CGExprScalar.cpp revision 699c06068dab18efd37897659ec120d211827607
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenModule.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/Constants.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/Module.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Target/TargetData.h"
30#include <cstdarg>
31
32using namespace clang;
33using namespace CodeGen;
34using llvm::Value;
35
36//===----------------------------------------------------------------------===//
37//                         Scalar Expression Emitter
38//===----------------------------------------------------------------------===//
39
40struct BinOpInfo {
41  Value *LHS;
42  Value *RHS;
43  QualType Ty;  // Computation Type.
44  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
45  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
46};
47
48namespace {
49class ScalarExprEmitter
50  : public StmtVisitor<ScalarExprEmitter, Value*> {
51  CodeGenFunction &CGF;
52  CGBuilderTy &Builder;
53  bool IgnoreResultAssign;
54  llvm::LLVMContext &VMContext;
55public:
56
57  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
58    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
59      VMContext(cgf.getLLVMContext()) {
60  }
61
62  //===--------------------------------------------------------------------===//
63  //                               Utilities
64  //===--------------------------------------------------------------------===//
65
66  bool TestAndClearIgnoreResultAssign() {
67    bool I = IgnoreResultAssign;
68    IgnoreResultAssign = false;
69    return I;
70  }
71
72  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
73  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
74  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
75
76  Value *EmitLoadOfLValue(LValue LV, QualType T) {
77    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
78  }
79
80  /// EmitLoadOfLValue - Given an expression with complex type that represents a
81  /// value l-value, this method emits the address of the l-value, then loads
82  /// and returns the result.
83  Value *EmitLoadOfLValue(const Expr *E) {
84    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
85  }
86
87  /// EmitConversionToBool - Convert the specified expression value to a
88  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
89  Value *EmitConversionToBool(Value *Src, QualType DstTy);
90
91  /// EmitScalarConversion - Emit a conversion from the specified type to the
92  /// specified destination type, both of which are LLVM scalar types.
93  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
94
95  /// EmitComplexToScalarConversion - Emit a conversion from the specified
96  /// complex type to the specified destination type, where the destination type
97  /// is an LLVM scalar type.
98  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
99                                       QualType SrcTy, QualType DstTy);
100
101  /// EmitNullValue - Emit a value that corresponds to null for the given type.
102  Value *EmitNullValue(QualType Ty);
103
104  //===--------------------------------------------------------------------===//
105  //                            Visitor Methods
106  //===--------------------------------------------------------------------===//
107
108  Value *VisitStmt(Stmt *S) {
109    S->dump(CGF.getContext().getSourceManager());
110    assert(0 && "Stmt can't have complex result type!");
111    return 0;
112  }
113  Value *VisitExpr(Expr *S);
114
115  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
116
117  // Leaves.
118  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
119    return llvm::ConstantInt::get(VMContext, E->getValue());
120  }
121  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
122    return llvm::ConstantFP::get(VMContext, E->getValue());
123  }
124  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
125    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
126  }
127  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
128    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
129  }
130  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
131    return EmitNullValue(E->getType());
132  }
133  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
134    return EmitNullValue(E->getType());
135  }
136  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
137    return llvm::ConstantInt::get(ConvertType(E->getType()),
138                                  CGF.getContext().typesAreCompatible(
139                                    E->getArgType1(), E->getArgType2()));
140  }
141  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
142  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
143  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
144    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
145    return Builder.CreateBitCast(V, ConvertType(E->getType()));
146  }
147
148  // l-values.
149  Value *VisitDeclRefExpr(DeclRefExpr *E) {
150    Expr::EvalResult Result;
151    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
152      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
153      llvm::ConstantInt *CI
154        = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
155      CGF.EmitDeclRefExprDbgValue(E, CI);
156      return CI;
157    }
158    return EmitLoadOfLValue(E);
159  }
160  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
161    return CGF.EmitObjCSelectorExpr(E);
162  }
163  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
164    return CGF.EmitObjCProtocolExpr(E);
165  }
166  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
167    return EmitLoadOfLValue(E);
168  }
169  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
170    return EmitLoadOfLValue(E);
171  }
172  Value *VisitObjCImplicitSetterGetterRefExpr(
173                        ObjCImplicitSetterGetterRefExpr *E) {
174    return EmitLoadOfLValue(E);
175  }
176  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
177    return CGF.EmitObjCMessageExpr(E).getScalarVal();
178  }
179
180  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
181    LValue LV = CGF.EmitObjCIsaExpr(E);
182    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
183    return V;
184  }
185
186  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
187  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
188  Value *VisitMemberExpr(MemberExpr *E);
189  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
190  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
191    return EmitLoadOfLValue(E);
192  }
193
194  Value *VisitInitListExpr(InitListExpr *E);
195
196  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
197    return CGF.CGM.EmitNullConstant(E->getType());
198  }
199  Value *VisitCastExpr(CastExpr *E) {
200    // Make sure to evaluate VLA bounds now so that we have them for later.
201    if (E->getType()->isVariablyModifiedType())
202      CGF.EmitVLASize(E->getType());
203
204    return EmitCastExpr(E);
205  }
206  Value *EmitCastExpr(CastExpr *E);
207
208  Value *VisitCallExpr(const CallExpr *E) {
209    if (E->getCallReturnType()->isReferenceType())
210      return EmitLoadOfLValue(E);
211
212    return CGF.EmitCallExpr(E).getScalarVal();
213  }
214
215  Value *VisitStmtExpr(const StmtExpr *E);
216
217  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
218
219  // Unary Operators.
220  Value *VisitUnaryPostDec(const UnaryOperator *E) {
221    LValue LV = EmitLValue(E->getSubExpr());
222    return EmitScalarPrePostIncDec(E, LV, false, false);
223  }
224  Value *VisitUnaryPostInc(const UnaryOperator *E) {
225    LValue LV = EmitLValue(E->getSubExpr());
226    return EmitScalarPrePostIncDec(E, LV, true, false);
227  }
228  Value *VisitUnaryPreDec(const UnaryOperator *E) {
229    LValue LV = EmitLValue(E->getSubExpr());
230    return EmitScalarPrePostIncDec(E, LV, false, true);
231  }
232  Value *VisitUnaryPreInc(const UnaryOperator *E) {
233    LValue LV = EmitLValue(E->getSubExpr());
234    return EmitScalarPrePostIncDec(E, LV, true, true);
235  }
236
237  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
238                                       bool isInc, bool isPre);
239
240
241  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
242    // If the sub-expression is an instance member reference,
243    // EmitDeclRefLValue will magically emit it with the appropriate
244    // value as the "address".
245    return EmitLValue(E->getSubExpr()).getAddress();
246  }
247  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
248  Value *VisitUnaryPlus(const UnaryOperator *E) {
249    // This differs from gcc, though, most likely due to a bug in gcc.
250    TestAndClearIgnoreResultAssign();
251    return Visit(E->getSubExpr());
252  }
253  Value *VisitUnaryMinus    (const UnaryOperator *E);
254  Value *VisitUnaryNot      (const UnaryOperator *E);
255  Value *VisitUnaryLNot     (const UnaryOperator *E);
256  Value *VisitUnaryReal     (const UnaryOperator *E);
257  Value *VisitUnaryImag     (const UnaryOperator *E);
258  Value *VisitUnaryExtension(const UnaryOperator *E) {
259    return Visit(E->getSubExpr());
260  }
261
262  // C++
263  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
264    return Visit(DAE->getExpr());
265  }
266  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
267    return CGF.LoadCXXThis();
268  }
269
270  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
271    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
272  }
273  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
274    return CGF.EmitCXXNewExpr(E);
275  }
276  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
277    CGF.EmitCXXDeleteExpr(E);
278    return 0;
279  }
280  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
281    return llvm::ConstantInt::get(Builder.getInt1Ty(),
282                                  E->EvaluateTrait(CGF.getContext()));
283  }
284
285  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
286    // C++ [expr.pseudo]p1:
287    //   The result shall only be used as the operand for the function call
288    //   operator (), and the result of such a call has type void. The only
289    //   effect is the evaluation of the postfix-expression before the dot or
290    //   arrow.
291    CGF.EmitScalarExpr(E->getBase());
292    return 0;
293  }
294
295  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
296    return EmitNullValue(E->getType());
297  }
298
299  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
300    CGF.EmitCXXThrowExpr(E);
301    return 0;
302  }
303
304  // Binary Operators.
305  Value *EmitMul(const BinOpInfo &Ops) {
306    if (Ops.Ty->hasSignedIntegerRepresentation()) {
307      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
308      case LangOptions::SOB_Undefined:
309        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
310      case LangOptions::SOB_Defined:
311        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
312      case LangOptions::SOB_Trapping:
313        return EmitOverflowCheckedBinOp(Ops);
314      }
315    }
316
317    if (Ops.LHS->getType()->isFPOrFPVectorTy())
318      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
319    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
320  }
321  /// Create a binary op that checks for overflow.
322  /// Currently only supports +, - and *.
323  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
324  Value *EmitDiv(const BinOpInfo &Ops);
325  Value *EmitRem(const BinOpInfo &Ops);
326  Value *EmitAdd(const BinOpInfo &Ops);
327  Value *EmitSub(const BinOpInfo &Ops);
328  Value *EmitShl(const BinOpInfo &Ops);
329  Value *EmitShr(const BinOpInfo &Ops);
330  Value *EmitAnd(const BinOpInfo &Ops) {
331    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
332  }
333  Value *EmitXor(const BinOpInfo &Ops) {
334    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
335  }
336  Value *EmitOr (const BinOpInfo &Ops) {
337    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
338  }
339
340  BinOpInfo EmitBinOps(const BinaryOperator *E);
341  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
342                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
343                                  Value *&Result);
344
345  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
346                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
347
348  // Binary operators and binary compound assignment operators.
349#define HANDLEBINOP(OP) \
350  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
351    return Emit ## OP(EmitBinOps(E));                                      \
352  }                                                                        \
353  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
354    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
355  }
356  HANDLEBINOP(Mul)
357  HANDLEBINOP(Div)
358  HANDLEBINOP(Rem)
359  HANDLEBINOP(Add)
360  HANDLEBINOP(Sub)
361  HANDLEBINOP(Shl)
362  HANDLEBINOP(Shr)
363  HANDLEBINOP(And)
364  HANDLEBINOP(Xor)
365  HANDLEBINOP(Or)
366#undef HANDLEBINOP
367
368  // Comparisons.
369  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
370                     unsigned SICmpOpc, unsigned FCmpOpc);
371#define VISITCOMP(CODE, UI, SI, FP) \
372    Value *VisitBin##CODE(const BinaryOperator *E) { \
373      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
374                         llvm::FCmpInst::FP); }
375  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
376  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
377  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
378  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
379  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
380  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
381#undef VISITCOMP
382
383  Value *VisitBinAssign     (const BinaryOperator *E);
384
385  Value *VisitBinLAnd       (const BinaryOperator *E);
386  Value *VisitBinLOr        (const BinaryOperator *E);
387  Value *VisitBinComma      (const BinaryOperator *E);
388
389  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
390  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
391
392  // Other Operators.
393  Value *VisitBlockExpr(const BlockExpr *BE);
394  Value *VisitConditionalOperator(const ConditionalOperator *CO);
395  Value *VisitChooseExpr(ChooseExpr *CE);
396  Value *VisitVAArgExpr(VAArgExpr *VE);
397  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
398    return CGF.EmitObjCStringLiteral(E);
399  }
400};
401}  // end anonymous namespace.
402
403//===----------------------------------------------------------------------===//
404//                                Utilities
405//===----------------------------------------------------------------------===//
406
407/// EmitConversionToBool - Convert the specified expression value to a
408/// boolean (i1) truth value.  This is equivalent to "Val != 0".
409Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
410  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
411
412  if (SrcType->isRealFloatingType()) {
413    // Compare against 0.0 for fp scalars.
414    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
415    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
416  }
417
418  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
419    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
420
421  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
422         "Unknown scalar type to convert");
423
424  // Because of the type rules of C, we often end up computing a logical value,
425  // then zero extending it to int, then wanting it as a logical value again.
426  // Optimize this common case.
427  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
428    if (ZI->getOperand(0)->getType() ==
429        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
430      Value *Result = ZI->getOperand(0);
431      // If there aren't any more uses, zap the instruction to save space.
432      // Note that there can be more uses, for example if this
433      // is the result of an assignment.
434      if (ZI->use_empty())
435        ZI->eraseFromParent();
436      return Result;
437    }
438  }
439
440  // Compare against an integer or pointer null.
441  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
442  return Builder.CreateICmpNE(Src, Zero, "tobool");
443}
444
445/// EmitScalarConversion - Emit a conversion from the specified type to the
446/// specified destination type, both of which are LLVM scalar types.
447Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
448                                               QualType DstType) {
449  SrcType = CGF.getContext().getCanonicalType(SrcType);
450  DstType = CGF.getContext().getCanonicalType(DstType);
451  if (SrcType == DstType) return Src;
452
453  if (DstType->isVoidType()) return 0;
454
455  // Handle conversions to bool first, they are special: comparisons against 0.
456  if (DstType->isBooleanType())
457    return EmitConversionToBool(Src, SrcType);
458
459  const llvm::Type *DstTy = ConvertType(DstType);
460
461  // Ignore conversions like int -> uint.
462  if (Src->getType() == DstTy)
463    return Src;
464
465  // Handle pointer conversions next: pointers can only be converted to/from
466  // other pointers and integers. Check for pointer types in terms of LLVM, as
467  // some native types (like Obj-C id) may map to a pointer type.
468  if (isa<llvm::PointerType>(DstTy)) {
469    // The source value may be an integer, or a pointer.
470    if (isa<llvm::PointerType>(Src->getType()))
471      return Builder.CreateBitCast(Src, DstTy, "conv");
472
473    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
474    // First, convert to the correct width so that we control the kind of
475    // extension.
476    const llvm::Type *MiddleTy = CGF.IntPtrTy;
477    bool InputSigned = SrcType->isSignedIntegerType();
478    llvm::Value* IntResult =
479        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
480    // Then, cast to pointer.
481    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
482  }
483
484  if (isa<llvm::PointerType>(Src->getType())) {
485    // Must be an ptr to int cast.
486    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
487    return Builder.CreatePtrToInt(Src, DstTy, "conv");
488  }
489
490  // A scalar can be splatted to an extended vector of the same element type
491  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
492    // Cast the scalar to element type
493    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
494    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
495
496    // Insert the element in element zero of an undef vector
497    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
498    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
499    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
500
501    // Splat the element across to all elements
502    llvm::SmallVector<llvm::Constant*, 16> Args;
503    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
504    for (unsigned i = 0; i < NumElements; i++)
505      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
506
507    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
508    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
509    return Yay;
510  }
511
512  // Allow bitcast from vector to integer/fp of the same size.
513  if (isa<llvm::VectorType>(Src->getType()) ||
514      isa<llvm::VectorType>(DstTy))
515    return Builder.CreateBitCast(Src, DstTy, "conv");
516
517  // Finally, we have the arithmetic types: real int/float.
518  if (isa<llvm::IntegerType>(Src->getType())) {
519    bool InputSigned = SrcType->isSignedIntegerType();
520    if (isa<llvm::IntegerType>(DstTy))
521      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
522    else if (InputSigned)
523      return Builder.CreateSIToFP(Src, DstTy, "conv");
524    else
525      return Builder.CreateUIToFP(Src, DstTy, "conv");
526  }
527
528  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
529  if (isa<llvm::IntegerType>(DstTy)) {
530    if (DstType->isSignedIntegerType())
531      return Builder.CreateFPToSI(Src, DstTy, "conv");
532    else
533      return Builder.CreateFPToUI(Src, DstTy, "conv");
534  }
535
536  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
537  if (DstTy->getTypeID() < Src->getType()->getTypeID())
538    return Builder.CreateFPTrunc(Src, DstTy, "conv");
539  else
540    return Builder.CreateFPExt(Src, DstTy, "conv");
541}
542
543/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
544/// type to the specified destination type, where the destination type is an
545/// LLVM scalar type.
546Value *ScalarExprEmitter::
547EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
548                              QualType SrcTy, QualType DstTy) {
549  // Get the source element type.
550  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
551
552  // Handle conversions to bool first, they are special: comparisons against 0.
553  if (DstTy->isBooleanType()) {
554    //  Complex != 0  -> (Real != 0) | (Imag != 0)
555    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
556    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
557    return Builder.CreateOr(Src.first, Src.second, "tobool");
558  }
559
560  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
561  // the imaginary part of the complex value is discarded and the value of the
562  // real part is converted according to the conversion rules for the
563  // corresponding real type.
564  return EmitScalarConversion(Src.first, SrcTy, DstTy);
565}
566
567Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
568  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
569    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
570
571  return llvm::Constant::getNullValue(ConvertType(Ty));
572}
573
574//===----------------------------------------------------------------------===//
575//                            Visitor Methods
576//===----------------------------------------------------------------------===//
577
578Value *ScalarExprEmitter::VisitExpr(Expr *E) {
579  CGF.ErrorUnsupported(E, "scalar expression");
580  if (E->getType()->isVoidType())
581    return 0;
582  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
583}
584
585Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
586  // Vector Mask Case
587  if (E->getNumSubExprs() == 2 ||
588      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
589    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
590    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
591    Value *Mask;
592
593    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
594    unsigned LHSElts = LTy->getNumElements();
595
596    if (E->getNumSubExprs() == 3) {
597      Mask = CGF.EmitScalarExpr(E->getExpr(2));
598
599      // Shuffle LHS & RHS into one input vector.
600      llvm::SmallVector<llvm::Constant*, 32> concat;
601      for (unsigned i = 0; i != LHSElts; ++i) {
602        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
603        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
604      }
605
606      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
607      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
608      LHSElts *= 2;
609    } else {
610      Mask = RHS;
611    }
612
613    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
614    llvm::Constant* EltMask;
615
616    // Treat vec3 like vec4.
617    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
618      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
619                                       (1 << llvm::Log2_32(LHSElts+2))-1);
620    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
621      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
622                                       (1 << llvm::Log2_32(LHSElts+1))-1);
623    else
624      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
625                                       (1 << llvm::Log2_32(LHSElts))-1);
626
627    // Mask off the high bits of each shuffle index.
628    llvm::SmallVector<llvm::Constant *, 32> MaskV;
629    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
630      MaskV.push_back(EltMask);
631
632    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
633    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
634
635    // newv = undef
636    // mask = mask & maskbits
637    // for each elt
638    //   n = extract mask i
639    //   x = extract val n
640    //   newv = insert newv, x, i
641    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
642                                                        MTy->getNumElements());
643    Value* NewV = llvm::UndefValue::get(RTy);
644    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
645      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
646      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
647      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
648
649      // Handle vec3 special since the index will be off by one for the RHS.
650      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
651        Value *cmpIndx, *newIndx;
652        cmpIndx = Builder.CreateICmpUGT(Indx,
653                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
654                                        "cmp_shuf_idx");
655        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
656                                    "shuf_idx_adj");
657        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
658      }
659      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
660      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
661    }
662    return NewV;
663  }
664
665  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
666  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
667
668  // Handle vec3 special since the index will be off by one for the RHS.
669  llvm::SmallVector<llvm::Constant*, 32> indices;
670  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
671    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
672    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
673    if (VTy->getNumElements() == 3) {
674      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
675        uint64_t cVal = CI->getZExtValue();
676        if (cVal > 3) {
677          C = llvm::ConstantInt::get(C->getType(), cVal-1);
678        }
679      }
680    }
681    indices.push_back(C);
682  }
683
684  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
685  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
686}
687Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
688  Expr::EvalResult Result;
689  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
690    if (E->isArrow())
691      CGF.EmitScalarExpr(E->getBase());
692    else
693      EmitLValue(E->getBase());
694    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
695  }
696  return EmitLoadOfLValue(E);
697}
698
699Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
700  TestAndClearIgnoreResultAssign();
701
702  // Emit subscript expressions in rvalue context's.  For most cases, this just
703  // loads the lvalue formed by the subscript expr.  However, we have to be
704  // careful, because the base of a vector subscript is occasionally an rvalue,
705  // so we can't get it as an lvalue.
706  if (!E->getBase()->getType()->isVectorType())
707    return EmitLoadOfLValue(E);
708
709  // Handle the vector case.  The base must be a vector, the index must be an
710  // integer value.
711  Value *Base = Visit(E->getBase());
712  Value *Idx  = Visit(E->getIdx());
713  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
714  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
715  return Builder.CreateExtractElement(Base, Idx, "vecext");
716}
717
718static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
719                                  unsigned Off, const llvm::Type *I32Ty) {
720  int MV = SVI->getMaskValue(Idx);
721  if (MV == -1)
722    return llvm::UndefValue::get(I32Ty);
723  return llvm::ConstantInt::get(I32Ty, Off+MV);
724}
725
726Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
727  bool Ignore = TestAndClearIgnoreResultAssign();
728  (void)Ignore;
729  assert (Ignore == false && "init list ignored");
730  unsigned NumInitElements = E->getNumInits();
731
732  if (E->hadArrayRangeDesignator())
733    CGF.ErrorUnsupported(E, "GNU array range designator extension");
734
735  const llvm::VectorType *VType =
736    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
737
738  // We have a scalar in braces. Just use the first element.
739  if (!VType)
740    return Visit(E->getInit(0));
741
742  unsigned ResElts = VType->getNumElements();
743
744  // Loop over initializers collecting the Value for each, and remembering
745  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
746  // us to fold the shuffle for the swizzle into the shuffle for the vector
747  // initializer, since LLVM optimizers generally do not want to touch
748  // shuffles.
749  unsigned CurIdx = 0;
750  bool VIsUndefShuffle = false;
751  llvm::Value *V = llvm::UndefValue::get(VType);
752  for (unsigned i = 0; i != NumInitElements; ++i) {
753    Expr *IE = E->getInit(i);
754    Value *Init = Visit(IE);
755    llvm::SmallVector<llvm::Constant*, 16> Args;
756
757    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
758
759    // Handle scalar elements.  If the scalar initializer is actually one
760    // element of a different vector of the same width, use shuffle instead of
761    // extract+insert.
762    if (!VVT) {
763      if (isa<ExtVectorElementExpr>(IE)) {
764        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
765
766        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
767          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
768          Value *LHS = 0, *RHS = 0;
769          if (CurIdx == 0) {
770            // insert into undef -> shuffle (src, undef)
771            Args.push_back(C);
772            for (unsigned j = 1; j != ResElts; ++j)
773              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
774
775            LHS = EI->getVectorOperand();
776            RHS = V;
777            VIsUndefShuffle = true;
778          } else if (VIsUndefShuffle) {
779            // insert into undefshuffle && size match -> shuffle (v, src)
780            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
781            for (unsigned j = 0; j != CurIdx; ++j)
782              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
783            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
784                                                  ResElts + C->getZExtValue()));
785            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
786              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
787
788            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
789            RHS = EI->getVectorOperand();
790            VIsUndefShuffle = false;
791          }
792          if (!Args.empty()) {
793            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
794            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
795            ++CurIdx;
796            continue;
797          }
798        }
799      }
800      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
801      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
802      VIsUndefShuffle = false;
803      ++CurIdx;
804      continue;
805    }
806
807    unsigned InitElts = VVT->getNumElements();
808
809    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
810    // input is the same width as the vector being constructed, generate an
811    // optimized shuffle of the swizzle input into the result.
812    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
813    if (isa<ExtVectorElementExpr>(IE)) {
814      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
815      Value *SVOp = SVI->getOperand(0);
816      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
817
818      if (OpTy->getNumElements() == ResElts) {
819        for (unsigned j = 0; j != CurIdx; ++j) {
820          // If the current vector initializer is a shuffle with undef, merge
821          // this shuffle directly into it.
822          if (VIsUndefShuffle) {
823            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
824                                      CGF.Int32Ty));
825          } else {
826            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
827          }
828        }
829        for (unsigned j = 0, je = InitElts; j != je; ++j)
830          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
831        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
832          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
833
834        if (VIsUndefShuffle)
835          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
836
837        Init = SVOp;
838      }
839    }
840
841    // Extend init to result vector length, and then shuffle its contribution
842    // to the vector initializer into V.
843    if (Args.empty()) {
844      for (unsigned j = 0; j != InitElts; ++j)
845        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
846      for (unsigned j = InitElts; j != ResElts; ++j)
847        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
848      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
849      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
850                                         Mask, "vext");
851
852      Args.clear();
853      for (unsigned j = 0; j != CurIdx; ++j)
854        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
855      for (unsigned j = 0; j != InitElts; ++j)
856        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
857      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
858        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
859    }
860
861    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
862    // merging subsequent shuffles into this one.
863    if (CurIdx == 0)
864      std::swap(V, Init);
865    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
866    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
867    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
868    CurIdx += InitElts;
869  }
870
871  // FIXME: evaluate codegen vs. shuffling against constant null vector.
872  // Emit remaining default initializers.
873  const llvm::Type *EltTy = VType->getElementType();
874
875  // Emit remaining default initializers
876  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
877    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
878    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
879    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
880  }
881  return V;
882}
883
884static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
885  const Expr *E = CE->getSubExpr();
886
887  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
888    return false;
889
890  if (isa<CXXThisExpr>(E)) {
891    // We always assume that 'this' is never null.
892    return false;
893  }
894
895  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
896    // And that glvalue casts are never null.
897    if (ICE->getValueKind() != VK_RValue)
898      return false;
899  }
900
901  return true;
902}
903
904// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
905// have to handle a more broad range of conversions than explicit casts, as they
906// handle things like function to ptr-to-function decay etc.
907Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
908  Expr *E = CE->getSubExpr();
909  QualType DestTy = CE->getType();
910  CastKind Kind = CE->getCastKind();
911
912  if (!DestTy->isVoidType())
913    TestAndClearIgnoreResultAssign();
914
915  // Since almost all cast kinds apply to scalars, this switch doesn't have
916  // a default case, so the compiler will warn on a missing case.  The cases
917  // are in the same order as in the CastKind enum.
918  switch (Kind) {
919  case CK_Unknown:
920    // FIXME: All casts should have a known kind!
921    //assert(0 && "Unknown cast kind!");
922    break;
923
924  case CK_LValueBitCast:
925  case CK_ObjCObjectLValueCast: {
926    Value *V = EmitLValue(E).getAddress();
927    V = Builder.CreateBitCast(V,
928                          ConvertType(CGF.getContext().getPointerType(DestTy)));
929    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
930  }
931
932  case CK_AnyPointerToObjCPointerCast:
933  case CK_AnyPointerToBlockPointerCast:
934  case CK_BitCast: {
935    Value *Src = Visit(const_cast<Expr*>(E));
936    return Builder.CreateBitCast(Src, ConvertType(DestTy));
937  }
938  case CK_NoOp:
939  case CK_UserDefinedConversion:
940    return Visit(const_cast<Expr*>(E));
941
942  case CK_BaseToDerived: {
943    const CXXRecordDecl *DerivedClassDecl =
944      DestTy->getCXXRecordDeclForPointerType();
945
946    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
947                                        CE->path_begin(), CE->path_end(),
948                                        ShouldNullCheckClassCastValue(CE));
949  }
950  case CK_UncheckedDerivedToBase:
951  case CK_DerivedToBase: {
952    const RecordType *DerivedClassTy =
953      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
954    CXXRecordDecl *DerivedClassDecl =
955      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
956
957    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
958                                     CE->path_begin(), CE->path_end(),
959                                     ShouldNullCheckClassCastValue(CE));
960  }
961  case CK_Dynamic: {
962    Value *V = Visit(const_cast<Expr*>(E));
963    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
964    return CGF.EmitDynamicCast(V, DCE);
965  }
966  case CK_ToUnion:
967    assert(0 && "Should be unreachable!");
968    break;
969
970  case CK_ArrayToPointerDecay: {
971    assert(E->getType()->isArrayType() &&
972           "Array to pointer decay must have array source type!");
973
974    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
975
976    // Note that VLA pointers are always decayed, so we don't need to do
977    // anything here.
978    if (!E->getType()->isVariableArrayType()) {
979      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
980      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
981                                 ->getElementType()) &&
982             "Expected pointer to array");
983      V = Builder.CreateStructGEP(V, 0, "arraydecay");
984    }
985
986    return V;
987  }
988  case CK_FunctionToPointerDecay:
989    return EmitLValue(E).getAddress();
990
991  case CK_NullToMemberPointer: {
992    // If the subexpression's type is the C++0x nullptr_t, emit the
993    // subexpression, which may have side effects.
994    if (E->getType()->isNullPtrType())
995      (void) Visit(E);
996
997    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
998    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
999  }
1000
1001  case CK_BaseToDerivedMemberPointer:
1002  case CK_DerivedToBaseMemberPointer: {
1003    Value *Src = Visit(E);
1004
1005    // Note that the AST doesn't distinguish between checked and
1006    // unchecked member pointer conversions, so we always have to
1007    // implement checked conversions here.  This is inefficient when
1008    // actual control flow may be required in order to perform the
1009    // check, which it is for data member pointers (but not member
1010    // function pointers on Itanium and ARM).
1011    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1012  }
1013
1014
1015  case CK_ConstructorConversion:
1016    assert(0 && "Should be unreachable!");
1017    break;
1018
1019  case CK_IntegralToPointer: {
1020    Value *Src = Visit(const_cast<Expr*>(E));
1021
1022    // First, convert to the correct width so that we control the kind of
1023    // extension.
1024    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1025    bool InputSigned = E->getType()->isSignedIntegerType();
1026    llvm::Value* IntResult =
1027      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1028
1029    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1030  }
1031  case CK_PointerToIntegral: {
1032    Value *Src = Visit(const_cast<Expr*>(E));
1033
1034    // Handle conversion to bool correctly.
1035    if (DestTy->isBooleanType())
1036      return EmitScalarConversion(Src, E->getType(), DestTy);
1037
1038    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1039  }
1040  case CK_ToVoid: {
1041    if (E->Classify(CGF.getContext()).isGLValue()) {
1042      LValue LV = CGF.EmitLValue(E);
1043      if (LV.isPropertyRef())
1044        CGF.EmitLoadOfPropertyRefLValue(LV, E->getType());
1045      else if (LV.isKVCRef())
1046        CGF.EmitLoadOfKVCRefLValue(LV, E->getType());
1047    }
1048    else
1049      CGF.EmitAnyExpr(E, 0, false, true);
1050    return 0;
1051  }
1052  case CK_VectorSplat: {
1053    const llvm::Type *DstTy = ConvertType(DestTy);
1054    Value *Elt = Visit(const_cast<Expr*>(E));
1055
1056    // Insert the element in element zero of an undef vector
1057    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1058    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1059    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1060
1061    // Splat the element across to all elements
1062    llvm::SmallVector<llvm::Constant*, 16> Args;
1063    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1064    for (unsigned i = 0; i < NumElements; i++)
1065      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
1066
1067    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1068    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1069    return Yay;
1070  }
1071  case CK_IntegralCast:
1072  case CK_IntegralToFloating:
1073  case CK_FloatingToIntegral:
1074  case CK_FloatingCast:
1075    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1076
1077  case CK_MemberPointerToBoolean: {
1078    llvm::Value *MemPtr = Visit(E);
1079    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1080    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1081  }
1082  }
1083
1084  // Handle cases where the source is an non-complex type.
1085
1086  if (!CGF.hasAggregateLLVMType(E->getType())) {
1087    Value *Src = Visit(const_cast<Expr*>(E));
1088
1089    // Use EmitScalarConversion to perform the conversion.
1090    return EmitScalarConversion(Src, E->getType(), DestTy);
1091  }
1092
1093  if (E->getType()->isAnyComplexType()) {
1094    // Handle cases where the source is a complex type.
1095    bool IgnoreImag = true;
1096    bool IgnoreImagAssign = true;
1097    bool IgnoreReal = IgnoreResultAssign;
1098    bool IgnoreRealAssign = IgnoreResultAssign;
1099    if (DestTy->isBooleanType())
1100      IgnoreImagAssign = IgnoreImag = false;
1101    else if (DestTy->isVoidType()) {
1102      IgnoreReal = IgnoreImag = false;
1103      IgnoreRealAssign = IgnoreImagAssign = true;
1104    }
1105    CodeGenFunction::ComplexPairTy V
1106      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1107                            IgnoreImagAssign);
1108    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1109  }
1110
1111  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1112  // evaluate the result and return.
1113  CGF.EmitAggExpr(E, 0, false, true);
1114  return 0;
1115}
1116
1117Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1118  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1119                              !E->getType()->isVoidType()).getScalarVal();
1120}
1121
1122Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1123  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1124  if (E->getType().isObjCGCWeak())
1125    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1126  return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1127}
1128
1129//===----------------------------------------------------------------------===//
1130//                             Unary Operators
1131//===----------------------------------------------------------------------===//
1132
1133llvm::Value *ScalarExprEmitter::
1134EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1135                        bool isInc, bool isPre) {
1136
1137  QualType ValTy = E->getSubExpr()->getType();
1138  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1139
1140  int AmountVal = isInc ? 1 : -1;
1141
1142  if (ValTy->isPointerType() &&
1143      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1144    // The amount of the addition/subtraction needs to account for the VLA size
1145    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1146  }
1147
1148  llvm::Value *NextVal;
1149  if (const llvm::PointerType *PT =
1150      dyn_cast<llvm::PointerType>(InVal->getType())) {
1151    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1152    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1153      QualType PTEE = ValTy->getPointeeType();
1154      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1155        // Handle interface types, which are not represented with a concrete
1156        // type.
1157        int size = CGF.getContext().getTypeSize(OIT) / 8;
1158        if (!isInc)
1159          size = -size;
1160        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1161        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1162        InVal = Builder.CreateBitCast(InVal, i8Ty);
1163        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1164        llvm::Value *lhs = LV.getAddress();
1165        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1166        LV = CGF.MakeAddrLValue(lhs, ValTy);
1167      } else
1168        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1169    } else {
1170      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1171      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1172      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1173      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1174    }
1175  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1176    // Bool++ is an interesting case, due to promotion rules, we get:
1177    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1178    // Bool = ((int)Bool+1) != 0
1179    // An interesting aspect of this is that increment is always true.
1180    // Decrement does not have this property.
1181    NextVal = llvm::ConstantInt::getTrue(VMContext);
1182  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1183    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1184
1185    if (!ValTy->isSignedIntegerType())
1186      // Unsigned integer inc is always two's complement.
1187      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1188    else {
1189      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1190      case LangOptions::SOB_Undefined:
1191        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1192        break;
1193      case LangOptions::SOB_Defined:
1194        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1195        break;
1196      case LangOptions::SOB_Trapping:
1197        BinOpInfo BinOp;
1198        BinOp.LHS = InVal;
1199        BinOp.RHS = NextVal;
1200        BinOp.Ty = E->getType();
1201        BinOp.Opcode = BO_Add;
1202        BinOp.E = E;
1203        NextVal = EmitOverflowCheckedBinOp(BinOp);
1204        break;
1205      }
1206    }
1207  } else {
1208    // Add the inc/dec to the real part.
1209    if (InVal->getType()->isFloatTy())
1210      NextVal =
1211      llvm::ConstantFP::get(VMContext,
1212                            llvm::APFloat(static_cast<float>(AmountVal)));
1213    else if (InVal->getType()->isDoubleTy())
1214      NextVal =
1215      llvm::ConstantFP::get(VMContext,
1216                            llvm::APFloat(static_cast<double>(AmountVal)));
1217    else {
1218      llvm::APFloat F(static_cast<float>(AmountVal));
1219      bool ignored;
1220      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1221                &ignored);
1222      NextVal = llvm::ConstantFP::get(VMContext, F);
1223    }
1224    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1225  }
1226
1227  // Store the updated result through the lvalue.
1228  if (LV.isBitField())
1229    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1230  else
1231    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1232
1233  // If this is a postinc, return the value read from memory, otherwise use the
1234  // updated value.
1235  return isPre ? NextVal : InVal;
1236}
1237
1238
1239
1240Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1241  TestAndClearIgnoreResultAssign();
1242  // Emit unary minus with EmitSub so we handle overflow cases etc.
1243  BinOpInfo BinOp;
1244  BinOp.RHS = Visit(E->getSubExpr());
1245
1246  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1247    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1248  else
1249    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1250  BinOp.Ty = E->getType();
1251  BinOp.Opcode = BO_Sub;
1252  BinOp.E = E;
1253  return EmitSub(BinOp);
1254}
1255
1256Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1257  TestAndClearIgnoreResultAssign();
1258  Value *Op = Visit(E->getSubExpr());
1259  return Builder.CreateNot(Op, "neg");
1260}
1261
1262Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1263  // Compare operand to zero.
1264  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1265
1266  // Invert value.
1267  // TODO: Could dynamically modify easy computations here.  For example, if
1268  // the operand is an icmp ne, turn into icmp eq.
1269  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1270
1271  // ZExt result to the expr type.
1272  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1273}
1274
1275Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1276  // Try folding the offsetof to a constant.
1277  Expr::EvalResult EvalResult;
1278  if (E->Evaluate(EvalResult, CGF.getContext()))
1279    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1280
1281  // Loop over the components of the offsetof to compute the value.
1282  unsigned n = E->getNumComponents();
1283  const llvm::Type* ResultType = ConvertType(E->getType());
1284  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1285  QualType CurrentType = E->getTypeSourceInfo()->getType();
1286  for (unsigned i = 0; i != n; ++i) {
1287    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1288    llvm::Value *Offset = 0;
1289    switch (ON.getKind()) {
1290    case OffsetOfExpr::OffsetOfNode::Array: {
1291      // Compute the index
1292      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1293      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1294      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1295      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1296
1297      // Save the element type
1298      CurrentType =
1299          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1300
1301      // Compute the element size
1302      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1303          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1304
1305      // Multiply out to compute the result
1306      Offset = Builder.CreateMul(Idx, ElemSize);
1307      break;
1308    }
1309
1310    case OffsetOfExpr::OffsetOfNode::Field: {
1311      FieldDecl *MemberDecl = ON.getField();
1312      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1313      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1314
1315      // Compute the index of the field in its parent.
1316      unsigned i = 0;
1317      // FIXME: It would be nice if we didn't have to loop here!
1318      for (RecordDecl::field_iterator Field = RD->field_begin(),
1319                                      FieldEnd = RD->field_end();
1320           Field != FieldEnd; (void)++Field, ++i) {
1321        if (*Field == MemberDecl)
1322          break;
1323      }
1324      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1325
1326      // Compute the offset to the field
1327      int64_t OffsetInt = RL.getFieldOffset(i) /
1328                          CGF.getContext().getCharWidth();
1329      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1330
1331      // Save the element type.
1332      CurrentType = MemberDecl->getType();
1333      break;
1334    }
1335
1336    case OffsetOfExpr::OffsetOfNode::Identifier:
1337      llvm_unreachable("dependent __builtin_offsetof");
1338
1339    case OffsetOfExpr::OffsetOfNode::Base: {
1340      if (ON.getBase()->isVirtual()) {
1341        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1342        continue;
1343      }
1344
1345      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1346      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1347
1348      // Save the element type.
1349      CurrentType = ON.getBase()->getType();
1350
1351      // Compute the offset to the base.
1352      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1353      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1354      int64_t OffsetInt = RL.getBaseClassOffset(BaseRD) /
1355                          CGF.getContext().getCharWidth();
1356      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1357      break;
1358    }
1359    }
1360    Result = Builder.CreateAdd(Result, Offset);
1361  }
1362  return Result;
1363}
1364
1365/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1366/// argument of the sizeof expression as an integer.
1367Value *
1368ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1369  QualType TypeToSize = E->getTypeOfArgument();
1370  if (E->isSizeOf()) {
1371    if (const VariableArrayType *VAT =
1372          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1373      if (E->isArgumentType()) {
1374        // sizeof(type) - make sure to emit the VLA size.
1375        CGF.EmitVLASize(TypeToSize);
1376      } else {
1377        // C99 6.5.3.4p2: If the argument is an expression of type
1378        // VLA, it is evaluated.
1379        CGF.EmitAnyExpr(E->getArgumentExpr());
1380      }
1381
1382      return CGF.GetVLASize(VAT);
1383    }
1384  }
1385
1386  // If this isn't sizeof(vla), the result must be constant; use the constant
1387  // folding logic so we don't have to duplicate it here.
1388  Expr::EvalResult Result;
1389  E->Evaluate(Result, CGF.getContext());
1390  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1391}
1392
1393Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1394  Expr *Op = E->getSubExpr();
1395  if (Op->getType()->isAnyComplexType())
1396    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1397  return Visit(Op);
1398}
1399Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1400  Expr *Op = E->getSubExpr();
1401  if (Op->getType()->isAnyComplexType())
1402    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1403
1404  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1405  // effects are evaluated, but not the actual value.
1406  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1407    CGF.EmitLValue(Op);
1408  else
1409    CGF.EmitScalarExpr(Op, true);
1410  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1411}
1412
1413//===----------------------------------------------------------------------===//
1414//                           Binary Operators
1415//===----------------------------------------------------------------------===//
1416
1417BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1418  TestAndClearIgnoreResultAssign();
1419  BinOpInfo Result;
1420  Result.LHS = Visit(E->getLHS());
1421  Result.RHS = Visit(E->getRHS());
1422  Result.Ty  = E->getType();
1423  Result.Opcode = E->getOpcode();
1424  Result.E = E;
1425  return Result;
1426}
1427
1428LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1429                                              const CompoundAssignOperator *E,
1430                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1431                                                   Value *&Result) {
1432  QualType LHSTy = E->getLHS()->getType();
1433  BinOpInfo OpInfo;
1434
1435  if (E->getComputationResultType()->isAnyComplexType()) {
1436    // This needs to go through the complex expression emitter, but it's a tad
1437    // complicated to do that... I'm leaving it out for now.  (Note that we do
1438    // actually need the imaginary part of the RHS for multiplication and
1439    // division.)
1440    CGF.ErrorUnsupported(E, "complex compound assignment");
1441    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1442    return LValue();
1443  }
1444
1445  // Emit the RHS first.  __block variables need to have the rhs evaluated
1446  // first, plus this should improve codegen a little.
1447  OpInfo.RHS = Visit(E->getRHS());
1448  OpInfo.Ty = E->getComputationResultType();
1449  OpInfo.Opcode = E->getOpcode();
1450  OpInfo.E = E;
1451  // Load/convert the LHS.
1452  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1453  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1454  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1455                                    E->getComputationLHSType());
1456
1457  // Expand the binary operator.
1458  Result = (this->*Func)(OpInfo);
1459
1460  // Convert the result back to the LHS type.
1461  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1462
1463  // Store the result value into the LHS lvalue. Bit-fields are handled
1464  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1465  // 'An assignment expression has the value of the left operand after the
1466  // assignment...'.
1467  if (LHSLV.isBitField())
1468    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1469                                       &Result);
1470  else
1471    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1472
1473  return LHSLV;
1474}
1475
1476Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1477                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1478  bool Ignore = TestAndClearIgnoreResultAssign();
1479  Value *RHS;
1480  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1481
1482  // If the result is clearly ignored, return now.
1483  if (Ignore)
1484    return 0;
1485
1486  // Objective-C property assignment never reloads the value following a store.
1487  if (LHS.isPropertyRef() || LHS.isKVCRef())
1488    return RHS;
1489
1490  // If the lvalue is non-volatile, return the computed value of the assignment.
1491  if (!LHS.isVolatileQualified())
1492    return RHS;
1493
1494  // Otherwise, reload the value.
1495  return EmitLoadOfLValue(LHS, E->getType());
1496}
1497
1498
1499Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1500  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1501    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1502  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1503    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1504  else
1505    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1506}
1507
1508Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1509  // Rem in C can't be a floating point type: C99 6.5.5p2.
1510  if (Ops.Ty->isUnsignedIntegerType())
1511    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1512  else
1513    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1514}
1515
1516Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1517  unsigned IID;
1518  unsigned OpID = 0;
1519
1520  switch (Ops.Opcode) {
1521  case BO_Add:
1522  case BO_AddAssign:
1523    OpID = 1;
1524    IID = llvm::Intrinsic::sadd_with_overflow;
1525    break;
1526  case BO_Sub:
1527  case BO_SubAssign:
1528    OpID = 2;
1529    IID = llvm::Intrinsic::ssub_with_overflow;
1530    break;
1531  case BO_Mul:
1532  case BO_MulAssign:
1533    OpID = 3;
1534    IID = llvm::Intrinsic::smul_with_overflow;
1535    break;
1536  default:
1537    assert(false && "Unsupported operation for overflow detection");
1538    IID = 0;
1539  }
1540  OpID <<= 1;
1541  OpID |= 1;
1542
1543  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1544
1545  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1546
1547  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1548  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1549  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1550
1551  // Branch in case of overflow.
1552  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1553  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1554
1555  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1556
1557  // Handle overflow with llvm.trap.
1558  // TODO: it would be better to generate one of these blocks per function.
1559  Builder.SetInsertPoint(overflowBB);
1560  llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
1561  Builder.CreateCall(Trap);
1562  Builder.CreateUnreachable();
1563
1564  // Continue on.
1565  Builder.SetInsertPoint(continueBB);
1566  return result;
1567}
1568
1569Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1570  if (!Ops.Ty->isAnyPointerType()) {
1571    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1572      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1573      case LangOptions::SOB_Undefined:
1574        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1575      case LangOptions::SOB_Defined:
1576        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1577      case LangOptions::SOB_Trapping:
1578        return EmitOverflowCheckedBinOp(Ops);
1579      }
1580    }
1581
1582    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1583      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1584
1585    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1586  }
1587
1588  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1589  // use this path.
1590  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1591
1592  if (Ops.Ty->isPointerType() &&
1593      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1594    // The amount of the addition needs to account for the VLA size
1595    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1596  }
1597
1598  Value *Ptr, *Idx;
1599  Expr *IdxExp;
1600  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1601  const ObjCObjectPointerType *OPT =
1602    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1603  if (PT || OPT) {
1604    Ptr = Ops.LHS;
1605    Idx = Ops.RHS;
1606    IdxExp = BinOp->getRHS();
1607  } else {  // int + pointer
1608    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1609    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1610    assert((PT || OPT) && "Invalid add expr");
1611    Ptr = Ops.RHS;
1612    Idx = Ops.LHS;
1613    IdxExp = BinOp->getLHS();
1614  }
1615
1616  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1617  if (Width < CGF.LLVMPointerWidth) {
1618    // Zero or sign extend the pointer value based on whether the index is
1619    // signed or not.
1620    const llvm::Type *IdxType = CGF.IntPtrTy;
1621    if (IdxExp->getType()->isSignedIntegerType())
1622      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1623    else
1624      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1625  }
1626  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1627  // Handle interface types, which are not represented with a concrete type.
1628  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1629    llvm::Value *InterfaceSize =
1630      llvm::ConstantInt::get(Idx->getType(),
1631          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1632    Idx = Builder.CreateMul(Idx, InterfaceSize);
1633    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1634    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1635    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1636    return Builder.CreateBitCast(Res, Ptr->getType());
1637  }
1638
1639  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1640  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1641  // future proof.
1642  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1643    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1644    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1645    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1646    return Builder.CreateBitCast(Res, Ptr->getType());
1647  }
1648
1649  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1650}
1651
1652Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1653  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1654    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1655      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1656      case LangOptions::SOB_Undefined:
1657        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1658      case LangOptions::SOB_Defined:
1659        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1660      case LangOptions::SOB_Trapping:
1661        return EmitOverflowCheckedBinOp(Ops);
1662      }
1663    }
1664
1665    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1666      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1667
1668    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1669  }
1670
1671  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1672  // use this path.
1673  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1674
1675  if (BinOp->getLHS()->getType()->isPointerType() &&
1676      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1677    // The amount of the addition needs to account for the VLA size for
1678    // ptr-int
1679    // The amount of the division needs to account for the VLA size for
1680    // ptr-ptr.
1681    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1682  }
1683
1684  const QualType LHSType = BinOp->getLHS()->getType();
1685  const QualType LHSElementType = LHSType->getPointeeType();
1686  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1687    // pointer - int
1688    Value *Idx = Ops.RHS;
1689    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1690    if (Width < CGF.LLVMPointerWidth) {
1691      // Zero or sign extend the pointer value based on whether the index is
1692      // signed or not.
1693      const llvm::Type *IdxType = CGF.IntPtrTy;
1694      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1695        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1696      else
1697        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1698    }
1699    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1700
1701    // Handle interface types, which are not represented with a concrete type.
1702    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1703      llvm::Value *InterfaceSize =
1704        llvm::ConstantInt::get(Idx->getType(),
1705                               CGF.getContext().
1706                                 getTypeSizeInChars(OIT).getQuantity());
1707      Idx = Builder.CreateMul(Idx, InterfaceSize);
1708      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1709      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1710      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1711      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1712    }
1713
1714    // Explicitly handle GNU void* and function pointer arithmetic
1715    // extensions. The GNU void* casts amount to no-ops since our void* type is
1716    // i8*, but this is future proof.
1717    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1718      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1719      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1720      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1721      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1722    }
1723
1724    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1725  } else {
1726    // pointer - pointer
1727    Value *LHS = Ops.LHS;
1728    Value *RHS = Ops.RHS;
1729
1730    CharUnits ElementSize;
1731
1732    // Handle GCC extension for pointer arithmetic on void* and function pointer
1733    // types.
1734    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1735      ElementSize = CharUnits::One();
1736    } else {
1737      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1738    }
1739
1740    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1741    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1742    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1743    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1744
1745    // Optimize out the shift for element size of 1.
1746    if (ElementSize.isOne())
1747      return BytesBetween;
1748
1749    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1750    // pointer difference in C is only defined in the case where both operands
1751    // are pointing to elements of an array.
1752    Value *BytesPerElt =
1753        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1754    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1755  }
1756}
1757
1758Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1759  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1760  // RHS to the same size as the LHS.
1761  Value *RHS = Ops.RHS;
1762  if (Ops.LHS->getType() != RHS->getType())
1763    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1764
1765  if (CGF.CatchUndefined
1766      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1767    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1768    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1769    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1770                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1771                             Cont, CGF.getTrapBB());
1772    CGF.EmitBlock(Cont);
1773  }
1774
1775  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1776}
1777
1778Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1779  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1780  // RHS to the same size as the LHS.
1781  Value *RHS = Ops.RHS;
1782  if (Ops.LHS->getType() != RHS->getType())
1783    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1784
1785  if (CGF.CatchUndefined
1786      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1787    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1788    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1789    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1790                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1791                             Cont, CGF.getTrapBB());
1792    CGF.EmitBlock(Cont);
1793  }
1794
1795  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1796    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1797  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1798}
1799
1800Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1801                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1802  TestAndClearIgnoreResultAssign();
1803  Value *Result;
1804  QualType LHSTy = E->getLHS()->getType();
1805  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
1806    assert(E->getOpcode() == BO_EQ ||
1807           E->getOpcode() == BO_NE);
1808    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
1809    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
1810    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1811                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
1812  } else if (!LHSTy->isAnyComplexType()) {
1813    Value *LHS = Visit(E->getLHS());
1814    Value *RHS = Visit(E->getRHS());
1815
1816    if (LHS->getType()->isFPOrFPVectorTy()) {
1817      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1818                                  LHS, RHS, "cmp");
1819    } else if (LHSTy->hasSignedIntegerRepresentation()) {
1820      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1821                                  LHS, RHS, "cmp");
1822    } else {
1823      // Unsigned integers and pointers.
1824      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1825                                  LHS, RHS, "cmp");
1826    }
1827
1828    // If this is a vector comparison, sign extend the result to the appropriate
1829    // vector integer type and return it (don't convert to bool).
1830    if (LHSTy->isVectorType())
1831      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1832
1833  } else {
1834    // Complex Comparison: can only be an equality comparison.
1835    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1836    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1837
1838    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1839
1840    Value *ResultR, *ResultI;
1841    if (CETy->isRealFloatingType()) {
1842      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1843                                   LHS.first, RHS.first, "cmp.r");
1844      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1845                                   LHS.second, RHS.second, "cmp.i");
1846    } else {
1847      // Complex comparisons can only be equality comparisons.  As such, signed
1848      // and unsigned opcodes are the same.
1849      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1850                                   LHS.first, RHS.first, "cmp.r");
1851      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1852                                   LHS.second, RHS.second, "cmp.i");
1853    }
1854
1855    if (E->getOpcode() == BO_EQ) {
1856      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1857    } else {
1858      assert(E->getOpcode() == BO_NE &&
1859             "Complex comparison other than == or != ?");
1860      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1861    }
1862  }
1863
1864  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1865}
1866
1867Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1868  bool Ignore = TestAndClearIgnoreResultAssign();
1869
1870  // __block variables need to have the rhs evaluated first, plus this should
1871  // improve codegen just a little.
1872  Value *RHS = Visit(E->getRHS());
1873  LValue LHS = EmitCheckedLValue(E->getLHS());
1874
1875  // Store the value into the LHS.  Bit-fields are handled specially
1876  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1877  // 'An assignment expression has the value of the left operand after
1878  // the assignment...'.
1879  if (LHS.isBitField())
1880    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1881                                       &RHS);
1882  else
1883    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1884
1885  // If the result is clearly ignored, return now.
1886  if (Ignore)
1887    return 0;
1888
1889  // Objective-C property assignment never reloads the value following a store.
1890  if (LHS.isPropertyRef() || LHS.isKVCRef())
1891    return RHS;
1892
1893  // If the lvalue is non-volatile, return the computed value of the assignment.
1894  if (!LHS.isVolatileQualified())
1895    return RHS;
1896
1897  // Otherwise, reload the value.
1898  return EmitLoadOfLValue(LHS, E->getType());
1899}
1900
1901Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1902  const llvm::Type *ResTy = ConvertType(E->getType());
1903
1904  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1905  // If we have 1 && X, just emit X without inserting the control flow.
1906  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1907    if (Cond == 1) { // If we have 1 && X, just emit X.
1908      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1909      // ZExt result to int or bool.
1910      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1911    }
1912
1913    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1914    if (!CGF.ContainsLabel(E->getRHS()))
1915      return llvm::Constant::getNullValue(ResTy);
1916  }
1917
1918  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1919  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1920
1921  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1922  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1923
1924  // Any edges into the ContBlock are now from an (indeterminate number of)
1925  // edges from this first condition.  All of these values will be false.  Start
1926  // setting up the PHI node in the Cont Block for this.
1927  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1928                                            "", ContBlock);
1929  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1930  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1931       PI != PE; ++PI)
1932    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1933
1934  CGF.BeginConditionalBranch();
1935  CGF.EmitBlock(RHSBlock);
1936  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1937  CGF.EndConditionalBranch();
1938
1939  // Reaquire the RHS block, as there may be subblocks inserted.
1940  RHSBlock = Builder.GetInsertBlock();
1941
1942  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1943  // into the phi node for the edge with the value of RHSCond.
1944  CGF.EmitBlock(ContBlock);
1945  PN->addIncoming(RHSCond, RHSBlock);
1946
1947  // ZExt result to int.
1948  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1949}
1950
1951Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1952  const llvm::Type *ResTy = ConvertType(E->getType());
1953
1954  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1955  // If we have 0 || X, just emit X without inserting the control flow.
1956  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1957    if (Cond == -1) { // If we have 0 || X, just emit X.
1958      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1959      // ZExt result to int or bool.
1960      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1961    }
1962
1963    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1964    if (!CGF.ContainsLabel(E->getRHS()))
1965      return llvm::ConstantInt::get(ResTy, 1);
1966  }
1967
1968  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1969  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1970
1971  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1972  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1973
1974  // Any edges into the ContBlock are now from an (indeterminate number of)
1975  // edges from this first condition.  All of these values will be true.  Start
1976  // setting up the PHI node in the Cont Block for this.
1977  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1978                                            "", ContBlock);
1979  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1980  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1981       PI != PE; ++PI)
1982    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1983
1984  CGF.BeginConditionalBranch();
1985
1986  // Emit the RHS condition as a bool value.
1987  CGF.EmitBlock(RHSBlock);
1988  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1989
1990  CGF.EndConditionalBranch();
1991
1992  // Reaquire the RHS block, as there may be subblocks inserted.
1993  RHSBlock = Builder.GetInsertBlock();
1994
1995  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1996  // into the phi node for the edge with the value of RHSCond.
1997  CGF.EmitBlock(ContBlock);
1998  PN->addIncoming(RHSCond, RHSBlock);
1999
2000  // ZExt result to int.
2001  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2002}
2003
2004Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2005  CGF.EmitStmt(E->getLHS());
2006  CGF.EnsureInsertPoint();
2007  return Visit(E->getRHS());
2008}
2009
2010//===----------------------------------------------------------------------===//
2011//                             Other Operators
2012//===----------------------------------------------------------------------===//
2013
2014/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2015/// expression is cheap enough and side-effect-free enough to evaluate
2016/// unconditionally instead of conditionally.  This is used to convert control
2017/// flow into selects in some cases.
2018static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2019                                                   CodeGenFunction &CGF) {
2020  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2021    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2022
2023  // TODO: Allow anything we can constant fold to an integer or fp constant.
2024  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2025      isa<FloatingLiteral>(E))
2026    return true;
2027
2028  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2029  // X and Y are local variables.
2030  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2031    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2032      if (VD->hasLocalStorage() && !(CGF.getContext()
2033                                     .getCanonicalType(VD->getType())
2034                                     .isVolatileQualified()))
2035        return true;
2036
2037  return false;
2038}
2039
2040
2041Value *ScalarExprEmitter::
2042VisitConditionalOperator(const ConditionalOperator *E) {
2043  TestAndClearIgnoreResultAssign();
2044  // If the condition constant folds and can be elided, try to avoid emitting
2045  // the condition and the dead arm.
2046  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2047    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2048    if (Cond == -1)
2049      std::swap(Live, Dead);
2050
2051    // If the dead side doesn't have labels we need, and if the Live side isn't
2052    // the gnu missing ?: extension (which we could handle, but don't bother
2053    // to), just emit the Live part.
2054    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2055        Live)                                   // Live part isn't missing.
2056      return Visit(Live);
2057  }
2058
2059
2060  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2061  // select instead of as control flow.  We can only do this if it is cheap and
2062  // safe to evaluate the LHS and RHS unconditionally.
2063  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2064                                                            CGF) &&
2065      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2066    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2067    llvm::Value *LHS = Visit(E->getLHS());
2068    llvm::Value *RHS = Visit(E->getRHS());
2069    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2070  }
2071
2072  if (!E->getLHS() && CGF.getContext().getLangOptions().CPlusPlus) {
2073    // Does not support GNU missing condition extension in C++ yet (see #7726)
2074    CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
2075    return llvm::UndefValue::get(ConvertType(E->getType()));
2076  }
2077
2078  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2079  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2080  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2081  Value *CondVal = 0;
2082
2083  // If we don't have the GNU missing condition extension, emit a branch on bool
2084  // the normal way.
2085  if (E->getLHS()) {
2086    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2087    // the branch on bool.
2088    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2089  } else {
2090    // Otherwise, for the ?: extension, evaluate the conditional and then
2091    // convert it to bool the hard way.  We do this explicitly because we need
2092    // the unconverted value for the missing middle value of the ?:.
2093    CondVal = CGF.EmitScalarExpr(E->getCond());
2094
2095    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2096    // if there are no extra uses (an optimization).  Inhibit this by making an
2097    // extra dead use, because we're going to add a use of CondVal later.  We
2098    // don't use the builder for this, because we don't want it to get optimized
2099    // away.  This leaves dead code, but the ?: extension isn't common.
2100    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2101                          Builder.GetInsertBlock());
2102
2103    Value *CondBoolVal =
2104      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2105                               CGF.getContext().BoolTy);
2106    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2107  }
2108
2109  CGF.BeginConditionalBranch();
2110  CGF.EmitBlock(LHSBlock);
2111
2112  // Handle the GNU extension for missing LHS.
2113  Value *LHS;
2114  if (E->getLHS())
2115    LHS = Visit(E->getLHS());
2116  else    // Perform promotions, to handle cases like "short ?: int"
2117    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
2118
2119  CGF.EndConditionalBranch();
2120  LHSBlock = Builder.GetInsertBlock();
2121  CGF.EmitBranch(ContBlock);
2122
2123  CGF.BeginConditionalBranch();
2124  CGF.EmitBlock(RHSBlock);
2125
2126  Value *RHS = Visit(E->getRHS());
2127  CGF.EndConditionalBranch();
2128  RHSBlock = Builder.GetInsertBlock();
2129  CGF.EmitBranch(ContBlock);
2130
2131  CGF.EmitBlock(ContBlock);
2132
2133  // If the LHS or RHS is a throw expression, it will be legitimately null.
2134  if (!LHS)
2135    return RHS;
2136  if (!RHS)
2137    return LHS;
2138
2139  // Create a PHI node for the real part.
2140  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2141  PN->reserveOperandSpace(2);
2142  PN->addIncoming(LHS, LHSBlock);
2143  PN->addIncoming(RHS, RHSBlock);
2144  return PN;
2145}
2146
2147Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2148  return Visit(E->getChosenSubExpr(CGF.getContext()));
2149}
2150
2151Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2152  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2153  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2154
2155  // If EmitVAArg fails, we fall back to the LLVM instruction.
2156  if (!ArgPtr)
2157    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2158
2159  // FIXME Volatility.
2160  return Builder.CreateLoad(ArgPtr);
2161}
2162
2163Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2164  return CGF.BuildBlockLiteralTmp(BE);
2165}
2166
2167//===----------------------------------------------------------------------===//
2168//                         Entry Point into this File
2169//===----------------------------------------------------------------------===//
2170
2171/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2172/// type, ignoring the result.
2173Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2174  assert(E && !hasAggregateLLVMType(E->getType()) &&
2175         "Invalid scalar expression to emit");
2176
2177  return ScalarExprEmitter(*this, IgnoreResultAssign)
2178    .Visit(const_cast<Expr*>(E));
2179}
2180
2181/// EmitScalarConversion - Emit a conversion from the specified type to the
2182/// specified destination type, both of which are LLVM scalar types.
2183Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2184                                             QualType DstTy) {
2185  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2186         "Invalid scalar expression to emit");
2187  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2188}
2189
2190/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2191/// type to the specified destination type, where the destination type is an
2192/// LLVM scalar type.
2193Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2194                                                      QualType SrcTy,
2195                                                      QualType DstTy) {
2196  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2197         "Invalid complex -> scalar conversion");
2198  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2199                                                                DstTy);
2200}
2201
2202
2203llvm::Value *CodeGenFunction::
2204EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2205                        bool isInc, bool isPre) {
2206  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2207}
2208
2209LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2210  llvm::Value *V;
2211  // object->isa or (*object).isa
2212  // Generate code as for: *(Class*)object
2213  // build Class* type
2214  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2215
2216  Expr *BaseExpr = E->getBase();
2217  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2218    V = CreateTempAlloca(ClassPtrTy, "resval");
2219    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2220    Builder.CreateStore(Src, V);
2221    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2222      MakeAddrLValue(V, E->getType()), E->getType());
2223  } else {
2224    if (E->isArrow())
2225      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2226    else
2227      V = EmitLValue(BaseExpr).getAddress();
2228  }
2229
2230  // build Class* type
2231  ClassPtrTy = ClassPtrTy->getPointerTo();
2232  V = Builder.CreateBitCast(V, ClassPtrTy);
2233  return MakeAddrLValue(V, E->getType());
2234}
2235
2236
2237LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2238                                            const CompoundAssignOperator *E) {
2239  ScalarExprEmitter Scalar(*this);
2240  Value *Result = 0;
2241  switch (E->getOpcode()) {
2242#define COMPOUND_OP(Op)                                                       \
2243    case BO_##Op##Assign:                                                     \
2244      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2245                                             Result)
2246  COMPOUND_OP(Mul);
2247  COMPOUND_OP(Div);
2248  COMPOUND_OP(Rem);
2249  COMPOUND_OP(Add);
2250  COMPOUND_OP(Sub);
2251  COMPOUND_OP(Shl);
2252  COMPOUND_OP(Shr);
2253  COMPOUND_OP(And);
2254  COMPOUND_OP(Xor);
2255  COMPOUND_OP(Or);
2256#undef COMPOUND_OP
2257
2258  case BO_PtrMemD:
2259  case BO_PtrMemI:
2260  case BO_Mul:
2261  case BO_Div:
2262  case BO_Rem:
2263  case BO_Add:
2264  case BO_Sub:
2265  case BO_Shl:
2266  case BO_Shr:
2267  case BO_LT:
2268  case BO_GT:
2269  case BO_LE:
2270  case BO_GE:
2271  case BO_EQ:
2272  case BO_NE:
2273  case BO_And:
2274  case BO_Xor:
2275  case BO_Or:
2276  case BO_LAnd:
2277  case BO_LOr:
2278  case BO_Assign:
2279  case BO_Comma:
2280    assert(false && "Not valid compound assignment operators");
2281    break;
2282  }
2283
2284  llvm_unreachable("Unhandled compound assignment operator");
2285}
2286