CGExprScalar.cpp revision 25b825d1a48fb4d64cb553bef7a316469e89c46a
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Target/TargetData.h"
30#include <cstdarg>
31
32using namespace clang;
33using namespace CodeGen;
34using llvm::Value;
35
36//===----------------------------------------------------------------------===//
37//                         Scalar Expression Emitter
38//===----------------------------------------------------------------------===//
39
40struct BinOpInfo {
41  Value *LHS;
42  Value *RHS;
43  QualType Ty;  // Computation Type.
44  const BinaryOperator *E;
45};
46
47namespace {
48class VISIBILITY_HIDDEN ScalarExprEmitter
49  : public StmtVisitor<ScalarExprEmitter, Value*> {
50  CodeGenFunction &CGF;
51  CGBuilderTy &Builder;
52  bool IgnoreResultAssign;
53  llvm::LLVMContext &VMContext;
54public:
55
56  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
57    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
58      VMContext(cgf.getLLVMContext()) {
59  }
60
61  //===--------------------------------------------------------------------===//
62  //                               Utilities
63  //===--------------------------------------------------------------------===//
64
65  bool TestAndClearIgnoreResultAssign() {
66    bool I = IgnoreResultAssign;
67    IgnoreResultAssign = false;
68    return I;
69  }
70
71  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
72  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
73
74  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76  }
77
78  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79  /// value l-value, this method emits the address of the l-value, then loads
80  /// and returns the result.
81  Value *EmitLoadOfLValue(const Expr *E) {
82    return EmitLoadOfLValue(EmitLValue(E), E->getType());
83  }
84
85  /// EmitConversionToBool - Convert the specified expression value to a
86  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88
89  /// EmitScalarConversion - Emit a conversion from the specified type to the
90  /// specified destination type, both of which are LLVM scalar types.
91  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92
93  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94  /// complex type to the specified destination type, where the destination type
95  /// is an LLVM scalar type.
96  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                       QualType SrcTy, QualType DstTy);
98
99  //===--------------------------------------------------------------------===//
100  //                            Visitor Methods
101  //===--------------------------------------------------------------------===//
102
103  Value *VisitStmt(Stmt *S) {
104    S->dump(CGF.getContext().getSourceManager());
105    assert(0 && "Stmt can't have complex result type!");
106    return 0;
107  }
108  Value *VisitExpr(Expr *S);
109
110  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111
112  // Leaves.
113  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114    return llvm::ConstantInt::get(VMContext, E->getValue());
115  }
116  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117    return llvm::ConstantFP::get(VMContext, E->getValue());
118  }
119  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121  }
122  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124  }
125  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127  }
128  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130  }
131  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132    return llvm::ConstantInt::get(ConvertType(E->getType()),
133                                  CGF.getContext().typesAreCompatible(
134                                    E->getArgType1(), E->getArgType2()));
135  }
136  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
139    return Builder.CreateBitCast(V, ConvertType(E->getType()));
140  }
141
142  // l-values.
143  Value *VisitDeclRefExpr(DeclRefExpr *E) {
144    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
145      return llvm::ConstantInt::get(VMContext, EC->getInitVal());
146    return EmitLoadOfLValue(E);
147  }
148  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
149    return CGF.EmitObjCSelectorExpr(E);
150  }
151  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
152    return CGF.EmitObjCProtocolExpr(E);
153  }
154  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
155    return EmitLoadOfLValue(E);
156  }
157  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
158    return EmitLoadOfLValue(E);
159  }
160  Value *VisitObjCImplicitSetterGetterRefExpr(
161                        ObjCImplicitSetterGetterRefExpr *E) {
162    return EmitLoadOfLValue(E);
163  }
164  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
165    return CGF.EmitObjCMessageExpr(E).getScalarVal();
166  }
167
168  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
169  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
170  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
171  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
172  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
173    return EmitLoadOfLValue(E);
174  }
175  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
176  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
177     return EmitLValue(E).getAddress();
178  }
179
180  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
181
182  Value *VisitInitListExpr(InitListExpr *E);
183
184  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
185    return llvm::Constant::getNullValue(ConvertType(E->getType()));
186  }
187  Value *VisitCastExpr(const CastExpr *E) {
188    // Make sure to evaluate VLA bounds now so that we have them for later.
189    if (E->getType()->isVariablyModifiedType())
190      CGF.EmitVLASize(E->getType());
191
192    return EmitCastExpr(E);
193  }
194  Value *EmitCastExpr(const CastExpr *E);
195
196  Value *VisitCallExpr(const CallExpr *E) {
197    if (E->getCallReturnType()->isReferenceType())
198      return EmitLoadOfLValue(E);
199
200    return CGF.EmitCallExpr(E).getScalarVal();
201  }
202
203  Value *VisitStmtExpr(const StmtExpr *E);
204
205  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
206
207  // Unary Operators.
208  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
209  Value *VisitUnaryPostDec(const UnaryOperator *E) {
210    return VisitPrePostIncDec(E, false, false);
211  }
212  Value *VisitUnaryPostInc(const UnaryOperator *E) {
213    return VisitPrePostIncDec(E, true, false);
214  }
215  Value *VisitUnaryPreDec(const UnaryOperator *E) {
216    return VisitPrePostIncDec(E, false, true);
217  }
218  Value *VisitUnaryPreInc(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, true, true);
220  }
221  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
222    return EmitLValue(E->getSubExpr()).getAddress();
223  }
224  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
225  Value *VisitUnaryPlus(const UnaryOperator *E) {
226    // This differs from gcc, though, most likely due to a bug in gcc.
227    TestAndClearIgnoreResultAssign();
228    return Visit(E->getSubExpr());
229  }
230  Value *VisitUnaryMinus    (const UnaryOperator *E);
231  Value *VisitUnaryNot      (const UnaryOperator *E);
232  Value *VisitUnaryLNot     (const UnaryOperator *E);
233  Value *VisitUnaryReal     (const UnaryOperator *E);
234  Value *VisitUnaryImag     (const UnaryOperator *E);
235  Value *VisitUnaryExtension(const UnaryOperator *E) {
236    return Visit(E->getSubExpr());
237  }
238  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
239
240  // C++
241  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
242    return Visit(DAE->getExpr());
243  }
244  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
245    return CGF.LoadCXXThis();
246  }
247
248  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
249    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
250  }
251  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
252    return CGF.EmitCXXNewExpr(E);
253  }
254  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
255    CGF.EmitCXXDeleteExpr(E);
256    return 0;
257  }
258
259  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
260    // C++ [expr.pseudo]p1:
261    //   The result shall only be used as the operand for the function call
262    //   operator (), and the result of such a call has type void. The only
263    //   effect is the evaluation of the postfix-expression before the dot or
264    //   arrow.
265    CGF.EmitScalarExpr(E->getBase());
266    return 0;
267  }
268
269  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
270    return llvm::Constant::getNullValue(ConvertType(E->getType()));
271  }
272
273  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
274    CGF.EmitCXXThrowExpr(E);
275    return 0;
276  }
277
278  // Binary Operators.
279  Value *EmitMul(const BinOpInfo &Ops) {
280    if (CGF.getContext().getLangOptions().OverflowChecking
281        && Ops.Ty->isSignedIntegerType())
282      return EmitOverflowCheckedBinOp(Ops);
283    if (Ops.LHS->getType()->isFPOrFPVector())
284      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
285    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
286  }
287  /// Create a binary op that checks for overflow.
288  /// Currently only supports +, - and *.
289  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
290  Value *EmitDiv(const BinOpInfo &Ops);
291  Value *EmitRem(const BinOpInfo &Ops);
292  Value *EmitAdd(const BinOpInfo &Ops);
293  Value *EmitSub(const BinOpInfo &Ops);
294  Value *EmitShl(const BinOpInfo &Ops);
295  Value *EmitShr(const BinOpInfo &Ops);
296  Value *EmitAnd(const BinOpInfo &Ops) {
297    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
298  }
299  Value *EmitXor(const BinOpInfo &Ops) {
300    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
301  }
302  Value *EmitOr (const BinOpInfo &Ops) {
303    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
304  }
305
306  BinOpInfo EmitBinOps(const BinaryOperator *E);
307  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
308                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
309
310  // Binary operators and binary compound assignment operators.
311#define HANDLEBINOP(OP) \
312  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
313    return Emit ## OP(EmitBinOps(E));                                      \
314  }                                                                        \
315  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
316    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
317  }
318  HANDLEBINOP(Mul);
319  HANDLEBINOP(Div);
320  HANDLEBINOP(Rem);
321  HANDLEBINOP(Add);
322  HANDLEBINOP(Sub);
323  HANDLEBINOP(Shl);
324  HANDLEBINOP(Shr);
325  HANDLEBINOP(And);
326  HANDLEBINOP(Xor);
327  HANDLEBINOP(Or);
328#undef HANDLEBINOP
329
330  // Comparisons.
331  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
332                     unsigned SICmpOpc, unsigned FCmpOpc);
333#define VISITCOMP(CODE, UI, SI, FP) \
334    Value *VisitBin##CODE(const BinaryOperator *E) { \
335      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
336                         llvm::FCmpInst::FP); }
337  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
338  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
339  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
340  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
341  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
342  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
343#undef VISITCOMP
344
345  Value *VisitBinAssign     (const BinaryOperator *E);
346
347  Value *VisitBinLAnd       (const BinaryOperator *E);
348  Value *VisitBinLOr        (const BinaryOperator *E);
349  Value *VisitBinComma      (const BinaryOperator *E);
350
351  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
352  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
353
354  // Other Operators.
355  Value *VisitBlockExpr(const BlockExpr *BE);
356  Value *VisitConditionalOperator(const ConditionalOperator *CO);
357  Value *VisitChooseExpr(ChooseExpr *CE);
358  Value *VisitVAArgExpr(VAArgExpr *VE);
359  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
360    return CGF.EmitObjCStringLiteral(E);
361  }
362};
363}  // end anonymous namespace.
364
365//===----------------------------------------------------------------------===//
366//                                Utilities
367//===----------------------------------------------------------------------===//
368
369/// EmitConversionToBool - Convert the specified expression value to a
370/// boolean (i1) truth value.  This is equivalent to "Val != 0".
371Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
372  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
373
374  if (SrcType->isRealFloatingType()) {
375    // Compare against 0.0 for fp scalars.
376    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
377    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
378  }
379
380  if (SrcType->isMemberPointerType()) {
381    // FIXME: This is ABI specific.
382
383    // Compare against -1.
384    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
385    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
386  }
387
388  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
389         "Unknown scalar type to convert");
390
391  // Because of the type rules of C, we often end up computing a logical value,
392  // then zero extending it to int, then wanting it as a logical value again.
393  // Optimize this common case.
394  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
395    if (ZI->getOperand(0)->getType() ==
396        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
397      Value *Result = ZI->getOperand(0);
398      // If there aren't any more uses, zap the instruction to save space.
399      // Note that there can be more uses, for example if this
400      // is the result of an assignment.
401      if (ZI->use_empty())
402        ZI->eraseFromParent();
403      return Result;
404    }
405  }
406
407  // Compare against an integer or pointer null.
408  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
409  return Builder.CreateICmpNE(Src, Zero, "tobool");
410}
411
412/// EmitScalarConversion - Emit a conversion from the specified type to the
413/// specified destination type, both of which are LLVM scalar types.
414Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
415                                               QualType DstType) {
416  SrcType = CGF.getContext().getCanonicalType(SrcType);
417  DstType = CGF.getContext().getCanonicalType(DstType);
418  if (SrcType == DstType) return Src;
419
420  if (DstType->isVoidType()) return 0;
421
422  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
423
424  // Handle conversions to bool first, they are special: comparisons against 0.
425  if (DstType->isBooleanType())
426    return EmitConversionToBool(Src, SrcType);
427
428  const llvm::Type *DstTy = ConvertType(DstType);
429
430  // Ignore conversions like int -> uint.
431  if (Src->getType() == DstTy)
432    return Src;
433
434  // Handle pointer conversions next: pointers can only be converted to/from
435  // other pointers and integers. Check for pointer types in terms of LLVM, as
436  // some native types (like Obj-C id) may map to a pointer type.
437  if (isa<llvm::PointerType>(DstTy)) {
438    // The source value may be an integer, or a pointer.
439    if (isa<llvm::PointerType>(Src->getType()))
440      return Builder.CreateBitCast(Src, DstTy, "conv");
441
442    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
443    // First, convert to the correct width so that we control the kind of
444    // extension.
445    const llvm::Type *MiddleTy =
446          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
447    bool InputSigned = SrcType->isSignedIntegerType();
448    llvm::Value* IntResult =
449        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
450    // Then, cast to pointer.
451    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
452  }
453
454  if (isa<llvm::PointerType>(Src->getType())) {
455    // Must be an ptr to int cast.
456    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
457    return Builder.CreatePtrToInt(Src, DstTy, "conv");
458  }
459
460  // A scalar can be splatted to an extended vector of the same element type
461  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
462    // Cast the scalar to element type
463    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
464    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
465
466    // Insert the element in element zero of an undef vector
467    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
468    llvm::Value *Idx =
469        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
470    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
471
472    // Splat the element across to all elements
473    llvm::SmallVector<llvm::Constant*, 16> Args;
474    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
475    for (unsigned i = 0; i < NumElements; i++)
476      Args.push_back(llvm::ConstantInt::get(
477                                        llvm::Type::getInt32Ty(VMContext), 0));
478
479    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
480    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
481    return Yay;
482  }
483
484  // Allow bitcast from vector to integer/fp of the same size.
485  if (isa<llvm::VectorType>(Src->getType()) ||
486      isa<llvm::VectorType>(DstTy))
487    return Builder.CreateBitCast(Src, DstTy, "conv");
488
489  // Finally, we have the arithmetic types: real int/float.
490  if (isa<llvm::IntegerType>(Src->getType())) {
491    bool InputSigned = SrcType->isSignedIntegerType();
492    if (isa<llvm::IntegerType>(DstTy))
493      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
494    else if (InputSigned)
495      return Builder.CreateSIToFP(Src, DstTy, "conv");
496    else
497      return Builder.CreateUIToFP(Src, DstTy, "conv");
498  }
499
500  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
501  if (isa<llvm::IntegerType>(DstTy)) {
502    if (DstType->isSignedIntegerType())
503      return Builder.CreateFPToSI(Src, DstTy, "conv");
504    else
505      return Builder.CreateFPToUI(Src, DstTy, "conv");
506  }
507
508  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
509  if (DstTy->getTypeID() < Src->getType()->getTypeID())
510    return Builder.CreateFPTrunc(Src, DstTy, "conv");
511  else
512    return Builder.CreateFPExt(Src, DstTy, "conv");
513}
514
515/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
516/// type to the specified destination type, where the destination type is an
517/// LLVM scalar type.
518Value *ScalarExprEmitter::
519EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
520                              QualType SrcTy, QualType DstTy) {
521  // Get the source element type.
522  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
523
524  // Handle conversions to bool first, they are special: comparisons against 0.
525  if (DstTy->isBooleanType()) {
526    //  Complex != 0  -> (Real != 0) | (Imag != 0)
527    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
528    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
529    return Builder.CreateOr(Src.first, Src.second, "tobool");
530  }
531
532  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
533  // the imaginary part of the complex value is discarded and the value of the
534  // real part is converted according to the conversion rules for the
535  // corresponding real type.
536  return EmitScalarConversion(Src.first, SrcTy, DstTy);
537}
538
539
540//===----------------------------------------------------------------------===//
541//                            Visitor Methods
542//===----------------------------------------------------------------------===//
543
544Value *ScalarExprEmitter::VisitExpr(Expr *E) {
545  CGF.ErrorUnsupported(E, "scalar expression");
546  if (E->getType()->isVoidType())
547    return 0;
548  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
549}
550
551Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
552  llvm::SmallVector<llvm::Constant*, 32> indices;
553  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
554    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
555  }
556  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
557  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
558  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
559  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
560}
561
562Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
563  TestAndClearIgnoreResultAssign();
564
565  // Emit subscript expressions in rvalue context's.  For most cases, this just
566  // loads the lvalue formed by the subscript expr.  However, we have to be
567  // careful, because the base of a vector subscript is occasionally an rvalue,
568  // so we can't get it as an lvalue.
569  if (!E->getBase()->getType()->isVectorType())
570    return EmitLoadOfLValue(E);
571
572  // Handle the vector case.  The base must be a vector, the index must be an
573  // integer value.
574  Value *Base = Visit(E->getBase());
575  Value *Idx  = Visit(E->getIdx());
576  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
577  Idx = Builder.CreateIntCast(Idx,
578                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
579                              IdxSigned,
580                              "vecidxcast");
581  return Builder.CreateExtractElement(Base, Idx, "vecext");
582}
583
584static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
585                                  unsigned Off, const llvm::Type *I32Ty) {
586  int MV = SVI->getMaskValue(Idx);
587  if (MV == -1)
588    return llvm::UndefValue::get(I32Ty);
589  return llvm::ConstantInt::get(I32Ty, Off+MV);
590}
591
592Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
593  bool Ignore = TestAndClearIgnoreResultAssign();
594  (void)Ignore;
595  assert (Ignore == false && "init list ignored");
596  unsigned NumInitElements = E->getNumInits();
597
598  if (E->hadArrayRangeDesignator())
599    CGF.ErrorUnsupported(E, "GNU array range designator extension");
600
601  const llvm::VectorType *VType =
602    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
603
604  // We have a scalar in braces. Just use the first element.
605  if (!VType)
606    return Visit(E->getInit(0));
607
608  unsigned ResElts = VType->getNumElements();
609  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
610
611  // Loop over initializers collecting the Value for each, and remembering
612  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
613  // us to fold the shuffle for the swizzle into the shuffle for the vector
614  // initializer, since LLVM optimizers generally do not want to touch
615  // shuffles.
616  unsigned CurIdx = 0;
617  bool VIsUndefShuffle = false;
618  llvm::Value *V = llvm::UndefValue::get(VType);
619  for (unsigned i = 0; i != NumInitElements; ++i) {
620    Expr *IE = E->getInit(i);
621    Value *Init = Visit(IE);
622    llvm::SmallVector<llvm::Constant*, 16> Args;
623
624    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
625
626    // Handle scalar elements.  If the scalar initializer is actually one
627    // element of a different vector of the same width, use shuffle instead of
628    // extract+insert.
629    if (!VVT) {
630      if (isa<ExtVectorElementExpr>(IE)) {
631        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
632
633        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
634          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
635          Value *LHS = 0, *RHS = 0;
636          if (CurIdx == 0) {
637            // insert into undef -> shuffle (src, undef)
638            Args.push_back(C);
639            for (unsigned j = 1; j != ResElts; ++j)
640              Args.push_back(llvm::UndefValue::get(I32Ty));
641
642            LHS = EI->getVectorOperand();
643            RHS = V;
644            VIsUndefShuffle = true;
645          } else if (VIsUndefShuffle) {
646            // insert into undefshuffle && size match -> shuffle (v, src)
647            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
648            for (unsigned j = 0; j != CurIdx; ++j)
649              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
650            Args.push_back(llvm::ConstantInt::get(I32Ty,
651                                                  ResElts + C->getZExtValue()));
652            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
653              Args.push_back(llvm::UndefValue::get(I32Ty));
654
655            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
656            RHS = EI->getVectorOperand();
657            VIsUndefShuffle = false;
658          }
659          if (!Args.empty()) {
660            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
661            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
662            ++CurIdx;
663            continue;
664          }
665        }
666      }
667      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
668      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
669      VIsUndefShuffle = false;
670      ++CurIdx;
671      continue;
672    }
673
674    unsigned InitElts = VVT->getNumElements();
675
676    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
677    // input is the same width as the vector being constructed, generate an
678    // optimized shuffle of the swizzle input into the result.
679    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
680    if (isa<ExtVectorElementExpr>(IE)) {
681      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
682      Value *SVOp = SVI->getOperand(0);
683      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
684
685      if (OpTy->getNumElements() == ResElts) {
686        for (unsigned j = 0; j != CurIdx; ++j) {
687          // If the current vector initializer is a shuffle with undef, merge
688          // this shuffle directly into it.
689          if (VIsUndefShuffle) {
690            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
691                                      I32Ty));
692          } else {
693            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
694          }
695        }
696        for (unsigned j = 0, je = InitElts; j != je; ++j)
697          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
698        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
699          Args.push_back(llvm::UndefValue::get(I32Ty));
700
701        if (VIsUndefShuffle)
702          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
703
704        Init = SVOp;
705      }
706    }
707
708    // Extend init to result vector length, and then shuffle its contribution
709    // to the vector initializer into V.
710    if (Args.empty()) {
711      for (unsigned j = 0; j != InitElts; ++j)
712        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
713      for (unsigned j = InitElts; j != ResElts; ++j)
714        Args.push_back(llvm::UndefValue::get(I32Ty));
715      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
716      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
717                                         Mask, "vext");
718
719      Args.clear();
720      for (unsigned j = 0; j != CurIdx; ++j)
721        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
722      for (unsigned j = 0; j != InitElts; ++j)
723        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
724      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
725        Args.push_back(llvm::UndefValue::get(I32Ty));
726    }
727
728    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
729    // merging subsequent shuffles into this one.
730    if (CurIdx == 0)
731      std::swap(V, Init);
732    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
733    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
734    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
735    CurIdx += InitElts;
736  }
737
738  // FIXME: evaluate codegen vs. shuffling against constant null vector.
739  // Emit remaining default initializers.
740  const llvm::Type *EltTy = VType->getElementType();
741
742  // Emit remaining default initializers
743  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
744    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
745    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
746    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
747  }
748  return V;
749}
750
751// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
752// have to handle a more broad range of conversions than explicit casts, as they
753// handle things like function to ptr-to-function decay etc.
754Value *ScalarExprEmitter::EmitCastExpr(const CastExpr *CE) {
755  const Expr *E = CE->getSubExpr();
756  QualType DestTy = CE->getType();
757  CastExpr::CastKind Kind = CE->getCastKind();
758
759  if (!DestTy->isVoidType())
760    TestAndClearIgnoreResultAssign();
761
762  switch (Kind) {
763  default:
764    //return CGF.ErrorUnsupported(E, "type of cast");
765    break;
766
767  case CastExpr::CK_Unknown:
768    //assert(0 && "Unknown cast kind!");
769    break;
770
771  case CastExpr::CK_BitCast: {
772    Value *Src = Visit(const_cast<Expr*>(E));
773    return Builder.CreateBitCast(Src, ConvertType(DestTy));
774  }
775  case CastExpr::CK_NoOp:
776    return Visit(const_cast<Expr*>(E));
777
778  case CastExpr::CK_DerivedToBase: {
779    const RecordType *DerivedClassTy =
780      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
781    CXXRecordDecl *DerivedClassDecl =
782      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
783
784    const RecordType *BaseClassTy =
785      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
786    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
787
788    Value *Src = Visit(const_cast<Expr*>(E));
789
790    bool NullCheckValue = true;
791
792    if (isa<CXXThisExpr>(E)) {
793      // We always assume that 'this' is never null.
794      NullCheckValue = false;
795    } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
796      // And that lvalue casts are never null.
797      if (ICE->isLvalueCast())
798        NullCheckValue = false;
799    }
800    return CGF.GetAddressCXXOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
801                                        NullCheckValue);
802  }
803  case CastExpr::CK_ToUnion: {
804    assert(0 && "Should be unreachable!");
805    break;
806  }
807  case CastExpr::CK_ArrayToPointerDecay: {
808    assert(E->getType()->isArrayType() &&
809           "Array to pointer decay must have array source type!");
810
811    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
812
813    // Note that VLA pointers are always decayed, so we don't need to do
814    // anything here.
815    if (!E->getType()->isVariableArrayType()) {
816      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
817      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
818                                 ->getElementType()) &&
819             "Expected pointer to array");
820      V = Builder.CreateStructGEP(V, 0, "arraydecay");
821    }
822
823    return V;
824  }
825  case CastExpr::CK_FunctionToPointerDecay:
826    return EmitLValue(E).getAddress();
827
828  case CastExpr::CK_NullToMemberPointer:
829    return CGF.CGM.EmitNullConstant(DestTy);
830
831  case CastExpr::CK_IntegralToPointer: {
832    Value *Src = Visit(const_cast<Expr*>(E));
833
834    // First, convert to the correct width so that we control the kind of
835    // extension.
836    const llvm::Type *MiddleTy =
837      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
838    bool InputSigned = E->getType()->isSignedIntegerType();
839    llvm::Value* IntResult =
840      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
841
842    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
843  }
844
845  case CastExpr::CK_PointerToIntegral: {
846    Value *Src = Visit(const_cast<Expr*>(E));
847    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
848  }
849
850  case CastExpr::CK_ToVoid: {
851    CGF.EmitAnyExpr(E, 0, false, true);
852    return 0;
853  }
854
855  case CastExpr::CK_Dynamic: {
856    Value *V = Visit(const_cast<Expr*>(E));
857    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
858    return CGF.EmitDynamicCast(V, DCE);
859  }
860
861  case CastExpr::CK_VectorSplat: {
862    const llvm::Type *DstTy = ConvertType(DestTy);
863    Value *Elt = Visit(const_cast<Expr*>(E));
864
865    // Insert the element in element zero of an undef vector
866    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
867    llvm::Value *Idx =
868        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
869    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
870
871    // Splat the element across to all elements
872    llvm::SmallVector<llvm::Constant*, 16> Args;
873    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
874    for (unsigned i = 0; i < NumElements; i++)
875      Args.push_back(llvm::ConstantInt::get(
876                                        llvm::Type::getInt32Ty(VMContext), 0));
877
878    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
879    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
880    return Yay;
881  }
882
883  }
884
885  // Handle cases where the source is an non-complex type.
886
887  if (!CGF.hasAggregateLLVMType(E->getType())) {
888    Value *Src = Visit(const_cast<Expr*>(E));
889
890    // Use EmitScalarConversion to perform the conversion.
891    return EmitScalarConversion(Src, E->getType(), DestTy);
892  }
893
894  if (E->getType()->isAnyComplexType()) {
895    // Handle cases where the source is a complex type.
896    bool IgnoreImag = true;
897    bool IgnoreImagAssign = true;
898    bool IgnoreReal = IgnoreResultAssign;
899    bool IgnoreRealAssign = IgnoreResultAssign;
900    if (DestTy->isBooleanType())
901      IgnoreImagAssign = IgnoreImag = false;
902    else if (DestTy->isVoidType()) {
903      IgnoreReal = IgnoreImag = false;
904      IgnoreRealAssign = IgnoreImagAssign = true;
905    }
906    CodeGenFunction::ComplexPairTy V
907      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
908                            IgnoreImagAssign);
909    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
910  }
911
912  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
913  // evaluate the result and return.
914  CGF.EmitAggExpr(E, 0, false, true);
915  return 0;
916}
917
918Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
919  return CGF.EmitCompoundStmt(*E->getSubStmt(),
920                              !E->getType()->isVoidType()).getScalarVal();
921}
922
923Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
924  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
925  if (E->getType().isObjCGCWeak())
926    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
927  return Builder.CreateLoad(V, false, "tmp");
928}
929
930//===----------------------------------------------------------------------===//
931//                             Unary Operators
932//===----------------------------------------------------------------------===//
933
934Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
935                                             bool isInc, bool isPre) {
936  LValue LV = EmitLValue(E->getSubExpr());
937  QualType ValTy = E->getSubExpr()->getType();
938  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
939
940  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
941
942  int AmountVal = isInc ? 1 : -1;
943
944  if (ValTy->isPointerType() &&
945      ValTy->getAs<PointerType>()->isVariableArrayType()) {
946    // The amount of the addition/subtraction needs to account for the VLA size
947    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
948  }
949
950  Value *NextVal;
951  if (const llvm::PointerType *PT =
952         dyn_cast<llvm::PointerType>(InVal->getType())) {
953    llvm::Constant *Inc =
954      llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
955    if (!isa<llvm::FunctionType>(PT->getElementType())) {
956      QualType PTEE = ValTy->getPointeeType();
957      if (const ObjCInterfaceType *OIT =
958          dyn_cast<ObjCInterfaceType>(PTEE)) {
959        // Handle interface types, which are not represented with a concrete type.
960        int size = CGF.getContext().getTypeSize(OIT) / 8;
961        if (!isInc)
962          size = -size;
963        Inc = llvm::ConstantInt::get(Inc->getType(), size);
964        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
965        InVal = Builder.CreateBitCast(InVal, i8Ty);
966        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
967        llvm::Value *lhs = LV.getAddress();
968        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
969        LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
970      } else
971        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
972    } else {
973      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
974      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
975      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
976      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
977    }
978  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
979    // Bool++ is an interesting case, due to promotion rules, we get:
980    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
981    // Bool = ((int)Bool+1) != 0
982    // An interesting aspect of this is that increment is always true.
983    // Decrement does not have this property.
984    NextVal = llvm::ConstantInt::getTrue(VMContext);
985  } else if (isa<llvm::IntegerType>(InVal->getType())) {
986    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
987
988    // Signed integer overflow is undefined behavior.
989    if (ValTy->isSignedIntegerType())
990      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
991    else
992      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
993  } else {
994    // Add the inc/dec to the real part.
995    if (InVal->getType()->isFloatTy())
996      NextVal =
997        llvm::ConstantFP::get(VMContext,
998                              llvm::APFloat(static_cast<float>(AmountVal)));
999    else if (InVal->getType()->isDoubleTy())
1000      NextVal =
1001        llvm::ConstantFP::get(VMContext,
1002                              llvm::APFloat(static_cast<double>(AmountVal)));
1003    else {
1004      llvm::APFloat F(static_cast<float>(AmountVal));
1005      bool ignored;
1006      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1007                &ignored);
1008      NextVal = llvm::ConstantFP::get(VMContext, F);
1009    }
1010    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1011  }
1012
1013  // Store the updated result through the lvalue.
1014  if (LV.isBitfield())
1015    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
1016                                       &NextVal);
1017  else
1018    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1019
1020  // If this is a postinc, return the value read from memory, otherwise use the
1021  // updated value.
1022  return isPre ? NextVal : InVal;
1023}
1024
1025
1026Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1027  TestAndClearIgnoreResultAssign();
1028  Value *Op = Visit(E->getSubExpr());
1029  if (Op->getType()->isFPOrFPVector())
1030    return Builder.CreateFNeg(Op, "neg");
1031  return Builder.CreateNeg(Op, "neg");
1032}
1033
1034Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1035  TestAndClearIgnoreResultAssign();
1036  Value *Op = Visit(E->getSubExpr());
1037  return Builder.CreateNot(Op, "neg");
1038}
1039
1040Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1041  // Compare operand to zero.
1042  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1043
1044  // Invert value.
1045  // TODO: Could dynamically modify easy computations here.  For example, if
1046  // the operand is an icmp ne, turn into icmp eq.
1047  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1048
1049  // ZExt result to the expr type.
1050  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1051}
1052
1053/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1054/// argument of the sizeof expression as an integer.
1055Value *
1056ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1057  QualType TypeToSize = E->getTypeOfArgument();
1058  if (E->isSizeOf()) {
1059    if (const VariableArrayType *VAT =
1060          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1061      if (E->isArgumentType()) {
1062        // sizeof(type) - make sure to emit the VLA size.
1063        CGF.EmitVLASize(TypeToSize);
1064      } else {
1065        // C99 6.5.3.4p2: If the argument is an expression of type
1066        // VLA, it is evaluated.
1067        CGF.EmitAnyExpr(E->getArgumentExpr());
1068      }
1069
1070      return CGF.GetVLASize(VAT);
1071    }
1072  }
1073
1074  // If this isn't sizeof(vla), the result must be constant; use the constant
1075  // folding logic so we don't have to duplicate it here.
1076  Expr::EvalResult Result;
1077  E->Evaluate(Result, CGF.getContext());
1078  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1079}
1080
1081Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1082  Expr *Op = E->getSubExpr();
1083  if (Op->getType()->isAnyComplexType())
1084    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1085  return Visit(Op);
1086}
1087Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1088  Expr *Op = E->getSubExpr();
1089  if (Op->getType()->isAnyComplexType())
1090    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1091
1092  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1093  // effects are evaluated, but not the actual value.
1094  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1095    CGF.EmitLValue(Op);
1096  else
1097    CGF.EmitScalarExpr(Op, true);
1098  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1099}
1100
1101Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1102  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1103  const llvm::Type* ResultType = ConvertType(E->getType());
1104  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1105}
1106
1107//===----------------------------------------------------------------------===//
1108//                           Binary Operators
1109//===----------------------------------------------------------------------===//
1110
1111BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1112  TestAndClearIgnoreResultAssign();
1113  BinOpInfo Result;
1114  Result.LHS = Visit(E->getLHS());
1115  Result.RHS = Visit(E->getRHS());
1116  Result.Ty  = E->getType();
1117  Result.E = E;
1118  return Result;
1119}
1120
1121Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1122                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1123  bool Ignore = TestAndClearIgnoreResultAssign();
1124  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
1125
1126  BinOpInfo OpInfo;
1127
1128  if (E->getComputationResultType()->isAnyComplexType()) {
1129    // This needs to go through the complex expression emitter, but it's a tad
1130    // complicated to do that... I'm leaving it out for now.  (Note that we do
1131    // actually need the imaginary part of the RHS for multiplication and
1132    // division.)
1133    CGF.ErrorUnsupported(E, "complex compound assignment");
1134    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1135  }
1136
1137  // Emit the RHS first.  __block variables need to have the rhs evaluated
1138  // first, plus this should improve codegen a little.
1139  OpInfo.RHS = Visit(E->getRHS());
1140  OpInfo.Ty = E->getComputationResultType();
1141  OpInfo.E = E;
1142  // Load/convert the LHS.
1143  LValue LHSLV = EmitLValue(E->getLHS());
1144  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1145  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1146                                    E->getComputationLHSType());
1147
1148  // Expand the binary operator.
1149  Value *Result = (this->*Func)(OpInfo);
1150
1151  // Convert the result back to the LHS type.
1152  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1153
1154  // Store the result value into the LHS lvalue. Bit-fields are handled
1155  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1156  // 'An assignment expression has the value of the left operand after the
1157  // assignment...'.
1158  if (LHSLV.isBitfield()) {
1159    if (!LHSLV.isVolatileQualified()) {
1160      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1161                                         &Result);
1162      return Result;
1163    } else
1164      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1165  } else
1166    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1167  if (Ignore)
1168    return 0;
1169  return EmitLoadOfLValue(LHSLV, E->getType());
1170}
1171
1172
1173Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1174  if (Ops.LHS->getType()->isFPOrFPVector())
1175    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1176  else if (Ops.Ty->isUnsignedIntegerType())
1177    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1178  else
1179    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1180}
1181
1182Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1183  // Rem in C can't be a floating point type: C99 6.5.5p2.
1184  if (Ops.Ty->isUnsignedIntegerType())
1185    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1186  else
1187    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1188}
1189
1190Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1191  unsigned IID;
1192  unsigned OpID = 0;
1193
1194  switch (Ops.E->getOpcode()) {
1195  case BinaryOperator::Add:
1196  case BinaryOperator::AddAssign:
1197    OpID = 1;
1198    IID = llvm::Intrinsic::sadd_with_overflow;
1199    break;
1200  case BinaryOperator::Sub:
1201  case BinaryOperator::SubAssign:
1202    OpID = 2;
1203    IID = llvm::Intrinsic::ssub_with_overflow;
1204    break;
1205  case BinaryOperator::Mul:
1206  case BinaryOperator::MulAssign:
1207    OpID = 3;
1208    IID = llvm::Intrinsic::smul_with_overflow;
1209    break;
1210  default:
1211    assert(false && "Unsupported operation for overflow detection");
1212    IID = 0;
1213  }
1214  OpID <<= 1;
1215  OpID |= 1;
1216
1217  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1218
1219  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1220
1221  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1222  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1223  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1224
1225  // Branch in case of overflow.
1226  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1227  llvm::BasicBlock *overflowBB =
1228    CGF.createBasicBlock("overflow", CGF.CurFn);
1229  llvm::BasicBlock *continueBB =
1230    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1231
1232  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1233
1234  // Handle overflow
1235
1236  Builder.SetInsertPoint(overflowBB);
1237
1238  // Handler is:
1239  // long long *__overflow_handler)(long long a, long long b, char op,
1240  // char width)
1241  std::vector<const llvm::Type*> handerArgTypes;
1242  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1243  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1244  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1245  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1246  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1247      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1248  llvm::Value *handlerFunction =
1249    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1250        llvm::PointerType::getUnqual(handlerTy));
1251  handlerFunction = Builder.CreateLoad(handlerFunction);
1252
1253  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1254      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1255      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1256      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1257      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1258        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1259
1260  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1261
1262  Builder.CreateBr(continueBB);
1263
1264  // Set up the continuation
1265  Builder.SetInsertPoint(continueBB);
1266  // Get the correct result
1267  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1268  phi->reserveOperandSpace(2);
1269  phi->addIncoming(result, initialBB);
1270  phi->addIncoming(handlerResult, overflowBB);
1271
1272  return phi;
1273}
1274
1275Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1276  if (!Ops.Ty->isAnyPointerType()) {
1277    if (CGF.getContext().getLangOptions().OverflowChecking &&
1278        Ops.Ty->isSignedIntegerType())
1279      return EmitOverflowCheckedBinOp(Ops);
1280
1281    if (Ops.LHS->getType()->isFPOrFPVector())
1282      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1283
1284    // Signed integer overflow is undefined behavior.
1285    if (Ops.Ty->isSignedIntegerType())
1286      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1287
1288    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1289  }
1290
1291  if (Ops.Ty->isPointerType() &&
1292      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1293    // The amount of the addition needs to account for the VLA size
1294    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1295  }
1296  Value *Ptr, *Idx;
1297  Expr *IdxExp;
1298  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1299  const ObjCObjectPointerType *OPT =
1300    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1301  if (PT || OPT) {
1302    Ptr = Ops.LHS;
1303    Idx = Ops.RHS;
1304    IdxExp = Ops.E->getRHS();
1305  } else {  // int + pointer
1306    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1307    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1308    assert((PT || OPT) && "Invalid add expr");
1309    Ptr = Ops.RHS;
1310    Idx = Ops.LHS;
1311    IdxExp = Ops.E->getLHS();
1312  }
1313
1314  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1315  if (Width < CGF.LLVMPointerWidth) {
1316    // Zero or sign extend the pointer value based on whether the index is
1317    // signed or not.
1318    const llvm::Type *IdxType =
1319        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1320    if (IdxExp->getType()->isSignedIntegerType())
1321      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1322    else
1323      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1324  }
1325  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1326  // Handle interface types, which are not represented with a concrete type.
1327  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1328    llvm::Value *InterfaceSize =
1329      llvm::ConstantInt::get(Idx->getType(),
1330                             CGF.getContext().getTypeSize(OIT) / 8);
1331    Idx = Builder.CreateMul(Idx, InterfaceSize);
1332    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1333    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1334    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1335    return Builder.CreateBitCast(Res, Ptr->getType());
1336  }
1337
1338  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1339  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1340  // future proof.
1341  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1342    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1343    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1344    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1345    return Builder.CreateBitCast(Res, Ptr->getType());
1346  }
1347
1348  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1349}
1350
1351Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1352  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1353    if (CGF.getContext().getLangOptions().OverflowChecking
1354        && Ops.Ty->isSignedIntegerType())
1355      return EmitOverflowCheckedBinOp(Ops);
1356
1357    if (Ops.LHS->getType()->isFPOrFPVector())
1358      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1359    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1360  }
1361
1362  if (Ops.E->getLHS()->getType()->isPointerType() &&
1363      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1364    // The amount of the addition needs to account for the VLA size for
1365    // ptr-int
1366    // The amount of the division needs to account for the VLA size for
1367    // ptr-ptr.
1368    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1369  }
1370
1371  const QualType LHSType = Ops.E->getLHS()->getType();
1372  const QualType LHSElementType = LHSType->getPointeeType();
1373  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1374    // pointer - int
1375    Value *Idx = Ops.RHS;
1376    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1377    if (Width < CGF.LLVMPointerWidth) {
1378      // Zero or sign extend the pointer value based on whether the index is
1379      // signed or not.
1380      const llvm::Type *IdxType =
1381          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1382      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1383        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1384      else
1385        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1386    }
1387    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1388
1389    // Handle interface types, which are not represented with a concrete type.
1390    if (const ObjCInterfaceType *OIT =
1391        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1392      llvm::Value *InterfaceSize =
1393        llvm::ConstantInt::get(Idx->getType(),
1394                               CGF.getContext().getTypeSize(OIT) / 8);
1395      Idx = Builder.CreateMul(Idx, InterfaceSize);
1396      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1397      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1398      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1399      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1400    }
1401
1402    // Explicitly handle GNU void* and function pointer arithmetic
1403    // extensions. The GNU void* casts amount to no-ops since our void* type is
1404    // i8*, but this is future proof.
1405    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1406      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1407      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1408      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1409      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1410    }
1411
1412    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1413  } else {
1414    // pointer - pointer
1415    Value *LHS = Ops.LHS;
1416    Value *RHS = Ops.RHS;
1417
1418    uint64_t ElementSize;
1419
1420    // Handle GCC extension for pointer arithmetic on void* and function pointer
1421    // types.
1422    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1423      ElementSize = 1;
1424    } else {
1425      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1426    }
1427
1428    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1429    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1430    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1431    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1432
1433    // Optimize out the shift for element size of 1.
1434    if (ElementSize == 1)
1435      return BytesBetween;
1436
1437    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1438    // pointer difference in C is only defined in the case where both operands
1439    // are pointing to elements of an array.
1440    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1441    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1442  }
1443}
1444
1445Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1446  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1447  // RHS to the same size as the LHS.
1448  Value *RHS = Ops.RHS;
1449  if (Ops.LHS->getType() != RHS->getType())
1450    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1451
1452  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1453}
1454
1455Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1456  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1457  // RHS to the same size as the LHS.
1458  Value *RHS = Ops.RHS;
1459  if (Ops.LHS->getType() != RHS->getType())
1460    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1461
1462  if (Ops.Ty->isUnsignedIntegerType())
1463    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1464  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1465}
1466
1467Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1468                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1469  TestAndClearIgnoreResultAssign();
1470  Value *Result;
1471  QualType LHSTy = E->getLHS()->getType();
1472  if (!LHSTy->isAnyComplexType()) {
1473    Value *LHS = Visit(E->getLHS());
1474    Value *RHS = Visit(E->getRHS());
1475
1476    if (LHS->getType()->isFPOrFPVector()) {
1477      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1478                                  LHS, RHS, "cmp");
1479    } else if (LHSTy->isSignedIntegerType()) {
1480      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1481                                  LHS, RHS, "cmp");
1482    } else {
1483      // Unsigned integers and pointers.
1484      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1485                                  LHS, RHS, "cmp");
1486    }
1487
1488    // If this is a vector comparison, sign extend the result to the appropriate
1489    // vector integer type and return it (don't convert to bool).
1490    if (LHSTy->isVectorType())
1491      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1492
1493  } else {
1494    // Complex Comparison: can only be an equality comparison.
1495    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1496    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1497
1498    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1499
1500    Value *ResultR, *ResultI;
1501    if (CETy->isRealFloatingType()) {
1502      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1503                                   LHS.first, RHS.first, "cmp.r");
1504      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1505                                   LHS.second, RHS.second, "cmp.i");
1506    } else {
1507      // Complex comparisons can only be equality comparisons.  As such, signed
1508      // and unsigned opcodes are the same.
1509      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1510                                   LHS.first, RHS.first, "cmp.r");
1511      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1512                                   LHS.second, RHS.second, "cmp.i");
1513    }
1514
1515    if (E->getOpcode() == BinaryOperator::EQ) {
1516      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1517    } else {
1518      assert(E->getOpcode() == BinaryOperator::NE &&
1519             "Complex comparison other than == or != ?");
1520      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1521    }
1522  }
1523
1524  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1525}
1526
1527Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1528  bool Ignore = TestAndClearIgnoreResultAssign();
1529
1530  // __block variables need to have the rhs evaluated first, plus this should
1531  // improve codegen just a little.
1532  Value *RHS = Visit(E->getRHS());
1533  LValue LHS = EmitLValue(E->getLHS());
1534
1535  // Store the value into the LHS.  Bit-fields are handled specially
1536  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1537  // 'An assignment expression has the value of the left operand after
1538  // the assignment...'.
1539  if (LHS.isBitfield()) {
1540    if (!LHS.isVolatileQualified()) {
1541      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1542                                         &RHS);
1543      return RHS;
1544    } else
1545      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1546  } else
1547    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1548  if (Ignore)
1549    return 0;
1550  return EmitLoadOfLValue(LHS, E->getType());
1551}
1552
1553Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1554  const llvm::Type *ResTy = ConvertType(E->getType());
1555
1556  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1557  // If we have 1 && X, just emit X without inserting the control flow.
1558  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1559    if (Cond == 1) { // If we have 1 && X, just emit X.
1560      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1561      // ZExt result to int or bool.
1562      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1563    }
1564
1565    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1566    if (!CGF.ContainsLabel(E->getRHS()))
1567      return llvm::Constant::getNullValue(ResTy);
1568  }
1569
1570  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1571  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1572
1573  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1574  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1575
1576  // Any edges into the ContBlock are now from an (indeterminate number of)
1577  // edges from this first condition.  All of these values will be false.  Start
1578  // setting up the PHI node in the Cont Block for this.
1579  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1580                                            "", ContBlock);
1581  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1582  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1583       PI != PE; ++PI)
1584    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1585
1586  CGF.PushConditionalTempDestruction();
1587  CGF.EmitBlock(RHSBlock);
1588  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1589  CGF.PopConditionalTempDestruction();
1590
1591  // Reaquire the RHS block, as there may be subblocks inserted.
1592  RHSBlock = Builder.GetInsertBlock();
1593
1594  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1595  // into the phi node for the edge with the value of RHSCond.
1596  CGF.EmitBlock(ContBlock);
1597  PN->addIncoming(RHSCond, RHSBlock);
1598
1599  // ZExt result to int.
1600  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1601}
1602
1603Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1604  const llvm::Type *ResTy = ConvertType(E->getType());
1605
1606  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1607  // If we have 0 || X, just emit X without inserting the control flow.
1608  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1609    if (Cond == -1) { // If we have 0 || X, just emit X.
1610      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1611      // ZExt result to int or bool.
1612      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1613    }
1614
1615    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1616    if (!CGF.ContainsLabel(E->getRHS()))
1617      return llvm::ConstantInt::get(ResTy, 1);
1618  }
1619
1620  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1621  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1622
1623  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1624  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1625
1626  // Any edges into the ContBlock are now from an (indeterminate number of)
1627  // edges from this first condition.  All of these values will be true.  Start
1628  // setting up the PHI node in the Cont Block for this.
1629  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1630                                            "", ContBlock);
1631  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1632  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1633       PI != PE; ++PI)
1634    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1635
1636  CGF.PushConditionalTempDestruction();
1637
1638  // Emit the RHS condition as a bool value.
1639  CGF.EmitBlock(RHSBlock);
1640  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1641
1642  CGF.PopConditionalTempDestruction();
1643
1644  // Reaquire the RHS block, as there may be subblocks inserted.
1645  RHSBlock = Builder.GetInsertBlock();
1646
1647  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1648  // into the phi node for the edge with the value of RHSCond.
1649  CGF.EmitBlock(ContBlock);
1650  PN->addIncoming(RHSCond, RHSBlock);
1651
1652  // ZExt result to int.
1653  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1654}
1655
1656Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1657  CGF.EmitStmt(E->getLHS());
1658  CGF.EnsureInsertPoint();
1659  return Visit(E->getRHS());
1660}
1661
1662//===----------------------------------------------------------------------===//
1663//                             Other Operators
1664//===----------------------------------------------------------------------===//
1665
1666/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1667/// expression is cheap enough and side-effect-free enough to evaluate
1668/// unconditionally instead of conditionally.  This is used to convert control
1669/// flow into selects in some cases.
1670static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1671                                                   CodeGenFunction &CGF) {
1672  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1673    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1674
1675  // TODO: Allow anything we can constant fold to an integer or fp constant.
1676  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1677      isa<FloatingLiteral>(E))
1678    return true;
1679
1680  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1681  // X and Y are local variables.
1682  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1683    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1684      if (VD->hasLocalStorage() && !(CGF.getContext()
1685                                     .getCanonicalType(VD->getType())
1686                                     .isVolatileQualified()))
1687        return true;
1688
1689  return false;
1690}
1691
1692
1693Value *ScalarExprEmitter::
1694VisitConditionalOperator(const ConditionalOperator *E) {
1695  TestAndClearIgnoreResultAssign();
1696  // If the condition constant folds and can be elided, try to avoid emitting
1697  // the condition and the dead arm.
1698  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1699    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1700    if (Cond == -1)
1701      std::swap(Live, Dead);
1702
1703    // If the dead side doesn't have labels we need, and if the Live side isn't
1704    // the gnu missing ?: extension (which we could handle, but don't bother
1705    // to), just emit the Live part.
1706    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1707        Live)                                   // Live part isn't missing.
1708      return Visit(Live);
1709  }
1710
1711
1712  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1713  // select instead of as control flow.  We can only do this if it is cheap and
1714  // safe to evaluate the LHS and RHS unconditionally.
1715  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1716                                                            CGF) &&
1717      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1718    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1719    llvm::Value *LHS = Visit(E->getLHS());
1720    llvm::Value *RHS = Visit(E->getRHS());
1721    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1722  }
1723
1724
1725  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1726  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1727  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1728  Value *CondVal = 0;
1729
1730  // If we don't have the GNU missing condition extension, emit a branch on bool
1731  // the normal way.
1732  if (E->getLHS()) {
1733    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1734    // the branch on bool.
1735    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1736  } else {
1737    // Otherwise, for the ?: extension, evaluate the conditional and then
1738    // convert it to bool the hard way.  We do this explicitly because we need
1739    // the unconverted value for the missing middle value of the ?:.
1740    CondVal = CGF.EmitScalarExpr(E->getCond());
1741
1742    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1743    // if there are no extra uses (an optimization).  Inhibit this by making an
1744    // extra dead use, because we're going to add a use of CondVal later.  We
1745    // don't use the builder for this, because we don't want it to get optimized
1746    // away.  This leaves dead code, but the ?: extension isn't common.
1747    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1748                          Builder.GetInsertBlock());
1749
1750    Value *CondBoolVal =
1751      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1752                               CGF.getContext().BoolTy);
1753    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1754  }
1755
1756  CGF.PushConditionalTempDestruction();
1757  CGF.EmitBlock(LHSBlock);
1758
1759  // Handle the GNU extension for missing LHS.
1760  Value *LHS;
1761  if (E->getLHS())
1762    LHS = Visit(E->getLHS());
1763  else    // Perform promotions, to handle cases like "short ?: int"
1764    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1765
1766  CGF.PopConditionalTempDestruction();
1767  LHSBlock = Builder.GetInsertBlock();
1768  CGF.EmitBranch(ContBlock);
1769
1770  CGF.PushConditionalTempDestruction();
1771  CGF.EmitBlock(RHSBlock);
1772
1773  Value *RHS = Visit(E->getRHS());
1774  CGF.PopConditionalTempDestruction();
1775  RHSBlock = Builder.GetInsertBlock();
1776  CGF.EmitBranch(ContBlock);
1777
1778  CGF.EmitBlock(ContBlock);
1779
1780  if (!LHS || !RHS) {
1781    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1782    return 0;
1783  }
1784
1785  // Create a PHI node for the real part.
1786  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1787  PN->reserveOperandSpace(2);
1788  PN->addIncoming(LHS, LHSBlock);
1789  PN->addIncoming(RHS, RHSBlock);
1790  return PN;
1791}
1792
1793Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1794  return Visit(E->getChosenSubExpr(CGF.getContext()));
1795}
1796
1797Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1798  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1799  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1800
1801  // If EmitVAArg fails, we fall back to the LLVM instruction.
1802  if (!ArgPtr)
1803    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1804
1805  // FIXME Volatility.
1806  return Builder.CreateLoad(ArgPtr);
1807}
1808
1809Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1810  return CGF.BuildBlockLiteralTmp(BE);
1811}
1812
1813//===----------------------------------------------------------------------===//
1814//                         Entry Point into this File
1815//===----------------------------------------------------------------------===//
1816
1817/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1818/// type, ignoring the result.
1819Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1820  assert(E && !hasAggregateLLVMType(E->getType()) &&
1821         "Invalid scalar expression to emit");
1822
1823  return ScalarExprEmitter(*this, IgnoreResultAssign)
1824    .Visit(const_cast<Expr*>(E));
1825}
1826
1827/// EmitScalarConversion - Emit a conversion from the specified type to the
1828/// specified destination type, both of which are LLVM scalar types.
1829Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1830                                             QualType DstTy) {
1831  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1832         "Invalid scalar expression to emit");
1833  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1834}
1835
1836/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1837/// type to the specified destination type, where the destination type is an
1838/// LLVM scalar type.
1839Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1840                                                      QualType SrcTy,
1841                                                      QualType DstTy) {
1842  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1843         "Invalid complex -> scalar conversion");
1844  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1845                                                                DstTy);
1846}
1847
1848Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1849  assert(V1->getType() == V2->getType() &&
1850         "Vector operands must be of the same type");
1851  unsigned NumElements =
1852    cast<llvm::VectorType>(V1->getType())->getNumElements();
1853
1854  va_list va;
1855  va_start(va, V2);
1856
1857  llvm::SmallVector<llvm::Constant*, 16> Args;
1858  for (unsigned i = 0; i < NumElements; i++) {
1859    int n = va_arg(va, int);
1860    assert(n >= 0 && n < (int)NumElements * 2 &&
1861           "Vector shuffle index out of bounds!");
1862    Args.push_back(llvm::ConstantInt::get(
1863                                         llvm::Type::getInt32Ty(VMContext), n));
1864  }
1865
1866  const char *Name = va_arg(va, const char *);
1867  va_end(va);
1868
1869  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1870
1871  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1872}
1873
1874llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1875                                         unsigned NumVals, bool isSplat) {
1876  llvm::Value *Vec
1877    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1878
1879  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1880    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1881    llvm::Value *Idx = llvm::ConstantInt::get(
1882                                          llvm::Type::getInt32Ty(VMContext), i);
1883    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1884  }
1885
1886  return Vec;
1887}
1888