Object.h revision a6e94ff55517438569d207e3ed552c8c127bcac9
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * Declaration of the fundamental Object type and refinements thereof, plus
19 * some functions for manipulating them.
20 */
21#ifndef DALVIK_OO_OBJECT_H_
22#define DALVIK_OO_OBJECT_H_
23
24#include <stddef.h>
25#include "Atomic.h"
26
27/* fwd decl */
28struct DataObject;
29struct InitiatingLoaderList;
30struct ClassObject;
31struct StringObject;
32struct ArrayObject;
33struct Method;
34struct ExceptionEntry;
35struct LineNumEntry;
36struct StaticField;
37struct InstField;
38struct Field;
39struct RegisterMap;
40
41/*
42 * Native function pointer type.
43 *
44 * "args[0]" holds the "this" pointer for virtual methods.
45 *
46 * The "Bridge" form is a super-set of the "Native" form; in many places
47 * they are used interchangeably.  Currently, all functions have all
48 * arguments passed in, but some functions only care about the first two.
49 * Passing extra arguments to a C function is (mostly) harmless.
50 */
51typedef void (*DalvikBridgeFunc)(const u4* args, JValue* pResult,
52    const Method* method, struct Thread* self);
53typedef void (*DalvikNativeFunc)(const u4* args, JValue* pResult);
54
55
56/* vm-internal access flags and related definitions */
57enum AccessFlags {
58    ACC_MIRANDA         = 0x8000,       // method (internal to VM)
59    JAVA_FLAGS_MASK     = 0xffff,       // bits set from Java sources (low 16)
60};
61
62/* Use the top 16 bits of the access flags field for
63 * other class flags.  Code should use the *CLASS_FLAG*()
64 * macros to set/get these flags.
65 */
66enum ClassFlags {
67    CLASS_ISFINALIZABLE        = (1<<31), // class/ancestor overrides finalize()
68    CLASS_ISARRAY              = (1<<30), // class is a "[*"
69    CLASS_ISOBJECTARRAY        = (1<<29), // class is a "[L*" or "[[*"
70    CLASS_ISCLASS              = (1<<28), // class is *the* class Class
71
72    CLASS_ISREFERENCE          = (1<<27), // class is a soft/weak/phantom ref
73                                          // only ISREFERENCE is set --> soft
74    CLASS_ISWEAKREFERENCE      = (1<<26), // class is a weak reference
75    CLASS_ISFINALIZERREFERENCE = (1<<25), // class is a finalizer reference
76    CLASS_ISPHANTOMREFERENCE   = (1<<24), // class is a phantom reference
77
78    CLASS_MULTIPLE_DEFS        = (1<<23), // DEX verifier: defs in multiple DEXs
79
80    /* unlike the others, these can be present in the optimized DEX file */
81    CLASS_ISOPTIMIZED          = (1<<17), // class may contain opt instrs
82    CLASS_ISPREVERIFIED        = (1<<16), // class has been pre-verified
83};
84
85/* bits we can reasonably expect to see set in a DEX access flags field */
86#define EXPECTED_FILE_FLAGS \
87    (ACC_CLASS_MASK | CLASS_ISPREVERIFIED | CLASS_ISOPTIMIZED)
88
89/*
90 * Get/set class flags.
91 */
92#define SET_CLASS_FLAG(clazz, flag) \
93    do { (clazz)->accessFlags |= (flag); } while (0)
94
95#define CLEAR_CLASS_FLAG(clazz, flag) \
96    do { (clazz)->accessFlags &= ~(flag); } while (0)
97
98#define IS_CLASS_FLAG_SET(clazz, flag) \
99    (((clazz)->accessFlags & (flag)) != 0)
100
101#define GET_CLASS_FLAG_GROUP(clazz, flags) \
102    ((u4)((clazz)->accessFlags & (flags)))
103
104/*
105 * Use the top 16 bits of the access flags field for other method flags.
106 * Code should use the *METHOD_FLAG*() macros to set/get these flags.
107 */
108enum MethodFlags {
109    METHOD_ISWRITABLE       = (1<<31),  // the method's code is writable
110};
111
112/*
113 * Get/set method flags.
114 */
115#define SET_METHOD_FLAG(method, flag) \
116    do { (method)->accessFlags |= (flag); } while (0)
117
118#define CLEAR_METHOD_FLAG(method, flag) \
119    do { (method)->accessFlags &= ~(flag); } while (0)
120
121#define IS_METHOD_FLAG_SET(method, flag) \
122    (((method)->accessFlags & (flag)) != 0)
123
124#define GET_METHOD_FLAG_GROUP(method, flags) \
125    ((u4)((method)->accessFlags & (flags)))
126
127/* current state of the class, increasing as we progress */
128enum ClassStatus {
129    CLASS_ERROR         = -1,
130
131    CLASS_NOTREADY      = 0,
132    CLASS_IDX           = 1,    /* loaded, DEX idx in super or ifaces */
133    CLASS_LOADED        = 2,    /* DEX idx values resolved */
134    CLASS_RESOLVED      = 3,    /* part of linking */
135    CLASS_VERIFYING     = 4,    /* in the process of being verified */
136    CLASS_VERIFIED      = 5,    /* logically part of linking; done pre-init */
137    CLASS_INITIALIZING  = 6,    /* class init in progress */
138    CLASS_INITIALIZED   = 7,    /* ready to go */
139};
140
141/*
142 * Definitions for packing refOffsets in ClassObject.
143 */
144/*
145 * A magic value for refOffsets. Ignore the bits and walk the super
146 * chain when this is the value.
147 * [This is an unlikely "natural" value, since it would be 30 non-ref instance
148 * fields followed by 2 ref instance fields.]
149 */
150#define CLASS_WALK_SUPER ((unsigned int)(3))
151#define CLASS_SMALLEST_OFFSET (sizeof(struct Object))
152#define CLASS_BITS_PER_WORD (sizeof(unsigned long int) * 8)
153#define CLASS_OFFSET_ALIGNMENT 4
154#define CLASS_HIGH_BIT ((unsigned int)1 << (CLASS_BITS_PER_WORD - 1))
155/*
156 * Given an offset, return the bit number which would encode that offset.
157 * Local use only.
158 */
159#define _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) \
160    (((unsigned int)(byteOffset) - CLASS_SMALLEST_OFFSET) / \
161     CLASS_OFFSET_ALIGNMENT)
162/*
163 * Is the given offset too large to be encoded?
164 */
165#define CLASS_CAN_ENCODE_OFFSET(byteOffset) \
166    (_CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) < CLASS_BITS_PER_WORD)
167/*
168 * Return a single bit, encoding the offset.
169 * Undefined if the offset is too large, as defined above.
170 */
171#define CLASS_BIT_FROM_OFFSET(byteOffset) \
172    (CLASS_HIGH_BIT >> _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset))
173/*
174 * Return an offset, given a bit number as returned from CLZ.
175 */
176#define CLASS_OFFSET_FROM_CLZ(rshift) \
177    (((int)(rshift) * CLASS_OFFSET_ALIGNMENT) + CLASS_SMALLEST_OFFSET)
178
179
180/*
181 * Used for iftable in ClassObject.
182 */
183struct InterfaceEntry {
184    /* pointer to interface class */
185    ClassObject*    clazz;
186
187    /*
188     * Index into array of vtable offsets.  This points into the ifviPool,
189     * which holds the vtables for all interfaces declared by this class.
190     */
191    int*            methodIndexArray;
192};
193
194
195
196/*
197 * There are three types of objects:
198 *  Class objects - an instance of java.lang.Class
199 *  Array objects - an object created with a "new array" instruction
200 *  Data objects - an object that is neither of the above
201 *
202 * We also define String objects.  At present they're equivalent to
203 * DataObject, but that may change.  (Either way, they make some of the
204 * code more obvious.)
205 *
206 * All objects have an Object header followed by type-specific data.
207 */
208struct Object {
209    /* ptr to class object */
210    ClassObject*    clazz;
211
212    /*
213     * A word containing either a "thin" lock or a "fat" monitor.  See
214     * the comments in Sync.c for a description of its layout.
215     */
216    u4              lock;
217};
218
219/*
220 * Properly initialize an Object.
221 * void DVM_OBJECT_INIT(Object *obj, ClassObject *clazz_)
222 */
223#define DVM_OBJECT_INIT(obj, clazz_) \
224    dvmSetFieldObject(obj, OFFSETOF_MEMBER(Object, clazz), clazz_)
225
226/*
227 * Data objects have an Object header followed by their instance data.
228 */
229struct DataObject : Object {
230    /* variable #of u4 slots; u8 uses 2 slots */
231    u4              instanceData[1];
232};
233
234/*
235 * Strings are used frequently enough that we may want to give them their
236 * own unique type.
237 *
238 * Using a dedicated type object to access the instance data provides a
239 * performance advantage but makes the java/lang/String.java implementation
240 * fragile.
241 *
242 * Currently this is just equal to DataObject, and we pull the fields out
243 * like we do for any other object.
244 */
245struct StringObject : Object {
246    /* variable #of u4 slots; u8 uses 2 slots */
247    u4              instanceData[1];
248
249    /** Returns this string's length in characters. */
250    int length() const;
251
252    /**
253     * Returns this string's length in bytes when encoded as modified UTF-8.
254     * Does not include a terminating NUL byte.
255     */
256    int utfLength() const;
257
258    /** Returns this string's char[] as an ArrayObject. */
259    ArrayObject* array() const;
260
261    /** Returns this string's char[] as a u2*. */
262    const u2* chars() const;
263};
264
265
266/*
267 * Array objects have these additional fields.
268 *
269 * We don't currently store the size of each element.  Usually it's implied
270 * by the instruction.  If necessary, the width can be derived from
271 * the first char of obj->clazz->descriptor.
272 */
273struct ArrayObject : Object {
274    /* number of elements; immutable after init */
275    u4              length;
276
277    /*
278     * Array contents; actual size is (length * sizeof(type)).  This is
279     * declared as u8 so that the compiler inserts any necessary padding
280     * (e.g. for EABI); the actual allocation may be smaller than 8 bytes.
281     */
282    u8              contents[1];
283};
284
285/*
286 * For classes created early and thus probably in the zygote, the
287 * InitiatingLoaderList is kept in gDvm. Later classes use the structure in
288 * Object Class. This helps keep zygote pages shared.
289 */
290struct InitiatingLoaderList {
291    /* a list of initiating loader Objects; grown and initialized on demand */
292    Object**  initiatingLoaders;
293    /* count of loaders in the above list */
294    int       initiatingLoaderCount;
295};
296
297/*
298 * Generic field header.  We pass this around when we want a generic Field
299 * pointer (e.g. for reflection stuff).  Testing the accessFlags for
300 * ACC_STATIC allows a proper up-cast.
301 */
302struct Field {
303    ClassObject*    clazz;          /* class in which the field is declared */
304    const char*     name;
305    const char*     signature;      /* e.g. "I", "[C", "Landroid/os/Debug;" */
306    u4              accessFlags;
307};
308
309/*
310 * Static field.
311 */
312struct StaticField : Field {
313    JValue          value;          /* initially set from DEX for primitives */
314};
315
316/*
317 * Instance field.
318 */
319struct InstField : Field {
320    /*
321     * This field indicates the byte offset from the beginning of the
322     * (Object *) to the actual instance data; e.g., byteOffset==0 is
323     * the same as the object pointer (bug!), and byteOffset==4 is 4
324     * bytes farther.
325     */
326    int             byteOffset;
327};
328
329/*
330 * This defines the amount of space we leave for field slots in the
331 * java.lang.Class definition.  If we alter the class to have more than
332 * this many fields, the VM will abort at startup.
333 */
334#define CLASS_FIELD_SLOTS   4
335
336/*
337 * Class objects have many additional fields.  This is used for both
338 * classes and interfaces, including synthesized classes (arrays and
339 * primitive types).
340 *
341 * Class objects are unusual in that they have some fields allocated with
342 * the system malloc (or LinearAlloc), rather than on the GC heap.  This is
343 * handy during initialization, but does require special handling when
344 * discarding java.lang.Class objects.
345 *
346 * The separation of methods (direct vs. virtual) and fields (class vs.
347 * instance) used in Dalvik works out pretty well.  The only time it's
348 * annoying is when enumerating or searching for things with reflection.
349 */
350struct ClassObject : Object {
351    /* leave space for instance data; we could access fields directly if we
352       freeze the definition of java/lang/Class */
353    u4              instanceData[CLASS_FIELD_SLOTS];
354
355    /* UTF-8 descriptor for the class; from constant pool, or on heap
356       if generated ("[C") */
357    const char*     descriptor;
358    char*           descriptorAlloc;
359
360    /* access flags; low 16 bits are defined by VM spec */
361    u4              accessFlags;
362
363    /* VM-unique class serial number, nonzero, set very early */
364    u4              serialNumber;
365
366    /* DexFile from which we came; needed to resolve constant pool entries */
367    /* (will be NULL for VM-generated, e.g. arrays and primitive classes) */
368    DvmDex*         pDvmDex;
369
370    /* state of class initialization */
371    ClassStatus     status;
372
373    /* if class verify fails, we must return same error on subsequent tries */
374    ClassObject*    verifyErrorClass;
375
376    /* threadId, used to check for recursive <clinit> invocation */
377    u4              initThreadId;
378
379    /*
380     * Total object size; used when allocating storage on gc heap.  (For
381     * interfaces and abstract classes this will be zero.)
382     */
383    size_t          objectSize;
384
385    /* arrays only: class object for base element, for instanceof/checkcast
386       (for String[][][], this will be String) */
387    ClassObject*    elementClass;
388
389    /* arrays only: number of dimensions, e.g. int[][] is 2 */
390    int             arrayDim;
391
392    /* primitive type index, or PRIM_NOT (-1); set for generated prim classes */
393    PrimitiveType   primitiveType;
394
395    /* superclass, or NULL if this is java.lang.Object */
396    ClassObject*    super;
397
398    /* defining class loader, or NULL for the "bootstrap" system loader */
399    Object*         classLoader;
400
401    /* initiating class loader list */
402    /* NOTE: for classes with low serialNumber, these are unused, and the
403       values are kept in a table in gDvm. */
404    InitiatingLoaderList initiatingLoaderList;
405
406    /* array of interfaces this class implements directly */
407    int             interfaceCount;
408    ClassObject**   interfaces;
409
410    /* static, private, and <init> methods */
411    int             directMethodCount;
412    Method*         directMethods;
413
414    /* virtual methods defined in this class; invoked through vtable */
415    int             virtualMethodCount;
416    Method*         virtualMethods;
417
418    /*
419     * Virtual method table (vtable), for use by "invoke-virtual".  The
420     * vtable from the superclass is copied in, and virtual methods from
421     * our class either replace those from the super or are appended.
422     */
423    int             vtableCount;
424    Method**        vtable;
425
426    /*
427     * Interface table (iftable), one entry per interface supported by
428     * this class.  That means one entry for each interface we support
429     * directly, indirectly via superclass, or indirectly via
430     * superinterface.  This will be null if neither we nor our superclass
431     * implement any interfaces.
432     *
433     * Why we need this: given "class Foo implements Face", declare
434     * "Face faceObj = new Foo()".  Invoke faceObj.blah(), where "blah" is
435     * part of the Face interface.  We can't easily use a single vtable.
436     *
437     * For every interface a concrete class implements, we create a list of
438     * virtualMethod indices for the methods in the interface.
439     */
440    int             iftableCount;
441    InterfaceEntry* iftable;
442
443    /*
444     * The interface vtable indices for iftable get stored here.  By placing
445     * them all in a single pool for each class that implements interfaces,
446     * we decrease the number of allocations.
447     */
448    int             ifviPoolCount;
449    int*            ifviPool;
450
451    /* instance fields
452     *
453     * These describe the layout of the contents of a DataObject-compatible
454     * Object.  Note that only the fields directly defined by this class
455     * are listed in ifields;  fields defined by a superclass are listed
456     * in the superclass's ClassObject.ifields.
457     *
458     * All instance fields that refer to objects are guaranteed to be
459     * at the beginning of the field list.  ifieldRefCount specifies
460     * the number of reference fields.
461     */
462    int             ifieldCount;
463    int             ifieldRefCount; // number of fields that are object refs
464    InstField*      ifields;
465
466    /* bitmap of offsets of ifields */
467    u4 refOffsets;
468
469    /* source file name, if known */
470    const char*     sourceFile;
471
472    /* static fields */
473    int             sfieldCount;
474    StaticField     sfields[]; /* MUST be last item */
475};
476
477/*
478 * A method.  We create one of these for every method in every class
479 * we load, so try to keep the size to a minimum.
480 *
481 * Much of this comes from and could be accessed in the data held in shared
482 * memory.  We hold it all together here for speed.  Everything but the
483 * pointers could be held in a shared table generated by the optimizer;
484 * if we're willing to convert them to offsets and take the performance
485 * hit (e.g. "meth->insns" becomes "baseAddr + meth->insnsOffset") we
486 * could move everything but "nativeFunc".
487 */
488struct Method {
489    /* the class we are a part of */
490    ClassObject*    clazz;
491
492    /* access flags; low 16 bits are defined by spec (could be u2?) */
493    u4              accessFlags;
494
495    /*
496     * For concrete virtual methods, this is the offset of the method
497     * in "vtable".
498     *
499     * For abstract methods in an interface class, this is the offset
500     * of the method in "iftable[n]->methodIndexArray".
501     */
502    u2             methodIndex;
503
504    /*
505     * Method bounds; not needed for an abstract method.
506     *
507     * For a native method, we compute the size of the argument list, and
508     * set "insSize" and "registerSize" equal to it.
509     */
510    u2              registersSize;  /* ins + locals */
511    u2              outsSize;
512    u2              insSize;
513
514    /* method name, e.g. "<init>" or "eatLunch" */
515    const char*     name;
516
517    /*
518     * Method prototype descriptor string (return and argument types).
519     *
520     * TODO: This currently must specify the DexFile as well as the proto_ids
521     * index, because generated Proxy classes don't have a DexFile.  We can
522     * remove the DexFile* and reduce the size of this struct if we generate
523     * a DEX for proxies.
524     */
525    DexProto        prototype;
526
527    /* short-form method descriptor string */
528    const char*     shorty;
529
530    /*
531     * The remaining items are not used for abstract or native methods.
532     * (JNI is currently hijacking "insns" as a function pointer, set
533     * after the first call.  For internal-native this stays null.)
534     */
535
536    /* the actual code */
537    const u2*       insns;          /* instructions, in memory-mapped .dex */
538
539    /* JNI: cached argument and return-type hints */
540    int             jniArgInfo;
541
542    /*
543     * JNI: native method ptr; could be actual function or a JNI bridge.  We
544     * don't currently discriminate between DalvikBridgeFunc and
545     * DalvikNativeFunc; the former takes an argument superset (i.e. two
546     * extra args) which will be ignored.  If necessary we can use
547     * insns==NULL to detect JNI bridge vs. internal native.
548     */
549    DalvikBridgeFunc nativeFunc;
550
551    /*
552     * JNI: true if this static non-synchronized native method (that has no
553     * reference arguments) needs a JNIEnv* and jclass/jobject. Libcore
554     * uses this.
555     */
556    bool fastJni;
557
558    /*
559     * JNI: true if this method has no reference arguments. This lets the JNI
560     * bridge avoid scanning the shorty for direct pointers that need to be
561     * converted to local references.
562     *
563     * TODO: replace this with a list of indexes of the reference arguments.
564     */
565    bool noRef;
566
567    /*
568     * JNI: true if we should log entry and exit. This is the only way
569     * developers can log the local references that are passed into their code.
570     * Used for debugging JNI problems in third-party code.
571     */
572    bool shouldTrace;
573
574    /*
575     * Register map data, if available.  This will point into the DEX file
576     * if the data was computed during pre-verification, or into the
577     * linear alloc area if not.
578     */
579    const RegisterMap* registerMap;
580
581    /* set if method was called during method profiling */
582    bool            inProfile;
583};
584
585
586/*
587 * Find a method within a class.  The superclass is not searched.
588 */
589Method* dvmFindDirectMethodByDescriptor(const ClassObject* clazz,
590    const char* methodName, const char* signature);
591Method* dvmFindVirtualMethodByDescriptor(const ClassObject* clazz,
592    const char* methodName, const char* signature);
593Method* dvmFindVirtualMethodByName(const ClassObject* clazz,
594    const char* methodName);
595Method* dvmFindDirectMethod(const ClassObject* clazz, const char* methodName,
596    const DexProto* proto);
597Method* dvmFindVirtualMethod(const ClassObject* clazz, const char* methodName,
598    const DexProto* proto);
599
600
601/*
602 * Find a method within a class hierarchy.
603 */
604Method* dvmFindDirectMethodHierByDescriptor(const ClassObject* clazz,
605    const char* methodName, const char* descriptor);
606Method* dvmFindVirtualMethodHierByDescriptor(const ClassObject* clazz,
607    const char* methodName, const char* signature);
608Method* dvmFindDirectMethodHier(const ClassObject* clazz,
609    const char* methodName, const DexProto* proto);
610Method* dvmFindVirtualMethodHier(const ClassObject* clazz,
611    const char* methodName, const DexProto* proto);
612Method* dvmFindMethodHier(const ClassObject* clazz, const char* methodName,
613    const DexProto* proto);
614
615/*
616 * Find a method in an interface hierarchy.
617 */
618Method* dvmFindInterfaceMethodHierByDescriptor(const ClassObject* iface,
619    const char* methodName, const char* descriptor);
620Method* dvmFindInterfaceMethodHier(const ClassObject* iface,
621    const char* methodName, const DexProto* proto);
622
623/*
624 * Find the implementation of "meth" in "clazz".
625 *
626 * Returns NULL and throws an exception if not found.
627 */
628const Method* dvmGetVirtualizedMethod(const ClassObject* clazz,
629    const Method* meth);
630
631/*
632 * Get the source file associated with a method.
633 */
634extern "C" const char* dvmGetMethodSourceFile(const Method* meth);
635
636/*
637 * Find a field within a class.  The superclass is not searched.
638 */
639InstField* dvmFindInstanceField(const ClassObject* clazz,
640    const char* fieldName, const char* signature);
641StaticField* dvmFindStaticField(const ClassObject* clazz,
642    const char* fieldName, const char* signature);
643
644/*
645 * Find a field in a class/interface hierarchy.
646 */
647InstField* dvmFindInstanceFieldHier(const ClassObject* clazz,
648    const char* fieldName, const char* signature);
649StaticField* dvmFindStaticFieldHier(const ClassObject* clazz,
650    const char* fieldName, const char* signature);
651Field* dvmFindFieldHier(const ClassObject* clazz, const char* fieldName,
652    const char* signature);
653
654/*
655 * Find a field and return the byte offset from the object pointer.  Only
656 * searches the specified class, not the superclass.
657 *
658 * Returns -1 on failure.
659 */
660INLINE int dvmFindFieldOffset(const ClassObject* clazz,
661    const char* fieldName, const char* signature)
662{
663    InstField* pField = dvmFindInstanceField(clazz, fieldName, signature);
664    if (pField == NULL)
665        return -1;
666    else
667        return pField->byteOffset;
668}
669
670/*
671 * Helpers.
672 */
673INLINE bool dvmIsPublicMethod(const Method* method) {
674    return (method->accessFlags & ACC_PUBLIC) != 0;
675}
676INLINE bool dvmIsPrivateMethod(const Method* method) {
677    return (method->accessFlags & ACC_PRIVATE) != 0;
678}
679INLINE bool dvmIsStaticMethod(const Method* method) {
680    return (method->accessFlags & ACC_STATIC) != 0;
681}
682INLINE bool dvmIsSynchronizedMethod(const Method* method) {
683    return (method->accessFlags & ACC_SYNCHRONIZED) != 0;
684}
685INLINE bool dvmIsDeclaredSynchronizedMethod(const Method* method) {
686    return (method->accessFlags & ACC_DECLARED_SYNCHRONIZED) != 0;
687}
688INLINE bool dvmIsFinalMethod(const Method* method) {
689    return (method->accessFlags & ACC_FINAL) != 0;
690}
691INLINE bool dvmIsNativeMethod(const Method* method) {
692    return (method->accessFlags & ACC_NATIVE) != 0;
693}
694INLINE bool dvmIsAbstractMethod(const Method* method) {
695    return (method->accessFlags & ACC_ABSTRACT) != 0;
696}
697INLINE bool dvmIsSyntheticMethod(const Method* method) {
698    return (method->accessFlags & ACC_SYNTHETIC) != 0;
699}
700INLINE bool dvmIsMirandaMethod(const Method* method) {
701    return (method->accessFlags & ACC_MIRANDA) != 0;
702}
703INLINE bool dvmIsConstructorMethod(const Method* method) {
704    return *method->name == '<';
705}
706/* Dalvik puts private, static, and constructors into non-virtual table */
707INLINE bool dvmIsDirectMethod(const Method* method) {
708    return dvmIsPrivateMethod(method) ||
709           dvmIsStaticMethod(method) ||
710           dvmIsConstructorMethod(method);
711}
712/* Get whether the given method has associated bytecode. This is the
713 * case for methods which are neither native nor abstract. */
714INLINE bool dvmIsBytecodeMethod(const Method* method) {
715    return (method->accessFlags & (ACC_NATIVE | ACC_ABSTRACT)) == 0;
716}
717
718INLINE bool dvmIsProtectedField(const Field* field) {
719    return (field->accessFlags & ACC_PROTECTED) != 0;
720}
721INLINE bool dvmIsStaticField(const Field* field) {
722    return (field->accessFlags & ACC_STATIC) != 0;
723}
724INLINE bool dvmIsFinalField(const Field* field) {
725    return (field->accessFlags & ACC_FINAL) != 0;
726}
727INLINE bool dvmIsVolatileField(const Field* field) {
728    return (field->accessFlags & ACC_VOLATILE) != 0;
729}
730
731INLINE bool dvmIsInterfaceClass(const ClassObject* clazz) {
732    return (clazz->accessFlags & ACC_INTERFACE) != 0;
733}
734INLINE bool dvmIsPublicClass(const ClassObject* clazz) {
735    return (clazz->accessFlags & ACC_PUBLIC) != 0;
736}
737INLINE bool dvmIsFinalClass(const ClassObject* clazz) {
738    return (clazz->accessFlags & ACC_FINAL) != 0;
739}
740INLINE bool dvmIsAbstractClass(const ClassObject* clazz) {
741    return (clazz->accessFlags & ACC_ABSTRACT) != 0;
742}
743INLINE bool dvmIsAnnotationClass(const ClassObject* clazz) {
744    return (clazz->accessFlags & ACC_ANNOTATION) != 0;
745}
746INLINE bool dvmIsPrimitiveClass(const ClassObject* clazz) {
747    return clazz->primitiveType != PRIM_NOT;
748}
749
750/* linked, here meaning prepared and resolved */
751INLINE bool dvmIsClassLinked(const ClassObject* clazz) {
752    return clazz->status >= CLASS_RESOLVED;
753}
754/* has class been verified? */
755INLINE bool dvmIsClassVerified(const ClassObject* clazz) {
756    return clazz->status >= CLASS_VERIFIED;
757}
758
759/*
760 * Return whether the given object is an instance of Class.
761 */
762INLINE bool dvmIsClassObject(const Object* obj) {
763    assert(obj != NULL);
764    assert(obj->clazz != NULL);
765    return IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISCLASS);
766}
767
768/*
769 * Return whether the given object is the class Class (that is, the
770 * unique class which is an instance of itself).
771 */
772INLINE bool dvmIsTheClassClass(const ClassObject* clazz) {
773    assert(clazz != NULL);
774    return IS_CLASS_FLAG_SET(clazz, CLASS_ISCLASS);
775}
776
777/*
778 * Get the associated code struct for a method. This returns NULL
779 * for non-bytecode methods.
780 */
781INLINE const DexCode* dvmGetMethodCode(const Method* meth) {
782    if (dvmIsBytecodeMethod(meth)) {
783        /*
784         * The insns field for a bytecode method actually points at
785         * &(DexCode.insns), so we can subtract back to get at the
786         * DexCode in front.
787         */
788        return (const DexCode*)
789            (((const u1*) meth->insns) - offsetof(DexCode, insns));
790    } else {
791        return NULL;
792    }
793}
794
795/*
796 * Get the size of the insns associated with a method. This returns 0
797 * for non-bytecode methods.
798 */
799INLINE u4 dvmGetMethodInsnsSize(const Method* meth) {
800    const DexCode* pCode = dvmGetMethodCode(meth);
801    return (pCode == NULL) ? 0 : pCode->insnsSize;
802}
803
804/* debugging */
805void dvmDumpObject(const Object* obj);
806
807#endif  // DALVIK_OO_OBJECT_H_
808