg = "method pop";
828            }
829        }
830
831        if (doStop) {
832            LOGV("#####S %s", msg);
833            eventFlags |= DBG_SINGLE_STEP;
834        }
835    }
836
837    /*
838     * Check to see if this is a "return" instruction.  JDWP says we should
839     * send the event *after* the code has been executed, but it also says
840     * the location we provide is the last instruction.  Since the "return"
841     * instruction has no interesting side effects, we should be safe.
842     * (We can't just move this down to the returnFromMethod label because
843     * we potentially need to combine it with other events.)
844     *
845     * We're also not supposed to generate a method exit event if the method
846     * terminates "with a thrown exception".
847     */
848    u2 opcode = GET_OPCODE(*pc);
849    if (opcode == OP_RETURN_VOID || opcode == OP_RETURN ||
850        opcode == OP_RETURN_WIDE ||opcode == OP_RETURN_OBJECT)
851    {
852        eventFlags |= DBG_METHOD_EXIT;
853    }
854
855    /*
856     * If there's something interesting going on, see if it matches one
857     * of the debugger filters.
858     */
859    if (eventFlags != 0) {
860        Object* thisPtr = dvmGetThisPtr(method, fp);
861        if (thisPtr != NULL && !dvmIsHeapAddress(thisPtr)) {
862            /*
863             * TODO: remove this check if we're confident that the "this"
864             * pointer is where it should be -- slows us down, especially
865             * during single-step.
866             */
867            char* desc = dexProtoCopyMethodDescriptor(&method->prototype);
868            LOGE("HEY: invalid 'this' ptr %p (%s.%s %s)", thisPtr,
869                method->clazz->descriptor, method->name, desc);
870            free(desc);
871            dvmAbort();
872        }
873        dvmDbgPostLocationEvent(method, pc - method->insns, thisPtr,
874            eventFlags);
875    }
876}
877
878/*
879 * Recover the "this" pointer from the current interpreted method.  "this"
880 * is always in "in0" for non-static methods.
881 *
882 * The "ins" start at (#of registers - #of ins).  Note in0 != v0.
883 *
884 * This works because "dx" guarantees that it will work.  It's probably
885 * fairly common to have a virtual method that doesn't use its "this"
886 * pointer, in which case we're potentially wasting a register.  However,
887 * the debugger doesn't treat "this" as just another argument.  For
888 * example, events (such as breakpoints) can be enabled for specific
889 * values of "this".  There is also a separate StackFrame.ThisObject call
890 * in JDWP that is expected to work for any non-native non-static method.
891 *
892 * Because we need it when setting up debugger event filters, we want to
893 * be able to do this quickly.
894 */
895Object* dvmGetThisPtr(const Method* method, const u4* fp)
896{
897    if (dvmIsStaticMethod(method))
898        return NULL;
899    return (Object*)fp[method->registersSize - method->insSize];
900}
901
902
903#if defined(WITH_TRACKREF_CHECKS)
904/*
905 * Verify that all internally-tracked references have been released.  If
906 * they haven't, print them and abort the VM.
907 *
908 * "debugTrackedRefStart" indicates how many refs were on the list when
909 * we were first invoked.
910 */
911void dvmInterpCheckTrackedRefs(Thread* self, const Method* method,
912    int debugTrackedRefStart)
913{
914    if (dvmReferenceTableEntries(&self->internalLocalRefTable)
915        != (size_t) debugTrackedRefStart)
916    {
917        char* desc;
918        Object** top;
919        int count;
920
921        count = dvmReferenceTableEntries(&self->internalLocalRefTable);
922
923        LOGE("TRACK: unreleased internal reference (prev=%d total=%d)",
924            debugTrackedRefStart, count);
925        desc = dexProtoCopyMethodDescriptor(&method->prototype);
926        LOGE("       current method is %s.%s %s", method->clazz->descriptor,
927            method->name, desc);
928        free(desc);
929        top = self->internalLocalRefTable.table + debugTrackedRefStart;
930        while (top < self->internalLocalRefTable.nextEntry) {
931            LOGE("  %p (%s)",
932                 *top,
933                 ((*top)->clazz != NULL) ? (*top)->clazz->descriptor : "");
934            top++;
935        }
936        dvmDumpThread(self, false);
937
938        dvmAbort();
939    }
940    //LOGI("TRACK OK");
941}
942#endif
943
944
945#ifdef LOG_INSTR
946/*
947 * Dump the v-registers.  Sent to the ILOG log tag.
948 */
949void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly)
950{
951    int i, localCount;
952
953    localCount = method->registersSize - method->insSize;
954
955    LOG(LOG_VERBOSE, LOG_TAG"i", "Registers (fp=%p):", framePtr);
956    for (i = method->registersSize-1; i >= 0; i--) {
957        if (i >= localCount) {
958            LOG(LOG_VERBOSE, LOG_TAG"i", "  v%-2d in%-2d : 0x%08x",
959                i, i-localCount, framePtr[i]);
960        } else {
961            if (inOnly) {
962                LOG(LOG_VERBOSE, LOG_TAG"i", "  [...]");
963                break;
964            }
965            const char* name = "";
966#if 0   // "locals" structure has changed -- need to rewrite this
967            int j;
968            DexFile* pDexFile = method->clazz->pDexFile;
969            const DexCode* pDexCode = dvmGetMethodCode(method);
970            int localsSize = dexGetLocalsSize(pDexFile, pDexCode);
971            const DexLocal* locals = dvmDexGetLocals(pDexFile, pDexCode);
972            for (j = 0; j < localsSize, j++) {
973                if (locals[j].registerNum == (u4) i) {
974                    name = dvmDexStringStr(locals[j].pName);
975                    break;
976                }
977            }
978#endif
979            LOG(LOG_VERBOSE, LOG_TAG"i", "  v%-2d      : 0x%08x %s",
980                i, framePtr[i], name);
981        }
982    }
983}
984#endif
985
986
987/*
988 * ===========================================================================
989 *      Entry point and general support functions
990 * ===========================================================================
991 */
992
993/*
994 * Construct an s4 from two consecutive half-words of switch data.
995 * This needs to check endianness because the DEX optimizer only swaps
996 * half-words in instruction stream.
997 *
998 * "switchData" must be 32-bit aligned.
999 */
1000#if __BYTE_ORDER == __LITTLE_ENDIAN
1001static inline s4 s4FromSwitchData(const void* switchData) {
1002    return *(s4*) switchData;
1003}
1004#else
1005static inline s4 s4FromSwitchData(const void* switchData) {
1006    u2* data = switchData;
1007    return data[0] | (((s4) data[1]) << 16);
1008}
1009#endif
1010
1011/*
1012 * Find the matching case.  Returns the offset to the handler instructions.
1013 *
1014 * Returns 3 if we don't find a match (it's the size of the packed-switch
1015 * instruction).
1016 */
1017s4 dvmInterpHandlePackedSwitch(const u2* switchData, s4 testVal)
1018{
1019    const int kInstrLen = 3;
1020    u2 size;
1021    s4 firstKey;
1022    const s4* entries;
1023
1024    /*
1025     * Packed switch data format:
1026     *  ushort ident = 0x0100   magic value
1027     *  ushort size             number of entries in the table
1028     *  int first_key           first (and lowest) switch case value
1029     *  int targets[size]       branch targets, relative to switch opcode
1030     *
1031     * Total size is (4+size*2) 16-bit code units.
1032     */
1033    if (*switchData++ != kPackedSwitchSignature) {
1034        /* should have been caught by verifier */
1035        dvmThrowInternalError("bad packed switch magic");
1036        return kInstrLen;
1037    }
1038
1039    size = *switchData++;
1040    assert(size > 0);
1041
1042    firstKey = *switchData++;
1043    firstKey |= (*switchData++) << 16;
1044
1045    if (testVal < firstKey || testVal >= firstKey + size) {
1046        LOGVV("Value %d not found in switch (%d-%d)",
1047            testVal, firstKey, firstKey+size-1);
1048        return kInstrLen;
1049    }
1050
1051    /* The entries are guaranteed to be aligned on a 32-bit boundary;
1052     * we can treat them as a native int array.
1053     */
1054    entries = (const s4*) switchData;
1055    assert(((u4)entries & 0x3) == 0);
1056
1057    assert(testVal - firstKey >= 0 && testVal - firstKey < size);
1058    LOGVV("Value %d found in slot %d (goto 0x%02x)",
1059        testVal, testVal - firstKey,
1060        s4FromSwitchData(&entries[testVal - firstKey]));
1061    return s4FromSwitchData(&entries[testVal - firstKey]);
1062}
1063
1064/*
1065 * Find the matching case.  Returns the offset to the handler instructions.
1066 *
1067 * Returns 3 if we don't find a match (it's the size of the sparse-switch
1068 * instruction).
1069 */
1070s4 dvmInterpHandleSparseSwitch(const u2* switchData, s4 testVal)
1071{
1072    const int kInstrLen = 3;
1073    u2 size;
1074    const s4* keys;
1075    const s4* entries;
1076
1077    /*
1078     * Sparse switch data format:
1079     *  ushort ident = 0x0200   magic value
1080     *  ushort size             number of entries in the table; > 0
1081     *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
1082     *  int targets[size]       branch targets, relative to switch opcode
1083     *
1084     * Total size is (2+size*4) 16-bit code units.
1085     */
1086
1087    if (*switchData++ != kSparseSwitchSignature) {
1088        /* should have been caught by verifier */
1089        dvmThrowInternalError("bad sparse switch magic");
1090        return kInstrLen;
1091    }
1092
1093    size = *switchData++;
1094    assert(size > 0);
1095
1096    /* The keys are guaranteed to be aligned on a 32-bit boundary;
1097     * we can treat them as a native int array.
1098     */
1099    keys = (const s4*) switchData;
1100    assert(((u4)keys & 0x3) == 0);
1101
1102    /* The entries are guaranteed to be aligned on a 32-bit boundary;
1103     * we can treat them as a native int array.
1104     */
1105    entries = keys + size;
1106    assert(((u4)entries & 0x3) == 0);
1107
1108    /*
1109     * Binary-search through the array of keys, which are guaranteed to
1110     * be sorted low-to-high.
1111     */
1112    int lo = 0;
1113    int hi = size - 1;
1114    while (lo <= hi) {
1115        int mid = (lo + hi) >> 1;
1116
1117        s4 foundVal = s4FromSwitchData(&keys[mid]);
1118        if (testVal < foundVal) {
1119            hi = mid - 1;
1120        } else if (testVal > foundVal) {
1121            lo = mid + 1;
1122        } else {
1123            LOGVV("Value %d found in entry %d (goto 0x%02x)",
1124                testVal, mid, s4FromSwitchData(&entries[mid]));
1125            return s4FromSwitchData(&entries[mid]);
1126        }
1127    }
1128
1129    LOGVV("Value %d not found in switch", testVal);
1130    return kInstrLen;
1131}
1132
1133/*
1134 * Copy data for a fill-array-data instruction.  On a little-endian machine
1135 * we can just do a memcpy(), on a big-endian system we have work to do.
1136 *
1137 * The trick here is that dexopt has byte-swapped each code unit, which is
1138 * exactly what we want for short/char data.  For byte data we need to undo
1139 * the swap, and for 4- or 8-byte values we need to swap pieces within
1140 * each word.
1141 */
1142static void copySwappedArrayData(void* dest, const u2* src, u4 size, u2 width)
1143{
1144#if __BYTE_ORDER == __LITTLE_ENDIAN
1145    memcpy(dest, src, size*width);
1146#else
1147    int i;
1148
1149    switch (width) {
1150    case 1:
1151        /* un-swap pairs of bytes as we go */
1152        for (i = (size-1) & ~1; i >= 0; i -= 2) {
1153            ((u1*)dest)[i] = ((u1*)src)[i+1];
1154            ((u1*)dest)[i+1] = ((u1*)src)[i];
1155        }
1156        /*
1157         * "src" is padded to end on a two-byte boundary, but we don't want to
1158         * assume "dest" is, so we handle odd length specially.
1159         */
1160        if ((size & 1) != 0) {
1161            ((u1*)dest)[size-1] = ((u1*)src)[size];
1162        }
1163        break;
1164    case 2:
1165        /* already swapped correctly */
1166        memcpy(dest, src, size*width);
1167        break;
1168    case 4:
1169        /* swap word halves */
1170        for (i = 0; i < (int) size; i++) {
1171            ((u4*)dest)[i] = (src[(i << 1) + 1] << 16) | src[i << 1];
1172        }
1173        break;
1174    case 8:
1175        /* swap word halves and words */
1176        for (i = 0; i < (int) (size << 1); i += 2) {
1177            ((int*)dest)[i] = (src[(i << 1) + 3] << 16) | src[(i << 1) + 2];
1178            ((int*)dest)[i+1] = (src[(i << 1) + 1] << 16) | src[i << 1];
1179        }
1180        break;
1181    default:
1182        LOGE("Unexpected width %d in copySwappedArrayData", width);
1183        dvmAbort();
1184        break;
1185    }
1186#endif
1187}
1188
1189/*
1190 * Fill the array with predefined constant values.
1191 *
1192 * Returns true if job is completed, otherwise false to indicate that
1193 * an exception has been thrown.
1194 */
1195bool dvmInterpHandleFillArrayData(ArrayObject* arrayObj, const u2* arrayData)
1196{
1197    u2 width;
1198    u4 size;
1199
1200    if (arrayObj == NULL) {
1201        dvmThrowNullPointerException(NULL);
1202        return false;
1203    }
1204    assert (!IS_CLASS_FLAG_SET(((Object *)arrayObj)->clazz,
1205                               CLASS_ISOBJECTARRAY));
1206
1207    /*
1208     * Array data table format:
1209     *  ushort ident = 0x0300   magic value
1210     *  ushort width            width of each element in the table
1211     *  uint   size             number of elements in the table
1212     *  ubyte  data[size*width] table of data values (may contain a single-byte
1213     *                          padding at the end)
1214     *
1215     * Total size is 4+(width * size + 1)/2 16-bit code units.
1216     */
1217    if (arrayData[0] != kArrayDataSignature) {
1218        dvmThrowInternalError("bad array data magic");
1219        return false;
1220    }
1221
1222    width = arrayData[1];
1223    size = arrayData[2] | (((u4)arrayData[3]) << 16);
1224
1225    if (size > arrayObj->length) {
1226        dvmThrowArrayIndexOutOfBoundsException(arrayObj->length, size);
1227        return false;
1228    }
1229    copySwappedArrayData(arrayObj->contents, &arrayData[4], size, width);
1230    return true;
1231}
1232
1233/*
1234 * Find the concrete method that corresponds to "methodIdx".  The code in
1235 * "method" is executing invoke-method with "thisClass" as its first argument.
1236 *
1237 * Returns NULL with an exception raised on failure.
1238 */
1239Method* dvmInterpFindInterfaceMethod(ClassObject* thisClass, u4 methodIdx,
1240    const Method* method, DvmDex* methodClassDex)
1241{
1242    Method* absMethod;
1243    Method* methodToCall;
1244    int i, vtableIndex;
1245
1246    /*
1247     * Resolve the method.  This gives us the abstract method from the
1248     * interface class declaration.
1249     */
1250    absMethod = dvmDexGetResolvedMethod(methodClassDex, methodIdx);
1251    if (absMethod == NULL) {
1252        absMethod = dvmResolveInterfaceMethod(method->clazz, methodIdx);
1253        if (absMethod == NULL) {
1254            LOGV("+ unknown method");
1255            return NULL;
1256        }
1257    }
1258
1259    /* make sure absMethod->methodIndex means what we think it means */
1260    assert(dvmIsAbstractMethod(absMethod));
1261
1262    /*
1263     * Run through the "this" object's iftable.  Find the entry for
1264     * absMethod's class, then use absMethod->methodIndex to find
1265     * the method's entry.  The value there is the offset into our
1266     * vtable of the actual method to execute.
1267     *
1268     * The verifier does not guarantee that objects stored into
1269     * interface references actually implement the interface, so this
1270     * check cannot be eliminated.
1271     */
1272    for (i = 0; i < thisClass->iftableCount; i++) {
1273        if (thisClass->iftable[i].clazz == absMethod->clazz)
1274            break;
1275    }
1276    if (i == thisClass->iftableCount) {
1277        /* impossible in verified DEX, need to check for it in unverified */
1278        dvmThrowIncompatibleClassChangeError("interface not implemented");
1279        return NULL;
1280    }
1281
1282    assert(absMethod->methodIndex <
1283        thisClass->iftable[i].clazz->virtualMethodCount);
1284
1285    vtableIndex =
1286        thisClass->iftable[i].methodIndexArray[absMethod->methodIndex];
1287    assert(vtableIndex >= 0 && vtableIndex < thisClass->vtableCount);
1288    methodToCall = thisClass->vtable[vtableIndex];
1289
1290#if 0
1291    /* this can happen when there's a stale class file */
1292    if (dvmIsAbstractMethod(methodToCall)) {
1293        dvmThrowAbstractMethodError("interface method not implemented");
1294        return NULL;
1295    }
1296#else
1297    assert(!dvmIsAbstractMethod(methodToCall) ||
1298        methodToCall->nativeFunc != NULL);
1299#endif
1300
1301    LOGVV("+++ interface=%s.%s concrete=%s.%s",
1302        absMethod->clazz->descriptor, absMethod->name,
1303        methodToCall->clazz->descriptor, methodToCall->name);
1304    assert(methodToCall != NULL);
1305
1306    return methodToCall;
1307}
1308
1309
1310
1311/*
1312 * Helpers for dvmThrowVerificationError().
1313 *
1314 * Each returns a newly-allocated string.
1315 */
1316#define kThrowShow_accessFromClass     1
1317static std::string classNameFromIndex(const Method* method, int ref,
1318    VerifyErrorRefType refType, int flags)
1319{
1320    const DvmDex* pDvmDex = method->clazz->pDvmDex;
1321    if (refType == VERIFY_ERROR_REF_FIELD) {
1322        /* get class ID from field ID */
1323        const DexFieldId* pFieldId = dexGetFieldId(pDvmDex->pDexFile, ref);
1324        ref = pFieldId->classIdx;
1325    } else if (refType == VERIFY_ERROR_REF_METHOD) {
1326        /* get class ID from method ID */
1327        const DexMethodId* pMethodId = dexGetMethodId(pDvmDex->pDexFile, ref);
1328        ref = pMethodId->classIdx;
1329    }
1330
1331    const char* className = dexStringByTypeIdx(pDvmDex->pDexFile, ref);
1332    std::string dotClassName(dvmHumanReadableDescriptor(className));
1333    if (flags == 0) {
1334        return dotClassName;
1335    }
1336
1337    std::string result;
1338    if ((flags & kThrowShow_accessFromClass) != 0) {
1339        result += "tried to access class " + dotClassName;
1340        result += " from class " + dvmHumanReadableDescriptor(method->clazz->descriptor);
1341    } else {
1342        assert(false);      // should've been caught above
1343    }
1344
1345    return result;
1346}
1347static std::string fieldNameFromIndex(const Method* method, int ref,
1348    VerifyErrorRefType refType, int flags)
1349{
1350    if (refType != VERIFY_ERROR_REF_FIELD) {
1351        LOGW("Expected ref type %d, got %d", VERIFY_ERROR_REF_FIELD, refType);
1352        return NULL;    /* no message */
1353    }
1354
1355    const DvmDex* pDvmDex = method->clazz->pDvmDex;
1356    const DexFieldId* pFieldId = dexGetFieldId(pDvmDex->pDexFile, ref);
1357    const char* className = dexStringByTypeIdx(pDvmDex->pDexFile, pFieldId->classIdx);
1358    const char* fieldName = dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx);
1359
1360    std::string dotName(dvmHumanReadableDescriptor(className));
1361
1362    if ((flags & kThrowShow_accessFromClass) != 0) {
1363        std::string result;
1364        result += "tried to access field ";
1365        result += dotName + "." + fieldName;
1366        result += " from class ";
1367        result += dvmHumanReadableDescriptor(method->clazz->descriptor);
1368        return result;
1369    }
1370    return dotName + "." + fieldName;
1371}
1372static std::string methodNameFromIndex(const Method* method, int ref,
1373    VerifyErrorRefType refType, int flags)
1374{
1375    if (refType != VERIFY_ERROR_REF_METHOD) {
1376        LOGW("Expected ref type %d, got %d", VERIFY_ERROR_REF_METHOD,refType);
1377        return NULL;    /* no message */
1378    }
1379
1380    const DvmDex* pDvmDex = method->clazz->pDvmDex;
1381    const DexMethodId* pMethodId = dexGetMethodId(pDvmDex->pDexFile, ref);
1382    const char* className = dexStringByTypeIdx(pDvmDex->pDexFile, pMethodId->classIdx);
1383    const char* methodName = dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx);
1384
1385    std::string dotName(dvmHumanReadableDescriptor(className));
1386
1387    if ((flags & kThrowShow_accessFromClass) != 0) {
1388        char* desc = dexProtoCopyMethodDescriptor(&method->prototype);
1389        std::string result;
1390        result += "tried to access method ";
1391        result += dotName + "." + methodName + ":" + desc;
1392        result += " from class " + dvmHumanReadableDescriptor(method->clazz->descriptor);
1393        free(desc);
1394        return result;
1395    }
1396    return dotName + "." + methodName;
1397}
1398
1399/*
1400 * Throw an exception for a problem identified by the verifier.
1401 *
1402 * This is used by the invoke-verification-error instruction.  It always
1403 * throws an exception.
1404 *
1405 * "kind" indicates the kind of failure encountered by the verifier.  It
1406 * has two parts, an error code and an indication of the reference type.
1407 */
1408void dvmThrowVerificationError(const Method* method, int kind, int ref)
1409{
1410    int errorPart = kind & ~(0xff << kVerifyErrorRefTypeShift);
1411    int errorRefPart = kind >> kVerifyErrorRefTypeShift;
1412    VerifyError errorKind = static_cast<VerifyError>(errorPart);
1413    VerifyErrorRefType refType = static_cast<VerifyErrorRefType>(errorRefPart);
1414    ClassObject* exceptionClass = gDvm.exVerifyError;
1415    std::string msg;
1416
1417    switch ((VerifyError) errorKind) {
1418    case VERIFY_ERROR_NO_CLASS:
1419        exceptionClass = gDvm.exNoClassDefFoundError;
1420        msg = classNameFromIndex(method, ref, refType, 0);
1421        break;
1422    case VERIFY_ERROR_NO_FIELD:
1423        exceptionClass = gDvm.exNoSuchFieldError;
1424        msg = fieldNameFromIndex(method, ref, refType, 0);
1425        break;
1426    case VERIFY_ERROR_NO_METHOD:
1427        exceptionClass = gDvm.exNoSuchMethodError;
1428        msg = methodNameFromIndex(method, ref, refType, 0);
1429        break;
1430    case VERIFY_ERROR_ACCESS_CLASS:
1431        exceptionClass = gDvm.exIllegalAccessError;
1432        msg = classNameFromIndex(method, ref, refType,
1433            kThrowShow_accessFromClass);
1434        break;
1435    case VERIFY_ERROR_ACCESS_FIELD:
1436        exceptionClass = gDvm.exIllegalAccessError;
1437        msg = fieldNameFromIndex(method, ref, refType,
1438            kThrowShow_accessFromClass);
1439        break;
1440    case VERIFY_ERROR_ACCESS_METHOD:
1441        exceptionClass = gDvm.exIllegalAccessError;
1442        msg = methodNameFromIndex(method, ref, refType,
1443            kThrowShow_accessFromClass);
1444        break;
1445    case VERIFY_ERROR_CLASS_CHANGE:
1446        exceptionClass = gDvm.exIncompatibleClassChangeError;
1447        msg = classNameFromIndex(method, ref, refType, 0);
1448        break;
1449    case VERIFY_ERROR_INSTANTIATION:
1450        exceptionClass = gDvm.exInstantiationError;
1451        msg = classNameFromIndex(method, ref, refType, 0);
1452        break;
1453
1454    case VERIFY_ERROR_GENERIC:
1455        /* generic VerifyError; use default exception, no message */
1456        break;
1457    case VERIFY_ERROR_NONE:
1458        /* should never happen; use default exception */
1459        assert(false);
1460        msg = strdup("weird - no error specified");
1461        break;
1462
1463    /* no default clause -- want warning if enum updated */
1464    }
1465
1466    dvmThrowException(exceptionClass, msg.c_str());
1467}
1468
1469/*
1470 * Update interpBreak for a single thread.
1471 */
1472void updateInterpBreak(Thread* thread, ExecutionSubModes subMode, bool enable)
1473{
1474    InterpBreak oldValue, newValue;
1475    do {
1476        oldValue = newValue = thread->interpBreak;
1477        newValue.ctl.breakFlags = kInterpNoBreak;  // Assume full reset
1478        if (enable)
1479            newValue.ctl.subMode |= subMode;
1480        else
1481            newValue.ctl.subMode &= ~subMode;
1482        if (newValue.ctl.subMode & SINGLESTEP_BREAK_MASK)
1483            newValue.ctl.breakFlags |= kInterpSingleStep;
1484        if (newValue.ctl.subMode & SAFEPOINT_BREAK_MASK)
1485            newValue.ctl.breakFlags |= kInterpSafePoint;
1486        newValue.ctl.curHandlerTable = (newValue.ctl.breakFlags) ?
1487            thread->altHandlerTable : thread->mainHandlerTable;
1488    } while (dvmQuasiAtomicCas64(oldValue.all, newValue.all,
1489             &thread->interpBreak.all) != 0);
1490}
1491
1492/*
1493 * Update interpBreak for all threads.
1494 */
1495void updateAllInterpBreak(ExecutionSubModes subMode, bool enable)
1496{
1497    Thread* self = dvmThreadSelf();
1498    Thread* thread;
1499
1500    dvmLockThreadList(self);
1501    for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
1502        updateInterpBreak(thread, subMode, enable);
1503    }
1504    dvmUnlockThreadList();
1505}
1506
1507/*
1508 * Update the normal and debugger suspend counts for a thread.
1509 * threadSuspendCount must be acquired before calling this to
1510 * ensure a clean update of suspendCount, dbgSuspendCount and
1511 * sumThreadSuspendCount.
1512 *
1513 * CLEANUP TODO: Currently only the JIT is using sumThreadSuspendCount.
1514 * Move under WITH_JIT ifdefs.
1515*/
1516void dvmAddToSuspendCounts(Thread* thread, int delta, int dbgDelta)
1517{
1518    thread->suspendCount += delta;
1519    thread->dbgSuspendCount += dbgDelta;
1520    updateInterpBreak(thread, kSubModeSuspendPending,
1521                      (thread->suspendCount != 0));
1522    // Update the global suspend count total
1523    gDvm.sumThreadSuspendCount += delta;
1524}
1525
1526
1527void dvmDisableSubMode(Thread* thread, ExecutionSubModes subMode)
1528{
1529    updateInterpBreak(thread, subMode, false);
1530}
1531
1532void dvmEnableSubMode(Thread* thread, ExecutionSubModes subMode)
1533{
1534    updateInterpBreak(thread, subMode, true);
1535}
1536
1537void dvmEnableAllSubMode(ExecutionSubModes subMode)
1538{
1539    updateAllInterpBreak(subMode, true);
1540}
1541
1542void dvmDisableAllSubMode(ExecutionSubModes subMode)
1543{
1544    updateAllInterpBreak(subMode, false);
1545}
1546
1547/*
1548 * Do a sanity check on interpreter state saved to Thread.
1549 * A failure here doesn't necessarily mean that something is wrong,
1550 * so this code should only be used during development to suggest
1551 * a possible problem.
1552 */
1553void dvmCheckInterpStateConsistency()
1554{
1555    Thread* self = dvmThreadSelf();
1556    Thread* thread;
1557    uint8_t breakFlags;
1558    uint8_t subMode;
1559    void* handlerTable;
1560
1561    dvmLockThreadList(self);
1562    breakFlags = self->interpBreak.ctl.breakFlags;
1563    subMode = self->interpBreak.ctl.subMode;
1564    handlerTable = self->interpBreak.ctl.curHandlerTable;
1565    for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
1566        if (subMode != thread->interpBreak.ctl.subMode) {
1567            LOGD("Warning: subMode mismatch - %#x:%#x, tid[%d]",
1568                subMode,thread->interpBreak.ctl.subMode,thread->threadId);
1569         }
1570        if (breakFlags != thread->interpBreak.ctl.breakFlags) {
1571            LOGD("Warning: breakFlags mismatch - %#x:%#x, tid[%d]",
1572                breakFlags,thread->interpBreak.ctl.breakFlags,thread->threadId);
1573         }
1574        if (handlerTable != thread->interpBreak.ctl.curHandlerTable) {
1575            LOGD("Warning: curHandlerTable mismatch - %#x:%#x, tid[%d]",
1576                (int)handlerTable,(int)thread->interpBreak.ctl.curHandlerTable,
1577                thread->threadId);
1578         }
1579#if defined(WITH_JIT)
1580         if (thread->pJitProfTable != gDvmJit.pProfTable) {
1581             LOGD("Warning: pJitProfTable mismatch - %#x:%#x, tid[%d]",
1582                  (int)thread->pJitProfTable,(int)gDvmJit.pProfTable,
1583                  thread->threadId);
1584         }
1585         if (thread->jitThreshold != gDvmJit.threshold) {
1586             LOGD("Warning: jitThreshold mismatch - %#x:%#x, tid[%d]",
1587                  (int)thread->jitThreshold,(int)gDvmJit.threshold,
1588                  thread->threadId);
1589         }
1590#endif
1591    }
1592    dvmUnlockThreadList();
1593}
1594
1595/*
1596 * Arm a safepoint callback for a thread.  If funct is null,
1597 * clear any pending callback.
1598 * TODO: only gc is currently using this feature, and will have
1599 * at most a single outstanding callback request.  Until we need
1600 * something more capable and flexible, enforce this limit.
1601 */
1602void dvmArmSafePointCallback(Thread* thread, SafePointCallback funct,
1603                             void* arg)
1604{
1605    dvmLockMutex(&thread->callbackMutex);
1606    if ((funct == NULL) || (thread->callback == NULL)) {
1607        thread->callback = funct;
1608        thread->callbackArg = arg;
1609        if (funct != NULL) {
1610            dvmEnableSubMode(thread, kSubModeCallbackPending);
1611        } else {
1612            dvmDisableSubMode(thread, kSubModeCallbackPending);
1613        }
1614    } else {
1615        // Already armed.  Different?
1616        if ((funct != thread->callback) ||
1617            (arg != thread->callbackArg)) {
1618            // Yes - report failure and die
1619            LOGE("ArmSafePointCallback failed, thread %d", thread->threadId);
1620            dvmUnlockMutex(&thread->callbackMutex);
1621            dvmAbort();
1622        }
1623    }
1624    dvmUnlockMutex(&thread->callbackMutex);
1625}
1626
1627/*
1628 * One-time initialization at thread creation.  Here we initialize
1629 * useful constants.
1630 */
1631void dvmInitInterpreterState(Thread* self)
1632{
1633#if defined(WITH_JIT)
1634    /*
1635     * Reserve a static entity here to quickly setup runtime contents as
1636     * gcc will issue block copy instructions.
1637     */
1638    static struct JitToInterpEntries jitToInterpEntries = {
1639        dvmJitToInterpNormal,
1640        dvmJitToInterpNoChain,
1641        dvmJitToInterpPunt,
1642        dvmJitToInterpSingleStep,
1643        dvmJitToInterpTraceSelect,
1644#if defined(WITH_SELF_VERIFICATION)
1645        dvmJitToInterpBackwardBranch,
1646#else
1647        NULL,
1648#endif
1649    };
1650#endif
1651
1652    // Begin initialization
1653    self->cardTable = gDvm.biasedCardTableBase;
1654#if defined(WITH_JIT)
1655    // One-time initializations
1656    self->jitToInterpEntries = jitToInterpEntries;
1657    self->icRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN;
1658    self->pProfileCountdown = &gDvmJit.profileCountdown;
1659    // Jit state that can change
1660    dvmJitUpdateThreadStateSingle(self);
1661#endif
1662    dvmInitializeInterpBreak(self);
1663}
1664
1665/*
1666 * For a newly-created thread, we need to start off with interpBreak
1667 * set to any existing global modes.  The caller must hold the
1668 * thread list lock.
1669 */
1670void dvmInitializeInterpBreak(Thread* thread)
1671{
1672    if (gDvm.instructionCountEnableCount > 0) {
1673        dvmEnableSubMode(thread, kSubModeInstCounting);
1674    }
1675    if (dvmIsMethodTraceActive()) {
1676        dvmEnableSubMode(thread, kSubModeMethodTrace);
1677    }
1678    if (gDvm.emulatorTraceEnableCount > 0) {
1679        dvmEnableSubMode(thread, kSubModeEmulatorTrace);
1680    }
1681    if (gDvm.debuggerActive) {
1682        dvmEnableSubMode(thread, kSubModeDebuggerActive);
1683    }
1684#if 0
1685    // Debugging stress mode - force checkBefore
1686    dvmEnableSubMode(thread, kSubModeCheckAlways);
1687#endif
1688}
1689
1690/*
1691 * Inter-instruction handler invoked in between instruction interpretations
1692 * to handle exceptional events such as debugging housekeeping, instruction
1693 * count profiling, JIT trace building, etc.  Dalvik PC has been exported
1694 * prior to call, but Thread copy of dPC & fp are not current.
1695 */
1696void dvmCheckBefore(const u2 *pc, u4 *fp, Thread* self)
1697{
1698    const Method* method = self->interpSave.method;
1699    assert(self->interpBreak.ctl.breakFlags != 0);
1700    assert(pc >= method->insns && pc <
1701           method->insns + dvmGetMethodInsnsSize(method));
1702
1703#if 0
1704    /*
1705     * When we hit a specific method, enable verbose instruction logging.
1706     * Sometimes it's helpful to use the debugger attach as a trigger too.
1707     */
1708    if (*pIsMethodEntry) {
1709        static const char* cd = "Landroid/test/Arithmetic;";
1710        static const char* mn = "shiftTest2";
1711        static const char* sg = "()V";
1712
1713        if (/*self->interpBreak.ctl.subMode & kSubModeDebuggerActive &&*/
1714            strcmp(method->clazz->descriptor, cd) == 0 &&
1715            strcmp(method->name, mn) == 0 &&
1716            strcmp(method->shorty, sg) == 0)
1717        {
1718            LOGW("Reached %s.%s, enabling verbose mode",
1719                method->clazz->descriptor, method->name);
1720            android_setMinPriority(LOG_TAG"i", ANDROID_LOG_VERBOSE);
1721            dumpRegs(method, fp, true);
1722        }
1723
1724        if (!gDvm.debuggerActive)
1725            *pIsMethodEntry = false;
1726    }
1727#endif
1728
1729    /* Safe point handling */
1730    if (self->suspendCount ||
1731        (self->interpBreak.ctl.subMode & kSubModeCallbackPending)) {
1732        // Are we are a safe point?
1733        int flags;
1734        flags = dexGetFlagsFromOpcode(dexOpcodeFromCodeUnit(*pc));
1735        if (flags & (VERIFY_GC_INST_MASK & ~kInstrCanThrow)) {
1736            // Yes, at a safe point.  Pending callback?
1737            if (self->interpBreak.ctl.subMode & kSubModeCallbackPending) {
1738                SafePointCallback callback;
1739                void* arg;
1740                // Get consistent funct/arg pair
1741                dvmLockMutex(&self->callbackMutex);
1742                callback = self->callback;
1743                arg = self->callbackArg;
1744                dvmUnlockMutex(&self->callbackMutex);
1745                // Update Thread structure
1746                self->interpSave.pc = pc;
1747                self->interpSave.curFrame = fp;
1748                if (callback != NULL) {
1749                    // Do the callback
1750                    if (!callback(self,arg)) {
1751                        // disarm
1752                        dvmArmSafePointCallback(self, NULL, NULL);
1753                    }
1754                }
1755            }
1756            // Need to suspend?
1757            if (self->suspendCount) {
1758                dvmExportPC(pc, fp);
1759                dvmCheckSuspendPending(self);
1760            }
1761        }
1762    }
1763
1764    if (self->interpBreak.ctl.subMode & kSubModeDebuggerActive) {
1765        updateDebugger(method, pc, fp, self);
1766    }
1767    if (gDvm.instructionCountEnableCount != 0) {
1768        /*
1769         * Count up the #of executed instructions.  This isn't synchronized
1770         * for thread-safety; if we need that we should make this
1771         * thread-local and merge counts into the global area when threads
1772         * exit (perhaps suspending all other threads GC-style and pulling
1773         * the data out of them).
1774         */
1775        gDvm.executedInstrCounts[GET_OPCODE(*pc)]++;
1776    }
1777
1778
1779#if defined(WITH_TRACKREF_CHECKS)
1780    dvmInterpCheckTrackedRefs(self, method,
1781                              self->interpSave.debugTrackedRefStart);
1782#endif
1783
1784#if defined(WITH_JIT)
1785    // Does the JIT need anything done now?
1786    if (self->interpBreak.ctl.subMode &
1787            (kSubModeJitTraceBuild | kSubModeJitSV)) {
1788        // Are we building a trace?
1789        if (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild) {
1790            dvmCheckJit(pc, self);
1791        }
1792
1793#if defined(WITH_SELF_VERIFICATION)
1794        // Are we replaying a trace?
1795        if (self->interpBreak.ctl.subMode & kSubModeJitSV) {
1796            dvmCheckSelfVerification(pc, self);
1797        }
1798#endif
1799    }
1800#endif
1801
1802    /*
1803     * CountedStep processing.  NOTE: must be the last here to allow
1804     * preceeding special case handler to manipulate single-step count.
1805     */
1806    if (self->interpBreak.ctl.subMode & kSubModeCountedStep) {
1807        if (self->singleStepCount == 0) {
1808            // We've exhausted our single step count
1809            dvmDisableSubMode(self, kSubModeCountedStep);
1810#if defined(WITH_JIT)
1811#if 0
1812            /*
1813             * For debugging.  If jitResumeDPC is non-zero, then
1814             * we expect to return to a trace in progress.   There
1815             * are valid reasons why we wouldn't (such as an exception
1816             * throw), but here we can keep track.
1817             */
1818            if (self->jitResumeDPC != NULL) {
1819                if (self->jitResumeDPC == pc) {
1820                    if (self->jitResumeNPC != NULL) {
1821                        LOGD("SS return to trace - pc:%#x to 0x:%x",
1822                             (int)pc, (int)self->jitResumeNPC);
1823                    } else {
1824                        LOGD("SS return to interp - pc:%#x",(int)pc);
1825                    }
1826                } else {
1827                    LOGD("SS failed to return.  Expected %#x, now at %#x",
1828                         (int)self->jitResumeDPC, (int)pc);
1829                }
1830            }
1831#endif
1832            // If we've got a native return and no other reasons to
1833            // remain in singlestep/break mode, do a long jump
1834            if (self->jitResumeNPC != NULL &&
1835                self->interpBreak.ctl.breakFlags == 0) {
1836                assert(self->jitResumeDPC == pc);
1837                self->jitResumeDPC = NULL;
1838                dvmJitResumeTranslation(self, pc, fp);
1839                // Doesn't return
1840                dvmAbort();
1841            }
1842            // In case resume is blocked by non-zero breakFlags, clear
1843            // jitResumeNPC here.
1844            self->jitResumeNPC = NULL;
1845            self->jitResumeDPC = NULL;
1846            self->inJitCodeCache = NULL;
1847#endif
1848        } else {
1849            self->singleStepCount--;
1850#if defined(WITH_JIT)
1851            if ((self->singleStepCount > 0) && (self->jitResumeNPC != NULL)) {
1852                /*
1853                 * Direct return to an existing translation following a
1854                 * single step is valid only if we step once.  If we're
1855                 * here, an additional step was added so we need to invalidate
1856                 * the return to translation.
1857                 */
1858                self->jitResumeNPC = NULL;
1859                self->inJitCodeCache = NULL;
1860            }
1861#endif
1862        }
1863    }
1864}
1865
1866/*
1867 * Main interpreter loop entry point.
1868 *
1869 * This begins executing code at the start of "method".  On exit, "pResult"
1870 * holds the return value of the method (or, if "method" returns NULL, it
1871 * holds an undefined value).
1872 *
1873 * The interpreted stack frame, which holds the method arguments, has
1874 * already been set up.
1875 */
1876void dvmInterpret(Thread* self, const Method* method, JValue* pResult)
1877{
1878    InterpSaveState interpSaveState;
1879    ExecutionSubModes savedSubModes;
1880
1881#if defined(WITH_JIT)
1882    /* Target-specific save/restore */
1883    double calleeSave[JIT_CALLEE_SAVE_DOUBLE_COUNT];
1884    /*
1885     * If the previous VM left the code cache through single-stepping the
1886     * inJitCodeCache flag will be set when the VM is re-entered (for example,
1887     * in self-verification mode we single-step NEW_INSTANCE which may re-enter
1888     * the VM through findClassFromLoaderNoInit). Because of that, we cannot
1889     * assert that self->inJitCodeCache is NULL here.
1890     */
1891#endif
1892
1893    /*
1894     * Save interpreter state from previous activation, linking
1895     * new to last.
1896     */
1897    interpSaveState = self->interpSave;
1898    self->interpSave.prev = &interpSaveState;
1899    /*
1900     * Strip out and save any flags that should not be inherited by
1901     * nested interpreter activation.
1902     */
1903    savedSubModes = (ExecutionSubModes)(
1904              self->interpBreak.ctl.subMode & LOCAL_SUBMODE);
1905    if (savedSubModes != kSubModeNormal) {
1906        dvmDisableSubMode(self, savedSubModes);
1907    }
1908#if defined(WITH_JIT)
1909    dvmJitCalleeSave(calleeSave);
1910#endif
1911
1912
1913#if defined(WITH_TRACKREF_CHECKS)
1914    self->interpSave.debugTrackedRefStart =
1915        dvmReferenceTableEntries(&self->internalLocalRefTable);
1916#endif
1917    self->debugIsMethodEntry = true;
1918#if defined(WITH_JIT)
1919    dvmJitCalleeSave(calleeSave);
1920    /* Initialize the state to kJitNot */
1921    self->jitState = kJitNot;
1922#endif
1923
1924    /*
1925     * Initialize working state.
1926     *
1927     * No need to initialize "retval".
1928     */
1929    self->interpSave.method = method;
1930    self->interpSave.curFrame = (u4*) self->interpSave.curFrame;
1931    self->interpSave.pc = method->insns;
1932
1933    assert(!dvmIsNativeMethod(method));
1934
1935    /*
1936     * Make sure the class is ready to go.  Shouldn't be possible to get
1937     * here otherwise.
1938     */
1939    if (method->clazz->status < CLASS_INITIALIZING ||
1940        method->clazz->status == CLASS_ERROR)
1941    {
1942        LOGE("ERROR: tried to execute code in unprepared class '%s' (%d)",
1943            method->clazz->descriptor, method->clazz->status);
1944        dvmDumpThread(self, false);
1945        dvmAbort();
1946    }
1947
1948    typedef void (*Interpreter)(Thread*);
1949    Interpreter stdInterp;
1950    if (gDvm.executionMode == kExecutionModeInterpFast)
1951        stdInterp = dvmMterpStd;
1952#if defined(WITH_JIT)
1953    else if (gDvm.executionMode == kExecutionModeJit)
1954        stdInterp = dvmMterpStd;
1955#endif
1956    else
1957        stdInterp = dvmInterpretPortable;
1958
1959    // Call the interpreter
1960    (*stdInterp)(self);
1961
1962    *pResult = self->interpSave.retval;
1963
1964    /* Restore interpreter state from previous activation */
1965    self->interpSave = interpSaveState;
1966#if defined(WITH_JIT)
1967    dvmJitCalleeRestore(calleeSave);
1968#endif
1969    if (savedSubModes != kSubModeNormal) {
1970        dvmEnableSubMode(self, savedSubModes);
1971    }
1972}
1973