CGExprScalar.cpp revision 20733cd4fd5c9755cdfab583db862223c93732c8
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Target/TargetData.h"
28#include <cstdarg>
29
30using namespace clang;
31using namespace CodeGen;
32using llvm::Value;
33
34//===----------------------------------------------------------------------===//
35//                         Scalar Expression Emitter
36//===----------------------------------------------------------------------===//
37
38struct BinOpInfo {
39  Value *LHS;
40  Value *RHS;
41  QualType Ty;  // Computation Type.
42  const BinaryOperator *E;
43};
44
45namespace {
46class VISIBILITY_HIDDEN ScalarExprEmitter
47  : public StmtVisitor<ScalarExprEmitter, Value*> {
48  CodeGenFunction &CGF;
49  CGBuilderTy &Builder;
50
51public:
52
53  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
54    Builder(CGF.Builder) {
55  }
56
57  //===--------------------------------------------------------------------===//
58  //                               Utilities
59  //===--------------------------------------------------------------------===//
60
61  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
62  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
63
64  Value *EmitLoadOfLValue(LValue LV, QualType T) {
65    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
66  }
67
68  /// EmitLoadOfLValue - Given an expression with complex type that represents a
69  /// value l-value, this method emits the address of the l-value, then loads
70  /// and returns the result.
71  Value *EmitLoadOfLValue(const Expr *E) {
72    // FIXME: Volatile
73    return EmitLoadOfLValue(EmitLValue(E), E->getType());
74  }
75
76  /// EmitConversionToBool - Convert the specified expression value to a
77  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
78  Value *EmitConversionToBool(Value *Src, QualType DstTy);
79
80  /// EmitScalarConversion - Emit a conversion from the specified type to the
81  /// specified destination type, both of which are LLVM scalar types.
82  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
83
84  /// EmitComplexToScalarConversion - Emit a conversion from the specified
85  /// complex type to the specified destination type, where the destination
86  /// type is an LLVM scalar type.
87  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
88                                       QualType SrcTy, QualType DstTy);
89
90  //===--------------------------------------------------------------------===//
91  //                            Visitor Methods
92  //===--------------------------------------------------------------------===//
93
94  Value *VisitStmt(Stmt *S) {
95    S->dump(CGF.getContext().getSourceManager());
96    assert(0 && "Stmt can't have complex result type!");
97    return 0;
98  }
99  Value *VisitExpr(Expr *S);
100  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
101
102  // Leaves.
103  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
104    return llvm::ConstantInt::get(E->getValue());
105  }
106  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
107    return llvm::ConstantFP::get(E->getValue());
108  }
109  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
110    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
111  }
112  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
113    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
114  }
115  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
116    return llvm::Constant::getNullValue(ConvertType(E->getType()));
117  }
118  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
119    return llvm::Constant::getNullValue(ConvertType(E->getType()));
120  }
121  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
122    return llvm::ConstantInt::get(ConvertType(E->getType()),
123                                  CGF.getContext().typesAreCompatible(
124                                    E->getArgType1(), E->getArgType2()));
125  }
126  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
127  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
128    llvm::Value *V =
129      llvm::ConstantInt::get(llvm::Type::Int32Ty,
130                             CGF.GetIDForAddrOfLabel(E->getLabel()));
131
132    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
133  }
134
135  // l-values.
136  Value *VisitDeclRefExpr(DeclRefExpr *E) {
137    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
138      return llvm::ConstantInt::get(EC->getInitVal());
139    return EmitLoadOfLValue(E);
140  }
141  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
142    return CGF.EmitObjCSelectorExpr(E);
143  }
144  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
145    return CGF.EmitObjCProtocolExpr(E);
146  }
147  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
148    return EmitLoadOfLValue(E);
149  }
150  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
151    return EmitLoadOfLValue(E);
152  }
153  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
154    return EmitLoadOfLValue(E);
155  }
156  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
157    return CGF.EmitObjCMessageExpr(E).getScalarVal();
158  }
159
160  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
161  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
162  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
163  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
164  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
165    return EmitLoadOfLValue(E);
166  }
167  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
168  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
169
170  Value *VisitInitListExpr(InitListExpr *E) {
171    unsigned NumInitElements = E->getNumInits();
172
173    if (E->hadArrayRangeDesignator()) {
174      CGF.ErrorUnsupported(E, "GNU array range designator extension");
175    }
176
177    const llvm::VectorType *VType =
178      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
179
180    // We have a scalar in braces. Just use the first element.
181    if (!VType)
182      return Visit(E->getInit(0));
183
184    unsigned NumVectorElements = VType->getNumElements();
185    const llvm::Type *ElementType = VType->getElementType();
186
187    // Emit individual vector element stores.
188    llvm::Value *V = llvm::UndefValue::get(VType);
189
190    // Emit initializers
191    unsigned i;
192    for (i = 0; i < NumInitElements; ++i) {
193      Value *NewV = Visit(E->getInit(i));
194      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
195      V = Builder.CreateInsertElement(V, NewV, Idx);
196    }
197
198    // Emit remaining default initializers
199    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
200      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
201      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
202      V = Builder.CreateInsertElement(V, NewV, Idx);
203    }
204
205    return V;
206  }
207
208  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
209    return llvm::Constant::getNullValue(ConvertType(E->getType()));
210  }
211  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
212  Value *VisitCastExpr(const CastExpr *E) {
213    return EmitCastExpr(E->getSubExpr(), E->getType());
214  }
215  Value *EmitCastExpr(const Expr *E, QualType T);
216
217  Value *VisitCallExpr(const CallExpr *E) {
218    return CGF.EmitCallExpr(E).getScalarVal();
219  }
220
221  Value *VisitStmtExpr(const StmtExpr *E);
222
223  Value *VisitBlockDeclRefExpr(BlockDeclRefExpr *E);
224
225  // Unary Operators.
226  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
227  Value *VisitUnaryPostDec(const UnaryOperator *E) {
228    return VisitPrePostIncDec(E, false, false);
229  }
230  Value *VisitUnaryPostInc(const UnaryOperator *E) {
231    return VisitPrePostIncDec(E, true, false);
232  }
233  Value *VisitUnaryPreDec(const UnaryOperator *E) {
234    return VisitPrePostIncDec(E, false, true);
235  }
236  Value *VisitUnaryPreInc(const UnaryOperator *E) {
237    return VisitPrePostIncDec(E, true, true);
238  }
239  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
240    return EmitLValue(E->getSubExpr()).getAddress();
241  }
242  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
243  Value *VisitUnaryPlus(const UnaryOperator *E) {
244    return Visit(E->getSubExpr());
245  }
246  Value *VisitUnaryMinus    (const UnaryOperator *E);
247  Value *VisitUnaryNot      (const UnaryOperator *E);
248  Value *VisitUnaryLNot     (const UnaryOperator *E);
249  Value *VisitUnaryReal     (const UnaryOperator *E);
250  Value *VisitUnaryImag     (const UnaryOperator *E);
251  Value *VisitUnaryExtension(const UnaryOperator *E) {
252    return Visit(E->getSubExpr());
253  }
254  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
255  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
256    return Visit(DAE->getExpr());
257  }
258
259  // Binary Operators.
260  Value *EmitMul(const BinOpInfo &Ops) {
261    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
262  }
263  Value *EmitDiv(const BinOpInfo &Ops);
264  Value *EmitRem(const BinOpInfo &Ops);
265  Value *EmitAdd(const BinOpInfo &Ops);
266  Value *EmitSub(const BinOpInfo &Ops);
267  Value *EmitShl(const BinOpInfo &Ops);
268  Value *EmitShr(const BinOpInfo &Ops);
269  Value *EmitAnd(const BinOpInfo &Ops) {
270    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
271  }
272  Value *EmitXor(const BinOpInfo &Ops) {
273    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
274  }
275  Value *EmitOr (const BinOpInfo &Ops) {
276    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
277  }
278
279  BinOpInfo EmitBinOps(const BinaryOperator *E);
280  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
281                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
282
283  // Binary operators and binary compound assignment operators.
284#define HANDLEBINOP(OP) \
285  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
286    return Emit ## OP(EmitBinOps(E));                                      \
287  }                                                                        \
288  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
289    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
290  }
291  HANDLEBINOP(Mul);
292  HANDLEBINOP(Div);
293  HANDLEBINOP(Rem);
294  HANDLEBINOP(Add);
295  HANDLEBINOP(Sub);
296  HANDLEBINOP(Shl);
297  HANDLEBINOP(Shr);
298  HANDLEBINOP(And);
299  HANDLEBINOP(Xor);
300  HANDLEBINOP(Or);
301#undef HANDLEBINOP
302
303  // Comparisons.
304  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
305                     unsigned SICmpOpc, unsigned FCmpOpc);
306#define VISITCOMP(CODE, UI, SI, FP) \
307    Value *VisitBin##CODE(const BinaryOperator *E) { \
308      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
309                         llvm::FCmpInst::FP); }
310  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
311  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
312  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
313  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
314  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
315  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
316#undef VISITCOMP
317
318  Value *VisitBinAssign     (const BinaryOperator *E);
319
320  Value *VisitBinLAnd       (const BinaryOperator *E);
321  Value *VisitBinLOr        (const BinaryOperator *E);
322  Value *VisitBinComma      (const BinaryOperator *E);
323
324  // Other Operators.
325  Value *VisitBlockExpr(const BlockExpr *BE);
326  Value *VisitConditionalOperator(const ConditionalOperator *CO);
327  Value *VisitChooseExpr(ChooseExpr *CE);
328  Value *VisitVAArgExpr(VAArgExpr *VE);
329  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
330    return CGF.EmitObjCStringLiteral(E);
331  }
332  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
333};
334}  // end anonymous namespace.
335
336//===----------------------------------------------------------------------===//
337//                                Utilities
338//===----------------------------------------------------------------------===//
339
340/// EmitConversionToBool - Convert the specified expression value to a
341/// boolean (i1) truth value.  This is equivalent to "Val != 0".
342Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
343  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
344
345  if (SrcType->isRealFloatingType()) {
346    // Compare against 0.0 for fp scalars.
347    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
348    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
349  }
350
351  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
352         "Unknown scalar type to convert");
353
354  // Because of the type rules of C, we often end up computing a logical value,
355  // then zero extending it to int, then wanting it as a logical value again.
356  // Optimize this common case.
357  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
358    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
359      Value *Result = ZI->getOperand(0);
360      // If there aren't any more uses, zap the instruction to save space.
361      // Note that there can be more uses, for example if this
362      // is the result of an assignment.
363      if (ZI->use_empty())
364        ZI->eraseFromParent();
365      return Result;
366    }
367  }
368
369  // Compare against an integer or pointer null.
370  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
371  return Builder.CreateICmpNE(Src, Zero, "tobool");
372}
373
374/// EmitScalarConversion - Emit a conversion from the specified type to the
375/// specified destination type, both of which are LLVM scalar types.
376Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
377                                               QualType DstType) {
378  SrcType = CGF.getContext().getCanonicalType(SrcType);
379  DstType = CGF.getContext().getCanonicalType(DstType);
380  if (SrcType == DstType) return Src;
381
382  if (DstType->isVoidType()) return 0;
383
384  // Handle conversions to bool first, they are special: comparisons against 0.
385  if (DstType->isBooleanType())
386    return EmitConversionToBool(Src, SrcType);
387
388  const llvm::Type *DstTy = ConvertType(DstType);
389
390  // Ignore conversions like int -> uint.
391  if (Src->getType() == DstTy)
392    return Src;
393
394  // Handle pointer conversions next: pointers can only be converted
395  // to/from other pointers and integers. Check for pointer types in
396  // terms of LLVM, as some native types (like Obj-C id) may map to a
397  // pointer type.
398  if (isa<llvm::PointerType>(DstTy)) {
399    // The source value may be an integer, or a pointer.
400    if (isa<llvm::PointerType>(Src->getType()))
401      return Builder.CreateBitCast(Src, DstTy, "conv");
402    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
403    return Builder.CreateIntToPtr(Src, DstTy, "conv");
404  }
405
406  if (isa<llvm::PointerType>(Src->getType())) {
407    // Must be an ptr to int cast.
408    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
409    return Builder.CreatePtrToInt(Src, DstTy, "conv");
410  }
411
412  // A scalar can be splatted to an extended vector of the same element type
413  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
414    // Cast the scalar to element type
415    QualType EltTy = DstType->getAsExtVectorType()->getElementType();
416    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
417
418    // Insert the element in element zero of an undef vector
419    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
420    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
421    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
422
423    // Splat the element across to all elements
424    llvm::SmallVector<llvm::Constant*, 16> Args;
425    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
426    for (unsigned i = 0; i < NumElements; i++)
427      Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
428
429    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
430    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
431    return Yay;
432  }
433
434  // Allow bitcast from vector to integer/fp of the same size.
435  if (isa<llvm::VectorType>(Src->getType()) ||
436      isa<llvm::VectorType>(DstTy))
437    return Builder.CreateBitCast(Src, DstTy, "conv");
438
439  // Finally, we have the arithmetic types: real int/float.
440  if (isa<llvm::IntegerType>(Src->getType())) {
441    bool InputSigned = SrcType->isSignedIntegerType();
442    if (isa<llvm::IntegerType>(DstTy))
443      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
444    else if (InputSigned)
445      return Builder.CreateSIToFP(Src, DstTy, "conv");
446    else
447      return Builder.CreateUIToFP(Src, DstTy, "conv");
448  }
449
450  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
451  if (isa<llvm::IntegerType>(DstTy)) {
452    if (DstType->isSignedIntegerType())
453      return Builder.CreateFPToSI(Src, DstTy, "conv");
454    else
455      return Builder.CreateFPToUI(Src, DstTy, "conv");
456  }
457
458  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
459  if (DstTy->getTypeID() < Src->getType()->getTypeID())
460    return Builder.CreateFPTrunc(Src, DstTy, "conv");
461  else
462    return Builder.CreateFPExt(Src, DstTy, "conv");
463}
464
465/// EmitComplexToScalarConversion - Emit a conversion from the specified
466/// complex type to the specified destination type, where the destination
467/// type is an LLVM scalar type.
468Value *ScalarExprEmitter::
469EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
470                              QualType SrcTy, QualType DstTy) {
471  // Get the source element type.
472  SrcTy = SrcTy->getAsComplexType()->getElementType();
473
474  // Handle conversions to bool first, they are special: comparisons against 0.
475  if (DstTy->isBooleanType()) {
476    //  Complex != 0  -> (Real != 0) | (Imag != 0)
477    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
478    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
479    return Builder.CreateOr(Src.first, Src.second, "tobool");
480  }
481
482  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
483  // the imaginary part of the complex value is discarded and the value of the
484  // real part is converted according to the conversion rules for the
485  // corresponding real type.
486  return EmitScalarConversion(Src.first, SrcTy, DstTy);
487}
488
489
490//===----------------------------------------------------------------------===//
491//                            Visitor Methods
492//===----------------------------------------------------------------------===//
493
494Value *ScalarExprEmitter::VisitExpr(Expr *E) {
495  CGF.ErrorUnsupported(E, "scalar expression");
496  if (E->getType()->isVoidType())
497    return 0;
498  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
499}
500
501Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
502  llvm::SmallVector<llvm::Constant*, 32> indices;
503  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
504    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
505  }
506  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
507  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
508  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
509  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
510}
511
512Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
513  // Emit subscript expressions in rvalue context's.  For most cases, this just
514  // loads the lvalue formed by the subscript expr.  However, we have to be
515  // careful, because the base of a vector subscript is occasionally an rvalue,
516  // so we can't get it as an lvalue.
517  if (!E->getBase()->getType()->isVectorType())
518    return EmitLoadOfLValue(E);
519
520  // Handle the vector case.  The base must be a vector, the index must be an
521  // integer value.
522  Value *Base = Visit(E->getBase());
523  Value *Idx  = Visit(E->getIdx());
524
525  // FIXME: Convert Idx to i32 type.
526  return Builder.CreateExtractElement(Base, Idx, "vecext");
527}
528
529/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
530/// also handle things like function to pointer-to-function decay, and array to
531/// pointer decay.
532Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
533  const Expr *Op = E->getSubExpr();
534
535  // If this is due to array->pointer conversion, emit the array expression as
536  // an l-value.
537  if (Op->getType()->isArrayType()) {
538    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
539    // will not true when we add support for VLAs.
540    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
541
542    if (!Op->getType()->isVariableArrayType()) {
543      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
544      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
545                                 ->getElementType()) &&
546             "Expected pointer to array");
547      V = Builder.CreateStructGEP(V, 0, "arraydecay");
548    }
549
550    // The resultant pointer type can be implicitly casted to other pointer
551    // types as well (e.g. void*) and can be implicitly converted to integer.
552    const llvm::Type *DestTy = ConvertType(E->getType());
553    if (V->getType() != DestTy) {
554      if (isa<llvm::PointerType>(DestTy))
555        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
556      else {
557        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
558        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
559      }
560    }
561    return V;
562
563  } else if (E->getType()->isReferenceType()) {
564    return EmitLValue(Op).getAddress();
565  }
566
567  return EmitCastExpr(Op, E->getType());
568}
569
570
571// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
572// have to handle a more broad range of conversions than explicit casts, as they
573// handle things like function to ptr-to-function decay etc.
574Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
575  // Handle cases where the source is an non-complex type.
576
577  if (!CGF.hasAggregateLLVMType(E->getType())) {
578    Value *Src = Visit(const_cast<Expr*>(E));
579
580    // Use EmitScalarConversion to perform the conversion.
581    return EmitScalarConversion(Src, E->getType(), DestTy);
582  }
583
584  if (E->getType()->isAnyComplexType()) {
585    // Handle cases where the source is a complex type.
586    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
587                                         DestTy);
588  }
589
590  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
591  // evaluate the result and return.
592  CGF.EmitAggExpr(E, 0, false);
593  return 0;
594}
595
596Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
597  return CGF.EmitCompoundStmt(*E->getSubStmt(),
598                              !E->getType()->isVoidType()).getScalarVal();
599}
600
601Value *ScalarExprEmitter::VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
602  if (E->isByRef()) {
603    // FIXME: Add codegen for __block variables.
604    return VisitExpr(E);
605  }
606
607  // FIXME: We have most of the easy codegen for the helper, but we need to
608  // ensure we don't need copy/dispose, and we need to add the variables into
609  // the block literal still.
610  CGF.ErrorUnsupported(E, "scalar expression");
611
612  uint64_t &offset = CGF.BlockDecls[E->getDecl()];
613
614  const llvm::Type *Ty;
615  Ty = CGF.CGM.getTypes().ConvertType(E->getDecl()->getType());
616
617  // See if we have already allocated an offset for this variable.
618  if (offset == 0) {
619    // if not, allocate one now.
620    offset = CGF.getBlockOffset(E->getDecl());
621  }
622
623  llvm::Value *BlockLiteral = CGF.LoadBlockStruct();
624  llvm::Value *V = Builder.CreateGEP(BlockLiteral,
625                                     llvm::ConstantInt::get(llvm::Type::Int64Ty,
626                                                            offset),
627                                     "tmp");
628  Ty = llvm::PointerType::get(Ty, 0);
629  if (E->isByRef())
630    Ty = llvm::PointerType::get(Ty, 0);
631  V = Builder.CreateBitCast(V, Ty);
632  V = Builder.CreateLoad(V, false, "tmp");
633  if (E->isByRef())
634    V = Builder.CreateLoad(V, false, "tmp");
635  return V;
636}
637
638//===----------------------------------------------------------------------===//
639//                             Unary Operators
640//===----------------------------------------------------------------------===//
641
642Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
643                                             bool isInc, bool isPre) {
644  LValue LV = EmitLValue(E->getSubExpr());
645  // FIXME: Handle volatile!
646  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
647                                     E->getSubExpr()->getType()).getScalarVal();
648
649  int AmountVal = isInc ? 1 : -1;
650
651  Value *NextVal;
652  if (isa<llvm::PointerType>(InVal->getType())) {
653    // FIXME: This isn't right for VLAs.
654    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
655    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
656  } else if (InVal->getType() == llvm::Type::Int1Ty && isInc) {
657    // Bool++ is an interesting case, due to promotion rules, we get:
658    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
659    // Bool = ((int)Bool+1) != 0
660    // An interesting aspect of this is that increment is always true.
661    // Decrement does not have this property.
662    NextVal = llvm::ConstantInt::getTrue();
663  } else {
664    // Add the inc/dec to the real part.
665    if (isa<llvm::IntegerType>(InVal->getType()))
666      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
667    else if (InVal->getType() == llvm::Type::FloatTy)
668      NextVal =
669        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
670    else if (InVal->getType() == llvm::Type::DoubleTy)
671      NextVal =
672        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
673    else {
674      llvm::APFloat F(static_cast<float>(AmountVal));
675      bool ignored;
676      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
677                &ignored);
678      NextVal = llvm::ConstantFP::get(F);
679    }
680    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
681  }
682
683  // Store the updated result through the lvalue.
684  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
685                             E->getSubExpr()->getType());
686
687  // If this is a postinc, return the value read from memory, otherwise use the
688  // updated value.
689  return isPre ? NextVal : InVal;
690}
691
692
693Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
694  Value *Op = Visit(E->getSubExpr());
695  return Builder.CreateNeg(Op, "neg");
696}
697
698Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
699  Value *Op = Visit(E->getSubExpr());
700  return Builder.CreateNot(Op, "neg");
701}
702
703Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
704  // Compare operand to zero.
705  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
706
707  // Invert value.
708  // TODO: Could dynamically modify easy computations here.  For example, if
709  // the operand is an icmp ne, turn into icmp eq.
710  BoolVal = Builder.CreateNot(BoolVal, "lnot");
711
712  // ZExt result to int.
713  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
714}
715
716/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
717/// argument of the sizeof expression as an integer.
718Value *
719ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
720  QualType TypeToSize = E->getTypeOfArgument();
721  if (E->isSizeOf()) {
722    if (const VariableArrayType *VAT =
723          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
724      if (E->isArgumentType()) {
725        // sizeof(type) - make sure to emit the VLA size.
726        CGF.EmitVLASize(TypeToSize);
727      }
728
729      return CGF.GetVLASize(VAT);
730    }
731  }
732
733  // If this isn't sizeof(vla), the result must be constant; use the
734  // constant folding logic so we don't have to duplicate it here.
735  Expr::EvalResult Result;
736  E->Evaluate(Result, CGF.getContext());
737  return llvm::ConstantInt::get(Result.Val.getInt());
738}
739
740Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
741  Expr *Op = E->getSubExpr();
742  if (Op->getType()->isAnyComplexType())
743    return CGF.EmitComplexExpr(Op).first;
744  return Visit(Op);
745}
746Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
747  Expr *Op = E->getSubExpr();
748  if (Op->getType()->isAnyComplexType())
749    return CGF.EmitComplexExpr(Op).second;
750
751  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
752  // effects are evaluated.
753  CGF.EmitScalarExpr(Op);
754  return llvm::Constant::getNullValue(ConvertType(E->getType()));
755}
756
757Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
758{
759  const Expr* SubExpr = E->getSubExpr();
760  const llvm::Type* ResultType = ConvertType(E->getType());
761  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
762  while (!isa<CompoundLiteralExpr>(SubExpr)) {
763    if (const MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr)) {
764      SubExpr = ME->getBase();
765      QualType Ty = SubExpr->getType();
766
767      RecordDecl *RD = Ty->getAsRecordType()->getDecl();
768      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
769      FieldDecl *FD = cast<FieldDecl>(ME->getMemberDecl());
770
771      // FIXME: This is linear time. And the fact that we're indexing
772      // into the layout by position in the record means that we're
773      // either stuck numbering the fields in the AST or we have to keep
774      // the linear search (yuck and yuck).
775      unsigned i = 0;
776      for (RecordDecl::field_iterator Field = RD->field_begin(),
777                                   FieldEnd = RD->field_end();
778           Field != FieldEnd; (void)++Field, ++i) {
779        if (*Field == FD)
780          break;
781      }
782
783      llvm::Value* Offset =
784          llvm::ConstantInt::get(ResultType, RL.getFieldOffset(i) / 8);
785      Result = Builder.CreateAdd(Result, Offset);
786    } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
787      SubExpr = ASE->getBase();
788      int64_t size = CGF.getContext().getTypeSize(ASE->getType()) / 8;
789      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, size);
790      llvm::Value* ElemIndex = CGF.EmitScalarExpr(ASE->getIdx());
791      bool IndexSigned = ASE->getIdx()->getType()->isSignedIntegerType();
792      ElemIndex = Builder.CreateIntCast(ElemIndex, ResultType, IndexSigned);
793      llvm::Value* Offset = Builder.CreateMul(ElemSize, ElemIndex);
794      Result = Builder.CreateAdd(Result, Offset);
795    } else {
796      assert(0 && "This should be impossible!");
797    }
798  }
799  return Result;
800}
801
802//===----------------------------------------------------------------------===//
803//                           Binary Operators
804//===----------------------------------------------------------------------===//
805
806BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
807  BinOpInfo Result;
808  Result.LHS = Visit(E->getLHS());
809  Result.RHS = Visit(E->getRHS());
810  Result.Ty  = E->getType();
811  Result.E = E;
812  return Result;
813}
814
815Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
816                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
817  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
818
819  BinOpInfo OpInfo;
820
821  // Load the LHS and RHS operands.
822  LValue LHSLV = EmitLValue(E->getLHS());
823  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
824
825  // Determine the computation type.  If the RHS is complex, then this is one of
826  // the add/sub/mul/div operators.  All of these operators can be computed in
827  // with just their real component even though the computation domain really is
828  // complex.
829  QualType ComputeType = E->getComputationType();
830
831  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
832  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
833    ComputeType = CT->getElementType();
834
835    // Emit the RHS, only keeping the real component.
836    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
837    RHSTy = RHSTy->getAsComplexType()->getElementType();
838  } else {
839    // Otherwise the RHS is a simple scalar value.
840    OpInfo.RHS = Visit(E->getRHS());
841  }
842
843  QualType LComputeTy, RComputeTy, ResultTy;
844
845  // Compound assignment does not contain enough information about all
846  // the types involved for pointer arithmetic cases. Figure it out
847  // here for now.
848  if (E->getLHS()->getType()->isPointerType()) {
849    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
850    assert((E->getOpcode() == BinaryOperator::AddAssign ||
851            E->getOpcode() == BinaryOperator::SubAssign) &&
852           "Invalid compound assignment operator on pointer type.");
853    LComputeTy = E->getLHS()->getType();
854
855    if (E->getRHS()->getType()->isPointerType()) {
856      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
857      // extension, the conversion from the pointer difference back to
858      // the LHS type is handled at the end.
859      assert(E->getOpcode() == BinaryOperator::SubAssign &&
860             "Invalid compound assignment operator on pointer type.");
861      RComputeTy = E->getLHS()->getType();
862      ResultTy = CGF.getContext().getPointerDiffType();
863    } else {
864      RComputeTy = E->getRHS()->getType();
865      ResultTy = LComputeTy;
866    }
867  } else if (E->getRHS()->getType()->isPointerType()) {
868    // Degenerate case of (int += ptr) allowed by GCC implicit cast
869    // extension.
870    assert(E->getOpcode() == BinaryOperator::AddAssign &&
871           "Invalid compound assignment operator on pointer type.");
872    LComputeTy = E->getLHS()->getType();
873    RComputeTy = E->getRHS()->getType();
874    ResultTy = RComputeTy;
875  } else {
876    LComputeTy = RComputeTy = ResultTy = ComputeType;
877  }
878
879  // Convert the LHS/RHS values to the computation type.
880  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
881  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
882  OpInfo.Ty = ResultTy;
883  OpInfo.E = E;
884
885  // Expand the binary operator.
886  Value *Result = (this->*Func)(OpInfo);
887
888  // Convert the result back to the LHS type.
889  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
890
891  // Store the result value into the LHS lvalue. Bit-fields are
892  // handled specially because the result is altered by the store,
893  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
894  // the left operand after the assignment...'.
895  if (LHSLV.isBitfield())
896    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
897                                       &Result);
898  else
899    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
900
901  return Result;
902}
903
904
905Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
906  if (Ops.LHS->getType()->isFPOrFPVector())
907    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
908  else if (Ops.Ty->isUnsignedIntegerType())
909    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
910  else
911    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
912}
913
914Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
915  // Rem in C can't be a floating point type: C99 6.5.5p2.
916  if (Ops.Ty->isUnsignedIntegerType())
917    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
918  else
919    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
920}
921
922
923Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
924  if (!Ops.Ty->isPointerType())
925    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
926
927  // FIXME: What about a pointer to a VLA?
928  Value *Ptr, *Idx;
929  Expr *IdxExp;
930  const PointerType *PT;
931  if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
932    Ptr = Ops.LHS;
933    Idx = Ops.RHS;
934    IdxExp = Ops.E->getRHS();
935  } else {                                           // int + pointer
936    PT = Ops.E->getRHS()->getType()->getAsPointerType();
937    assert(PT && "Invalid add expr");
938    Ptr = Ops.RHS;
939    Idx = Ops.LHS;
940    IdxExp = Ops.E->getLHS();
941  }
942
943  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
944  if (Width < CGF.LLVMPointerWidth) {
945    // Zero or sign extend the pointer value based on whether the index is
946    // signed or not.
947    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
948    if (IdxExp->getType()->isSignedIntegerType())
949      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
950    else
951      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
952  }
953
954  // Explicitly handle GNU void* and function pointer arithmetic
955  // extensions. The GNU void* casts amount to no-ops since our void*
956  // type is i8*, but this is future proof.
957  const QualType ElementType = PT->getPointeeType();
958  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
959    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
960    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
961    Value *Res = Builder.CreateGEP(Casted, Idx, "sub.ptr");
962    return Builder.CreateBitCast(Res, Ptr->getType());
963  }
964
965  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
966}
967
968Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
969  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
970    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
971
972  const QualType LHSType = Ops.E->getLHS()->getType();
973  const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
974  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
975    // pointer - int
976    Value *Idx = Ops.RHS;
977    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
978    if (Width < CGF.LLVMPointerWidth) {
979      // Zero or sign extend the pointer value based on whether the index is
980      // signed or not.
981      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
982      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
983        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
984      else
985        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
986    }
987    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
988
989    // FIXME: The pointer could point to a VLA.
990
991    // Explicitly handle GNU void* and function pointer arithmetic
992    // extensions. The GNU void* casts amount to no-ops since our
993    // void* type is i8*, but this is future proof.
994    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
995      const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
996      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
997      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
998      return Builder.CreateBitCast(Res, Ops.LHS->getType());
999    }
1000
1001    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1002  } else {
1003    // pointer - pointer
1004    Value *LHS = Ops.LHS;
1005    Value *RHS = Ops.RHS;
1006
1007    uint64_t ElementSize;
1008
1009    // Handle GCC extension for pointer arithmetic on void* and function pointer
1010    // types.
1011    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1012      ElementSize = 1;
1013    } else {
1014      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1015    }
1016
1017    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1018    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1019    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1020    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1021
1022    // Optimize out the shift for element size of 1.
1023    if (ElementSize == 1)
1024      return BytesBetween;
1025
1026    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
1027    // remainder.  As such, we handle common power-of-two cases here to generate
1028    // better code. See PR2247.
1029    if (llvm::isPowerOf2_64(ElementSize)) {
1030      Value *ShAmt =
1031        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
1032      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
1033    }
1034
1035    // Otherwise, do a full sdiv.
1036    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1037    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1038  }
1039}
1040
1041Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1042  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1043  // RHS to the same size as the LHS.
1044  Value *RHS = Ops.RHS;
1045  if (Ops.LHS->getType() != RHS->getType())
1046    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1047
1048  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1049}
1050
1051Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1052  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1053  // RHS to the same size as the LHS.
1054  Value *RHS = Ops.RHS;
1055  if (Ops.LHS->getType() != RHS->getType())
1056    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1057
1058  if (Ops.Ty->isUnsignedIntegerType())
1059    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1060  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1061}
1062
1063Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1064                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1065  Value *Result;
1066  QualType LHSTy = E->getLHS()->getType();
1067  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
1068    Value *LHS = Visit(E->getLHS());
1069    Value *RHS = Visit(E->getRHS());
1070
1071    if (LHS->getType()->isFloatingPoint()) {
1072      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1073                                  LHS, RHS, "cmp");
1074    } else if (LHSTy->isSignedIntegerType()) {
1075      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1076                                  LHS, RHS, "cmp");
1077    } else {
1078      // Unsigned integers and pointers.
1079      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1080                                  LHS, RHS, "cmp");
1081    }
1082  } else if (LHSTy->isVectorType()) {
1083    Value *LHS = Visit(E->getLHS());
1084    Value *RHS = Visit(E->getRHS());
1085
1086    if (LHS->getType()->isFPOrFPVector()) {
1087      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1088                                  LHS, RHS, "cmp");
1089    } else if (LHSTy->isUnsignedIntegerType()) {
1090      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
1091                                  LHS, RHS, "cmp");
1092    } else {
1093      // Signed integers and pointers.
1094      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
1095                                  LHS, RHS, "cmp");
1096    }
1097    return Result;
1098  } else {
1099    // Complex Comparison: can only be an equality comparison.
1100    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1101    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1102
1103    QualType CETy = LHSTy->getAsComplexType()->getElementType();
1104
1105    Value *ResultR, *ResultI;
1106    if (CETy->isRealFloatingType()) {
1107      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1108                                   LHS.first, RHS.first, "cmp.r");
1109      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1110                                   LHS.second, RHS.second, "cmp.i");
1111    } else {
1112      // Complex comparisons can only be equality comparisons.  As such, signed
1113      // and unsigned opcodes are the same.
1114      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1115                                   LHS.first, RHS.first, "cmp.r");
1116      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1117                                   LHS.second, RHS.second, "cmp.i");
1118    }
1119
1120    if (E->getOpcode() == BinaryOperator::EQ) {
1121      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1122    } else {
1123      assert(E->getOpcode() == BinaryOperator::NE &&
1124             "Complex comparison other than == or != ?");
1125      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1126    }
1127  }
1128
1129  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1130}
1131
1132Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1133  LValue LHS = EmitLValue(E->getLHS());
1134  Value *RHS = Visit(E->getRHS());
1135
1136  // Store the value into the LHS.  Bit-fields are handled specially
1137  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1138  // 'An assignment expression has the value of the left operand after
1139  // the assignment...'.
1140  // FIXME: Volatility!
1141  if (LHS.isBitfield())
1142    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1143                                       &RHS);
1144  else
1145    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1146
1147  // Return the RHS.
1148  return RHS;
1149}
1150
1151Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1152  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1153  // If we have 1 && X, just emit X without inserting the control flow.
1154  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1155    if (Cond == 1) { // If we have 1 && X, just emit X.
1156      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1157      // ZExt result to int.
1158      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1159    }
1160
1161    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1162    if (!CGF.ContainsLabel(E->getRHS()))
1163      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1164  }
1165
1166  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1167  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1168
1169  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1170  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1171
1172  // Any edges into the ContBlock are now from an (indeterminate number of)
1173  // edges from this first condition.  All of these values will be false.  Start
1174  // setting up the PHI node in the Cont Block for this.
1175  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1176  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1177  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1178       PI != PE; ++PI)
1179    PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
1180
1181  CGF.EmitBlock(RHSBlock);
1182  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1183
1184  // Reaquire the RHS block, as there may be subblocks inserted.
1185  RHSBlock = Builder.GetInsertBlock();
1186
1187  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1188  // into the phi node for the edge with the value of RHSCond.
1189  CGF.EmitBlock(ContBlock);
1190  PN->addIncoming(RHSCond, RHSBlock);
1191
1192  // ZExt result to int.
1193  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1194}
1195
1196Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1197  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1198  // If we have 0 || X, just emit X without inserting the control flow.
1199  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1200    if (Cond == -1) { // If we have 0 || X, just emit X.
1201      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1202      // ZExt result to int.
1203      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1204    }
1205
1206    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1207    if (!CGF.ContainsLabel(E->getRHS()))
1208      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1209  }
1210
1211  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1212  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1213
1214  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1215  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1216
1217  // Any edges into the ContBlock are now from an (indeterminate number of)
1218  // edges from this first condition.  All of these values will be true.  Start
1219  // setting up the PHI node in the Cont Block for this.
1220  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1221  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1222  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1223       PI != PE; ++PI)
1224    PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1225
1226  // Emit the RHS condition as a bool value.
1227  CGF.EmitBlock(RHSBlock);
1228  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1229
1230  // Reaquire the RHS block, as there may be subblocks inserted.
1231  RHSBlock = Builder.GetInsertBlock();
1232
1233  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1234  // into the phi node for the edge with the value of RHSCond.
1235  CGF.EmitBlock(ContBlock);
1236  PN->addIncoming(RHSCond, RHSBlock);
1237
1238  // ZExt result to int.
1239  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1240}
1241
1242Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1243  CGF.EmitStmt(E->getLHS());
1244  CGF.EnsureInsertPoint();
1245  return Visit(E->getRHS());
1246}
1247
1248//===----------------------------------------------------------------------===//
1249//                             Other Operators
1250//===----------------------------------------------------------------------===//
1251
1252/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1253/// expression is cheap enough and side-effect-free enough to evaluate
1254/// unconditionally instead of conditionally.  This is used to convert control
1255/// flow into selects in some cases.
1256static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1257  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1258    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1259
1260  // TODO: Allow anything we can constant fold to an integer or fp constant.
1261  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1262      isa<FloatingLiteral>(E))
1263    return true;
1264
1265  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1266  // X and Y are local variables.
1267  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1268    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1269      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1270        return true;
1271
1272  return false;
1273}
1274
1275
1276Value *ScalarExprEmitter::
1277VisitConditionalOperator(const ConditionalOperator *E) {
1278  // If the condition constant folds and can be elided, try to avoid emitting
1279  // the condition and the dead arm.
1280  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1281    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1282    if (Cond == -1)
1283      std::swap(Live, Dead);
1284
1285    // If the dead side doesn't have labels we need, and if the Live side isn't
1286    // the gnu missing ?: extension (which we could handle, but don't bother
1287    // to), just emit the Live part.
1288    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1289        Live)                                   // Live part isn't missing.
1290      return Visit(Live);
1291  }
1292
1293
1294  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1295  // select instead of as control flow.  We can only do this if it is cheap and
1296  // safe to evaluate the LHS and RHS unconditionally.
1297  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1298      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1299    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1300    llvm::Value *LHS = Visit(E->getLHS());
1301    llvm::Value *RHS = Visit(E->getRHS());
1302    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1303  }
1304
1305
1306  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1307  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1308  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1309  Value *CondVal = 0;
1310
1311  // If we don't have the GNU missing condition extension, emit a branch on
1312  // bool the normal way.
1313  if (E->getLHS()) {
1314    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1315    // the branch on bool.
1316    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1317  } else {
1318    // Otherwise, for the ?: extension, evaluate the conditional and then
1319    // convert it to bool the hard way.  We do this explicitly because we need
1320    // the unconverted value for the missing middle value of the ?:.
1321    CondVal = CGF.EmitScalarExpr(E->getCond());
1322
1323    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1324    // if there are no extra uses (an optimization).  Inhibit this by making an
1325    // extra dead use, because we're going to add a use of CondVal later.  We
1326    // don't use the builder for this, because we don't want it to get optimized
1327    // away.  This leaves dead code, but the ?: extension isn't common.
1328    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1329                          Builder.GetInsertBlock());
1330
1331    Value *CondBoolVal =
1332      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1333                               CGF.getContext().BoolTy);
1334    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1335  }
1336
1337  CGF.EmitBlock(LHSBlock);
1338
1339  // Handle the GNU extension for missing LHS.
1340  Value *LHS;
1341  if (E->getLHS())
1342    LHS = Visit(E->getLHS());
1343  else    // Perform promotions, to handle cases like "short ?: int"
1344    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1345
1346  LHSBlock = Builder.GetInsertBlock();
1347  CGF.EmitBranch(ContBlock);
1348
1349  CGF.EmitBlock(RHSBlock);
1350
1351  Value *RHS = Visit(E->getRHS());
1352  RHSBlock = Builder.GetInsertBlock();
1353  CGF.EmitBranch(ContBlock);
1354
1355  CGF.EmitBlock(ContBlock);
1356
1357  if (!LHS || !RHS) {
1358    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1359    return 0;
1360  }
1361
1362  // Create a PHI node for the real part.
1363  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1364  PN->reserveOperandSpace(2);
1365  PN->addIncoming(LHS, LHSBlock);
1366  PN->addIncoming(RHS, RHSBlock);
1367  return PN;
1368}
1369
1370Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1371  // Emit the LHS or RHS as appropriate.
1372  return
1373    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1374}
1375
1376Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1377  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1378  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1379
1380  // If EmitVAArg fails, we fall back to the LLVM instruction.
1381  if (!ArgPtr)
1382    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1383
1384  // FIXME: volatile?
1385  return Builder.CreateLoad(ArgPtr);
1386}
1387
1388Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1389  std::string str;
1390  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
1391
1392  llvm::Constant *C = llvm::ConstantArray::get(str);
1393  C = new llvm::GlobalVariable(C->getType(), true,
1394                               llvm::GlobalValue::InternalLinkage,
1395                               C, ".str", &CGF.CGM.getModule());
1396  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1397  llvm::Constant *Zeros[] = { Zero, Zero };
1398  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1399
1400  return C;
1401}
1402
1403
1404Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1405  llvm::Constant *C = CGF.BuildBlockLiteralTmp(BE);
1406  return C;
1407}
1408
1409//===----------------------------------------------------------------------===//
1410//                         Entry Point into this File
1411//===----------------------------------------------------------------------===//
1412
1413/// EmitComplexExpr - Emit the computation of the specified expression of
1414/// complex type, ignoring the result.
1415Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1416  assert(E && !hasAggregateLLVMType(E->getType()) &&
1417         "Invalid scalar expression to emit");
1418
1419  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1420}
1421
1422/// EmitScalarConversion - Emit a conversion from the specified type to the
1423/// specified destination type, both of which are LLVM scalar types.
1424Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1425                                             QualType DstTy) {
1426  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1427         "Invalid scalar expression to emit");
1428  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1429}
1430
1431/// EmitComplexToScalarConversion - Emit a conversion from the specified
1432/// complex type to the specified destination type, where the destination
1433/// type is an LLVM scalar type.
1434Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1435                                                      QualType SrcTy,
1436                                                      QualType DstTy) {
1437  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1438         "Invalid complex -> scalar conversion");
1439  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1440                                                                DstTy);
1441}
1442
1443Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1444  assert(V1->getType() == V2->getType() &&
1445         "Vector operands must be of the same type");
1446  unsigned NumElements =
1447    cast<llvm::VectorType>(V1->getType())->getNumElements();
1448
1449  va_list va;
1450  va_start(va, V2);
1451
1452  llvm::SmallVector<llvm::Constant*, 16> Args;
1453  for (unsigned i = 0; i < NumElements; i++) {
1454    int n = va_arg(va, int);
1455    assert(n >= 0 && n < (int)NumElements * 2 &&
1456           "Vector shuffle index out of bounds!");
1457    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1458  }
1459
1460  const char *Name = va_arg(va, const char *);
1461  va_end(va);
1462
1463  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1464
1465  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1466}
1467
1468llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1469                                         unsigned NumVals, bool isSplat) {
1470  llvm::Value *Vec
1471    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1472
1473  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1474    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1475    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1476    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1477  }
1478
1479  return Vec;
1480}
1481