CGExprScalar.cpp revision 5d46315ca3cbbfe0d0f5f65520b618fb05dd4446
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/CFG.h"
26#include <cstdarg>
27
28using namespace clang;
29using namespace CodeGen;
30using llvm::Value;
31
32//===----------------------------------------------------------------------===//
33//                         Scalar Expression Emitter
34//===----------------------------------------------------------------------===//
35
36struct BinOpInfo {
37  Value *LHS;
38  Value *RHS;
39  QualType Ty;  // Computation Type.
40  const BinaryOperator *E;
41};
42
43namespace {
44class VISIBILITY_HIDDEN ScalarExprEmitter
45  : public StmtVisitor<ScalarExprEmitter, Value*> {
46  CodeGenFunction &CGF;
47  CGBuilderTy &Builder;
48
49public:
50
51  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
52    Builder(CGF.Builder) {
53  }
54
55  //===--------------------------------------------------------------------===//
56  //                               Utilities
57  //===--------------------------------------------------------------------===//
58
59  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
60  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
61
62  Value *EmitLoadOfLValue(LValue LV, QualType T) {
63    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
64  }
65
66  /// EmitLoadOfLValue - Given an expression with complex type that represents a
67  /// value l-value, this method emits the address of the l-value, then loads
68  /// and returns the result.
69  Value *EmitLoadOfLValue(const Expr *E) {
70    // FIXME: Volatile
71    return EmitLoadOfLValue(EmitLValue(E), E->getType());
72  }
73
74  /// EmitConversionToBool - Convert the specified expression value to a
75  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
76  Value *EmitConversionToBool(Value *Src, QualType DstTy);
77
78  /// EmitScalarConversion - Emit a conversion from the specified type to the
79  /// specified destination type, both of which are LLVM scalar types.
80  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
81
82  /// EmitComplexToScalarConversion - Emit a conversion from the specified
83  /// complex type to the specified destination type, where the destination
84  /// type is an LLVM scalar type.
85  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
86                                       QualType SrcTy, QualType DstTy);
87
88  //===--------------------------------------------------------------------===//
89  //                            Visitor Methods
90  //===--------------------------------------------------------------------===//
91
92  Value *VisitStmt(Stmt *S) {
93    S->dump(CGF.getContext().getSourceManager());
94    assert(0 && "Stmt can't have complex result type!");
95    return 0;
96  }
97  Value *VisitExpr(Expr *S);
98  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
99
100  // Leaves.
101  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
102    return llvm::ConstantInt::get(E->getValue());
103  }
104  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
105    return llvm::ConstantFP::get(E->getValue());
106  }
107  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
108    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
109  }
110  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
111    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
112  }
113  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
114    return llvm::Constant::getNullValue(ConvertType(E->getType()));
115  }
116  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
117    return llvm::ConstantInt::get(ConvertType(E->getType()),
118                                  CGF.getContext().typesAreCompatible(
119                                    E->getArgType1(), E->getArgType2()));
120  }
121  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
122  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
123    llvm::Value *V =
124      llvm::ConstantInt::get(llvm::Type::Int32Ty,
125                             CGF.GetIDForAddrOfLabel(E->getLabel()));
126
127    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
128  }
129
130  // l-values.
131  Value *VisitDeclRefExpr(DeclRefExpr *E) {
132    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
133      return llvm::ConstantInt::get(EC->getInitVal());
134    return EmitLoadOfLValue(E);
135  }
136  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
137    return CGF.EmitObjCSelectorExpr(E);
138  }
139  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
140    return CGF.EmitObjCProtocolExpr(E);
141  }
142  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
143    return EmitLoadOfLValue(E);
144  }
145  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
146    return EmitLoadOfLValue(E);
147  }
148  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
149    return EmitLoadOfLValue(E);
150  }
151  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
152    return CGF.EmitObjCMessageExpr(E).getScalarVal();
153  }
154
155  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
156  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
157  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
158  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
159  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
160    return EmitLoadOfLValue(E);
161  }
162  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
163  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
164
165  Value *VisitInitListExpr(InitListExpr *E) {
166    unsigned NumInitElements = E->getNumInits();
167
168    const llvm::VectorType *VType =
169      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
170
171    // We have a scalar in braces. Just use the first element.
172    if (!VType)
173      return Visit(E->getInit(0));
174
175    if (E->hadDesignators()) {
176      CGF.ErrorUnsupported(E, "initializer list with designators");
177      return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
178    }
179
180    unsigned NumVectorElements = VType->getNumElements();
181    const llvm::Type *ElementType = VType->getElementType();
182
183    // Emit individual vector element stores.
184    llvm::Value *V = llvm::UndefValue::get(VType);
185
186    // Emit initializers
187    unsigned i;
188    for (i = 0; i < NumInitElements; ++i) {
189      Value *NewV = Visit(E->getInit(i));
190      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
191      V = Builder.CreateInsertElement(V, NewV, Idx);
192    }
193
194    // Emit remaining default initializers
195    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
196      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
197      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
198      V = Builder.CreateInsertElement(V, NewV, Idx);
199    }
200
201    return V;
202  }
203
204  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
205  Value *VisitCastExpr(const CastExpr *E) {
206    return EmitCastExpr(E->getSubExpr(), E->getType());
207  }
208  Value *EmitCastExpr(const Expr *E, QualType T);
209
210  Value *VisitCallExpr(const CallExpr *E) {
211    return CGF.EmitCallExpr(E).getScalarVal();
212  }
213
214  Value *VisitStmtExpr(const StmtExpr *E);
215
216  // Unary Operators.
217  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
218  Value *VisitUnaryPostDec(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, false, false);
220  }
221  Value *VisitUnaryPostInc(const UnaryOperator *E) {
222    return VisitPrePostIncDec(E, true, false);
223  }
224  Value *VisitUnaryPreDec(const UnaryOperator *E) {
225    return VisitPrePostIncDec(E, false, true);
226  }
227  Value *VisitUnaryPreInc(const UnaryOperator *E) {
228    return VisitPrePostIncDec(E, true, true);
229  }
230  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
231    return EmitLValue(E->getSubExpr()).getAddress();
232  }
233  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
234  Value *VisitUnaryPlus(const UnaryOperator *E) {
235    return Visit(E->getSubExpr());
236  }
237  Value *VisitUnaryMinus    (const UnaryOperator *E);
238  Value *VisitUnaryNot      (const UnaryOperator *E);
239  Value *VisitUnaryLNot     (const UnaryOperator *E);
240  Value *VisitUnaryReal     (const UnaryOperator *E);
241  Value *VisitUnaryImag     (const UnaryOperator *E);
242  Value *VisitUnaryExtension(const UnaryOperator *E) {
243    return Visit(E->getSubExpr());
244  }
245  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
246  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
247    return Visit(DAE->getExpr());
248  }
249
250  // Binary Operators.
251  Value *EmitMul(const BinOpInfo &Ops) {
252    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
253  }
254  Value *EmitDiv(const BinOpInfo &Ops);
255  Value *EmitRem(const BinOpInfo &Ops);
256  Value *EmitAdd(const BinOpInfo &Ops);
257  Value *EmitSub(const BinOpInfo &Ops);
258  Value *EmitShl(const BinOpInfo &Ops);
259  Value *EmitShr(const BinOpInfo &Ops);
260  Value *EmitAnd(const BinOpInfo &Ops) {
261    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
262  }
263  Value *EmitXor(const BinOpInfo &Ops) {
264    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
265  }
266  Value *EmitOr (const BinOpInfo &Ops) {
267    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
268  }
269
270  BinOpInfo EmitBinOps(const BinaryOperator *E);
271  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
272                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
273
274  // Binary operators and binary compound assignment operators.
275#define HANDLEBINOP(OP) \
276  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
277    return Emit ## OP(EmitBinOps(E));                                      \
278  }                                                                        \
279  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
280    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
281  }
282  HANDLEBINOP(Mul);
283  HANDLEBINOP(Div);
284  HANDLEBINOP(Rem);
285  HANDLEBINOP(Add);
286  HANDLEBINOP(Sub);
287  HANDLEBINOP(Shl);
288  HANDLEBINOP(Shr);
289  HANDLEBINOP(And);
290  HANDLEBINOP(Xor);
291  HANDLEBINOP(Or);
292#undef HANDLEBINOP
293
294  // Comparisons.
295  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
296                     unsigned SICmpOpc, unsigned FCmpOpc);
297#define VISITCOMP(CODE, UI, SI, FP) \
298    Value *VisitBin##CODE(const BinaryOperator *E) { \
299      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
300                         llvm::FCmpInst::FP); }
301  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
302  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
303  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
304  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
305  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
306  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
307#undef VISITCOMP
308
309  Value *VisitBinAssign     (const BinaryOperator *E);
310
311  Value *VisitBinLAnd       (const BinaryOperator *E);
312  Value *VisitBinLOr        (const BinaryOperator *E);
313  Value *VisitBinComma      (const BinaryOperator *E);
314
315  // Other Operators.
316  Value *VisitConditionalOperator(const ConditionalOperator *CO);
317  Value *VisitChooseExpr(ChooseExpr *CE);
318  Value *VisitOverloadExpr(OverloadExpr *OE);
319  Value *VisitVAArgExpr(VAArgExpr *VE);
320  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
321    return CGF.EmitObjCStringLiteral(E);
322  }
323  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
324};
325}  // end anonymous namespace.
326
327//===----------------------------------------------------------------------===//
328//                                Utilities
329//===----------------------------------------------------------------------===//
330
331/// EmitConversionToBool - Convert the specified expression value to a
332/// boolean (i1) truth value.  This is equivalent to "Val != 0".
333Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
334  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
335
336  if (SrcType->isRealFloatingType()) {
337    // Compare against 0.0 for fp scalars.
338    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
339    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
340  }
341
342  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
343         "Unknown scalar type to convert");
344
345  // Because of the type rules of C, we often end up computing a logical value,
346  // then zero extending it to int, then wanting it as a logical value again.
347  // Optimize this common case.
348  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
349    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
350      Value *Result = ZI->getOperand(0);
351      // If there aren't any more uses, zap the instruction to save space.
352      // Note that there can be more uses, for example if this
353      // is the result of an assignment.
354      if (ZI->use_empty())
355        ZI->eraseFromParent();
356      return Result;
357    }
358  }
359
360  // Compare against an integer or pointer null.
361  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
362  return Builder.CreateICmpNE(Src, Zero, "tobool");
363}
364
365/// EmitScalarConversion - Emit a conversion from the specified type to the
366/// specified destination type, both of which are LLVM scalar types.
367Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
368                                               QualType DstType) {
369  SrcType = CGF.getContext().getCanonicalType(SrcType);
370  DstType = CGF.getContext().getCanonicalType(DstType);
371  if (SrcType == DstType) return Src;
372
373  if (DstType->isVoidType()) return 0;
374
375  // Handle conversions to bool first, they are special: comparisons against 0.
376  if (DstType->isBooleanType())
377    return EmitConversionToBool(Src, SrcType);
378
379  const llvm::Type *DstTy = ConvertType(DstType);
380
381  // Ignore conversions like int -> uint.
382  if (Src->getType() == DstTy)
383    return Src;
384
385  // Handle pointer conversions next: pointers can only be converted
386  // to/from other pointers and integers. Check for pointer types in
387  // terms of LLVM, as some native types (like Obj-C id) may map to a
388  // pointer type.
389  if (isa<llvm::PointerType>(DstTy)) {
390    // The source value may be an integer, or a pointer.
391    if (isa<llvm::PointerType>(Src->getType()))
392      return Builder.CreateBitCast(Src, DstTy, "conv");
393    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
394    return Builder.CreateIntToPtr(Src, DstTy, "conv");
395  }
396
397  if (isa<llvm::PointerType>(Src->getType())) {
398    // Must be an ptr to int cast.
399    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
400    return Builder.CreatePtrToInt(Src, DstTy, "conv");
401  }
402
403  // A scalar can be splatted to an extended vector of the same element type
404  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
405      cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
406    return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
407                          true);
408
409  // Allow bitcast from vector to integer/fp of the same size.
410  if (isa<llvm::VectorType>(Src->getType()) ||
411      isa<llvm::VectorType>(DstTy))
412    return Builder.CreateBitCast(Src, DstTy, "conv");
413
414  // Finally, we have the arithmetic types: real int/float.
415  if (isa<llvm::IntegerType>(Src->getType())) {
416    bool InputSigned = SrcType->isSignedIntegerType();
417    if (isa<llvm::IntegerType>(DstTy))
418      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
419    else if (InputSigned)
420      return Builder.CreateSIToFP(Src, DstTy, "conv");
421    else
422      return Builder.CreateUIToFP(Src, DstTy, "conv");
423  }
424
425  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
426  if (isa<llvm::IntegerType>(DstTy)) {
427    if (DstType->isSignedIntegerType())
428      return Builder.CreateFPToSI(Src, DstTy, "conv");
429    else
430      return Builder.CreateFPToUI(Src, DstTy, "conv");
431  }
432
433  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
434  if (DstTy->getTypeID() < Src->getType()->getTypeID())
435    return Builder.CreateFPTrunc(Src, DstTy, "conv");
436  else
437    return Builder.CreateFPExt(Src, DstTy, "conv");
438}
439
440/// EmitComplexToScalarConversion - Emit a conversion from the specified
441/// complex type to the specified destination type, where the destination
442/// type is an LLVM scalar type.
443Value *ScalarExprEmitter::
444EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
445                              QualType SrcTy, QualType DstTy) {
446  // Get the source element type.
447  SrcTy = SrcTy->getAsComplexType()->getElementType();
448
449  // Handle conversions to bool first, they are special: comparisons against 0.
450  if (DstTy->isBooleanType()) {
451    //  Complex != 0  -> (Real != 0) | (Imag != 0)
452    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
453    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
454    return Builder.CreateOr(Src.first, Src.second, "tobool");
455  }
456
457  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
458  // the imaginary part of the complex value is discarded and the value of the
459  // real part is converted according to the conversion rules for the
460  // corresponding real type.
461  return EmitScalarConversion(Src.first, SrcTy, DstTy);
462}
463
464
465//===----------------------------------------------------------------------===//
466//                            Visitor Methods
467//===----------------------------------------------------------------------===//
468
469Value *ScalarExprEmitter::VisitExpr(Expr *E) {
470  CGF.ErrorUnsupported(E, "scalar expression");
471  if (E->getType()->isVoidType())
472    return 0;
473  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
474}
475
476Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
477  llvm::SmallVector<llvm::Constant*, 32> indices;
478  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
479    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
480  }
481  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
482  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
483  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
484  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
485}
486
487Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
488  // Emit subscript expressions in rvalue context's.  For most cases, this just
489  // loads the lvalue formed by the subscript expr.  However, we have to be
490  // careful, because the base of a vector subscript is occasionally an rvalue,
491  // so we can't get it as an lvalue.
492  if (!E->getBase()->getType()->isVectorType())
493    return EmitLoadOfLValue(E);
494
495  // Handle the vector case.  The base must be a vector, the index must be an
496  // integer value.
497  Value *Base = Visit(E->getBase());
498  Value *Idx  = Visit(E->getIdx());
499
500  // FIXME: Convert Idx to i32 type.
501  return Builder.CreateExtractElement(Base, Idx, "vecext");
502}
503
504/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
505/// also handle things like function to pointer-to-function decay, and array to
506/// pointer decay.
507Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
508  const Expr *Op = E->getSubExpr();
509
510  // If this is due to array->pointer conversion, emit the array expression as
511  // an l-value.
512  if (Op->getType()->isArrayType()) {
513    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
514    // will not true when we add support for VLAs.
515    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
516
517    if (!(isa<llvm::PointerType>(V->getType()) &&
518          isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
519                               ->getElementType()))) {
520      CGF.ErrorUnsupported(E, "variable-length array cast", true);
521      if (E->getType()->isVoidType())
522        return 0;
523      return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
524    }
525    V = Builder.CreateStructGEP(V, 0, "arraydecay");
526
527    // The resultant pointer type can be implicitly casted to other pointer
528    // types as well (e.g. void*) and can be implicitly converted to integer.
529    const llvm::Type *DestTy = ConvertType(E->getType());
530    if (V->getType() != DestTy) {
531      if (isa<llvm::PointerType>(DestTy))
532        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
533      else {
534        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
535        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
536      }
537    }
538    return V;
539
540  } else if (E->getType()->isReferenceType()) {
541    return EmitLValue(Op).getAddress();
542  }
543
544  return EmitCastExpr(Op, E->getType());
545}
546
547
548// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
549// have to handle a more broad range of conversions than explicit casts, as they
550// handle things like function to ptr-to-function decay etc.
551Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
552  // Handle cases where the source is an non-complex type.
553
554  if (!CGF.hasAggregateLLVMType(E->getType())) {
555    Value *Src = Visit(const_cast<Expr*>(E));
556
557    // Use EmitScalarConversion to perform the conversion.
558    return EmitScalarConversion(Src, E->getType(), DestTy);
559  }
560
561  if (E->getType()->isAnyComplexType()) {
562    // Handle cases where the source is a complex type.
563    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
564                                         DestTy);
565  }
566
567  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
568  // evaluate the result and return.
569  CGF.EmitAggExpr(E, 0, false);
570  return 0;
571}
572
573Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
574  return CGF.EmitCompoundStmt(*E->getSubStmt(),
575                              !E->getType()->isVoidType()).getScalarVal();
576}
577
578
579//===----------------------------------------------------------------------===//
580//                             Unary Operators
581//===----------------------------------------------------------------------===//
582
583Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
584                                             bool isInc, bool isPre) {
585  LValue LV = EmitLValue(E->getSubExpr());
586  // FIXME: Handle volatile!
587  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
588                                     E->getSubExpr()->getType()).getScalarVal();
589
590  int AmountVal = isInc ? 1 : -1;
591
592  Value *NextVal;
593  if (isa<llvm::PointerType>(InVal->getType())) {
594    // FIXME: This isn't right for VLAs.
595    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
596    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
597  } else {
598    // Add the inc/dec to the real part.
599    if (isa<llvm::IntegerType>(InVal->getType()))
600      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
601    else if (InVal->getType() == llvm::Type::FloatTy)
602      NextVal =
603        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
604    else if (InVal->getType() == llvm::Type::DoubleTy)
605      NextVal =
606        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
607    else {
608      llvm::APFloat F(static_cast<float>(AmountVal));
609      bool ignored;
610      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
611                &ignored);
612      NextVal = llvm::ConstantFP::get(F);
613    }
614    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
615  }
616
617  // Store the updated result through the lvalue.
618  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
619                             E->getSubExpr()->getType());
620
621  // If this is a postinc, return the value read from memory, otherwise use the
622  // updated value.
623  return isPre ? NextVal : InVal;
624}
625
626
627Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
628  Value *Op = Visit(E->getSubExpr());
629  return Builder.CreateNeg(Op, "neg");
630}
631
632Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
633  Value *Op = Visit(E->getSubExpr());
634  return Builder.CreateNot(Op, "neg");
635}
636
637Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
638  // Compare operand to zero.
639  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
640
641  // Invert value.
642  // TODO: Could dynamically modify easy computations here.  For example, if
643  // the operand is an icmp ne, turn into icmp eq.
644  BoolVal = Builder.CreateNot(BoolVal, "lnot");
645
646  // ZExt result to int.
647  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
648}
649
650/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
651/// argument of the sizeof expression as an integer.
652Value *
653ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
654  QualType RetType = E->getType();
655  assert(RetType->isIntegerType() && "Result type must be an integer!");
656  uint32_t ResultWidth =
657    static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
658
659  QualType TypeToSize = E->getTypeOfArgument();
660  // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
661  // for function types.
662  // FIXME: what is alignof a function type in gcc?
663  if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
664    return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
665
666  if (const VariableArrayType *VAT =
667        CGF.getContext().getAsVariableArrayType(TypeToSize)) {
668    if (E->isSizeOf())
669      return CGF.GetVLASize(VAT);
670    else
671      assert(0 && "alignof VLAs not implemented yet");
672  }
673
674  std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
675
676  uint64_t Val = E->isSizeOf() ? Info.first : Info.second;
677  Val /= 8;  // Return size in bytes, not bits.
678
679  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
680}
681
682Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
683  Expr *Op = E->getSubExpr();
684  if (Op->getType()->isAnyComplexType())
685    return CGF.EmitComplexExpr(Op).first;
686  return Visit(Op);
687}
688Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
689  Expr *Op = E->getSubExpr();
690  if (Op->getType()->isAnyComplexType())
691    return CGF.EmitComplexExpr(Op).second;
692
693  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
694  // effects are evaluated.
695  CGF.EmitScalarExpr(Op);
696  return llvm::Constant::getNullValue(ConvertType(E->getType()));
697}
698
699Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
700{
701  int64_t Val = E->evaluateOffsetOf(CGF.getContext());
702
703  assert(E->getType()->isIntegerType() && "Result type must be an integer!");
704
705  uint32_t ResultWidth =
706    static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
707  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
708}
709
710//===----------------------------------------------------------------------===//
711//                           Binary Operators
712//===----------------------------------------------------------------------===//
713
714BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
715  BinOpInfo Result;
716  Result.LHS = Visit(E->getLHS());
717  Result.RHS = Visit(E->getRHS());
718  Result.Ty  = E->getType();
719  Result.E = E;
720  return Result;
721}
722
723Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
724                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
725  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
726
727  BinOpInfo OpInfo;
728
729  // Load the LHS and RHS operands.
730  LValue LHSLV = EmitLValue(E->getLHS());
731  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
732
733  // Determine the computation type.  If the RHS is complex, then this is one of
734  // the add/sub/mul/div operators.  All of these operators can be computed in
735  // with just their real component even though the computation domain really is
736  // complex.
737  QualType ComputeType = E->getComputationType();
738
739  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
740  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
741    ComputeType = CT->getElementType();
742
743    // Emit the RHS, only keeping the real component.
744    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
745    RHSTy = RHSTy->getAsComplexType()->getElementType();
746  } else {
747    // Otherwise the RHS is a simple scalar value.
748    OpInfo.RHS = Visit(E->getRHS());
749  }
750
751  QualType LComputeTy, RComputeTy, ResultTy;
752
753  // Compound assignment does not contain enough information about all
754  // the types involved for pointer arithmetic cases. Figure it out
755  // here for now.
756  if (E->getLHS()->getType()->isPointerType()) {
757    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
758    assert((E->getOpcode() == BinaryOperator::AddAssign ||
759            E->getOpcode() == BinaryOperator::SubAssign) &&
760           "Invalid compound assignment operator on pointer type.");
761    LComputeTy = E->getLHS()->getType();
762
763    if (E->getRHS()->getType()->isPointerType()) {
764      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
765      // extension, the conversion from the pointer difference back to
766      // the LHS type is handled at the end.
767      assert(E->getOpcode() == BinaryOperator::SubAssign &&
768             "Invalid compound assignment operator on pointer type.");
769      RComputeTy = E->getLHS()->getType();
770      ResultTy = CGF.getContext().getPointerDiffType();
771    } else {
772      RComputeTy = E->getRHS()->getType();
773      ResultTy = LComputeTy;
774    }
775  } else if (E->getRHS()->getType()->isPointerType()) {
776    // Degenerate case of (int += ptr) allowed by GCC implicit cast
777    // extension.
778    assert(E->getOpcode() == BinaryOperator::AddAssign &&
779           "Invalid compound assignment operator on pointer type.");
780    LComputeTy = E->getLHS()->getType();
781    RComputeTy = E->getRHS()->getType();
782    ResultTy = RComputeTy;
783  } else {
784    LComputeTy = RComputeTy = ResultTy = ComputeType;
785  }
786
787  // Convert the LHS/RHS values to the computation type.
788  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
789  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
790  OpInfo.Ty = ResultTy;
791  OpInfo.E = E;
792
793  // Expand the binary operator.
794  Value *Result = (this->*Func)(OpInfo);
795
796  // Convert the result back to the LHS type.
797  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
798
799  // Store the result value into the LHS lvalue. Bit-fields are
800  // handled specially because the result is altered by the store,
801  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
802  // the left operand after the assignment...'.
803  if (LHSLV.isBitfield())
804    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
805                                       &Result);
806  else
807    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
808
809  return Result;
810}
811
812
813Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
814  if (Ops.LHS->getType()->isFPOrFPVector())
815    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
816  else if (Ops.Ty->isUnsignedIntegerType())
817    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
818  else
819    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
820}
821
822Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
823  // Rem in C can't be a floating point type: C99 6.5.5p2.
824  if (Ops.Ty->isUnsignedIntegerType())
825    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
826  else
827    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
828}
829
830
831Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
832  if (!Ops.Ty->isPointerType())
833    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
834
835  // FIXME: What about a pointer to a VLA?
836  Value *Ptr, *Idx;
837  Expr *IdxExp;
838  if (isa<llvm::PointerType>(Ops.LHS->getType())) {  // pointer + int
839    Ptr = Ops.LHS;
840    Idx = Ops.RHS;
841    IdxExp = Ops.E->getRHS();
842  } else {                                           // int + pointer
843    Ptr = Ops.RHS;
844    Idx = Ops.LHS;
845    IdxExp = Ops.E->getLHS();
846  }
847
848  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
849  if (Width < CGF.LLVMPointerWidth) {
850    // Zero or sign extend the pointer value based on whether the index is
851    // signed or not.
852    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
853    if (IdxExp->getType()->isSignedIntegerType())
854      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
855    else
856      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
857  }
858
859  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
860}
861
862Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
863  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
864    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
865
866  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
867    // pointer - int
868    Value *Idx = Ops.RHS;
869    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
870    if (Width < CGF.LLVMPointerWidth) {
871      // Zero or sign extend the pointer value based on whether the index is
872      // signed or not.
873      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
874      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
875        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
876      else
877        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
878    }
879    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
880
881    // FIXME: The pointer could point to a VLA.
882    // The GNU void* - int case is automatically handled here because
883    // our LLVM type for void* is i8*.
884    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
885  } else {
886    // pointer - pointer
887    Value *LHS = Ops.LHS;
888    Value *RHS = Ops.RHS;
889
890    const QualType LHSType = Ops.E->getLHS()->getType();
891    const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
892    uint64_t ElementSize;
893
894    // Handle GCC extension for pointer arithmetic on void* types.
895    if (LHSElementType->isVoidType()) {
896      ElementSize = 1;
897    } else {
898      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
899    }
900
901    const llvm::Type *ResultType = ConvertType(Ops.Ty);
902    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
903    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
904    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
905
906    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
907    // remainder.  As such, we handle common power-of-two cases here to generate
908    // better code. See PR2247.
909    if (llvm::isPowerOf2_64(ElementSize)) {
910      Value *ShAmt =
911        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
912      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
913    }
914
915    // Otherwise, do a full sdiv.
916    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
917    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
918  }
919}
920
921Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
922  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
923  // RHS to the same size as the LHS.
924  Value *RHS = Ops.RHS;
925  if (Ops.LHS->getType() != RHS->getType())
926    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
927
928  return Builder.CreateShl(Ops.LHS, RHS, "shl");
929}
930
931Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
932  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
933  // RHS to the same size as the LHS.
934  Value *RHS = Ops.RHS;
935  if (Ops.LHS->getType() != RHS->getType())
936    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
937
938  if (Ops.Ty->isUnsignedIntegerType())
939    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
940  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
941}
942
943Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
944                                      unsigned SICmpOpc, unsigned FCmpOpc) {
945  Value *Result;
946  QualType LHSTy = E->getLHS()->getType();
947  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
948    Value *LHS = Visit(E->getLHS());
949    Value *RHS = Visit(E->getRHS());
950
951    if (LHS->getType()->isFloatingPoint()) {
952      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
953                                  LHS, RHS, "cmp");
954    } else if (LHSTy->isSignedIntegerType()) {
955      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
956                                  LHS, RHS, "cmp");
957    } else {
958      // Unsigned integers and pointers.
959      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
960                                  LHS, RHS, "cmp");
961    }
962  } else if (LHSTy->isVectorType()) {
963    Value *LHS = Visit(E->getLHS());
964    Value *RHS = Visit(E->getRHS());
965
966    if (LHS->getType()->isFPOrFPVector()) {
967      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
968                                  LHS, RHS, "cmp");
969    } else if (LHSTy->isUnsignedIntegerType()) {
970      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
971                                  LHS, RHS, "cmp");
972    } else {
973      // Signed integers and pointers.
974      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
975                                  LHS, RHS, "cmp");
976    }
977    return Result;
978  } else {
979    // Complex Comparison: can only be an equality comparison.
980    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
981    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
982
983    QualType CETy = LHSTy->getAsComplexType()->getElementType();
984
985    Value *ResultR, *ResultI;
986    if (CETy->isRealFloatingType()) {
987      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
988                                   LHS.first, RHS.first, "cmp.r");
989      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
990                                   LHS.second, RHS.second, "cmp.i");
991    } else {
992      // Complex comparisons can only be equality comparisons.  As such, signed
993      // and unsigned opcodes are the same.
994      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
995                                   LHS.first, RHS.first, "cmp.r");
996      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
997                                   LHS.second, RHS.second, "cmp.i");
998    }
999
1000    if (E->getOpcode() == BinaryOperator::EQ) {
1001      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1002    } else {
1003      assert(E->getOpcode() == BinaryOperator::NE &&
1004             "Complex comparison other than == or != ?");
1005      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1006    }
1007  }
1008
1009  // ZExt result to int.
1010  return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
1011}
1012
1013Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1014  LValue LHS = EmitLValue(E->getLHS());
1015  Value *RHS = Visit(E->getRHS());
1016
1017  // Store the value into the LHS.  Bit-fields are handled specially
1018  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1019  // 'An assignment expression has the value of the left operand after
1020  // the assignment...'.
1021  // FIXME: Volatility!
1022  if (LHS.isBitfield())
1023    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1024                                       &RHS);
1025  else
1026    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1027
1028  // Return the RHS.
1029  return RHS;
1030}
1031
1032Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1033  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1034  // If we have 1 && X, just emit X without inserting the control flow.
1035  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1036    if (Cond == 1) { // If we have 1 && X, just emit X.
1037      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1038      // ZExt result to int.
1039      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1040    }
1041
1042    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1043    if (!CGF.ContainsLabel(E->getRHS()))
1044      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1045  }
1046
1047  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1048  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1049
1050  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1051  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1052
1053  // Any edges into the ContBlock are now from an (indeterminate number of)
1054  // edges from this first condition.  All of these values will be false.  Start
1055  // setting up the PHI node in the Cont Block for this.
1056  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1057  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1058  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1059       PI != PE; ++PI)
1060    PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
1061
1062  CGF.EmitBlock(RHSBlock);
1063  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1064
1065  // Reaquire the RHS block, as there may be subblocks inserted.
1066  RHSBlock = Builder.GetInsertBlock();
1067
1068  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1069  // into the phi node for the edge with the value of RHSCond.
1070  CGF.EmitBlock(ContBlock);
1071  PN->addIncoming(RHSCond, RHSBlock);
1072
1073  // ZExt result to int.
1074  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1075}
1076
1077Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1078  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1079  // If we have 0 || X, just emit X without inserting the control flow.
1080  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1081    if (Cond == -1) { // If we have 0 || X, just emit X.
1082      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1083      // ZExt result to int.
1084      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1085    }
1086
1087    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1088    if (!CGF.ContainsLabel(E->getRHS()))
1089      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1090  }
1091
1092  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1093  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1094
1095  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1096  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1097
1098  // Any edges into the ContBlock are now from an (indeterminate number of)
1099  // edges from this first condition.  All of these values will be true.  Start
1100  // setting up the PHI node in the Cont Block for this.
1101  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1102  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1103  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1104       PI != PE; ++PI)
1105    PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1106
1107  // Emit the RHS condition as a bool value.
1108  CGF.EmitBlock(RHSBlock);
1109  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1110
1111  // Reaquire the RHS block, as there may be subblocks inserted.
1112  RHSBlock = Builder.GetInsertBlock();
1113
1114  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1115  // into the phi node for the edge with the value of RHSCond.
1116  CGF.EmitBlock(ContBlock);
1117  PN->addIncoming(RHSCond, RHSBlock);
1118
1119  // ZExt result to int.
1120  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1121}
1122
1123Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1124  CGF.EmitStmt(E->getLHS());
1125  CGF.EnsureInsertPoint();
1126  return Visit(E->getRHS());
1127}
1128
1129//===----------------------------------------------------------------------===//
1130//                             Other Operators
1131//===----------------------------------------------------------------------===//
1132
1133/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1134/// expression is cheap enough and side-effect-free enough to evaluate
1135/// unconditionally instead of conditionally.  This is used to convert control
1136/// flow into selects in some cases.
1137static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1138  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1139    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1140
1141  // TODO: Allow anything we can constant fold to an integer or fp constant.
1142  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1143      isa<FloatingLiteral>(E))
1144    return true;
1145
1146  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1147  // X and Y are local variables.
1148  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1149    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1150      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1151        return true;
1152
1153  return false;
1154}
1155
1156
1157Value *ScalarExprEmitter::
1158VisitConditionalOperator(const ConditionalOperator *E) {
1159  // If the condition constant folds and can be elided, try to avoid emitting
1160  // the condition and the dead arm.
1161  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1162    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1163    if (Cond == -1)
1164      std::swap(Live, Dead);
1165
1166    // If the dead side doesn't have labels we need, and if the Live side isn't
1167    // the gnu missing ?: extension (which we could handle, but don't bother
1168    // to), just emit the Live part.
1169    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1170        Live)                                   // Live part isn't missing.
1171      return Visit(Live);
1172  }
1173
1174
1175  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1176  // select instead of as control flow.  We can only do this if it is cheap and
1177  // safe to evaluate the LHS and RHS unconditionally.
1178  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1179      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1180    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1181    llvm::Value *LHS = Visit(E->getLHS());
1182    llvm::Value *RHS = Visit(E->getRHS());
1183    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1184  }
1185
1186
1187  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1188  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1189  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1190  Value *CondVal = 0;
1191
1192  // If we have the GNU missing condition extension, evaluate the conditional
1193  // and then convert it to bool the hard way.  We do this explicitly
1194  // because we need the unconverted value for the missing middle value of
1195  // the ?:.
1196  if (E->getLHS() == 0) {
1197    CondVal = CGF.EmitScalarExpr(E->getCond());
1198    Value *CondBoolVal =
1199      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1200                               CGF.getContext().BoolTy);
1201    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1202  } else {
1203    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1204    // the branch on bool.
1205    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1206  }
1207
1208  CGF.EmitBlock(LHSBlock);
1209
1210  // Handle the GNU extension for missing LHS.
1211  Value *LHS;
1212  if (E->getLHS())
1213    LHS = Visit(E->getLHS());
1214  else    // Perform promotions, to handle cases like "short ?: int"
1215    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1216
1217  LHSBlock = Builder.GetInsertBlock();
1218  CGF.EmitBranch(ContBlock);
1219
1220  CGF.EmitBlock(RHSBlock);
1221
1222  Value *RHS = Visit(E->getRHS());
1223  RHSBlock = Builder.GetInsertBlock();
1224  CGF.EmitBranch(ContBlock);
1225
1226  CGF.EmitBlock(ContBlock);
1227
1228  if (!LHS || !RHS) {
1229    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1230    return 0;
1231  }
1232
1233  // Create a PHI node for the real part.
1234  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1235  PN->reserveOperandSpace(2);
1236  PN->addIncoming(LHS, LHSBlock);
1237  PN->addIncoming(RHS, RHSBlock);
1238  return PN;
1239}
1240
1241Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1242  // Emit the LHS or RHS as appropriate.
1243  return
1244    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1245}
1246
1247Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1248  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1249                          E->arg_end(CGF.getContext())).getScalarVal();
1250}
1251
1252Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1253  llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1254
1255  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1256
1257  // If EmitVAArg fails, we fall back to the LLVM instruction.
1258  if (!ArgPtr)
1259    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1260
1261  // FIXME: volatile?
1262  return Builder.CreateLoad(ArgPtr);
1263}
1264
1265Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1266  std::string str;
1267  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
1268
1269  llvm::Constant *C = llvm::ConstantArray::get(str);
1270  C = new llvm::GlobalVariable(C->getType(), true,
1271                               llvm::GlobalValue::InternalLinkage,
1272                               C, ".str", &CGF.CGM.getModule());
1273  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1274  llvm::Constant *Zeros[] = { Zero, Zero };
1275  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1276
1277  return C;
1278}
1279
1280//===----------------------------------------------------------------------===//
1281//                         Entry Point into this File
1282//===----------------------------------------------------------------------===//
1283
1284/// EmitComplexExpr - Emit the computation of the specified expression of
1285/// complex type, ignoring the result.
1286Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1287  assert(E && !hasAggregateLLVMType(E->getType()) &&
1288         "Invalid scalar expression to emit");
1289
1290  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1291}
1292
1293/// EmitScalarConversion - Emit a conversion from the specified type to the
1294/// specified destination type, both of which are LLVM scalar types.
1295Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1296                                             QualType DstTy) {
1297  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1298         "Invalid scalar expression to emit");
1299  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1300}
1301
1302/// EmitComplexToScalarConversion - Emit a conversion from the specified
1303/// complex type to the specified destination type, where the destination
1304/// type is an LLVM scalar type.
1305Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1306                                                      QualType SrcTy,
1307                                                      QualType DstTy) {
1308  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1309         "Invalid complex -> scalar conversion");
1310  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1311                                                                DstTy);
1312}
1313
1314Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1315  assert(V1->getType() == V2->getType() &&
1316         "Vector operands must be of the same type");
1317  unsigned NumElements =
1318    cast<llvm::VectorType>(V1->getType())->getNumElements();
1319
1320  va_list va;
1321  va_start(va, V2);
1322
1323  llvm::SmallVector<llvm::Constant*, 16> Args;
1324  for (unsigned i = 0; i < NumElements; i++) {
1325    int n = va_arg(va, int);
1326    assert(n >= 0 && n < (int)NumElements * 2 &&
1327           "Vector shuffle index out of bounds!");
1328    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1329  }
1330
1331  const char *Name = va_arg(va, const char *);
1332  va_end(va);
1333
1334  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1335
1336  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1337}
1338
1339llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1340                                         unsigned NumVals, bool isSplat) {
1341  llvm::Value *Vec
1342    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1343
1344  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1345    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1346    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1347    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1348  }
1349
1350  return Vec;
1351}
1352