CGExprScalar.cpp revision 1e4f68ce0bffd9a6b9a8fc56d1766177382788e3
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV) {
86    return CGF.EmitLoadOfLValue(LV).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E));
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    return Builder.CreateIsNotNull(V, "tobool");
144  }
145
146  //===--------------------------------------------------------------------===//
147  //                            Visitor Methods
148  //===--------------------------------------------------------------------===//
149
150  Value *Visit(Expr *E) {
151    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152  }
153
154  Value *VisitStmt(Stmt *S) {
155    S->dump(CGF.getContext().getSourceManager());
156    llvm_unreachable("Stmt can't have complex result type!");
157  }
158  Value *VisitExpr(Expr *S);
159
160  Value *VisitParenExpr(ParenExpr *PE) {
161    return Visit(PE->getSubExpr());
162  }
163  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164    return Visit(E->getReplacement());
165  }
166  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167    return Visit(GE->getResultExpr());
168  }
169
170  // Leaves.
171  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172    return Builder.getInt(E->getValue());
173  }
174  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175    return llvm::ConstantFP::get(VMContext, E->getValue());
176  }
177  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179  }
180  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182  }
183  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184    return EmitNullValue(E->getType());
185  }
186  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187    return EmitNullValue(E->getType());
188  }
189  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193    return Builder.CreateBitCast(V, ConvertType(E->getType()));
194  }
195
196  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198  }
199
200  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
201    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
202  }
203
204  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
205    if (E->isGLValue())
206      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
207
208    // Otherwise, assume the mapping is the scalar directly.
209    return CGF.getOpaqueRValueMapping(E).getScalarVal();
210  }
211
212  // l-values.
213  Value *VisitDeclRefExpr(DeclRefExpr *E) {
214    Expr::EvalResult Result;
215    if (!E->EvaluateAsRValue(Result, CGF.getContext()))
216      return EmitLoadOfLValue(E);
217
218    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
219
220    llvm::Constant *C;
221    if (Result.Val.isInt())
222      C = Builder.getInt(Result.Val.getInt());
223    else if (Result.Val.isFloat())
224      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
225    else
226      return EmitLoadOfLValue(E);
227
228    // Make sure we emit a debug reference to the global variable.
229    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
230      if (!CGF.getContext().DeclMustBeEmitted(VD))
231        CGF.EmitDeclRefExprDbgValue(E, C);
232    } else if (isa<EnumConstantDecl>(E->getDecl())) {
233      CGF.EmitDeclRefExprDbgValue(E, C);
234    }
235
236    return C;
237  }
238  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239    return CGF.EmitObjCSelectorExpr(E);
240  }
241  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242    return CGF.EmitObjCProtocolExpr(E);
243  }
244  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245    return EmitLoadOfLValue(E);
246  }
247  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248    if (E->getMethodDecl() &&
249        E->getMethodDecl()->getResultType()->isReferenceType())
250      return EmitLoadOfLValue(E);
251    return CGF.EmitObjCMessageExpr(E).getScalarVal();
252  }
253
254  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255    LValue LV = CGF.EmitObjCIsaExpr(E);
256    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
257    return V;
258  }
259
260  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262  Value *VisitMemberExpr(MemberExpr *E);
263  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
264  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
265    return EmitLoadOfLValue(E);
266  }
267
268  Value *VisitInitListExpr(InitListExpr *E);
269
270  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
271    return CGF.CGM.EmitNullConstant(E->getType());
272  }
273  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
274    if (E->getType()->isVariablyModifiedType())
275      CGF.EmitVariablyModifiedType(E->getType());
276    return VisitCastExpr(E);
277  }
278  Value *VisitCastExpr(CastExpr *E);
279
280  Value *VisitCallExpr(const CallExpr *E) {
281    if (E->getCallReturnType()->isReferenceType())
282      return EmitLoadOfLValue(E);
283
284    return CGF.EmitCallExpr(E).getScalarVal();
285  }
286
287  Value *VisitStmtExpr(const StmtExpr *E);
288
289  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
290
291  // Unary Operators.
292  Value *VisitUnaryPostDec(const UnaryOperator *E) {
293    LValue LV = EmitLValue(E->getSubExpr());
294    return EmitScalarPrePostIncDec(E, LV, false, false);
295  }
296  Value *VisitUnaryPostInc(const UnaryOperator *E) {
297    LValue LV = EmitLValue(E->getSubExpr());
298    return EmitScalarPrePostIncDec(E, LV, true, false);
299  }
300  Value *VisitUnaryPreDec(const UnaryOperator *E) {
301    LValue LV = EmitLValue(E->getSubExpr());
302    return EmitScalarPrePostIncDec(E, LV, false, true);
303  }
304  Value *VisitUnaryPreInc(const UnaryOperator *E) {
305    LValue LV = EmitLValue(E->getSubExpr());
306    return EmitScalarPrePostIncDec(E, LV, true, true);
307  }
308
309  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
310                                               llvm::Value *InVal,
311                                               llvm::Value *NextVal,
312                                               bool IsInc);
313
314  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
315                                       bool isInc, bool isPre);
316
317
318  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
319    if (isa<MemberPointerType>(E->getType())) // never sugared
320      return CGF.CGM.getMemberPointerConstant(E);
321
322    return EmitLValue(E->getSubExpr()).getAddress();
323  }
324  Value *VisitUnaryDeref(const UnaryOperator *E) {
325    if (E->getType()->isVoidType())
326      return Visit(E->getSubExpr()); // the actual value should be unused
327    return EmitLoadOfLValue(E);
328  }
329  Value *VisitUnaryPlus(const UnaryOperator *E) {
330    // This differs from gcc, though, most likely due to a bug in gcc.
331    TestAndClearIgnoreResultAssign();
332    return Visit(E->getSubExpr());
333  }
334  Value *VisitUnaryMinus    (const UnaryOperator *E);
335  Value *VisitUnaryNot      (const UnaryOperator *E);
336  Value *VisitUnaryLNot     (const UnaryOperator *E);
337  Value *VisitUnaryReal     (const UnaryOperator *E);
338  Value *VisitUnaryImag     (const UnaryOperator *E);
339  Value *VisitUnaryExtension(const UnaryOperator *E) {
340    return Visit(E->getSubExpr());
341  }
342
343  // C++
344  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
345    return EmitLoadOfLValue(E);
346  }
347
348  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
349    return Visit(DAE->getExpr());
350  }
351  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352    return CGF.LoadCXXThis();
353  }
354
355  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356    CGF.enterFullExpression(E);
357    CodeGenFunction::RunCleanupsScope Scope(CGF);
358    return Visit(E->getSubExpr());
359  }
360  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361    return CGF.EmitCXXNewExpr(E);
362  }
363  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364    CGF.EmitCXXDeleteExpr(E);
365    return 0;
366  }
367  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368    return Builder.getInt1(E->getValue());
369  }
370
371  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373  }
374
375  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377  }
378
379  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381  }
382
383  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384    // C++ [expr.pseudo]p1:
385    //   The result shall only be used as the operand for the function call
386    //   operator (), and the result of such a call has type void. The only
387    //   effect is the evaluation of the postfix-expression before the dot or
388    //   arrow.
389    CGF.EmitScalarExpr(E->getBase());
390    return 0;
391  }
392
393  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394    return EmitNullValue(E->getType());
395  }
396
397  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398    CGF.EmitCXXThrowExpr(E);
399    return 0;
400  }
401
402  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403    return Builder.getInt1(E->getValue());
404  }
405
406  // Binary Operators.
407  Value *EmitMul(const BinOpInfo &Ops) {
408    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
410      case LangOptions::SOB_Undefined:
411        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
412      case LangOptions::SOB_Defined:
413        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
414      case LangOptions::SOB_Trapping:
415        return EmitOverflowCheckedBinOp(Ops);
416      }
417    }
418
419    if (Ops.LHS->getType()->isFPOrFPVectorTy())
420      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
421    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
422  }
423  bool isTrapvOverflowBehavior() {
424    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
425               == LangOptions::SOB_Trapping;
426  }
427  /// Create a binary op that checks for overflow.
428  /// Currently only supports +, - and *.
429  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
430  // Emit the overflow BB when -ftrapv option is activated.
431  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
432    Builder.SetInsertPoint(overflowBB);
433    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
434    Builder.CreateCall(Trap);
435    Builder.CreateUnreachable();
436  }
437  // Check for undefined division and modulus behaviors.
438  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
439                                                  llvm::Value *Zero,bool isDiv);
440  Value *EmitDiv(const BinOpInfo &Ops);
441  Value *EmitRem(const BinOpInfo &Ops);
442  Value *EmitAdd(const BinOpInfo &Ops);
443  Value *EmitSub(const BinOpInfo &Ops);
444  Value *EmitShl(const BinOpInfo &Ops);
445  Value *EmitShr(const BinOpInfo &Ops);
446  Value *EmitAnd(const BinOpInfo &Ops) {
447    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448  }
449  Value *EmitXor(const BinOpInfo &Ops) {
450    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451  }
452  Value *EmitOr (const BinOpInfo &Ops) {
453    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454  }
455
456  BinOpInfo EmitBinOps(const BinaryOperator *E);
457  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                  Value *&Result);
460
461  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463
464  // Binary operators and binary compound assignment operators.
465#define HANDLEBINOP(OP) \
466  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467    return Emit ## OP(EmitBinOps(E));                                      \
468  }                                                                        \
469  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471  }
472  HANDLEBINOP(Mul)
473  HANDLEBINOP(Div)
474  HANDLEBINOP(Rem)
475  HANDLEBINOP(Add)
476  HANDLEBINOP(Sub)
477  HANDLEBINOP(Shl)
478  HANDLEBINOP(Shr)
479  HANDLEBINOP(And)
480  HANDLEBINOP(Xor)
481  HANDLEBINOP(Or)
482#undef HANDLEBINOP
483
484  // Comparisons.
485  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                     unsigned SICmpOpc, unsigned FCmpOpc);
487#define VISITCOMP(CODE, UI, SI, FP) \
488    Value *VisitBin##CODE(const BinaryOperator *E) { \
489      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                         llvm::FCmpInst::FP); }
491  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497#undef VISITCOMP
498
499  Value *VisitBinAssign     (const BinaryOperator *E);
500
501  Value *VisitBinLAnd       (const BinaryOperator *E);
502  Value *VisitBinLOr        (const BinaryOperator *E);
503  Value *VisitBinComma      (const BinaryOperator *E);
504
505  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
506  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507
508  // Other Operators.
509  Value *VisitBlockExpr(const BlockExpr *BE);
510  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511  Value *VisitChooseExpr(ChooseExpr *CE);
512  Value *VisitVAArgExpr(VAArgExpr *VE);
513  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514    return CGF.EmitObjCStringLiteral(E);
515  }
516  Value *VisitAsTypeExpr(AsTypeExpr *CE);
517  Value *VisitAtomicExpr(AtomicExpr *AE);
518};
519}  // end anonymous namespace.
520
521//===----------------------------------------------------------------------===//
522//                                Utilities
523//===----------------------------------------------------------------------===//
524
525/// EmitConversionToBool - Convert the specified expression value to a
526/// boolean (i1) truth value.  This is equivalent to "Val != 0".
527Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
528  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
529
530  if (SrcType->isRealFloatingType())
531    return EmitFloatToBoolConversion(Src);
532
533  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
534    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
535
536  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
537         "Unknown scalar type to convert");
538
539  if (isa<llvm::IntegerType>(Src->getType()))
540    return EmitIntToBoolConversion(Src);
541
542  assert(isa<llvm::PointerType>(Src->getType()));
543  return EmitPointerToBoolConversion(Src);
544}
545
546/// EmitScalarConversion - Emit a conversion from the specified type to the
547/// specified destination type, both of which are LLVM scalar types.
548Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
549                                               QualType DstType) {
550  SrcType = CGF.getContext().getCanonicalType(SrcType);
551  DstType = CGF.getContext().getCanonicalType(DstType);
552  if (SrcType == DstType) return Src;
553
554  if (DstType->isVoidType()) return 0;
555
556  llvm::Type *SrcTy = Src->getType();
557
558  // Floating casts might be a bit special: if we're doing casts to / from half
559  // FP, we should go via special intrinsics.
560  if (SrcType->isHalfType()) {
561    Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
562    SrcType = CGF.getContext().FloatTy;
563    SrcTy = llvm::Type::getFloatTy(VMContext);
564  }
565
566  // Handle conversions to bool first, they are special: comparisons against 0.
567  if (DstType->isBooleanType())
568    return EmitConversionToBool(Src, SrcType);
569
570  llvm::Type *DstTy = ConvertType(DstType);
571
572  // Ignore conversions like int -> uint.
573  if (SrcTy == DstTy)
574    return Src;
575
576  // Handle pointer conversions next: pointers can only be converted to/from
577  // other pointers and integers. Check for pointer types in terms of LLVM, as
578  // some native types (like Obj-C id) may map to a pointer type.
579  if (isa<llvm::PointerType>(DstTy)) {
580    // The source value may be an integer, or a pointer.
581    if (isa<llvm::PointerType>(SrcTy))
582      return Builder.CreateBitCast(Src, DstTy, "conv");
583
584    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
585    // First, convert to the correct width so that we control the kind of
586    // extension.
587    llvm::Type *MiddleTy = CGF.IntPtrTy;
588    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
589    llvm::Value* IntResult =
590        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
591    // Then, cast to pointer.
592    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
593  }
594
595  if (isa<llvm::PointerType>(SrcTy)) {
596    // Must be an ptr to int cast.
597    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
598    return Builder.CreatePtrToInt(Src, DstTy, "conv");
599  }
600
601  // A scalar can be splatted to an extended vector of the same element type
602  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
603    // Cast the scalar to element type
604    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
605    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
606
607    // Insert the element in element zero of an undef vector
608    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
609    llvm::Value *Idx = Builder.getInt32(0);
610    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
611
612    // Splat the element across to all elements
613    SmallVector<llvm::Constant*, 16> Args;
614    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
615    for (unsigned i = 0; i != NumElements; ++i)
616      Args.push_back(Builder.getInt32(0));
617
618    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
619    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
620    return Yay;
621  }
622
623  // Allow bitcast from vector to integer/fp of the same size.
624  if (isa<llvm::VectorType>(SrcTy) ||
625      isa<llvm::VectorType>(DstTy))
626    return Builder.CreateBitCast(Src, DstTy, "conv");
627
628  // Finally, we have the arithmetic types: real int/float.
629  Value *Res = NULL;
630  llvm::Type *ResTy = DstTy;
631
632  // Cast to half via float
633  if (DstType->isHalfType())
634    DstTy = llvm::Type::getFloatTy(VMContext);
635
636  if (isa<llvm::IntegerType>(SrcTy)) {
637    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
638    if (isa<llvm::IntegerType>(DstTy))
639      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
640    else if (InputSigned)
641      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
642    else
643      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
644  } else if (isa<llvm::IntegerType>(DstTy)) {
645    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
646    if (DstType->isSignedIntegerOrEnumerationType())
647      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
648    else
649      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
650  } else {
651    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
652           "Unknown real conversion");
653    if (DstTy->getTypeID() < SrcTy->getTypeID())
654      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
655    else
656      Res = Builder.CreateFPExt(Src, DstTy, "conv");
657  }
658
659  if (DstTy != ResTy) {
660    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
661    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
662  }
663
664  return Res;
665}
666
667/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
668/// type to the specified destination type, where the destination type is an
669/// LLVM scalar type.
670Value *ScalarExprEmitter::
671EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
672                              QualType SrcTy, QualType DstTy) {
673  // Get the source element type.
674  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
675
676  // Handle conversions to bool first, they are special: comparisons against 0.
677  if (DstTy->isBooleanType()) {
678    //  Complex != 0  -> (Real != 0) | (Imag != 0)
679    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
680    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
681    return Builder.CreateOr(Src.first, Src.second, "tobool");
682  }
683
684  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
685  // the imaginary part of the complex value is discarded and the value of the
686  // real part is converted according to the conversion rules for the
687  // corresponding real type.
688  return EmitScalarConversion(Src.first, SrcTy, DstTy);
689}
690
691Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
692  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
693    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
694
695  return llvm::Constant::getNullValue(ConvertType(Ty));
696}
697
698//===----------------------------------------------------------------------===//
699//                            Visitor Methods
700//===----------------------------------------------------------------------===//
701
702Value *ScalarExprEmitter::VisitExpr(Expr *E) {
703  CGF.ErrorUnsupported(E, "scalar expression");
704  if (E->getType()->isVoidType())
705    return 0;
706  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
707}
708
709Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
710  // Vector Mask Case
711  if (E->getNumSubExprs() == 2 ||
712      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
713    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
714    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
715    Value *Mask;
716
717    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
718    unsigned LHSElts = LTy->getNumElements();
719
720    if (E->getNumSubExprs() == 3) {
721      Mask = CGF.EmitScalarExpr(E->getExpr(2));
722
723      // Shuffle LHS & RHS into one input vector.
724      SmallVector<llvm::Constant*, 32> concat;
725      for (unsigned i = 0; i != LHSElts; ++i) {
726        concat.push_back(Builder.getInt32(2*i));
727        concat.push_back(Builder.getInt32(2*i+1));
728      }
729
730      Value* CV = llvm::ConstantVector::get(concat);
731      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
732      LHSElts *= 2;
733    } else {
734      Mask = RHS;
735    }
736
737    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
738    llvm::Constant* EltMask;
739
740    // Treat vec3 like vec4.
741    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
742      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
743                                       (1 << llvm::Log2_32(LHSElts+2))-1);
744    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
745      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
746                                       (1 << llvm::Log2_32(LHSElts+1))-1);
747    else
748      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
749                                       (1 << llvm::Log2_32(LHSElts))-1);
750
751    // Mask off the high bits of each shuffle index.
752    SmallVector<llvm::Constant *, 32> MaskV;
753    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
754      MaskV.push_back(EltMask);
755
756    Value* MaskBits = llvm::ConstantVector::get(MaskV);
757    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
758
759    // newv = undef
760    // mask = mask & maskbits
761    // for each elt
762    //   n = extract mask i
763    //   x = extract val n
764    //   newv = insert newv, x, i
765    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
766                                                        MTy->getNumElements());
767    Value* NewV = llvm::UndefValue::get(RTy);
768    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
769      Value *Indx = Builder.getInt32(i);
770      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
771      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
772
773      // Handle vec3 special since the index will be off by one for the RHS.
774      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
775        Value *cmpIndx, *newIndx;
776        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
777                                        "cmp_shuf_idx");
778        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
779        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
780      }
781      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
782      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
783    }
784    return NewV;
785  }
786
787  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
788  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
789
790  // Handle vec3 special since the index will be off by one for the RHS.
791  llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
792  SmallVector<llvm::Constant*, 32> indices;
793  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
794    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
795    if (VTy->getNumElements() == 3 && Idx > 3)
796      Idx -= 1;
797    indices.push_back(Builder.getInt32(Idx));
798  }
799
800  Value *SV = llvm::ConstantVector::get(indices);
801  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
802}
803Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
804  Expr::EvalResult Result;
805  if (E->EvaluateAsRValue(Result, CGF.getContext()) && Result.Val.isInt()) {
806    if (E->isArrow())
807      CGF.EmitScalarExpr(E->getBase());
808    else
809      EmitLValue(E->getBase());
810    return Builder.getInt(Result.Val.getInt());
811  }
812
813  // Emit debug info for aggregate now, if it was delayed to reduce
814  // debug info size.
815  CGDebugInfo *DI = CGF.getDebugInfo();
816  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
817    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
818    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
819      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
820        DI->getOrCreateRecordType(PTy->getPointeeType(),
821                                  M->getParent()->getLocation());
822  }
823  return EmitLoadOfLValue(E);
824}
825
826Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
827  TestAndClearIgnoreResultAssign();
828
829  // Emit subscript expressions in rvalue context's.  For most cases, this just
830  // loads the lvalue formed by the subscript expr.  However, we have to be
831  // careful, because the base of a vector subscript is occasionally an rvalue,
832  // so we can't get it as an lvalue.
833  if (!E->getBase()->getType()->isVectorType())
834    return EmitLoadOfLValue(E);
835
836  // Handle the vector case.  The base must be a vector, the index must be an
837  // integer value.
838  Value *Base = Visit(E->getBase());
839  Value *Idx  = Visit(E->getIdx());
840  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
841  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
842  return Builder.CreateExtractElement(Base, Idx, "vecext");
843}
844
845static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
846                                  unsigned Off, llvm::Type *I32Ty) {
847  int MV = SVI->getMaskValue(Idx);
848  if (MV == -1)
849    return llvm::UndefValue::get(I32Ty);
850  return llvm::ConstantInt::get(I32Ty, Off+MV);
851}
852
853Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
854  bool Ignore = TestAndClearIgnoreResultAssign();
855  (void)Ignore;
856  assert (Ignore == false && "init list ignored");
857  unsigned NumInitElements = E->getNumInits();
858
859  if (E->hadArrayRangeDesignator())
860    CGF.ErrorUnsupported(E, "GNU array range designator extension");
861
862  llvm::VectorType *VType =
863    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
864
865  if (!VType) {
866    if (NumInitElements == 0) {
867      // C++11 value-initialization for the scalar.
868      return EmitNullValue(E->getType());
869    }
870    // We have a scalar in braces. Just use the first element.
871    return Visit(E->getInit(0));
872  }
873
874  unsigned ResElts = VType->getNumElements();
875
876  // Loop over initializers collecting the Value for each, and remembering
877  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
878  // us to fold the shuffle for the swizzle into the shuffle for the vector
879  // initializer, since LLVM optimizers generally do not want to touch
880  // shuffles.
881  unsigned CurIdx = 0;
882  bool VIsUndefShuffle = false;
883  llvm::Value *V = llvm::UndefValue::get(VType);
884  for (unsigned i = 0; i != NumInitElements; ++i) {
885    Expr *IE = E->getInit(i);
886    Value *Init = Visit(IE);
887    SmallVector<llvm::Constant*, 16> Args;
888
889    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
890
891    // Handle scalar elements.  If the scalar initializer is actually one
892    // element of a different vector of the same width, use shuffle instead of
893    // extract+insert.
894    if (!VVT) {
895      if (isa<ExtVectorElementExpr>(IE)) {
896        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
897
898        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
899          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
900          Value *LHS = 0, *RHS = 0;
901          if (CurIdx == 0) {
902            // insert into undef -> shuffle (src, undef)
903            Args.push_back(C);
904            for (unsigned j = 1; j != ResElts; ++j)
905              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
906
907            LHS = EI->getVectorOperand();
908            RHS = V;
909            VIsUndefShuffle = true;
910          } else if (VIsUndefShuffle) {
911            // insert into undefshuffle && size match -> shuffle (v, src)
912            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
913            for (unsigned j = 0; j != CurIdx; ++j)
914              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
915            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
916            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
917              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
918
919            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
920            RHS = EI->getVectorOperand();
921            VIsUndefShuffle = false;
922          }
923          if (!Args.empty()) {
924            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
925            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
926            ++CurIdx;
927            continue;
928          }
929        }
930      }
931      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
932                                      "vecinit");
933      VIsUndefShuffle = false;
934      ++CurIdx;
935      continue;
936    }
937
938    unsigned InitElts = VVT->getNumElements();
939
940    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
941    // input is the same width as the vector being constructed, generate an
942    // optimized shuffle of the swizzle input into the result.
943    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
944    if (isa<ExtVectorElementExpr>(IE)) {
945      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
946      Value *SVOp = SVI->getOperand(0);
947      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
948
949      if (OpTy->getNumElements() == ResElts) {
950        for (unsigned j = 0; j != CurIdx; ++j) {
951          // If the current vector initializer is a shuffle with undef, merge
952          // this shuffle directly into it.
953          if (VIsUndefShuffle) {
954            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
955                                      CGF.Int32Ty));
956          } else {
957            Args.push_back(Builder.getInt32(j));
958          }
959        }
960        for (unsigned j = 0, je = InitElts; j != je; ++j)
961          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
962        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
963          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
964
965        if (VIsUndefShuffle)
966          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
967
968        Init = SVOp;
969      }
970    }
971
972    // Extend init to result vector length, and then shuffle its contribution
973    // to the vector initializer into V.
974    if (Args.empty()) {
975      for (unsigned j = 0; j != InitElts; ++j)
976        Args.push_back(Builder.getInt32(j));
977      for (unsigned j = InitElts; j != ResElts; ++j)
978        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
979      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
980      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
981                                         Mask, "vext");
982
983      Args.clear();
984      for (unsigned j = 0; j != CurIdx; ++j)
985        Args.push_back(Builder.getInt32(j));
986      for (unsigned j = 0; j != InitElts; ++j)
987        Args.push_back(Builder.getInt32(j+Offset));
988      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
989        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
990    }
991
992    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
993    // merging subsequent shuffles into this one.
994    if (CurIdx == 0)
995      std::swap(V, Init);
996    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
997    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
998    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
999    CurIdx += InitElts;
1000  }
1001
1002  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1003  // Emit remaining default initializers.
1004  llvm::Type *EltTy = VType->getElementType();
1005
1006  // Emit remaining default initializers
1007  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1008    Value *Idx = Builder.getInt32(CurIdx);
1009    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1010    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1011  }
1012  return V;
1013}
1014
1015static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1016  const Expr *E = CE->getSubExpr();
1017
1018  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1019    return false;
1020
1021  if (isa<CXXThisExpr>(E)) {
1022    // We always assume that 'this' is never null.
1023    return false;
1024  }
1025
1026  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1027    // And that glvalue casts are never null.
1028    if (ICE->getValueKind() != VK_RValue)
1029      return false;
1030  }
1031
1032  return true;
1033}
1034
1035// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1036// have to handle a more broad range of conversions than explicit casts, as they
1037// handle things like function to ptr-to-function decay etc.
1038Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1039  Expr *E = CE->getSubExpr();
1040  QualType DestTy = CE->getType();
1041  CastKind Kind = CE->getCastKind();
1042
1043  if (!DestTy->isVoidType())
1044    TestAndClearIgnoreResultAssign();
1045
1046  // Since almost all cast kinds apply to scalars, this switch doesn't have
1047  // a default case, so the compiler will warn on a missing case.  The cases
1048  // are in the same order as in the CastKind enum.
1049  switch (Kind) {
1050  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1051
1052  case CK_LValueBitCast:
1053  case CK_ObjCObjectLValueCast: {
1054    Value *V = EmitLValue(E).getAddress();
1055    V = Builder.CreateBitCast(V,
1056                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1057    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1058  }
1059
1060  case CK_CPointerToObjCPointerCast:
1061  case CK_BlockPointerToObjCPointerCast:
1062  case CK_AnyPointerToBlockPointerCast:
1063  case CK_BitCast: {
1064    Value *Src = Visit(const_cast<Expr*>(E));
1065    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1066  }
1067  case CK_NoOp:
1068  case CK_UserDefinedConversion:
1069    return Visit(const_cast<Expr*>(E));
1070
1071  case CK_BaseToDerived: {
1072    const CXXRecordDecl *DerivedClassDecl =
1073      DestTy->getCXXRecordDeclForPointerType();
1074
1075    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1076                                        CE->path_begin(), CE->path_end(),
1077                                        ShouldNullCheckClassCastValue(CE));
1078  }
1079  case CK_UncheckedDerivedToBase:
1080  case CK_DerivedToBase: {
1081    const RecordType *DerivedClassTy =
1082      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1083    CXXRecordDecl *DerivedClassDecl =
1084      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1085
1086    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1087                                     CE->path_begin(), CE->path_end(),
1088                                     ShouldNullCheckClassCastValue(CE));
1089  }
1090  case CK_Dynamic: {
1091    Value *V = Visit(const_cast<Expr*>(E));
1092    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1093    return CGF.EmitDynamicCast(V, DCE);
1094  }
1095
1096  case CK_ArrayToPointerDecay: {
1097    assert(E->getType()->isArrayType() &&
1098           "Array to pointer decay must have array source type!");
1099
1100    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1101
1102    // Note that VLA pointers are always decayed, so we don't need to do
1103    // anything here.
1104    if (!E->getType()->isVariableArrayType()) {
1105      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1106      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1107                                 ->getElementType()) &&
1108             "Expected pointer to array");
1109      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1110    }
1111
1112    // Make sure the array decay ends up being the right type.  This matters if
1113    // the array type was of an incomplete type.
1114    return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1115  }
1116  case CK_FunctionToPointerDecay:
1117    return EmitLValue(E).getAddress();
1118
1119  case CK_NullToPointer:
1120    if (MustVisitNullValue(E))
1121      (void) Visit(E);
1122
1123    return llvm::ConstantPointerNull::get(
1124                               cast<llvm::PointerType>(ConvertType(DestTy)));
1125
1126  case CK_NullToMemberPointer: {
1127    if (MustVisitNullValue(E))
1128      (void) Visit(E);
1129
1130    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1131    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1132  }
1133
1134  case CK_BaseToDerivedMemberPointer:
1135  case CK_DerivedToBaseMemberPointer: {
1136    Value *Src = Visit(E);
1137
1138    // Note that the AST doesn't distinguish between checked and
1139    // unchecked member pointer conversions, so we always have to
1140    // implement checked conversions here.  This is inefficient when
1141    // actual control flow may be required in order to perform the
1142    // check, which it is for data member pointers (but not member
1143    // function pointers on Itanium and ARM).
1144    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1145  }
1146
1147  case CK_ARCProduceObject:
1148    return CGF.EmitARCRetainScalarExpr(E);
1149  case CK_ARCConsumeObject:
1150    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1151  case CK_ARCReclaimReturnedObject: {
1152    llvm::Value *value = Visit(E);
1153    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1154    return CGF.EmitObjCConsumeObject(E->getType(), value);
1155  }
1156  case CK_ARCExtendBlockObject:
1157    return CGF.EmitARCExtendBlockObject(E);
1158
1159  case CK_FloatingRealToComplex:
1160  case CK_FloatingComplexCast:
1161  case CK_IntegralRealToComplex:
1162  case CK_IntegralComplexCast:
1163  case CK_IntegralComplexToFloatingComplex:
1164  case CK_FloatingComplexToIntegralComplex:
1165  case CK_ConstructorConversion:
1166  case CK_ToUnion:
1167    llvm_unreachable("scalar cast to non-scalar value");
1168    break;
1169
1170  case CK_LValueToRValue:
1171    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1172    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1173    return Visit(const_cast<Expr*>(E));
1174
1175  case CK_IntegralToPointer: {
1176    Value *Src = Visit(const_cast<Expr*>(E));
1177
1178    // First, convert to the correct width so that we control the kind of
1179    // extension.
1180    llvm::Type *MiddleTy = CGF.IntPtrTy;
1181    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1182    llvm::Value* IntResult =
1183      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1184
1185    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1186  }
1187  case CK_PointerToIntegral:
1188    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1189    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1190
1191  case CK_ToVoid: {
1192    CGF.EmitIgnoredExpr(E);
1193    return 0;
1194  }
1195  case CK_VectorSplat: {
1196    llvm::Type *DstTy = ConvertType(DestTy);
1197    Value *Elt = Visit(const_cast<Expr*>(E));
1198
1199    // Insert the element in element zero of an undef vector
1200    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1201    llvm::Value *Idx = Builder.getInt32(0);
1202    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1203
1204    // Splat the element across to all elements
1205    SmallVector<llvm::Constant*, 16> Args;
1206    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1207    llvm::Constant *Zero = Builder.getInt32(0);
1208    for (unsigned i = 0; i < NumElements; i++)
1209      Args.push_back(Zero);
1210
1211    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1212    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1213    return Yay;
1214  }
1215
1216  case CK_IntegralCast:
1217  case CK_IntegralToFloating:
1218  case CK_FloatingToIntegral:
1219  case CK_FloatingCast:
1220    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1221  case CK_IntegralToBoolean:
1222    return EmitIntToBoolConversion(Visit(E));
1223  case CK_PointerToBoolean:
1224    return EmitPointerToBoolConversion(Visit(E));
1225  case CK_FloatingToBoolean:
1226    return EmitFloatToBoolConversion(Visit(E));
1227  case CK_MemberPointerToBoolean: {
1228    llvm::Value *MemPtr = Visit(E);
1229    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1230    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1231  }
1232
1233  case CK_FloatingComplexToReal:
1234  case CK_IntegralComplexToReal:
1235    return CGF.EmitComplexExpr(E, false, true).first;
1236
1237  case CK_FloatingComplexToBoolean:
1238  case CK_IntegralComplexToBoolean: {
1239    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1240
1241    // TODO: kill this function off, inline appropriate case here
1242    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1243  }
1244
1245  }
1246
1247  llvm_unreachable("unknown scalar cast");
1248  return 0;
1249}
1250
1251Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1252  CodeGenFunction::StmtExprEvaluation eval(CGF);
1253  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1254    .getScalarVal();
1255}
1256
1257Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1258  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1259  return CGF.EmitLoadOfLValue(LV).getScalarVal();
1260}
1261
1262//===----------------------------------------------------------------------===//
1263//                             Unary Operators
1264//===----------------------------------------------------------------------===//
1265
1266llvm::Value *ScalarExprEmitter::
1267EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1268                                llvm::Value *InVal,
1269                                llvm::Value *NextVal, bool IsInc) {
1270  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1271  case LangOptions::SOB_Undefined:
1272    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1273    break;
1274  case LangOptions::SOB_Defined:
1275    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1276    break;
1277  case LangOptions::SOB_Trapping:
1278    BinOpInfo BinOp;
1279    BinOp.LHS = InVal;
1280    BinOp.RHS = NextVal;
1281    BinOp.Ty = E->getType();
1282    BinOp.Opcode = BO_Add;
1283    BinOp.E = E;
1284    return EmitOverflowCheckedBinOp(BinOp);
1285  }
1286  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1287}
1288
1289llvm::Value *
1290ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1291                                           bool isInc, bool isPre) {
1292
1293  QualType type = E->getSubExpr()->getType();
1294  llvm::Value *value = EmitLoadOfLValue(LV);
1295  llvm::Value *input = value;
1296
1297  int amount = (isInc ? 1 : -1);
1298
1299  // Special case of integer increment that we have to check first: bool++.
1300  // Due to promotion rules, we get:
1301  //   bool++ -> bool = bool + 1
1302  //          -> bool = (int)bool + 1
1303  //          -> bool = ((int)bool + 1 != 0)
1304  // An interesting aspect of this is that increment is always true.
1305  // Decrement does not have this property.
1306  if (isInc && type->isBooleanType()) {
1307    value = Builder.getTrue();
1308
1309  // Most common case by far: integer increment.
1310  } else if (type->isIntegerType()) {
1311
1312    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1313
1314    // Note that signed integer inc/dec with width less than int can't
1315    // overflow because of promotion rules; we're just eliding a few steps here.
1316    if (type->isSignedIntegerOrEnumerationType() &&
1317        value->getType()->getPrimitiveSizeInBits() >=
1318            CGF.IntTy->getBitWidth())
1319      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1320    else
1321      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1322
1323  // Next most common: pointer increment.
1324  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1325    QualType type = ptr->getPointeeType();
1326
1327    // VLA types don't have constant size.
1328    if (const VariableArrayType *vla
1329          = CGF.getContext().getAsVariableArrayType(type)) {
1330      llvm::Value *numElts = CGF.getVLASize(vla).first;
1331      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1332      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1333        value = Builder.CreateGEP(value, numElts, "vla.inc");
1334      else
1335        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1336
1337    // Arithmetic on function pointers (!) is just +-1.
1338    } else if (type->isFunctionType()) {
1339      llvm::Value *amt = Builder.getInt32(amount);
1340
1341      value = CGF.EmitCastToVoidPtr(value);
1342      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1343        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1344      else
1345        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1346      value = Builder.CreateBitCast(value, input->getType());
1347
1348    // For everything else, we can just do a simple increment.
1349    } else {
1350      llvm::Value *amt = Builder.getInt32(amount);
1351      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1352        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1353      else
1354        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1355    }
1356
1357  // Vector increment/decrement.
1358  } else if (type->isVectorType()) {
1359    if (type->hasIntegerRepresentation()) {
1360      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1361
1362      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1363    } else {
1364      value = Builder.CreateFAdd(
1365                  value,
1366                  llvm::ConstantFP::get(value->getType(), amount),
1367                  isInc ? "inc" : "dec");
1368    }
1369
1370  // Floating point.
1371  } else if (type->isRealFloatingType()) {
1372    // Add the inc/dec to the real part.
1373    llvm::Value *amt;
1374
1375    if (type->isHalfType()) {
1376      // Another special case: half FP increment should be done via float
1377      value =
1378    Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1379                       input);
1380    }
1381
1382    if (value->getType()->isFloatTy())
1383      amt = llvm::ConstantFP::get(VMContext,
1384                                  llvm::APFloat(static_cast<float>(amount)));
1385    else if (value->getType()->isDoubleTy())
1386      amt = llvm::ConstantFP::get(VMContext,
1387                                  llvm::APFloat(static_cast<double>(amount)));
1388    else {
1389      llvm::APFloat F(static_cast<float>(amount));
1390      bool ignored;
1391      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1392                &ignored);
1393      amt = llvm::ConstantFP::get(VMContext, F);
1394    }
1395    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1396
1397    if (type->isHalfType())
1398      value =
1399       Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1400                          value);
1401
1402  // Objective-C pointer types.
1403  } else {
1404    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1405    value = CGF.EmitCastToVoidPtr(value);
1406
1407    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1408    if (!isInc) size = -size;
1409    llvm::Value *sizeValue =
1410      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1411
1412    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1413      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1414    else
1415      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1416    value = Builder.CreateBitCast(value, input->getType());
1417  }
1418
1419  // Store the updated result through the lvalue.
1420  if (LV.isBitField())
1421    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1422  else
1423    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1424
1425  // If this is a postinc, return the value read from memory, otherwise use the
1426  // updated value.
1427  return isPre ? value : input;
1428}
1429
1430
1431
1432Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1433  TestAndClearIgnoreResultAssign();
1434  // Emit unary minus with EmitSub so we handle overflow cases etc.
1435  BinOpInfo BinOp;
1436  BinOp.RHS = Visit(E->getSubExpr());
1437
1438  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1439    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1440  else
1441    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1442  BinOp.Ty = E->getType();
1443  BinOp.Opcode = BO_Sub;
1444  BinOp.E = E;
1445  return EmitSub(BinOp);
1446}
1447
1448Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1449  TestAndClearIgnoreResultAssign();
1450  Value *Op = Visit(E->getSubExpr());
1451  return Builder.CreateNot(Op, "neg");
1452}
1453
1454Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1455  // Compare operand to zero.
1456  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1457
1458  // Invert value.
1459  // TODO: Could dynamically modify easy computations here.  For example, if
1460  // the operand is an icmp ne, turn into icmp eq.
1461  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1462
1463  // ZExt result to the expr type.
1464  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1465}
1466
1467Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1468  // Try folding the offsetof to a constant.
1469  Expr::EvalResult EvalResult;
1470  if (E->EvaluateAsRValue(EvalResult, CGF.getContext()))
1471    return Builder.getInt(EvalResult.Val.getInt());
1472
1473  // Loop over the components of the offsetof to compute the value.
1474  unsigned n = E->getNumComponents();
1475  llvm::Type* ResultType = ConvertType(E->getType());
1476  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1477  QualType CurrentType = E->getTypeSourceInfo()->getType();
1478  for (unsigned i = 0; i != n; ++i) {
1479    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1480    llvm::Value *Offset = 0;
1481    switch (ON.getKind()) {
1482    case OffsetOfExpr::OffsetOfNode::Array: {
1483      // Compute the index
1484      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1485      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1486      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1487      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1488
1489      // Save the element type
1490      CurrentType =
1491          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1492
1493      // Compute the element size
1494      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1495          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1496
1497      // Multiply out to compute the result
1498      Offset = Builder.CreateMul(Idx, ElemSize);
1499      break;
1500    }
1501
1502    case OffsetOfExpr::OffsetOfNode::Field: {
1503      FieldDecl *MemberDecl = ON.getField();
1504      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1505      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1506
1507      // Compute the index of the field in its parent.
1508      unsigned i = 0;
1509      // FIXME: It would be nice if we didn't have to loop here!
1510      for (RecordDecl::field_iterator Field = RD->field_begin(),
1511                                      FieldEnd = RD->field_end();
1512           Field != FieldEnd; (void)++Field, ++i) {
1513        if (*Field == MemberDecl)
1514          break;
1515      }
1516      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1517
1518      // Compute the offset to the field
1519      int64_t OffsetInt = RL.getFieldOffset(i) /
1520                          CGF.getContext().getCharWidth();
1521      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1522
1523      // Save the element type.
1524      CurrentType = MemberDecl->getType();
1525      break;
1526    }
1527
1528    case OffsetOfExpr::OffsetOfNode::Identifier:
1529      llvm_unreachable("dependent __builtin_offsetof");
1530
1531    case OffsetOfExpr::OffsetOfNode::Base: {
1532      if (ON.getBase()->isVirtual()) {
1533        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1534        continue;
1535      }
1536
1537      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1538      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1539
1540      // Save the element type.
1541      CurrentType = ON.getBase()->getType();
1542
1543      // Compute the offset to the base.
1544      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1545      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1546      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1547                          CGF.getContext().getCharWidth();
1548      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1549      break;
1550    }
1551    }
1552    Result = Builder.CreateAdd(Result, Offset);
1553  }
1554  return Result;
1555}
1556
1557/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1558/// argument of the sizeof expression as an integer.
1559Value *
1560ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1561                              const UnaryExprOrTypeTraitExpr *E) {
1562  QualType TypeToSize = E->getTypeOfArgument();
1563  if (E->getKind() == UETT_SizeOf) {
1564    if (const VariableArrayType *VAT =
1565          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1566      if (E->isArgumentType()) {
1567        // sizeof(type) - make sure to emit the VLA size.
1568        CGF.EmitVariablyModifiedType(TypeToSize);
1569      } else {
1570        // C99 6.5.3.4p2: If the argument is an expression of type
1571        // VLA, it is evaluated.
1572        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1573      }
1574
1575      QualType eltType;
1576      llvm::Value *numElts;
1577      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1578
1579      llvm::Value *size = numElts;
1580
1581      // Scale the number of non-VLA elements by the non-VLA element size.
1582      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1583      if (!eltSize.isOne())
1584        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1585
1586      return size;
1587    }
1588  }
1589
1590  // If this isn't sizeof(vla), the result must be constant; use the constant
1591  // folding logic so we don't have to duplicate it here.
1592  Expr::EvalResult Result;
1593  E->EvaluateAsRValue(Result, CGF.getContext());
1594  return Builder.getInt(Result.Val.getInt());
1595}
1596
1597Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1598  Expr *Op = E->getSubExpr();
1599  if (Op->getType()->isAnyComplexType()) {
1600    // If it's an l-value, load through the appropriate subobject l-value.
1601    // Note that we have to ask E because Op might be an l-value that
1602    // this won't work for, e.g. an Obj-C property.
1603    if (E->isGLValue())
1604      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1605
1606    // Otherwise, calculate and project.
1607    return CGF.EmitComplexExpr(Op, false, true).first;
1608  }
1609
1610  return Visit(Op);
1611}
1612
1613Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1614  Expr *Op = E->getSubExpr();
1615  if (Op->getType()->isAnyComplexType()) {
1616    // If it's an l-value, load through the appropriate subobject l-value.
1617    // Note that we have to ask E because Op might be an l-value that
1618    // this won't work for, e.g. an Obj-C property.
1619    if (Op->isGLValue())
1620      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1621
1622    // Otherwise, calculate and project.
1623    return CGF.EmitComplexExpr(Op, true, false).second;
1624  }
1625
1626  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1627  // effects are evaluated, but not the actual value.
1628  CGF.EmitScalarExpr(Op, true);
1629  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1630}
1631
1632//===----------------------------------------------------------------------===//
1633//                           Binary Operators
1634//===----------------------------------------------------------------------===//
1635
1636BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1637  TestAndClearIgnoreResultAssign();
1638  BinOpInfo Result;
1639  Result.LHS = Visit(E->getLHS());
1640  Result.RHS = Visit(E->getRHS());
1641  Result.Ty  = E->getType();
1642  Result.Opcode = E->getOpcode();
1643  Result.E = E;
1644  return Result;
1645}
1646
1647LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1648                                              const CompoundAssignOperator *E,
1649                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1650                                                   Value *&Result) {
1651  QualType LHSTy = E->getLHS()->getType();
1652  BinOpInfo OpInfo;
1653
1654  if (E->getComputationResultType()->isAnyComplexType()) {
1655    // This needs to go through the complex expression emitter, but it's a tad
1656    // complicated to do that... I'm leaving it out for now.  (Note that we do
1657    // actually need the imaginary part of the RHS for multiplication and
1658    // division.)
1659    CGF.ErrorUnsupported(E, "complex compound assignment");
1660    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1661    return LValue();
1662  }
1663
1664  // Emit the RHS first.  __block variables need to have the rhs evaluated
1665  // first, plus this should improve codegen a little.
1666  OpInfo.RHS = Visit(E->getRHS());
1667  OpInfo.Ty = E->getComputationResultType();
1668  OpInfo.Opcode = E->getOpcode();
1669  OpInfo.E = E;
1670  // Load/convert the LHS.
1671  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1672  OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1673  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1674                                    E->getComputationLHSType());
1675
1676  // Expand the binary operator.
1677  Result = (this->*Func)(OpInfo);
1678
1679  // Convert the result back to the LHS type.
1680  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1681
1682  // Store the result value into the LHS lvalue. Bit-fields are handled
1683  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1684  // 'An assignment expression has the value of the left operand after the
1685  // assignment...'.
1686  if (LHSLV.isBitField())
1687    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1688  else
1689    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1690
1691  return LHSLV;
1692}
1693
1694Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1695                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1696  bool Ignore = TestAndClearIgnoreResultAssign();
1697  Value *RHS;
1698  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1699
1700  // If the result is clearly ignored, return now.
1701  if (Ignore)
1702    return 0;
1703
1704  // The result of an assignment in C is the assigned r-value.
1705  if (!CGF.getContext().getLangOptions().CPlusPlus)
1706    return RHS;
1707
1708  // If the lvalue is non-volatile, return the computed value of the assignment.
1709  if (!LHS.isVolatileQualified())
1710    return RHS;
1711
1712  // Otherwise, reload the value.
1713  return EmitLoadOfLValue(LHS);
1714}
1715
1716void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1717     					    const BinOpInfo &Ops,
1718				     	    llvm::Value *Zero, bool isDiv) {
1719  llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1720  llvm::BasicBlock *contBB =
1721    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1722                         llvm::next(insertPt));
1723  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1724
1725  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1726
1727  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1728    llvm::Value *IntMin =
1729      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1730    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1731
1732    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1733    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1734    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1735    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1736    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1737                         overflowBB, contBB);
1738  } else {
1739    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1740                             overflowBB, contBB);
1741  }
1742  EmitOverflowBB(overflowBB);
1743  Builder.SetInsertPoint(contBB);
1744}
1745
1746Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1747  if (isTrapvOverflowBehavior()) {
1748    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1749
1750    if (Ops.Ty->isIntegerType())
1751      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1752    else if (Ops.Ty->isRealFloatingType()) {
1753      llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1754      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1755                                                       llvm::next(insertPt));
1756      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1757                                                          CGF.CurFn);
1758      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1759                               overflowBB, DivCont);
1760      EmitOverflowBB(overflowBB);
1761      Builder.SetInsertPoint(DivCont);
1762    }
1763  }
1764  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1765    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1766    if (CGF.getContext().getLangOptions().OpenCL) {
1767      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1768      llvm::Type *ValTy = Val->getType();
1769      if (ValTy->isFloatTy() ||
1770          (isa<llvm::VectorType>(ValTy) &&
1771           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1772        CGF.SetFPAccuracy(Val, 5, 2);
1773    }
1774    return Val;
1775  }
1776  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1777    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1778  else
1779    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1780}
1781
1782Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1783  // Rem in C can't be a floating point type: C99 6.5.5p2.
1784  if (isTrapvOverflowBehavior()) {
1785    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1786
1787    if (Ops.Ty->isIntegerType())
1788      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1789  }
1790
1791  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1792    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1793  else
1794    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1795}
1796
1797Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1798  unsigned IID;
1799  unsigned OpID = 0;
1800
1801  switch (Ops.Opcode) {
1802  case BO_Add:
1803  case BO_AddAssign:
1804    OpID = 1;
1805    IID = llvm::Intrinsic::sadd_with_overflow;
1806    break;
1807  case BO_Sub:
1808  case BO_SubAssign:
1809    OpID = 2;
1810    IID = llvm::Intrinsic::ssub_with_overflow;
1811    break;
1812  case BO_Mul:
1813  case BO_MulAssign:
1814    OpID = 3;
1815    IID = llvm::Intrinsic::smul_with_overflow;
1816    break;
1817  default:
1818    llvm_unreachable("Unsupported operation for overflow detection");
1819    IID = 0;
1820  }
1821  OpID <<= 1;
1822  OpID |= 1;
1823
1824  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1825
1826  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1827
1828  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1829  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1830  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1831
1832  // Branch in case of overflow.
1833  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1834  llvm::Function::iterator insertPt = initialBB;
1835  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1836                                                      llvm::next(insertPt));
1837  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1838
1839  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1840
1841  // Handle overflow with llvm.trap.
1842  const std::string *handlerName =
1843    &CGF.getContext().getLangOptions().OverflowHandler;
1844  if (handlerName->empty()) {
1845    EmitOverflowBB(overflowBB);
1846    Builder.SetInsertPoint(continueBB);
1847    return result;
1848  }
1849
1850  // If an overflow handler is set, then we want to call it and then use its
1851  // result, if it returns.
1852  Builder.SetInsertPoint(overflowBB);
1853
1854  // Get the overflow handler.
1855  llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1856  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1857  llvm::FunctionType *handlerTy =
1858      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1859  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1860
1861  // Sign extend the args to 64-bit, so that we can use the same handler for
1862  // all types of overflow.
1863  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1864  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1865
1866  // Call the handler with the two arguments, the operation, and the size of
1867  // the result.
1868  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1869      Builder.getInt8(OpID),
1870      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1871
1872  // Truncate the result back to the desired size.
1873  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1874  Builder.CreateBr(continueBB);
1875
1876  Builder.SetInsertPoint(continueBB);
1877  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1878  phi->addIncoming(result, initialBB);
1879  phi->addIncoming(handlerResult, overflowBB);
1880
1881  return phi;
1882}
1883
1884/// Emit pointer + index arithmetic.
1885static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1886                                    const BinOpInfo &op,
1887                                    bool isSubtraction) {
1888  // Must have binary (not unary) expr here.  Unary pointer
1889  // increment/decrement doesn't use this path.
1890  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1891
1892  Value *pointer = op.LHS;
1893  Expr *pointerOperand = expr->getLHS();
1894  Value *index = op.RHS;
1895  Expr *indexOperand = expr->getRHS();
1896
1897  // In a subtraction, the LHS is always the pointer.
1898  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1899    std::swap(pointer, index);
1900    std::swap(pointerOperand, indexOperand);
1901  }
1902
1903  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1904  if (width != CGF.PointerWidthInBits) {
1905    // Zero-extend or sign-extend the pointer value according to
1906    // whether the index is signed or not.
1907    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1908    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1909                                      "idx.ext");
1910  }
1911
1912  // If this is subtraction, negate the index.
1913  if (isSubtraction)
1914    index = CGF.Builder.CreateNeg(index, "idx.neg");
1915
1916  const PointerType *pointerType
1917    = pointerOperand->getType()->getAs<PointerType>();
1918  if (!pointerType) {
1919    QualType objectType = pointerOperand->getType()
1920                                        ->castAs<ObjCObjectPointerType>()
1921                                        ->getPointeeType();
1922    llvm::Value *objectSize
1923      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1924
1925    index = CGF.Builder.CreateMul(index, objectSize);
1926
1927    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1928    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1929    return CGF.Builder.CreateBitCast(result, pointer->getType());
1930  }
1931
1932  QualType elementType = pointerType->getPointeeType();
1933  if (const VariableArrayType *vla
1934        = CGF.getContext().getAsVariableArrayType(elementType)) {
1935    // The element count here is the total number of non-VLA elements.
1936    llvm::Value *numElements = CGF.getVLASize(vla).first;
1937
1938    // Effectively, the multiply by the VLA size is part of the GEP.
1939    // GEP indexes are signed, and scaling an index isn't permitted to
1940    // signed-overflow, so we use the same semantics for our explicit
1941    // multiply.  We suppress this if overflow is not undefined behavior.
1942    if (CGF.getLangOptions().isSignedOverflowDefined()) {
1943      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1944      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1945    } else {
1946      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1947      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1948    }
1949    return pointer;
1950  }
1951
1952  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1953  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1954  // future proof.
1955  if (elementType->isVoidType() || elementType->isFunctionType()) {
1956    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1957    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1958    return CGF.Builder.CreateBitCast(result, pointer->getType());
1959  }
1960
1961  if (CGF.getLangOptions().isSignedOverflowDefined())
1962    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1963
1964  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1965}
1966
1967Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1968  if (op.LHS->getType()->isPointerTy() ||
1969      op.RHS->getType()->isPointerTy())
1970    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1971
1972  if (op.Ty->isSignedIntegerOrEnumerationType()) {
1973    switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1974    case LangOptions::SOB_Undefined:
1975      return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1976    case LangOptions::SOB_Defined:
1977      return Builder.CreateAdd(op.LHS, op.RHS, "add");
1978    case LangOptions::SOB_Trapping:
1979      return EmitOverflowCheckedBinOp(op);
1980    }
1981  }
1982
1983  if (op.LHS->getType()->isFPOrFPVectorTy())
1984    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1985
1986  return Builder.CreateAdd(op.LHS, op.RHS, "add");
1987}
1988
1989Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1990  // The LHS is always a pointer if either side is.
1991  if (!op.LHS->getType()->isPointerTy()) {
1992    if (op.Ty->isSignedIntegerOrEnumerationType()) {
1993      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1994      case LangOptions::SOB_Undefined:
1995        return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1996      case LangOptions::SOB_Defined:
1997        return Builder.CreateSub(op.LHS, op.RHS, "sub");
1998      case LangOptions::SOB_Trapping:
1999        return EmitOverflowCheckedBinOp(op);
2000      }
2001    }
2002
2003    if (op.LHS->getType()->isFPOrFPVectorTy())
2004      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2005
2006    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2007  }
2008
2009  // If the RHS is not a pointer, then we have normal pointer
2010  // arithmetic.
2011  if (!op.RHS->getType()->isPointerTy())
2012    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2013
2014  // Otherwise, this is a pointer subtraction.
2015
2016  // Do the raw subtraction part.
2017  llvm::Value *LHS
2018    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2019  llvm::Value *RHS
2020    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2021  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2022
2023  // Okay, figure out the element size.
2024  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2025  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2026
2027  llvm::Value *divisor = 0;
2028
2029  // For a variable-length array, this is going to be non-constant.
2030  if (const VariableArrayType *vla
2031        = CGF.getContext().getAsVariableArrayType(elementType)) {
2032    llvm::Value *numElements;
2033    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2034
2035    divisor = numElements;
2036
2037    // Scale the number of non-VLA elements by the non-VLA element size.
2038    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2039    if (!eltSize.isOne())
2040      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2041
2042  // For everything elese, we can just compute it, safe in the
2043  // assumption that Sema won't let anything through that we can't
2044  // safely compute the size of.
2045  } else {
2046    CharUnits elementSize;
2047    // Handle GCC extension for pointer arithmetic on void* and
2048    // function pointer types.
2049    if (elementType->isVoidType() || elementType->isFunctionType())
2050      elementSize = CharUnits::One();
2051    else
2052      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2053
2054    // Don't even emit the divide for element size of 1.
2055    if (elementSize.isOne())
2056      return diffInChars;
2057
2058    divisor = CGF.CGM.getSize(elementSize);
2059  }
2060
2061  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2062  // pointer difference in C is only defined in the case where both operands
2063  // are pointing to elements of an array.
2064  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2065}
2066
2067Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2068  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2069  // RHS to the same size as the LHS.
2070  Value *RHS = Ops.RHS;
2071  if (Ops.LHS->getType() != RHS->getType())
2072    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2073
2074  if (CGF.CatchUndefined
2075      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2076    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2077    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2078    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2079                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2080                             Cont, CGF.getTrapBB());
2081    CGF.EmitBlock(Cont);
2082  }
2083
2084  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2085}
2086
2087Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2088  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2089  // RHS to the same size as the LHS.
2090  Value *RHS = Ops.RHS;
2091  if (Ops.LHS->getType() != RHS->getType())
2092    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2093
2094  if (CGF.CatchUndefined
2095      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2096    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2097    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2098    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2099                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2100                             Cont, CGF.getTrapBB());
2101    CGF.EmitBlock(Cont);
2102  }
2103
2104  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2105    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2106  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2107}
2108
2109enum IntrinsicType { VCMPEQ, VCMPGT };
2110// return corresponding comparison intrinsic for given vector type
2111static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2112                                        BuiltinType::Kind ElemKind) {
2113  switch (ElemKind) {
2114  default: llvm_unreachable("unexpected element type");
2115  case BuiltinType::Char_U:
2116  case BuiltinType::UChar:
2117    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2118                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2119    break;
2120  case BuiltinType::Char_S:
2121  case BuiltinType::SChar:
2122    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2123                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2124    break;
2125  case BuiltinType::UShort:
2126    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2127                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2128    break;
2129  case BuiltinType::Short:
2130    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2131                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2132    break;
2133  case BuiltinType::UInt:
2134  case BuiltinType::ULong:
2135    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2136                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2137    break;
2138  case BuiltinType::Int:
2139  case BuiltinType::Long:
2140    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2141                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2142    break;
2143  case BuiltinType::Float:
2144    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2145                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2146    break;
2147  }
2148  return llvm::Intrinsic::not_intrinsic;
2149}
2150
2151Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2152                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2153  TestAndClearIgnoreResultAssign();
2154  Value *Result;
2155  QualType LHSTy = E->getLHS()->getType();
2156  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2157    assert(E->getOpcode() == BO_EQ ||
2158           E->getOpcode() == BO_NE);
2159    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2160    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2161    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2162                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2163  } else if (!LHSTy->isAnyComplexType()) {
2164    Value *LHS = Visit(E->getLHS());
2165    Value *RHS = Visit(E->getRHS());
2166
2167    // If AltiVec, the comparison results in a numeric type, so we use
2168    // intrinsics comparing vectors and giving 0 or 1 as a result
2169    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2170      // constants for mapping CR6 register bits to predicate result
2171      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2172
2173      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2174
2175      // in several cases vector arguments order will be reversed
2176      Value *FirstVecArg = LHS,
2177            *SecondVecArg = RHS;
2178
2179      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2180      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2181      BuiltinType::Kind ElementKind = BTy->getKind();
2182
2183      switch(E->getOpcode()) {
2184      default: llvm_unreachable("is not a comparison operation");
2185      case BO_EQ:
2186        CR6 = CR6_LT;
2187        ID = GetIntrinsic(VCMPEQ, ElementKind);
2188        break;
2189      case BO_NE:
2190        CR6 = CR6_EQ;
2191        ID = GetIntrinsic(VCMPEQ, ElementKind);
2192        break;
2193      case BO_LT:
2194        CR6 = CR6_LT;
2195        ID = GetIntrinsic(VCMPGT, ElementKind);
2196        std::swap(FirstVecArg, SecondVecArg);
2197        break;
2198      case BO_GT:
2199        CR6 = CR6_LT;
2200        ID = GetIntrinsic(VCMPGT, ElementKind);
2201        break;
2202      case BO_LE:
2203        if (ElementKind == BuiltinType::Float) {
2204          CR6 = CR6_LT;
2205          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2206          std::swap(FirstVecArg, SecondVecArg);
2207        }
2208        else {
2209          CR6 = CR6_EQ;
2210          ID = GetIntrinsic(VCMPGT, ElementKind);
2211        }
2212        break;
2213      case BO_GE:
2214        if (ElementKind == BuiltinType::Float) {
2215          CR6 = CR6_LT;
2216          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2217        }
2218        else {
2219          CR6 = CR6_EQ;
2220          ID = GetIntrinsic(VCMPGT, ElementKind);
2221          std::swap(FirstVecArg, SecondVecArg);
2222        }
2223        break;
2224      }
2225
2226      Value *CR6Param = Builder.getInt32(CR6);
2227      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2228      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2229      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2230    }
2231
2232    if (LHS->getType()->isFPOrFPVectorTy()) {
2233      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2234                                  LHS, RHS, "cmp");
2235    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2236      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2237                                  LHS, RHS, "cmp");
2238    } else {
2239      // Unsigned integers and pointers.
2240      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2241                                  LHS, RHS, "cmp");
2242    }
2243
2244    // If this is a vector comparison, sign extend the result to the appropriate
2245    // vector integer type and return it (don't convert to bool).
2246    if (LHSTy->isVectorType())
2247      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2248
2249  } else {
2250    // Complex Comparison: can only be an equality comparison.
2251    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2252    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2253
2254    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2255
2256    Value *ResultR, *ResultI;
2257    if (CETy->isRealFloatingType()) {
2258      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2259                                   LHS.first, RHS.first, "cmp.r");
2260      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2261                                   LHS.second, RHS.second, "cmp.i");
2262    } else {
2263      // Complex comparisons can only be equality comparisons.  As such, signed
2264      // and unsigned opcodes are the same.
2265      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2266                                   LHS.first, RHS.first, "cmp.r");
2267      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2268                                   LHS.second, RHS.second, "cmp.i");
2269    }
2270
2271    if (E->getOpcode() == BO_EQ) {
2272      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2273    } else {
2274      assert(E->getOpcode() == BO_NE &&
2275             "Complex comparison other than == or != ?");
2276      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2277    }
2278  }
2279
2280  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2281}
2282
2283Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2284  bool Ignore = TestAndClearIgnoreResultAssign();
2285
2286  Value *RHS;
2287  LValue LHS;
2288
2289  switch (E->getLHS()->getType().getObjCLifetime()) {
2290  case Qualifiers::OCL_Strong:
2291    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2292    break;
2293
2294  case Qualifiers::OCL_Autoreleasing:
2295    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2296    break;
2297
2298  case Qualifiers::OCL_Weak:
2299    RHS = Visit(E->getRHS());
2300    LHS = EmitCheckedLValue(E->getLHS());
2301    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2302    break;
2303
2304  // No reason to do any of these differently.
2305  case Qualifiers::OCL_None:
2306  case Qualifiers::OCL_ExplicitNone:
2307    // __block variables need to have the rhs evaluated first, plus
2308    // this should improve codegen just a little.
2309    RHS = Visit(E->getRHS());
2310    LHS = EmitCheckedLValue(E->getLHS());
2311
2312    // Store the value into the LHS.  Bit-fields are handled specially
2313    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2314    // 'An assignment expression has the value of the left operand after
2315    // the assignment...'.
2316    if (LHS.isBitField())
2317      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2318    else
2319      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2320  }
2321
2322  // If the result is clearly ignored, return now.
2323  if (Ignore)
2324    return 0;
2325
2326  // The result of an assignment in C is the assigned r-value.
2327  if (!CGF.getContext().getLangOptions().CPlusPlus)
2328    return RHS;
2329
2330  // If the lvalue is non-volatile, return the computed value of the assignment.
2331  if (!LHS.isVolatileQualified())
2332    return RHS;
2333
2334  // Otherwise, reload the value.
2335  return EmitLoadOfLValue(LHS);
2336}
2337
2338Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2339  llvm::Type *ResTy = ConvertType(E->getType());
2340
2341  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2342  // If we have 1 && X, just emit X without inserting the control flow.
2343  bool LHSCondVal;
2344  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2345    if (LHSCondVal) { // If we have 1 && X, just emit X.
2346      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2347      // ZExt result to int or bool.
2348      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2349    }
2350
2351    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2352    if (!CGF.ContainsLabel(E->getRHS()))
2353      return llvm::Constant::getNullValue(ResTy);
2354  }
2355
2356  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2357  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2358
2359  CodeGenFunction::ConditionalEvaluation eval(CGF);
2360
2361  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2362  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2363
2364  // Any edges into the ContBlock are now from an (indeterminate number of)
2365  // edges from this first condition.  All of these values will be false.  Start
2366  // setting up the PHI node in the Cont Block for this.
2367  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2368                                            "", ContBlock);
2369  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2370       PI != PE; ++PI)
2371    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2372
2373  eval.begin(CGF);
2374  CGF.EmitBlock(RHSBlock);
2375  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2376  eval.end(CGF);
2377
2378  // Reaquire the RHS block, as there may be subblocks inserted.
2379  RHSBlock = Builder.GetInsertBlock();
2380
2381  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2382  // into the phi node for the edge with the value of RHSCond.
2383  if (CGF.getDebugInfo())
2384    // There is no need to emit line number for unconditional branch.
2385    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2386  CGF.EmitBlock(ContBlock);
2387  PN->addIncoming(RHSCond, RHSBlock);
2388
2389  // ZExt result to int.
2390  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2391}
2392
2393Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2394  llvm::Type *ResTy = ConvertType(E->getType());
2395
2396  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2397  // If we have 0 || X, just emit X without inserting the control flow.
2398  bool LHSCondVal;
2399  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2400    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2401      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2402      // ZExt result to int or bool.
2403      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2404    }
2405
2406    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2407    if (!CGF.ContainsLabel(E->getRHS()))
2408      return llvm::ConstantInt::get(ResTy, 1);
2409  }
2410
2411  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2412  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2413
2414  CodeGenFunction::ConditionalEvaluation eval(CGF);
2415
2416  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2417  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2418
2419  // Any edges into the ContBlock are now from an (indeterminate number of)
2420  // edges from this first condition.  All of these values will be true.  Start
2421  // setting up the PHI node in the Cont Block for this.
2422  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2423                                            "", ContBlock);
2424  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2425       PI != PE; ++PI)
2426    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2427
2428  eval.begin(CGF);
2429
2430  // Emit the RHS condition as a bool value.
2431  CGF.EmitBlock(RHSBlock);
2432  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2433
2434  eval.end(CGF);
2435
2436  // Reaquire the RHS block, as there may be subblocks inserted.
2437  RHSBlock = Builder.GetInsertBlock();
2438
2439  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2440  // into the phi node for the edge with the value of RHSCond.
2441  CGF.EmitBlock(ContBlock);
2442  PN->addIncoming(RHSCond, RHSBlock);
2443
2444  // ZExt result to int.
2445  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2446}
2447
2448Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2449  CGF.EmitIgnoredExpr(E->getLHS());
2450  CGF.EnsureInsertPoint();
2451  return Visit(E->getRHS());
2452}
2453
2454//===----------------------------------------------------------------------===//
2455//                             Other Operators
2456//===----------------------------------------------------------------------===//
2457
2458/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2459/// expression is cheap enough and side-effect-free enough to evaluate
2460/// unconditionally instead of conditionally.  This is used to convert control
2461/// flow into selects in some cases.
2462static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2463                                                   CodeGenFunction &CGF) {
2464  E = E->IgnoreParens();
2465
2466  // Anything that is an integer or floating point constant is fine.
2467  if (E->isConstantInitializer(CGF.getContext(), false))
2468    return true;
2469
2470  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2471  // X and Y are local variables.
2472  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2473    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2474      if (VD->hasLocalStorage() && !(CGF.getContext()
2475                                     .getCanonicalType(VD->getType())
2476                                     .isVolatileQualified()))
2477        return true;
2478
2479  return false;
2480}
2481
2482
2483Value *ScalarExprEmitter::
2484VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2485  TestAndClearIgnoreResultAssign();
2486
2487  // Bind the common expression if necessary.
2488  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2489
2490  Expr *condExpr = E->getCond();
2491  Expr *lhsExpr = E->getTrueExpr();
2492  Expr *rhsExpr = E->getFalseExpr();
2493
2494  // If the condition constant folds and can be elided, try to avoid emitting
2495  // the condition and the dead arm.
2496  bool CondExprBool;
2497  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2498    Expr *live = lhsExpr, *dead = rhsExpr;
2499    if (!CondExprBool) std::swap(live, dead);
2500
2501    // If the dead side doesn't have labels we need, just emit the Live part.
2502    if (!CGF.ContainsLabel(dead)) {
2503      Value *Result = Visit(live);
2504
2505      // If the live part is a throw expression, it acts like it has a void
2506      // type, so evaluating it returns a null Value*.  However, a conditional
2507      // with non-void type must return a non-null Value*.
2508      if (!Result && !E->getType()->isVoidType())
2509        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2510
2511      return Result;
2512    }
2513  }
2514
2515  // OpenCL: If the condition is a vector, we can treat this condition like
2516  // the select function.
2517  if (CGF.getContext().getLangOptions().OpenCL
2518      && condExpr->getType()->isVectorType()) {
2519    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2520    llvm::Value *LHS = Visit(lhsExpr);
2521    llvm::Value *RHS = Visit(rhsExpr);
2522
2523    llvm::Type *condType = ConvertType(condExpr->getType());
2524    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2525
2526    unsigned numElem = vecTy->getNumElements();
2527    llvm::Type *elemType = vecTy->getElementType();
2528
2529    std::vector<llvm::Constant*> Zvals;
2530    for (unsigned i = 0; i < numElem; ++i)
2531      Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2532
2533    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2534    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2535    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2536                                          llvm::VectorType::get(elemType,
2537                                                                numElem),
2538                                          "sext");
2539    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2540
2541    // Cast float to int to perform ANDs if necessary.
2542    llvm::Value *RHSTmp = RHS;
2543    llvm::Value *LHSTmp = LHS;
2544    bool wasCast = false;
2545    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2546    if (rhsVTy->getElementType()->isFloatTy()) {
2547      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2548      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2549      wasCast = true;
2550    }
2551
2552    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2553    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2554    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2555    if (wasCast)
2556      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2557
2558    return tmp5;
2559  }
2560
2561  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2562  // select instead of as control flow.  We can only do this if it is cheap and
2563  // safe to evaluate the LHS and RHS unconditionally.
2564  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2565      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2566    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2567    llvm::Value *LHS = Visit(lhsExpr);
2568    llvm::Value *RHS = Visit(rhsExpr);
2569    if (!LHS) {
2570      // If the conditional has void type, make sure we return a null Value*.
2571      assert(!RHS && "LHS and RHS types must match");
2572      return 0;
2573    }
2574    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2575  }
2576
2577  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2578  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2579  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2580
2581  CodeGenFunction::ConditionalEvaluation eval(CGF);
2582  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2583
2584  CGF.EmitBlock(LHSBlock);
2585  eval.begin(CGF);
2586  Value *LHS = Visit(lhsExpr);
2587  eval.end(CGF);
2588
2589  LHSBlock = Builder.GetInsertBlock();
2590  Builder.CreateBr(ContBlock);
2591
2592  CGF.EmitBlock(RHSBlock);
2593  eval.begin(CGF);
2594  Value *RHS = Visit(rhsExpr);
2595  eval.end(CGF);
2596
2597  RHSBlock = Builder.GetInsertBlock();
2598  CGF.EmitBlock(ContBlock);
2599
2600  // If the LHS or RHS is a throw expression, it will be legitimately null.
2601  if (!LHS)
2602    return RHS;
2603  if (!RHS)
2604    return LHS;
2605
2606  // Create a PHI node for the real part.
2607  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2608  PN->addIncoming(LHS, LHSBlock);
2609  PN->addIncoming(RHS, RHSBlock);
2610  return PN;
2611}
2612
2613Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2614  return Visit(E->getChosenSubExpr(CGF.getContext()));
2615}
2616
2617Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2618  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2619  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2620
2621  // If EmitVAArg fails, we fall back to the LLVM instruction.
2622  if (!ArgPtr)
2623    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2624
2625  // FIXME Volatility.
2626  return Builder.CreateLoad(ArgPtr);
2627}
2628
2629Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2630  return CGF.EmitBlockLiteral(block);
2631}
2632
2633Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2634  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2635  llvm::Type *DstTy = ConvertType(E->getType());
2636
2637  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2638  // a shuffle vector instead of a bitcast.
2639  llvm::Type *SrcTy = Src->getType();
2640  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2641    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2642    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2643    if ((numElementsDst == 3 && numElementsSrc == 4)
2644        || (numElementsDst == 4 && numElementsSrc == 3)) {
2645
2646
2647      // In the case of going from int4->float3, a bitcast is needed before
2648      // doing a shuffle.
2649      llvm::Type *srcElemTy =
2650      cast<llvm::VectorType>(SrcTy)->getElementType();
2651      llvm::Type *dstElemTy =
2652      cast<llvm::VectorType>(DstTy)->getElementType();
2653
2654      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2655          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2656        // Create a float type of the same size as the source or destination.
2657        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2658                                                                 numElementsSrc);
2659
2660        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2661      }
2662
2663      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2664
2665      SmallVector<llvm::Constant*, 3> Args;
2666      Args.push_back(Builder.getInt32(0));
2667      Args.push_back(Builder.getInt32(1));
2668      Args.push_back(Builder.getInt32(2));
2669
2670      if (numElementsDst == 4)
2671        Args.push_back(llvm::UndefValue::get(
2672                                             llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2673
2674      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2675
2676      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2677    }
2678  }
2679
2680  return Builder.CreateBitCast(Src, DstTy, "astype");
2681}
2682
2683Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2684  return CGF.EmitAtomicExpr(E).getScalarVal();
2685}
2686
2687//===----------------------------------------------------------------------===//
2688//                         Entry Point into this File
2689//===----------------------------------------------------------------------===//
2690
2691/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2692/// type, ignoring the result.
2693Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2694  assert(E && !hasAggregateLLVMType(E->getType()) &&
2695         "Invalid scalar expression to emit");
2696
2697  if (isa<CXXDefaultArgExpr>(E))
2698    disableDebugInfo();
2699  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2700    .Visit(const_cast<Expr*>(E));
2701  if (isa<CXXDefaultArgExpr>(E))
2702    enableDebugInfo();
2703  return V;
2704}
2705
2706/// EmitScalarConversion - Emit a conversion from the specified type to the
2707/// specified destination type, both of which are LLVM scalar types.
2708Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2709                                             QualType DstTy) {
2710  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2711         "Invalid scalar expression to emit");
2712  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2713}
2714
2715/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2716/// type to the specified destination type, where the destination type is an
2717/// LLVM scalar type.
2718Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2719                                                      QualType SrcTy,
2720                                                      QualType DstTy) {
2721  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2722         "Invalid complex -> scalar conversion");
2723  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2724                                                                DstTy);
2725}
2726
2727
2728llvm::Value *CodeGenFunction::
2729EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2730                        bool isInc, bool isPre) {
2731  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2732}
2733
2734LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2735  llvm::Value *V;
2736  // object->isa or (*object).isa
2737  // Generate code as for: *(Class*)object
2738  // build Class* type
2739  llvm::Type *ClassPtrTy = ConvertType(E->getType());
2740
2741  Expr *BaseExpr = E->getBase();
2742  if (BaseExpr->isRValue()) {
2743    V = CreateTempAlloca(ClassPtrTy, "resval");
2744    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2745    Builder.CreateStore(Src, V);
2746    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2747      MakeAddrLValue(V, E->getType()));
2748  } else {
2749    if (E->isArrow())
2750      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2751    else
2752      V = EmitLValue(BaseExpr).getAddress();
2753  }
2754
2755  // build Class* type
2756  ClassPtrTy = ClassPtrTy->getPointerTo();
2757  V = Builder.CreateBitCast(V, ClassPtrTy);
2758  return MakeAddrLValue(V, E->getType());
2759}
2760
2761
2762LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2763                                            const CompoundAssignOperator *E) {
2764  ScalarExprEmitter Scalar(*this);
2765  Value *Result = 0;
2766  switch (E->getOpcode()) {
2767#define COMPOUND_OP(Op)                                                       \
2768    case BO_##Op##Assign:                                                     \
2769      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2770                                             Result)
2771  COMPOUND_OP(Mul);
2772  COMPOUND_OP(Div);
2773  COMPOUND_OP(Rem);
2774  COMPOUND_OP(Add);
2775  COMPOUND_OP(Sub);
2776  COMPOUND_OP(Shl);
2777  COMPOUND_OP(Shr);
2778  COMPOUND_OP(And);
2779  COMPOUND_OP(Xor);
2780  COMPOUND_OP(Or);
2781#undef COMPOUND_OP
2782
2783  case BO_PtrMemD:
2784  case BO_PtrMemI:
2785  case BO_Mul:
2786  case BO_Div:
2787  case BO_Rem:
2788  case BO_Add:
2789  case BO_Sub:
2790  case BO_Shl:
2791  case BO_Shr:
2792  case BO_LT:
2793  case BO_GT:
2794  case BO_LE:
2795  case BO_GE:
2796  case BO_EQ:
2797  case BO_NE:
2798  case BO_And:
2799  case BO_Xor:
2800  case BO_Or:
2801  case BO_LAnd:
2802  case BO_LOr:
2803  case BO_Assign:
2804  case BO_Comma:
2805    llvm_unreachable("Not valid compound assignment operators");
2806  }
2807
2808  llvm_unreachable("Unhandled compound assignment operator");
2809}
2810