CGExprScalar.cpp revision 1df5109f475bcbc528eb1fb9fdb179dcadbb33a6
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Module.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class VISIBILITY_HIDDEN ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51  bool IgnoreResultAssign;
52  llvm::LLVMContext &VMContext;
53public:
54
55  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57      VMContext(cgf.getLLVMContext()) {
58  }
59
60  //===--------------------------------------------------------------------===//
61  //                               Utilities
62  //===--------------------------------------------------------------------===//
63
64  bool TestAndClearIgnoreResultAssign() {
65    bool I = IgnoreResultAssign;
66    IgnoreResultAssign = false;
67    return I;
68  }
69
70  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72
73  Value *EmitLoadOfLValue(LValue LV, QualType T) {
74    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
75  }
76
77  /// EmitLoadOfLValue - Given an expression with complex type that represents a
78  /// value l-value, this method emits the address of the l-value, then loads
79  /// and returns the result.
80  Value *EmitLoadOfLValue(const Expr *E) {
81    return EmitLoadOfLValue(EmitLValue(E), E->getType());
82  }
83
84  /// EmitConversionToBool - Convert the specified expression value to a
85  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
86  Value *EmitConversionToBool(Value *Src, QualType DstTy);
87
88  /// EmitScalarConversion - Emit a conversion from the specified type to the
89  /// specified destination type, both of which are LLVM scalar types.
90  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
91
92  /// EmitComplexToScalarConversion - Emit a conversion from the specified
93  /// complex type to the specified destination type, where the destination
94  /// type is an LLVM scalar type.
95  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
96                                       QualType SrcTy, QualType DstTy);
97
98  //===--------------------------------------------------------------------===//
99  //                            Visitor Methods
100  //===--------------------------------------------------------------------===//
101
102  Value *VisitStmt(Stmt *S) {
103    S->dump(CGF.getContext().getSourceManager());
104    assert(0 && "Stmt can't have complex result type!");
105    return 0;
106  }
107  Value *VisitExpr(Expr *S);
108  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
109
110  // Leaves.
111  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
112    return llvm::ConstantInt::get(VMContext, E->getValue());
113  }
114  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
115    return llvm::ConstantFP::get(VMContext, E->getValue());
116  }
117  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
118    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
119  }
120  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
121    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
122  }
123  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
124    return llvm::Constant::getNullValue(ConvertType(E->getType()));
125  }
126  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
127    return llvm::Constant::getNullValue(ConvertType(E->getType()));
128  }
129  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
130    return llvm::ConstantInt::get(ConvertType(E->getType()),
131                                  CGF.getContext().typesAreCompatible(
132                                    E->getArgType1(), E->getArgType2()));
133  }
134  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
135  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
136    llvm::Value *V =
137      llvm::ConstantInt::get(llvm::Type::Int32Ty,
138                             CGF.GetIDForAddrOfLabel(E->getLabel()));
139
140    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
141  }
142
143  // l-values.
144  Value *VisitDeclRefExpr(DeclRefExpr *E) {
145    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
146      return llvm::ConstantInt::get(VMContext, EC->getInitVal());
147    return EmitLoadOfLValue(E);
148  }
149  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
150    return CGF.EmitObjCSelectorExpr(E);
151  }
152  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
153    return CGF.EmitObjCProtocolExpr(E);
154  }
155  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
156    return EmitLoadOfLValue(E);
157  }
158  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
159    return EmitLoadOfLValue(E);
160  }
161  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
162    return EmitLoadOfLValue(E);
163  }
164  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
165    return CGF.EmitObjCMessageExpr(E).getScalarVal();
166  }
167
168  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
169  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
170  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
171  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
172  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
173    return EmitLoadOfLValue(E);
174  }
175  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
176  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
177     return EmitLValue(E).getAddress();
178  }
179
180  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
181
182  Value *VisitInitListExpr(InitListExpr *E) {
183    bool Ignore = TestAndClearIgnoreResultAssign();
184    (void)Ignore;
185    assert (Ignore == false && "init list ignored");
186    unsigned NumInitElements = E->getNumInits();
187
188    if (E->hadArrayRangeDesignator()) {
189      CGF.ErrorUnsupported(E, "GNU array range designator extension");
190    }
191
192    const llvm::VectorType *VType =
193      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
194
195    // We have a scalar in braces. Just use the first element.
196    if (!VType)
197      return Visit(E->getInit(0));
198
199    unsigned NumVectorElements = VType->getNumElements();
200    const llvm::Type *ElementType = VType->getElementType();
201
202    // Emit individual vector element stores.
203    llvm::Value *V = llvm::UndefValue::get(VType);
204
205    // Emit initializers
206    unsigned i;
207    for (i = 0; i < NumInitElements; ++i) {
208      Value *NewV = Visit(E->getInit(i));
209      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
210      V = Builder.CreateInsertElement(V, NewV, Idx);
211    }
212
213    // Emit remaining default initializers
214    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
215      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
216      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
217      V = Builder.CreateInsertElement(V, NewV, Idx);
218    }
219
220    return V;
221  }
222
223  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
224    return llvm::Constant::getNullValue(ConvertType(E->getType()));
225  }
226  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
227  Value *VisitCastExpr(const CastExpr *E) {
228    // Make sure to evaluate VLA bounds now so that we have them for later.
229    if (E->getType()->isVariablyModifiedType())
230      CGF.EmitVLASize(E->getType());
231
232    return EmitCastExpr(E->getSubExpr(), E->getType());
233  }
234  Value *EmitCastExpr(const Expr *E, QualType T);
235
236  Value *VisitCallExpr(const CallExpr *E) {
237    if (E->getCallReturnType()->isReferenceType())
238      return EmitLoadOfLValue(E);
239
240    return CGF.EmitCallExpr(E).getScalarVal();
241  }
242
243  Value *VisitStmtExpr(const StmtExpr *E);
244
245  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
246
247  // Unary Operators.
248  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
249  Value *VisitUnaryPostDec(const UnaryOperator *E) {
250    return VisitPrePostIncDec(E, false, false);
251  }
252  Value *VisitUnaryPostInc(const UnaryOperator *E) {
253    return VisitPrePostIncDec(E, true, false);
254  }
255  Value *VisitUnaryPreDec(const UnaryOperator *E) {
256    return VisitPrePostIncDec(E, false, true);
257  }
258  Value *VisitUnaryPreInc(const UnaryOperator *E) {
259    return VisitPrePostIncDec(E, true, true);
260  }
261  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
262    return EmitLValue(E->getSubExpr()).getAddress();
263  }
264  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
265  Value *VisitUnaryPlus(const UnaryOperator *E) {
266    // This differs from gcc, though, most likely due to a bug in gcc.
267    TestAndClearIgnoreResultAssign();
268    return Visit(E->getSubExpr());
269  }
270  Value *VisitUnaryMinus    (const UnaryOperator *E);
271  Value *VisitUnaryNot      (const UnaryOperator *E);
272  Value *VisitUnaryLNot     (const UnaryOperator *E);
273  Value *VisitUnaryReal     (const UnaryOperator *E);
274  Value *VisitUnaryImag     (const UnaryOperator *E);
275  Value *VisitUnaryExtension(const UnaryOperator *E) {
276    return Visit(E->getSubExpr());
277  }
278  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
279
280  // C++
281  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
282    return Visit(DAE->getExpr());
283  }
284  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
285    return CGF.LoadCXXThis();
286  }
287
288  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
289    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
290  }
291  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
292    return CGF.EmitCXXNewExpr(E);
293  }
294
295  // Binary Operators.
296  Value *EmitMul(const BinOpInfo &Ops) {
297    if (CGF.getContext().getLangOptions().OverflowChecking
298        && Ops.Ty->isSignedIntegerType())
299      return EmitOverflowCheckedBinOp(Ops);
300    if (Ops.LHS->getType()->isFPOrFPVector())
301      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
302    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
303  }
304  /// Create a binary op that checks for overflow.
305  /// Currently only supports +, - and *.
306  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
307  Value *EmitDiv(const BinOpInfo &Ops);
308  Value *EmitRem(const BinOpInfo &Ops);
309  Value *EmitAdd(const BinOpInfo &Ops);
310  Value *EmitSub(const BinOpInfo &Ops);
311  Value *EmitShl(const BinOpInfo &Ops);
312  Value *EmitShr(const BinOpInfo &Ops);
313  Value *EmitAnd(const BinOpInfo &Ops) {
314    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
315  }
316  Value *EmitXor(const BinOpInfo &Ops) {
317    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
318  }
319  Value *EmitOr (const BinOpInfo &Ops) {
320    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
321  }
322
323  BinOpInfo EmitBinOps(const BinaryOperator *E);
324  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
325                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
326
327  // Binary operators and binary compound assignment operators.
328#define HANDLEBINOP(OP) \
329  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
330    return Emit ## OP(EmitBinOps(E));                                      \
331  }                                                                        \
332  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
333    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
334  }
335  HANDLEBINOP(Mul);
336  HANDLEBINOP(Div);
337  HANDLEBINOP(Rem);
338  HANDLEBINOP(Add);
339  HANDLEBINOP(Sub);
340  HANDLEBINOP(Shl);
341  HANDLEBINOP(Shr);
342  HANDLEBINOP(And);
343  HANDLEBINOP(Xor);
344  HANDLEBINOP(Or);
345#undef HANDLEBINOP
346
347  // Comparisons.
348  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
349                     unsigned SICmpOpc, unsigned FCmpOpc);
350#define VISITCOMP(CODE, UI, SI, FP) \
351    Value *VisitBin##CODE(const BinaryOperator *E) { \
352      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
353                         llvm::FCmpInst::FP); }
354  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
355  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
356  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
357  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
358  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
359  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
360#undef VISITCOMP
361
362  Value *VisitBinAssign     (const BinaryOperator *E);
363
364  Value *VisitBinLAnd       (const BinaryOperator *E);
365  Value *VisitBinLOr        (const BinaryOperator *E);
366  Value *VisitBinComma      (const BinaryOperator *E);
367
368  // Other Operators.
369  Value *VisitBlockExpr(const BlockExpr *BE);
370  Value *VisitConditionalOperator(const ConditionalOperator *CO);
371  Value *VisitChooseExpr(ChooseExpr *CE);
372  Value *VisitVAArgExpr(VAArgExpr *VE);
373  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
374    return CGF.EmitObjCStringLiteral(E);
375  }
376};
377}  // end anonymous namespace.
378
379//===----------------------------------------------------------------------===//
380//                                Utilities
381//===----------------------------------------------------------------------===//
382
383/// EmitConversionToBool - Convert the specified expression value to a
384/// boolean (i1) truth value.  This is equivalent to "Val != 0".
385Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
386  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
387
388  if (SrcType->isRealFloatingType()) {
389    // Compare against 0.0 for fp scalars.
390    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
391    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
392  }
393
394  if (SrcType->isMemberPointerType()) {
395    // FIXME: This is ABI specific.
396
397    // Compare against -1.
398    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
399    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
400  }
401
402  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
403         "Unknown scalar type to convert");
404
405  // Because of the type rules of C, we often end up computing a logical value,
406  // then zero extending it to int, then wanting it as a logical value again.
407  // Optimize this common case.
408  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
409    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
410      Value *Result = ZI->getOperand(0);
411      // If there aren't any more uses, zap the instruction to save space.
412      // Note that there can be more uses, for example if this
413      // is the result of an assignment.
414      if (ZI->use_empty())
415        ZI->eraseFromParent();
416      return Result;
417    }
418  }
419
420  // Compare against an integer or pointer null.
421  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
422  return Builder.CreateICmpNE(Src, Zero, "tobool");
423}
424
425/// EmitScalarConversion - Emit a conversion from the specified type to the
426/// specified destination type, both of which are LLVM scalar types.
427Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
428                                               QualType DstType) {
429  SrcType = CGF.getContext().getCanonicalType(SrcType);
430  DstType = CGF.getContext().getCanonicalType(DstType);
431  if (SrcType == DstType) return Src;
432
433  if (DstType->isVoidType()) return 0;
434
435  // Handle conversions to bool first, they are special: comparisons against 0.
436  if (DstType->isBooleanType())
437    return EmitConversionToBool(Src, SrcType);
438
439  const llvm::Type *DstTy = ConvertType(DstType);
440
441  // Ignore conversions like int -> uint.
442  if (Src->getType() == DstTy)
443    return Src;
444
445  // Handle pointer conversions next: pointers can only be converted
446  // to/from other pointers and integers. Check for pointer types in
447  // terms of LLVM, as some native types (like Obj-C id) may map to a
448  // pointer type.
449  if (isa<llvm::PointerType>(DstTy)) {
450    // The source value may be an integer, or a pointer.
451    if (isa<llvm::PointerType>(Src->getType())) {
452      // Some heavy lifting for derived to base conversion.
453      if (const CXXRecordDecl *ClassDecl =
454            SrcType->getCXXRecordDeclForPointerType())
455        if (const CXXRecordDecl *BaseClassDecl =
456              DstType->getCXXRecordDeclForPointerType())
457          Src = CGF.AddressCXXOfBaseClass(Src, ClassDecl, BaseClassDecl);
458      return Builder.CreateBitCast(Src, DstTy, "conv");
459    }
460    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
461    // First, convert to the correct width so that we control the kind of
462    // extension.
463    const llvm::Type *MiddleTy = llvm::IntegerType::get(CGF.LLVMPointerWidth);
464    bool InputSigned = SrcType->isSignedIntegerType();
465    llvm::Value* IntResult =
466        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
467    // Then, cast to pointer.
468    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
469  }
470
471  if (isa<llvm::PointerType>(Src->getType())) {
472    // Must be an ptr to int cast.
473    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
474    return Builder.CreatePtrToInt(Src, DstTy, "conv");
475  }
476
477  // A scalar can be splatted to an extended vector of the same element type
478  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
479    // Cast the scalar to element type
480    QualType EltTy = DstType->getAsExtVectorType()->getElementType();
481    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
482
483    // Insert the element in element zero of an undef vector
484    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
485    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
486    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
487
488    // Splat the element across to all elements
489    llvm::SmallVector<llvm::Constant*, 16> Args;
490    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
491    for (unsigned i = 0; i < NumElements; i++)
492      Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
493
494    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
495    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
496    return Yay;
497  }
498
499  // Allow bitcast from vector to integer/fp of the same size.
500  if (isa<llvm::VectorType>(Src->getType()) ||
501      isa<llvm::VectorType>(DstTy))
502    return Builder.CreateBitCast(Src, DstTy, "conv");
503
504  // Finally, we have the arithmetic types: real int/float.
505  if (isa<llvm::IntegerType>(Src->getType())) {
506    bool InputSigned = SrcType->isSignedIntegerType();
507    if (isa<llvm::IntegerType>(DstTy))
508      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
509    else if (InputSigned)
510      return Builder.CreateSIToFP(Src, DstTy, "conv");
511    else
512      return Builder.CreateUIToFP(Src, DstTy, "conv");
513  }
514
515  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
516  if (isa<llvm::IntegerType>(DstTy)) {
517    if (DstType->isSignedIntegerType())
518      return Builder.CreateFPToSI(Src, DstTy, "conv");
519    else
520      return Builder.CreateFPToUI(Src, DstTy, "conv");
521  }
522
523  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
524  if (DstTy->getTypeID() < Src->getType()->getTypeID())
525    return Builder.CreateFPTrunc(Src, DstTy, "conv");
526  else
527    return Builder.CreateFPExt(Src, DstTy, "conv");
528}
529
530/// EmitComplexToScalarConversion - Emit a conversion from the specified
531/// complex type to the specified destination type, where the destination
532/// type is an LLVM scalar type.
533Value *ScalarExprEmitter::
534EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
535                              QualType SrcTy, QualType DstTy) {
536  // Get the source element type.
537  SrcTy = SrcTy->getAsComplexType()->getElementType();
538
539  // Handle conversions to bool first, they are special: comparisons against 0.
540  if (DstTy->isBooleanType()) {
541    //  Complex != 0  -> (Real != 0) | (Imag != 0)
542    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
543    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
544    return Builder.CreateOr(Src.first, Src.second, "tobool");
545  }
546
547  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
548  // the imaginary part of the complex value is discarded and the value of the
549  // real part is converted according to the conversion rules for the
550  // corresponding real type.
551  return EmitScalarConversion(Src.first, SrcTy, DstTy);
552}
553
554
555//===----------------------------------------------------------------------===//
556//                            Visitor Methods
557//===----------------------------------------------------------------------===//
558
559Value *ScalarExprEmitter::VisitExpr(Expr *E) {
560  CGF.ErrorUnsupported(E, "scalar expression");
561  if (E->getType()->isVoidType())
562    return 0;
563  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
564}
565
566Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
567  llvm::SmallVector<llvm::Constant*, 32> indices;
568  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
569    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
570  }
571  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
572  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
573  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
574  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
575}
576
577Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
578  TestAndClearIgnoreResultAssign();
579
580  // Emit subscript expressions in rvalue context's.  For most cases, this just
581  // loads the lvalue formed by the subscript expr.  However, we have to be
582  // careful, because the base of a vector subscript is occasionally an rvalue,
583  // so we can't get it as an lvalue.
584  if (!E->getBase()->getType()->isVectorType())
585    return EmitLoadOfLValue(E);
586
587  // Handle the vector case.  The base must be a vector, the index must be an
588  // integer value.
589  Value *Base = Visit(E->getBase());
590  Value *Idx  = Visit(E->getIdx());
591  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
592  Idx = Builder.CreateIntCast(Idx, llvm::Type::Int32Ty, IdxSigned,
593                              "vecidxcast");
594  return Builder.CreateExtractElement(Base, Idx, "vecext");
595}
596
597/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
598/// also handle things like function to pointer-to-function decay, and array to
599/// pointer decay.
600Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
601  const Expr *Op = E->getSubExpr();
602
603  // If this is due to array->pointer conversion, emit the array expression as
604  // an l-value.
605  if (Op->getType()->isArrayType()) {
606    assert(E->getCastKind() == CastExpr::CK_ArrayToPointerDecay);
607    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
608
609    // Note that VLA pointers are always decayed, so we don't need to do
610    // anything here.
611    if (!Op->getType()->isVariableArrayType()) {
612      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
613      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
614                                 ->getElementType()) &&
615             "Expected pointer to array");
616      V = Builder.CreateStructGEP(V, 0, "arraydecay");
617    }
618
619    // The resultant pointer type can be implicitly casted to other pointer
620    // types as well (e.g. void*) and can be implicitly converted to integer.
621    const llvm::Type *DestTy = ConvertType(E->getType());
622    if (V->getType() != DestTy) {
623      if (isa<llvm::PointerType>(DestTy))
624        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
625      else {
626        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
627        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
628      }
629    }
630    return V;
631  }
632
633  return EmitCastExpr(Op, E->getType());
634}
635
636
637// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
638// have to handle a more broad range of conversions than explicit casts, as they
639// handle things like function to ptr-to-function decay etc.
640Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
641  if (!DestTy->isVoidType())
642    TestAndClearIgnoreResultAssign();
643
644  // Handle cases where the source is an non-complex type.
645
646  if (!CGF.hasAggregateLLVMType(E->getType())) {
647    Value *Src = Visit(const_cast<Expr*>(E));
648
649    // Use EmitScalarConversion to perform the conversion.
650    return EmitScalarConversion(Src, E->getType(), DestTy);
651  }
652
653  if (E->getType()->isAnyComplexType()) {
654    // Handle cases where the source is a complex type.
655    bool IgnoreImag = true;
656    bool IgnoreImagAssign = true;
657    bool IgnoreReal = IgnoreResultAssign;
658    bool IgnoreRealAssign = IgnoreResultAssign;
659    if (DestTy->isBooleanType())
660      IgnoreImagAssign = IgnoreImag = false;
661    else if (DestTy->isVoidType()) {
662      IgnoreReal = IgnoreImag = false;
663      IgnoreRealAssign = IgnoreImagAssign = true;
664    }
665    CodeGenFunction::ComplexPairTy V
666      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
667                            IgnoreImagAssign);
668    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
669  }
670
671  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
672  // evaluate the result and return.
673  CGF.EmitAggExpr(E, 0, false, true);
674  return 0;
675}
676
677Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
678  return CGF.EmitCompoundStmt(*E->getSubStmt(),
679                              !E->getType()->isVoidType()).getScalarVal();
680}
681
682Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
683  return Builder.CreateLoad(CGF.GetAddrOfBlockDecl(E), false, "tmp");
684}
685
686//===----------------------------------------------------------------------===//
687//                             Unary Operators
688//===----------------------------------------------------------------------===//
689
690Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
691                                             bool isInc, bool isPre) {
692  LValue LV = EmitLValue(E->getSubExpr());
693  QualType ValTy = E->getSubExpr()->getType();
694  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
695
696  int AmountVal = isInc ? 1 : -1;
697
698  if (ValTy->isPointerType() &&
699      ValTy->getAs<PointerType>()->isVariableArrayType()) {
700    // The amount of the addition/subtraction needs to account for the VLA size
701    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
702  }
703
704  Value *NextVal;
705  if (const llvm::PointerType *PT =
706         dyn_cast<llvm::PointerType>(InVal->getType())) {
707    llvm::Constant *Inc =
708      llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
709    if (!isa<llvm::FunctionType>(PT->getElementType())) {
710      QualType PTEE = ValTy->getPointeeType();
711      if (const ObjCInterfaceType *OIT =
712          dyn_cast<ObjCInterfaceType>(PTEE)) {
713        // Handle interface types, which are not represented with a concrete type.
714        int size = CGF.getContext().getTypeSize(OIT) / 8;
715        if (!isInc)
716          size = -size;
717        Inc = llvm::ConstantInt::get(Inc->getType(), size);
718        const llvm::Type *i8Ty =
719          llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
720        InVal = Builder.CreateBitCast(InVal, i8Ty);
721        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
722        llvm::Value *lhs = LV.getAddress();
723        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
724        LV = LValue::MakeAddr(lhs, ValTy.getCVRQualifiers(),
725                              CGF.getContext().getObjCGCAttrKind(ValTy));
726      } else
727        NextVal = Builder.CreateGEP(InVal, Inc, "ptrincdec");
728    } else {
729      const llvm::Type *i8Ty =
730        llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
731      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
732      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
733      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
734    }
735  } else if (InVal->getType() == llvm::Type::Int1Ty && isInc) {
736    // Bool++ is an interesting case, due to promotion rules, we get:
737    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
738    // Bool = ((int)Bool+1) != 0
739    // An interesting aspect of this is that increment is always true.
740    // Decrement does not have this property.
741    NextVal = llvm::ConstantInt::getTrue(VMContext);
742  } else if (isa<llvm::IntegerType>(InVal->getType())) {
743    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
744    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
745  } else {
746    // Add the inc/dec to the real part.
747    if (InVal->getType() == llvm::Type::FloatTy)
748      NextVal =
749        llvm::ConstantFP::get(VMContext,
750                              llvm::APFloat(static_cast<float>(AmountVal)));
751    else if (InVal->getType() == llvm::Type::DoubleTy)
752      NextVal =
753        llvm::ConstantFP::get(VMContext,
754                              llvm::APFloat(static_cast<double>(AmountVal)));
755    else {
756      llvm::APFloat F(static_cast<float>(AmountVal));
757      bool ignored;
758      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
759                &ignored);
760      NextVal = llvm::ConstantFP::get(VMContext, F);
761    }
762    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
763  }
764
765  // Store the updated result through the lvalue.
766  if (LV.isBitfield())
767    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
768                                       &NextVal);
769  else
770    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
771
772  // If this is a postinc, return the value read from memory, otherwise use the
773  // updated value.
774  return isPre ? NextVal : InVal;
775}
776
777
778Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
779  TestAndClearIgnoreResultAssign();
780  Value *Op = Visit(E->getSubExpr());
781  if (Op->getType()->isFPOrFPVector())
782    return Builder.CreateFNeg(Op, "neg");
783  return Builder.CreateNeg(Op, "neg");
784}
785
786Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
787  TestAndClearIgnoreResultAssign();
788  Value *Op = Visit(E->getSubExpr());
789  return Builder.CreateNot(Op, "neg");
790}
791
792Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
793  // Compare operand to zero.
794  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
795
796  // Invert value.
797  // TODO: Could dynamically modify easy computations here.  For example, if
798  // the operand is an icmp ne, turn into icmp eq.
799  BoolVal = Builder.CreateNot(BoolVal, "lnot");
800
801  // ZExt result to the expr type.
802  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
803}
804
805/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
806/// argument of the sizeof expression as an integer.
807Value *
808ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
809  QualType TypeToSize = E->getTypeOfArgument();
810  if (E->isSizeOf()) {
811    if (const VariableArrayType *VAT =
812          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
813      if (E->isArgumentType()) {
814        // sizeof(type) - make sure to emit the VLA size.
815        CGF.EmitVLASize(TypeToSize);
816      } else {
817        // C99 6.5.3.4p2: If the argument is an expression of type
818        // VLA, it is evaluated.
819        CGF.EmitAnyExpr(E->getArgumentExpr());
820      }
821
822      return CGF.GetVLASize(VAT);
823    }
824  }
825
826  // If this isn't sizeof(vla), the result must be constant; use the
827  // constant folding logic so we don't have to duplicate it here.
828  Expr::EvalResult Result;
829  E->Evaluate(Result, CGF.getContext());
830  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
831}
832
833Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
834  Expr *Op = E->getSubExpr();
835  if (Op->getType()->isAnyComplexType())
836    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
837  return Visit(Op);
838}
839Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
840  Expr *Op = E->getSubExpr();
841  if (Op->getType()->isAnyComplexType())
842    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
843
844  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
845  // effects are evaluated, but not the actual value.
846  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
847    CGF.EmitLValue(Op);
848  else
849    CGF.EmitScalarExpr(Op, true);
850  return llvm::Constant::getNullValue(ConvertType(E->getType()));
851}
852
853Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
854{
855  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
856  const llvm::Type* ResultType = ConvertType(E->getType());
857  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
858}
859
860//===----------------------------------------------------------------------===//
861//                           Binary Operators
862//===----------------------------------------------------------------------===//
863
864BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
865  TestAndClearIgnoreResultAssign();
866  BinOpInfo Result;
867  Result.LHS = Visit(E->getLHS());
868  Result.RHS = Visit(E->getRHS());
869  Result.Ty  = E->getType();
870  Result.E = E;
871  return Result;
872}
873
874Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
875                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
876  bool Ignore = TestAndClearIgnoreResultAssign();
877  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
878
879  BinOpInfo OpInfo;
880
881  if (E->getComputationResultType()->isAnyComplexType()) {
882    // This needs to go through the complex expression emitter, but
883    // it's a tad complicated to do that... I'm leaving it out for now.
884    // (Note that we do actually need the imaginary part of the RHS for
885    // multiplication and division.)
886    CGF.ErrorUnsupported(E, "complex compound assignment");
887    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
888  }
889
890  // Emit the RHS first.  __block variables need to have the rhs evaluated
891  // first, plus this should improve codegen a little.
892  OpInfo.RHS = Visit(E->getRHS());
893  OpInfo.Ty = E->getComputationResultType();
894  OpInfo.E = E;
895  // Load/convert the LHS.
896  LValue LHSLV = EmitLValue(E->getLHS());
897  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
898  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
899                                    E->getComputationLHSType());
900
901  // Expand the binary operator.
902  Value *Result = (this->*Func)(OpInfo);
903
904  // Convert the result back to the LHS type.
905  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
906
907  // Store the result value into the LHS lvalue. Bit-fields are
908  // handled specially because the result is altered by the store,
909  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
910  // the left operand after the assignment...'.
911  if (LHSLV.isBitfield()) {
912    if (!LHSLV.isVolatileQualified()) {
913      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
914                                         &Result);
915      return Result;
916    } else
917      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
918  } else
919    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
920  if (Ignore)
921    return 0;
922  return EmitLoadOfLValue(LHSLV, E->getType());
923}
924
925
926Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
927  if (Ops.LHS->getType()->isFPOrFPVector())
928    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
929  else if (Ops.Ty->isUnsignedIntegerType())
930    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
931  else
932    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
933}
934
935Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
936  // Rem in C can't be a floating point type: C99 6.5.5p2.
937  if (Ops.Ty->isUnsignedIntegerType())
938    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
939  else
940    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
941}
942
943Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
944  unsigned IID;
945  unsigned OpID = 0;
946
947  switch (Ops.E->getOpcode()) {
948  case BinaryOperator::Add:
949  case BinaryOperator::AddAssign:
950    OpID = 1;
951    IID = llvm::Intrinsic::sadd_with_overflow;
952    break;
953  case BinaryOperator::Sub:
954  case BinaryOperator::SubAssign:
955    OpID = 2;
956    IID = llvm::Intrinsic::ssub_with_overflow;
957    break;
958  case BinaryOperator::Mul:
959  case BinaryOperator::MulAssign:
960    OpID = 3;
961    IID = llvm::Intrinsic::smul_with_overflow;
962    break;
963  default:
964    assert(false && "Unsupported operation for overflow detection");
965    IID = 0;
966  }
967  OpID <<= 1;
968  OpID |= 1;
969
970  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
971
972  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
973
974  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
975  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
976  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
977
978  // Branch in case of overflow.
979  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
980  llvm::BasicBlock *overflowBB =
981    CGF.createBasicBlock("overflow", CGF.CurFn);
982  llvm::BasicBlock *continueBB =
983    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
984
985  Builder.CreateCondBr(overflow, overflowBB, continueBB);
986
987  // Handle overflow
988
989  Builder.SetInsertPoint(overflowBB);
990
991  // Handler is:
992  // long long *__overflow_handler)(long long a, long long b, char op,
993  // char width)
994  std::vector<const llvm::Type*> handerArgTypes;
995  handerArgTypes.push_back(llvm::Type::Int64Ty);
996  handerArgTypes.push_back(llvm::Type::Int64Ty);
997  handerArgTypes.push_back(llvm::Type::Int8Ty);
998  handerArgTypes.push_back(llvm::Type::Int8Ty);
999  llvm::FunctionType *handlerTy = llvm::FunctionType::get(llvm::Type::Int64Ty,
1000      handerArgTypes, false);
1001  llvm::Value *handlerFunction =
1002    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1003        llvm::PointerType::getUnqual(handlerTy));
1004  handlerFunction = Builder.CreateLoad(handlerFunction);
1005
1006  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1007      Builder.CreateSExt(Ops.LHS, llvm::Type::Int64Ty),
1008      Builder.CreateSExt(Ops.RHS, llvm::Type::Int64Ty),
1009      llvm::ConstantInt::get(llvm::Type::Int8Ty, OpID),
1010      llvm::ConstantInt::get(llvm::Type::Int8Ty,
1011        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1012
1013  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1014
1015  Builder.CreateBr(continueBB);
1016
1017  // Set up the continuation
1018  Builder.SetInsertPoint(continueBB);
1019  // Get the correct result
1020  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1021  phi->reserveOperandSpace(2);
1022  phi->addIncoming(result, initialBB);
1023  phi->addIncoming(handlerResult, overflowBB);
1024
1025  return phi;
1026}
1027
1028Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1029  if (!Ops.Ty->isAnyPointerType()) {
1030    if (CGF.getContext().getLangOptions().OverflowChecking &&
1031        Ops.Ty->isSignedIntegerType())
1032      return EmitOverflowCheckedBinOp(Ops);
1033
1034    if (Ops.LHS->getType()->isFPOrFPVector())
1035      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1036
1037    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1038  }
1039
1040  if (Ops.Ty->isPointerType() &&
1041      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1042    // The amount of the addition needs to account for the VLA size
1043    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1044  }
1045  Value *Ptr, *Idx;
1046  Expr *IdxExp;
1047  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1048  const ObjCObjectPointerType *OPT =
1049    Ops.E->getLHS()->getType()->getAsObjCObjectPointerType();
1050  if (PT || OPT) {
1051    Ptr = Ops.LHS;
1052    Idx = Ops.RHS;
1053    IdxExp = Ops.E->getRHS();
1054  } else {  // int + pointer
1055    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1056    OPT = Ops.E->getRHS()->getType()->getAsObjCObjectPointerType();
1057    assert((PT || OPT) && "Invalid add expr");
1058    Ptr = Ops.RHS;
1059    Idx = Ops.LHS;
1060    IdxExp = Ops.E->getLHS();
1061  }
1062
1063  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1064  if (Width < CGF.LLVMPointerWidth) {
1065    // Zero or sign extend the pointer value based on whether the index is
1066    // signed or not.
1067    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
1068    if (IdxExp->getType()->isSignedIntegerType())
1069      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1070    else
1071      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1072  }
1073  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1074  // Handle interface types, which are not represented with a concrete
1075  // type.
1076  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1077    llvm::Value *InterfaceSize =
1078      llvm::ConstantInt::get(Idx->getType(),
1079                             CGF.getContext().getTypeSize(OIT) / 8);
1080    Idx = Builder.CreateMul(Idx, InterfaceSize);
1081    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1082    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1083    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1084    return Builder.CreateBitCast(Res, Ptr->getType());
1085  }
1086
1087  // Explicitly handle GNU void* and function pointer arithmetic
1088  // extensions. The GNU void* casts amount to no-ops since our void*
1089  // type is i8*, but this is future proof.
1090  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1091    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1092    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1093    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1094    return Builder.CreateBitCast(Res, Ptr->getType());
1095  }
1096
1097  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
1098}
1099
1100Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1101  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1102    if (CGF.getContext().getLangOptions().OverflowChecking
1103        && Ops.Ty->isSignedIntegerType())
1104      return EmitOverflowCheckedBinOp(Ops);
1105
1106    if (Ops.LHS->getType()->isFPOrFPVector())
1107      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1108    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1109  }
1110
1111  if (Ops.E->getLHS()->getType()->isPointerType() &&
1112      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1113    // The amount of the addition needs to account for the VLA size for
1114    // ptr-int
1115    // The amount of the division needs to account for the VLA size for
1116    // ptr-ptr.
1117    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1118  }
1119
1120  const QualType LHSType = Ops.E->getLHS()->getType();
1121  const QualType LHSElementType = LHSType->getPointeeType();
1122  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1123    // pointer - int
1124    Value *Idx = Ops.RHS;
1125    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1126    if (Width < CGF.LLVMPointerWidth) {
1127      // Zero or sign extend the pointer value based on whether the index is
1128      // signed or not.
1129      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
1130      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1131        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1132      else
1133        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1134    }
1135    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1136
1137    // Handle interface types, which are not represented with a concrete
1138    // type.
1139    if (const ObjCInterfaceType *OIT =
1140        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1141      llvm::Value *InterfaceSize =
1142        llvm::ConstantInt::get(Idx->getType(),
1143                               CGF.getContext().getTypeSize(OIT) / 8);
1144      Idx = Builder.CreateMul(Idx, InterfaceSize);
1145      const llvm::Type *i8Ty =
1146        llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1147      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1148      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1149      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1150    }
1151
1152    // Explicitly handle GNU void* and function pointer arithmetic
1153    // extensions. The GNU void* casts amount to no-ops since our
1154    // void* type is i8*, but this is future proof.
1155    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1156      const llvm::Type *i8Ty =
1157        llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1158      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1159      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1160      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1161    }
1162
1163    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1164  } else {
1165    // pointer - pointer
1166    Value *LHS = Ops.LHS;
1167    Value *RHS = Ops.RHS;
1168
1169    uint64_t ElementSize;
1170
1171    // Handle GCC extension for pointer arithmetic on void* and function pointer
1172    // types.
1173    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1174      ElementSize = 1;
1175    } else {
1176      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1177    }
1178
1179    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1180    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1181    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1182    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1183
1184    // Optimize out the shift for element size of 1.
1185    if (ElementSize == 1)
1186      return BytesBetween;
1187
1188    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
1189    // remainder.  As such, we handle common power-of-two cases here to generate
1190    // better code. See PR2247.
1191    if (llvm::isPowerOf2_64(ElementSize)) {
1192      Value *ShAmt =
1193        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
1194      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
1195    }
1196
1197    // Otherwise, do a full sdiv.
1198    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1199    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1200  }
1201}
1202
1203Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1204  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1205  // RHS to the same size as the LHS.
1206  Value *RHS = Ops.RHS;
1207  if (Ops.LHS->getType() != RHS->getType())
1208    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1209
1210  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1211}
1212
1213Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1214  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1215  // RHS to the same size as the LHS.
1216  Value *RHS = Ops.RHS;
1217  if (Ops.LHS->getType() != RHS->getType())
1218    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1219
1220  if (Ops.Ty->isUnsignedIntegerType())
1221    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1222  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1223}
1224
1225Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1226                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1227  TestAndClearIgnoreResultAssign();
1228  Value *Result;
1229  QualType LHSTy = E->getLHS()->getType();
1230  if (!LHSTy->isAnyComplexType()) {
1231    Value *LHS = Visit(E->getLHS());
1232    Value *RHS = Visit(E->getRHS());
1233
1234    if (LHS->getType()->isFPOrFPVector()) {
1235      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1236                                  LHS, RHS, "cmp");
1237    } else if (LHSTy->isSignedIntegerType()) {
1238      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1239                                  LHS, RHS, "cmp");
1240    } else {
1241      // Unsigned integers and pointers.
1242      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1243                                  LHS, RHS, "cmp");
1244    }
1245
1246    // If this is a vector comparison, sign extend the result to the appropriate
1247    // vector integer type and return it (don't convert to bool).
1248    if (LHSTy->isVectorType())
1249      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1250
1251  } else {
1252    // Complex Comparison: can only be an equality comparison.
1253    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1254    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1255
1256    QualType CETy = LHSTy->getAsComplexType()->getElementType();
1257
1258    Value *ResultR, *ResultI;
1259    if (CETy->isRealFloatingType()) {
1260      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1261                                   LHS.first, RHS.first, "cmp.r");
1262      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1263                                   LHS.second, RHS.second, "cmp.i");
1264    } else {
1265      // Complex comparisons can only be equality comparisons.  As such, signed
1266      // and unsigned opcodes are the same.
1267      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1268                                   LHS.first, RHS.first, "cmp.r");
1269      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1270                                   LHS.second, RHS.second, "cmp.i");
1271    }
1272
1273    if (E->getOpcode() == BinaryOperator::EQ) {
1274      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1275    } else {
1276      assert(E->getOpcode() == BinaryOperator::NE &&
1277             "Complex comparison other than == or != ?");
1278      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1279    }
1280  }
1281
1282  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1283}
1284
1285Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1286  bool Ignore = TestAndClearIgnoreResultAssign();
1287
1288  // __block variables need to have the rhs evaluated first, plus this should
1289  // improve codegen just a little.
1290  Value *RHS = Visit(E->getRHS());
1291  LValue LHS = EmitLValue(E->getLHS());
1292
1293  // Store the value into the LHS.  Bit-fields are handled specially
1294  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1295  // 'An assignment expression has the value of the left operand after
1296  // the assignment...'.
1297  if (LHS.isBitfield()) {
1298    if (!LHS.isVolatileQualified()) {
1299      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1300                                         &RHS);
1301      return RHS;
1302    } else
1303      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1304  } else
1305    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1306  if (Ignore)
1307    return 0;
1308  return EmitLoadOfLValue(LHS, E->getType());
1309}
1310
1311Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1312  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1313  // If we have 1 && X, just emit X without inserting the control flow.
1314  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1315    if (Cond == 1) { // If we have 1 && X, just emit X.
1316      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1317      // ZExt result to int.
1318      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1319    }
1320
1321    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1322    if (!CGF.ContainsLabel(E->getRHS()))
1323      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1324  }
1325
1326  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1327  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1328
1329  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1330  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1331
1332  // Any edges into the ContBlock are now from an (indeterminate number of)
1333  // edges from this first condition.  All of these values will be false.  Start
1334  // setting up the PHI node in the Cont Block for this.
1335  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1336  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1337  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1338       PI != PE; ++PI)
1339    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1340
1341  CGF.PushConditionalTempDestruction();
1342  CGF.EmitBlock(RHSBlock);
1343  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1344  CGF.PopConditionalTempDestruction();
1345
1346  // Reaquire the RHS block, as there may be subblocks inserted.
1347  RHSBlock = Builder.GetInsertBlock();
1348
1349  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1350  // into the phi node for the edge with the value of RHSCond.
1351  CGF.EmitBlock(ContBlock);
1352  PN->addIncoming(RHSCond, RHSBlock);
1353
1354  // ZExt result to int.
1355  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1356}
1357
1358Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1359  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1360  // If we have 0 || X, just emit X without inserting the control flow.
1361  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1362    if (Cond == -1) { // If we have 0 || X, just emit X.
1363      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1364      // ZExt result to int.
1365      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1366    }
1367
1368    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1369    if (!CGF.ContainsLabel(E->getRHS()))
1370      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1371  }
1372
1373  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1374  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1375
1376  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1377  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1378
1379  // Any edges into the ContBlock are now from an (indeterminate number of)
1380  // edges from this first condition.  All of these values will be true.  Start
1381  // setting up the PHI node in the Cont Block for this.
1382  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1383  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1384  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1385       PI != PE; ++PI)
1386    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1387
1388  CGF.PushConditionalTempDestruction();
1389
1390  // Emit the RHS condition as a bool value.
1391  CGF.EmitBlock(RHSBlock);
1392  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1393
1394  CGF.PopConditionalTempDestruction();
1395
1396  // Reaquire the RHS block, as there may be subblocks inserted.
1397  RHSBlock = Builder.GetInsertBlock();
1398
1399  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1400  // into the phi node for the edge with the value of RHSCond.
1401  CGF.EmitBlock(ContBlock);
1402  PN->addIncoming(RHSCond, RHSBlock);
1403
1404  // ZExt result to int.
1405  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1406}
1407
1408Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1409  CGF.EmitStmt(E->getLHS());
1410  CGF.EnsureInsertPoint();
1411  return Visit(E->getRHS());
1412}
1413
1414//===----------------------------------------------------------------------===//
1415//                             Other Operators
1416//===----------------------------------------------------------------------===//
1417
1418/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1419/// expression is cheap enough and side-effect-free enough to evaluate
1420/// unconditionally instead of conditionally.  This is used to convert control
1421/// flow into selects in some cases.
1422static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1423  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1424    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1425
1426  // TODO: Allow anything we can constant fold to an integer or fp constant.
1427  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1428      isa<FloatingLiteral>(E))
1429    return true;
1430
1431  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1432  // X and Y are local variables.
1433  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1434    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1435      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1436        return true;
1437
1438  return false;
1439}
1440
1441
1442Value *ScalarExprEmitter::
1443VisitConditionalOperator(const ConditionalOperator *E) {
1444  TestAndClearIgnoreResultAssign();
1445  // If the condition constant folds and can be elided, try to avoid emitting
1446  // the condition and the dead arm.
1447  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1448    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1449    if (Cond == -1)
1450      std::swap(Live, Dead);
1451
1452    // If the dead side doesn't have labels we need, and if the Live side isn't
1453    // the gnu missing ?: extension (which we could handle, but don't bother
1454    // to), just emit the Live part.
1455    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1456        Live)                                   // Live part isn't missing.
1457      return Visit(Live);
1458  }
1459
1460
1461  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1462  // select instead of as control flow.  We can only do this if it is cheap and
1463  // safe to evaluate the LHS and RHS unconditionally.
1464  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1465      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1466    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1467    llvm::Value *LHS = Visit(E->getLHS());
1468    llvm::Value *RHS = Visit(E->getRHS());
1469    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1470  }
1471
1472
1473  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1474  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1475  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1476  Value *CondVal = 0;
1477
1478  // If we don't have the GNU missing condition extension, emit a branch on
1479  // bool the normal way.
1480  if (E->getLHS()) {
1481    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1482    // the branch on bool.
1483    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1484  } else {
1485    // Otherwise, for the ?: extension, evaluate the conditional and then
1486    // convert it to bool the hard way.  We do this explicitly because we need
1487    // the unconverted value for the missing middle value of the ?:.
1488    CondVal = CGF.EmitScalarExpr(E->getCond());
1489
1490    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1491    // if there are no extra uses (an optimization).  Inhibit this by making an
1492    // extra dead use, because we're going to add a use of CondVal later.  We
1493    // don't use the builder for this, because we don't want it to get optimized
1494    // away.  This leaves dead code, but the ?: extension isn't common.
1495    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1496                          Builder.GetInsertBlock());
1497
1498    Value *CondBoolVal =
1499      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1500                               CGF.getContext().BoolTy);
1501    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1502  }
1503
1504  CGF.PushConditionalTempDestruction();
1505  CGF.EmitBlock(LHSBlock);
1506
1507  // Handle the GNU extension for missing LHS.
1508  Value *LHS;
1509  if (E->getLHS())
1510    LHS = Visit(E->getLHS());
1511  else    // Perform promotions, to handle cases like "short ?: int"
1512    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1513
1514  CGF.PopConditionalTempDestruction();
1515  LHSBlock = Builder.GetInsertBlock();
1516  CGF.EmitBranch(ContBlock);
1517
1518  CGF.PushConditionalTempDestruction();
1519  CGF.EmitBlock(RHSBlock);
1520
1521  Value *RHS = Visit(E->getRHS());
1522  CGF.PopConditionalTempDestruction();
1523  RHSBlock = Builder.GetInsertBlock();
1524  CGF.EmitBranch(ContBlock);
1525
1526  CGF.EmitBlock(ContBlock);
1527
1528  if (!LHS || !RHS) {
1529    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1530    return 0;
1531  }
1532
1533  // Create a PHI node for the real part.
1534  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1535  PN->reserveOperandSpace(2);
1536  PN->addIncoming(LHS, LHSBlock);
1537  PN->addIncoming(RHS, RHSBlock);
1538  return PN;
1539}
1540
1541Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1542  return Visit(E->getChosenSubExpr(CGF.getContext()));
1543}
1544
1545Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1546  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1547  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1548
1549  // If EmitVAArg fails, we fall back to the LLVM instruction.
1550  if (!ArgPtr)
1551    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1552
1553  // FIXME Volatility.
1554  return Builder.CreateLoad(ArgPtr);
1555}
1556
1557Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1558  return CGF.BuildBlockLiteralTmp(BE);
1559}
1560
1561//===----------------------------------------------------------------------===//
1562//                         Entry Point into this File
1563//===----------------------------------------------------------------------===//
1564
1565/// EmitScalarExpr - Emit the computation of the specified expression of
1566/// scalar type, ignoring the result.
1567Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1568  assert(E && !hasAggregateLLVMType(E->getType()) &&
1569         "Invalid scalar expression to emit");
1570
1571  return ScalarExprEmitter(*this, IgnoreResultAssign)
1572    .Visit(const_cast<Expr*>(E));
1573}
1574
1575/// EmitScalarConversion - Emit a conversion from the specified type to the
1576/// specified destination type, both of which are LLVM scalar types.
1577Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1578                                             QualType DstTy) {
1579  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1580         "Invalid scalar expression to emit");
1581  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1582}
1583
1584/// EmitComplexToScalarConversion - Emit a conversion from the specified
1585/// complex type to the specified destination type, where the destination
1586/// type is an LLVM scalar type.
1587Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1588                                                      QualType SrcTy,
1589                                                      QualType DstTy) {
1590  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1591         "Invalid complex -> scalar conversion");
1592  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1593                                                                DstTy);
1594}
1595
1596Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1597  assert(V1->getType() == V2->getType() &&
1598         "Vector operands must be of the same type");
1599  unsigned NumElements =
1600    cast<llvm::VectorType>(V1->getType())->getNumElements();
1601
1602  va_list va;
1603  va_start(va, V2);
1604
1605  llvm::SmallVector<llvm::Constant*, 16> Args;
1606  for (unsigned i = 0; i < NumElements; i++) {
1607    int n = va_arg(va, int);
1608    assert(n >= 0 && n < (int)NumElements * 2 &&
1609           "Vector shuffle index out of bounds!");
1610    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1611  }
1612
1613  const char *Name = va_arg(va, const char *);
1614  va_end(va);
1615
1616  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1617
1618  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1619}
1620
1621llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1622                                         unsigned NumVals, bool isSplat) {
1623  llvm::Value *Vec
1624    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1625
1626  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1627    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1628    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1629    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1630  }
1631
1632  return Vec;
1633}
1634