CGExprScalar.cpp revision 8bfd31f9dad09cd52225d868bbd92a9bebe87775
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Target/TargetData.h"
30#include <cstdarg>
31
32using namespace clang;
33using namespace CodeGen;
34using llvm::Value;
35
36//===----------------------------------------------------------------------===//
37//                         Scalar Expression Emitter
38//===----------------------------------------------------------------------===//
39
40struct BinOpInfo {
41  Value *LHS;
42  Value *RHS;
43  QualType Ty;  // Computation Type.
44  const BinaryOperator *E;
45};
46
47namespace {
48class VISIBILITY_HIDDEN ScalarExprEmitter
49  : public StmtVisitor<ScalarExprEmitter, Value*> {
50  CodeGenFunction &CGF;
51  CGBuilderTy &Builder;
52  bool IgnoreResultAssign;
53  llvm::LLVMContext &VMContext;
54public:
55
56  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
57    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
58      VMContext(cgf.getLLVMContext()) {
59  }
60
61  //===--------------------------------------------------------------------===//
62  //                               Utilities
63  //===--------------------------------------------------------------------===//
64
65  bool TestAndClearIgnoreResultAssign() {
66    bool I = IgnoreResultAssign;
67    IgnoreResultAssign = false;
68    return I;
69  }
70
71  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
72  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
73
74  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76  }
77
78  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79  /// value l-value, this method emits the address of the l-value, then loads
80  /// and returns the result.
81  Value *EmitLoadOfLValue(const Expr *E) {
82    return EmitLoadOfLValue(EmitLValue(E), E->getType());
83  }
84
85  /// EmitConversionToBool - Convert the specified expression value to a
86  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88
89  /// EmitScalarConversion - Emit a conversion from the specified type to the
90  /// specified destination type, both of which are LLVM scalar types.
91  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92
93  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94  /// complex type to the specified destination type, where the destination type
95  /// is an LLVM scalar type.
96  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                       QualType SrcTy, QualType DstTy);
98
99  //===--------------------------------------------------------------------===//
100  //                            Visitor Methods
101  //===--------------------------------------------------------------------===//
102
103  Value *VisitStmt(Stmt *S) {
104    S->dump(CGF.getContext().getSourceManager());
105    assert(0 && "Stmt can't have complex result type!");
106    return 0;
107  }
108  Value *VisitExpr(Expr *S);
109
110  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111
112  // Leaves.
113  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114    return llvm::ConstantInt::get(VMContext, E->getValue());
115  }
116  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117    return llvm::ConstantFP::get(VMContext, E->getValue());
118  }
119  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121  }
122  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124  }
125  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127  }
128  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130  }
131  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132    return llvm::ConstantInt::get(ConvertType(E->getType()),
133                                  CGF.getContext().typesAreCompatible(
134                                    E->getArgType1(), E->getArgType2()));
135  }
136  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138    llvm::Value *V =
139      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
140                             CGF.GetIDForAddrOfLabel(E->getLabel()));
141
142    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
143  }
144
145  // l-values.
146  Value *VisitDeclRefExpr(DeclRefExpr *E) {
147    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
148      return llvm::ConstantInt::get(VMContext, EC->getInitVal());
149    return EmitLoadOfLValue(E);
150  }
151  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
152    return CGF.EmitObjCSelectorExpr(E);
153  }
154  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
155    return CGF.EmitObjCProtocolExpr(E);
156  }
157  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
158    return EmitLoadOfLValue(E);
159  }
160  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
161    return EmitLoadOfLValue(E);
162  }
163  Value *VisitObjCImplicitSetterGetterRefExpr(
164                        ObjCImplicitSetterGetterRefExpr *E) {
165    return EmitLoadOfLValue(E);
166  }
167  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
168    return CGF.EmitObjCMessageExpr(E).getScalarVal();
169  }
170
171  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
172  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
173  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
174  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
175  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
176    return EmitLoadOfLValue(E);
177  }
178  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
179  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
180     return EmitLValue(E).getAddress();
181  }
182
183  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
184
185  Value *VisitInitListExpr(InitListExpr *E);
186
187  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
188    return llvm::Constant::getNullValue(ConvertType(E->getType()));
189  }
190  Value *VisitCastExpr(const CastExpr *E) {
191    // Make sure to evaluate VLA bounds now so that we have them for later.
192    if (E->getType()->isVariablyModifiedType())
193      CGF.EmitVLASize(E->getType());
194
195    return EmitCastExpr(E);
196  }
197  Value *EmitCastExpr(const CastExpr *E);
198
199  Value *VisitCallExpr(const CallExpr *E) {
200    if (E->getCallReturnType()->isReferenceType())
201      return EmitLoadOfLValue(E);
202
203    return CGF.EmitCallExpr(E).getScalarVal();
204  }
205
206  Value *VisitStmtExpr(const StmtExpr *E);
207
208  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
209
210  // Unary Operators.
211  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
212  Value *VisitUnaryPostDec(const UnaryOperator *E) {
213    return VisitPrePostIncDec(E, false, false);
214  }
215  Value *VisitUnaryPostInc(const UnaryOperator *E) {
216    return VisitPrePostIncDec(E, true, false);
217  }
218  Value *VisitUnaryPreDec(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, false, true);
220  }
221  Value *VisitUnaryPreInc(const UnaryOperator *E) {
222    return VisitPrePostIncDec(E, true, true);
223  }
224  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
225    return EmitLValue(E->getSubExpr()).getAddress();
226  }
227  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
228  Value *VisitUnaryPlus(const UnaryOperator *E) {
229    // This differs from gcc, though, most likely due to a bug in gcc.
230    TestAndClearIgnoreResultAssign();
231    return Visit(E->getSubExpr());
232  }
233  Value *VisitUnaryMinus    (const UnaryOperator *E);
234  Value *VisitUnaryNot      (const UnaryOperator *E);
235  Value *VisitUnaryLNot     (const UnaryOperator *E);
236  Value *VisitUnaryReal     (const UnaryOperator *E);
237  Value *VisitUnaryImag     (const UnaryOperator *E);
238  Value *VisitUnaryExtension(const UnaryOperator *E) {
239    return Visit(E->getSubExpr());
240  }
241  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
242
243  // C++
244  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
245    return Visit(DAE->getExpr());
246  }
247  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
248    return CGF.LoadCXXThis();
249  }
250
251  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
252    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
253  }
254  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
255    return CGF.EmitCXXNewExpr(E);
256  }
257  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
258    CGF.EmitCXXDeleteExpr(E);
259    return 0;
260  }
261
262  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
263    // C++ [expr.pseudo]p1:
264    //   The result shall only be used as the operand for the function call
265    //   operator (), and the result of such a call has type void. The only
266    //   effect is the evaluation of the postfix-expression before the dot or
267    //   arrow.
268    CGF.EmitScalarExpr(E->getBase());
269    return 0;
270  }
271
272  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
273    return llvm::Constant::getNullValue(ConvertType(E->getType()));
274  }
275
276  // Binary Operators.
277  Value *EmitMul(const BinOpInfo &Ops) {
278    if (CGF.getContext().getLangOptions().OverflowChecking
279        && Ops.Ty->isSignedIntegerType())
280      return EmitOverflowCheckedBinOp(Ops);
281    if (Ops.LHS->getType()->isFPOrFPVector())
282      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
283    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
284  }
285  /// Create a binary op that checks for overflow.
286  /// Currently only supports +, - and *.
287  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
288  Value *EmitDiv(const BinOpInfo &Ops);
289  Value *EmitRem(const BinOpInfo &Ops);
290  Value *EmitAdd(const BinOpInfo &Ops);
291  Value *EmitSub(const BinOpInfo &Ops);
292  Value *EmitShl(const BinOpInfo &Ops);
293  Value *EmitShr(const BinOpInfo &Ops);
294  Value *EmitAnd(const BinOpInfo &Ops) {
295    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
296  }
297  Value *EmitXor(const BinOpInfo &Ops) {
298    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
299  }
300  Value *EmitOr (const BinOpInfo &Ops) {
301    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
302  }
303
304  BinOpInfo EmitBinOps(const BinaryOperator *E);
305  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
306                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
307
308  // Binary operators and binary compound assignment operators.
309#define HANDLEBINOP(OP) \
310  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
311    return Emit ## OP(EmitBinOps(E));                                      \
312  }                                                                        \
313  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
314    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
315  }
316  HANDLEBINOP(Mul);
317  HANDLEBINOP(Div);
318  HANDLEBINOP(Rem);
319  HANDLEBINOP(Add);
320  HANDLEBINOP(Sub);
321  HANDLEBINOP(Shl);
322  HANDLEBINOP(Shr);
323  HANDLEBINOP(And);
324  HANDLEBINOP(Xor);
325  HANDLEBINOP(Or);
326#undef HANDLEBINOP
327
328  // Comparisons.
329  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
330                     unsigned SICmpOpc, unsigned FCmpOpc);
331#define VISITCOMP(CODE, UI, SI, FP) \
332    Value *VisitBin##CODE(const BinaryOperator *E) { \
333      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
334                         llvm::FCmpInst::FP); }
335  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
336  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
337  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
338  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
339  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
340  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
341#undef VISITCOMP
342
343  Value *VisitBinAssign     (const BinaryOperator *E);
344
345  Value *VisitBinLAnd       (const BinaryOperator *E);
346  Value *VisitBinLOr        (const BinaryOperator *E);
347  Value *VisitBinComma      (const BinaryOperator *E);
348
349  // Other Operators.
350  Value *VisitBlockExpr(const BlockExpr *BE);
351  Value *VisitConditionalOperator(const ConditionalOperator *CO);
352  Value *VisitChooseExpr(ChooseExpr *CE);
353  Value *VisitVAArgExpr(VAArgExpr *VE);
354  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
355    return CGF.EmitObjCStringLiteral(E);
356  }
357};
358}  // end anonymous namespace.
359
360//===----------------------------------------------------------------------===//
361//                                Utilities
362//===----------------------------------------------------------------------===//
363
364/// EmitConversionToBool - Convert the specified expression value to a
365/// boolean (i1) truth value.  This is equivalent to "Val != 0".
366Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
367  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
368
369  if (SrcType->isRealFloatingType()) {
370    // Compare against 0.0 for fp scalars.
371    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
372    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
373  }
374
375  if (SrcType->isMemberPointerType()) {
376    // FIXME: This is ABI specific.
377
378    // Compare against -1.
379    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
380    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
381  }
382
383  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
384         "Unknown scalar type to convert");
385
386  // Because of the type rules of C, we often end up computing a logical value,
387  // then zero extending it to int, then wanting it as a logical value again.
388  // Optimize this common case.
389  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
390    if (ZI->getOperand(0)->getType() ==
391        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
392      Value *Result = ZI->getOperand(0);
393      // If there aren't any more uses, zap the instruction to save space.
394      // Note that there can be more uses, for example if this
395      // is the result of an assignment.
396      if (ZI->use_empty())
397        ZI->eraseFromParent();
398      return Result;
399    }
400  }
401
402  // Compare against an integer or pointer null.
403  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
404  return Builder.CreateICmpNE(Src, Zero, "tobool");
405}
406
407/// EmitScalarConversion - Emit a conversion from the specified type to the
408/// specified destination type, both of which are LLVM scalar types.
409Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
410                                               QualType DstType) {
411  SrcType = CGF.getContext().getCanonicalType(SrcType);
412  DstType = CGF.getContext().getCanonicalType(DstType);
413  if (SrcType == DstType) return Src;
414
415  if (DstType->isVoidType()) return 0;
416
417  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
418
419  // Handle conversions to bool first, they are special: comparisons against 0.
420  if (DstType->isBooleanType())
421    return EmitConversionToBool(Src, SrcType);
422
423  const llvm::Type *DstTy = ConvertType(DstType);
424
425  // Ignore conversions like int -> uint.
426  if (Src->getType() == DstTy)
427    return Src;
428
429  // Handle pointer conversions next: pointers can only be converted to/from
430  // other pointers and integers. Check for pointer types in terms of LLVM, as
431  // some native types (like Obj-C id) may map to a pointer type.
432  if (isa<llvm::PointerType>(DstTy)) {
433    // The source value may be an integer, or a pointer.
434    if (isa<llvm::PointerType>(Src->getType()))
435      return Builder.CreateBitCast(Src, DstTy, "conv");
436
437    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
438    // First, convert to the correct width so that we control the kind of
439    // extension.
440    const llvm::Type *MiddleTy =
441          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
442    bool InputSigned = SrcType->isSignedIntegerType();
443    llvm::Value* IntResult =
444        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
445    // Then, cast to pointer.
446    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
447  }
448
449  if (isa<llvm::PointerType>(Src->getType())) {
450    // Must be an ptr to int cast.
451    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
452    return Builder.CreatePtrToInt(Src, DstTy, "conv");
453  }
454
455  // A scalar can be splatted to an extended vector of the same element type
456  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
457    // Cast the scalar to element type
458    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
459    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
460
461    // Insert the element in element zero of an undef vector
462    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
463    llvm::Value *Idx =
464        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
465    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
466
467    // Splat the element across to all elements
468    llvm::SmallVector<llvm::Constant*, 16> Args;
469    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
470    for (unsigned i = 0; i < NumElements; i++)
471      Args.push_back(llvm::ConstantInt::get(
472                                        llvm::Type::getInt32Ty(VMContext), 0));
473
474    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
475    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
476    return Yay;
477  }
478
479  // Allow bitcast from vector to integer/fp of the same size.
480  if (isa<llvm::VectorType>(Src->getType()) ||
481      isa<llvm::VectorType>(DstTy))
482    return Builder.CreateBitCast(Src, DstTy, "conv");
483
484  // Finally, we have the arithmetic types: real int/float.
485  if (isa<llvm::IntegerType>(Src->getType())) {
486    bool InputSigned = SrcType->isSignedIntegerType();
487    if (isa<llvm::IntegerType>(DstTy))
488      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
489    else if (InputSigned)
490      return Builder.CreateSIToFP(Src, DstTy, "conv");
491    else
492      return Builder.CreateUIToFP(Src, DstTy, "conv");
493  }
494
495  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
496  if (isa<llvm::IntegerType>(DstTy)) {
497    if (DstType->isSignedIntegerType())
498      return Builder.CreateFPToSI(Src, DstTy, "conv");
499    else
500      return Builder.CreateFPToUI(Src, DstTy, "conv");
501  }
502
503  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
504  if (DstTy->getTypeID() < Src->getType()->getTypeID())
505    return Builder.CreateFPTrunc(Src, DstTy, "conv");
506  else
507    return Builder.CreateFPExt(Src, DstTy, "conv");
508}
509
510/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
511/// type to the specified destination type, where the destination type is an
512/// LLVM scalar type.
513Value *ScalarExprEmitter::
514EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
515                              QualType SrcTy, QualType DstTy) {
516  // Get the source element type.
517  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
518
519  // Handle conversions to bool first, they are special: comparisons against 0.
520  if (DstTy->isBooleanType()) {
521    //  Complex != 0  -> (Real != 0) | (Imag != 0)
522    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
523    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
524    return Builder.CreateOr(Src.first, Src.second, "tobool");
525  }
526
527  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
528  // the imaginary part of the complex value is discarded and the value of the
529  // real part is converted according to the conversion rules for the
530  // corresponding real type.
531  return EmitScalarConversion(Src.first, SrcTy, DstTy);
532}
533
534
535//===----------------------------------------------------------------------===//
536//                            Visitor Methods
537//===----------------------------------------------------------------------===//
538
539Value *ScalarExprEmitter::VisitExpr(Expr *E) {
540  if (const BinaryOperator *BExpr = dyn_cast<BinaryOperator>(E))
541    if (BExpr->getOpcode() == BinaryOperator::PtrMemD) {
542      LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(BExpr);
543      Value *InVal = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
544      return InVal;
545    }
546
547  CGF.ErrorUnsupported(E, "scalar expression");
548  if (E->getType()->isVoidType())
549    return 0;
550  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
551}
552
553Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
554  llvm::SmallVector<llvm::Constant*, 32> indices;
555  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
556    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
557  }
558  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
559  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
560  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
561  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
562}
563
564Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
565  TestAndClearIgnoreResultAssign();
566
567  // Emit subscript expressions in rvalue context's.  For most cases, this just
568  // loads the lvalue formed by the subscript expr.  However, we have to be
569  // careful, because the base of a vector subscript is occasionally an rvalue,
570  // so we can't get it as an lvalue.
571  if (!E->getBase()->getType()->isVectorType())
572    return EmitLoadOfLValue(E);
573
574  // Handle the vector case.  The base must be a vector, the index must be an
575  // integer value.
576  Value *Base = Visit(E->getBase());
577  Value *Idx  = Visit(E->getIdx());
578  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
579  Idx = Builder.CreateIntCast(Idx,
580                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
581                              IdxSigned,
582                              "vecidxcast");
583  return Builder.CreateExtractElement(Base, Idx, "vecext");
584}
585
586static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
587                                  unsigned Off, const llvm::Type *I32Ty) {
588  int MV = SVI->getMaskValue(Idx);
589  if (MV == -1)
590    return llvm::UndefValue::get(I32Ty);
591  return llvm::ConstantInt::get(I32Ty, Off+MV);
592}
593
594Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
595  bool Ignore = TestAndClearIgnoreResultAssign();
596  (void)Ignore;
597  assert (Ignore == false && "init list ignored");
598  unsigned NumInitElements = E->getNumInits();
599
600  if (E->hadArrayRangeDesignator())
601    CGF.ErrorUnsupported(E, "GNU array range designator extension");
602
603  const llvm::VectorType *VType =
604    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
605
606  // We have a scalar in braces. Just use the first element.
607  if (!VType)
608    return Visit(E->getInit(0));
609
610  unsigned ResElts = VType->getNumElements();
611  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
612
613  // Loop over initializers collecting the Value for each, and remembering
614  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
615  // us to fold the shuffle for the swizzle into the shuffle for the vector
616  // initializer, since LLVM optimizers generally do not want to touch
617  // shuffles.
618  unsigned CurIdx = 0;
619  bool VIsUndefShuffle = false;
620  llvm::Value *V = llvm::UndefValue::get(VType);
621  for (unsigned i = 0; i != NumInitElements; ++i) {
622    Expr *IE = E->getInit(i);
623    Value *Init = Visit(IE);
624    llvm::SmallVector<llvm::Constant*, 16> Args;
625
626    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
627
628    // Handle scalar elements.  If the scalar initializer is actually one
629    // element of a different vector of the same width, use shuffle instead of
630    // extract+insert.
631    if (!VVT) {
632      if (isa<ExtVectorElementExpr>(IE)) {
633        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
634
635        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
636          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
637          Value *LHS = 0, *RHS = 0;
638          if (CurIdx == 0) {
639            // insert into undef -> shuffle (src, undef)
640            Args.push_back(C);
641            for (unsigned j = 1; j != ResElts; ++j)
642              Args.push_back(llvm::UndefValue::get(I32Ty));
643
644            LHS = EI->getVectorOperand();
645            RHS = V;
646            VIsUndefShuffle = true;
647          } else if (VIsUndefShuffle) {
648            // insert into undefshuffle && size match -> shuffle (v, src)
649            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
650            for (unsigned j = 0; j != CurIdx; ++j)
651              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
652            Args.push_back(llvm::ConstantInt::get(I32Ty,
653                                                  ResElts + C->getZExtValue()));
654            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
655              Args.push_back(llvm::UndefValue::get(I32Ty));
656
657            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
658            RHS = EI->getVectorOperand();
659            VIsUndefShuffle = false;
660          }
661          if (!Args.empty()) {
662            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
663            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
664            ++CurIdx;
665            continue;
666          }
667        }
668      }
669      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
670      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
671      VIsUndefShuffle = false;
672      ++CurIdx;
673      continue;
674    }
675
676    unsigned InitElts = VVT->getNumElements();
677
678    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
679    // input is the same width as the vector being constructed, generate an
680    // optimized shuffle of the swizzle input into the result.
681    if (isa<ExtVectorElementExpr>(IE)) {
682      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
683      Value *SVOp = SVI->getOperand(0);
684      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
685
686      if (OpTy->getNumElements() == ResElts) {
687        unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
688
689        for (unsigned j = 0; j != CurIdx; ++j) {
690          // If the current vector initializer is a shuffle with undef, merge
691          // this shuffle directly into it.
692          if (VIsUndefShuffle) {
693            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
694                                      I32Ty));
695          } else {
696            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
697          }
698        }
699        for (unsigned j = 0, je = InitElts; j != je; ++j)
700          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
701        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
702          Args.push_back(llvm::UndefValue::get(I32Ty));
703
704        if (VIsUndefShuffle)
705          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
706
707        Init = SVOp;
708      }
709    }
710
711    // Extend init to result vector length, and then shuffle its contribution
712    // to the vector initializer into V.
713    if (Args.empty()) {
714      for (unsigned j = 0; j != InitElts; ++j)
715        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
716      for (unsigned j = InitElts; j != ResElts; ++j)
717        Args.push_back(llvm::UndefValue::get(I32Ty));
718      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
719      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
720                                         Mask, "vecext");
721
722      Args.clear();
723      for (unsigned j = 0; j != CurIdx; ++j)
724        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
725      for (unsigned j = 0; j != InitElts; ++j)
726        Args.push_back(llvm::ConstantInt::get(I32Ty, j+ResElts));
727      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
728        Args.push_back(llvm::UndefValue::get(I32Ty));
729    }
730
731    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
732    // merging subsequent shuffles into this one.
733    if (CurIdx == 0)
734      std::swap(V, Init);
735    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
736    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
737    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
738    CurIdx += InitElts;
739  }
740
741  // FIXME: evaluate codegen vs. shuffling against constant null vector.
742  // Emit remaining default initializers.
743  const llvm::Type *EltTy = VType->getElementType();
744
745  // Emit remaining default initializers
746  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
747    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
748    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
749    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
750  }
751  return V;
752}
753
754// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
755// have to handle a more broad range of conversions than explicit casts, as they
756// handle things like function to ptr-to-function decay etc.
757Value *ScalarExprEmitter::EmitCastExpr(const CastExpr *CE) {
758  const Expr *E = CE->getSubExpr();
759  QualType DestTy = CE->getType();
760  CastExpr::CastKind Kind = CE->getCastKind();
761
762  if (!DestTy->isVoidType())
763    TestAndClearIgnoreResultAssign();
764
765  switch (Kind) {
766  default:
767    // FIXME: Assert here.
768    // assert(0 && "Unhandled cast kind!");
769    break;
770  case CastExpr::CK_Unknown:
771    // FIXME: We should really assert here - Unknown casts should never get
772    // as far as to codegen.
773    break;
774  case CastExpr::CK_BitCast: {
775    Value *Src = Visit(const_cast<Expr*>(E));
776    return Builder.CreateBitCast(Src, ConvertType(DestTy));
777  }
778  case CastExpr::CK_ArrayToPointerDecay: {
779    assert(E->getType()->isArrayType() &&
780           "Array to pointer decay must have array source type!");
781
782    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
783
784    // Note that VLA pointers are always decayed, so we don't need to do
785    // anything here.
786    if (!E->getType()->isVariableArrayType()) {
787      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
788      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
789                                 ->getElementType()) &&
790             "Expected pointer to array");
791      V = Builder.CreateStructGEP(V, 0, "arraydecay");
792    }
793
794    // The resultant pointer type can be implicitly casted to other pointer
795    // types as well (e.g. void*) and can be implicitly converted to integer.
796    const llvm::Type *DestLTy = ConvertType(DestTy);
797    if (V->getType() != DestLTy) {
798      if (isa<llvm::PointerType>(DestLTy))
799        V = Builder.CreateBitCast(V, DestLTy, "ptrconv");
800      else {
801        assert(isa<llvm::IntegerType>(DestLTy) && "Unknown array decay");
802        V = Builder.CreatePtrToInt(V, DestLTy, "ptrconv");
803      }
804    }
805    return V;
806  }
807  case CastExpr::CK_NullToMemberPointer:
808    return CGF.CGM.EmitNullConstant(DestTy);
809
810  case CastExpr::CK_DerivedToBase: {
811    const RecordType *DerivedClassTy =
812      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
813    CXXRecordDecl *DerivedClassDecl =
814      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
815
816    const RecordType *BaseClassTy =
817      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
818    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
819
820    Value *Src = Visit(const_cast<Expr*>(E));
821
822    bool NullCheckValue = true;
823
824    if (isa<CXXThisExpr>(E)) {
825      // We always assume that 'this' is never null.
826      NullCheckValue = false;
827    } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
828      // And that lvalue casts are never null.
829      if (ICE->isLvalueCast())
830        NullCheckValue = false;
831    }
832    return CGF.GetAddressCXXOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
833                                        NullCheckValue);
834  }
835
836  case CastExpr::CK_IntegralToPointer: {
837    Value *Src = Visit(const_cast<Expr*>(E));
838
839    // First, convert to the correct width so that we control the kind of
840    // extension.
841    const llvm::Type *MiddleTy =
842      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
843    bool InputSigned = E->getType()->isSignedIntegerType();
844    llvm::Value* IntResult =
845      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
846
847    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
848  }
849
850  case CastExpr::CK_PointerToIntegral: {
851    Value *Src = Visit(const_cast<Expr*>(E));
852    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
853  }
854
855  }
856
857  // Handle cases where the source is an non-complex type.
858
859  if (!CGF.hasAggregateLLVMType(E->getType())) {
860    Value *Src = Visit(const_cast<Expr*>(E));
861
862    // Use EmitScalarConversion to perform the conversion.
863    return EmitScalarConversion(Src, E->getType(), DestTy);
864  }
865
866  if (E->getType()->isAnyComplexType()) {
867    // Handle cases where the source is a complex type.
868    bool IgnoreImag = true;
869    bool IgnoreImagAssign = true;
870    bool IgnoreReal = IgnoreResultAssign;
871    bool IgnoreRealAssign = IgnoreResultAssign;
872    if (DestTy->isBooleanType())
873      IgnoreImagAssign = IgnoreImag = false;
874    else if (DestTy->isVoidType()) {
875      IgnoreReal = IgnoreImag = false;
876      IgnoreRealAssign = IgnoreImagAssign = true;
877    }
878    CodeGenFunction::ComplexPairTy V
879      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
880                            IgnoreImagAssign);
881    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
882  }
883
884  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
885  // evaluate the result and return.
886  CGF.EmitAggExpr(E, 0, false, true);
887  return 0;
888}
889
890Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
891  return CGF.EmitCompoundStmt(*E->getSubStmt(),
892                              !E->getType()->isVoidType()).getScalarVal();
893}
894
895Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
896  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
897  if (E->getType().isObjCGCWeak())
898    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
899  return Builder.CreateLoad(V, false, "tmp");
900}
901
902//===----------------------------------------------------------------------===//
903//                             Unary Operators
904//===----------------------------------------------------------------------===//
905
906Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
907                                             bool isInc, bool isPre) {
908  LValue LV = EmitLValue(E->getSubExpr());
909  QualType ValTy = E->getSubExpr()->getType();
910  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
911
912  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
913
914  int AmountVal = isInc ? 1 : -1;
915
916  if (ValTy->isPointerType() &&
917      ValTy->getAs<PointerType>()->isVariableArrayType()) {
918    // The amount of the addition/subtraction needs to account for the VLA size
919    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
920  }
921
922  Value *NextVal;
923  if (const llvm::PointerType *PT =
924         dyn_cast<llvm::PointerType>(InVal->getType())) {
925    llvm::Constant *Inc =
926      llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
927    if (!isa<llvm::FunctionType>(PT->getElementType())) {
928      QualType PTEE = ValTy->getPointeeType();
929      if (const ObjCInterfaceType *OIT =
930          dyn_cast<ObjCInterfaceType>(PTEE)) {
931        // Handle interface types, which are not represented with a concrete type.
932        int size = CGF.getContext().getTypeSize(OIT) / 8;
933        if (!isInc)
934          size = -size;
935        Inc = llvm::ConstantInt::get(Inc->getType(), size);
936        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
937        InVal = Builder.CreateBitCast(InVal, i8Ty);
938        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
939        llvm::Value *lhs = LV.getAddress();
940        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
941        LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
942      } else
943        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
944    } else {
945      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
946      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
947      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
948      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
949    }
950  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
951    // Bool++ is an interesting case, due to promotion rules, we get:
952    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
953    // Bool = ((int)Bool+1) != 0
954    // An interesting aspect of this is that increment is always true.
955    // Decrement does not have this property.
956    NextVal = llvm::ConstantInt::getTrue(VMContext);
957  } else if (isa<llvm::IntegerType>(InVal->getType())) {
958    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
959
960    // Signed integer overflow is undefined behavior.
961    if (ValTy->isSignedIntegerType())
962      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
963    else
964      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
965  } else {
966    // Add the inc/dec to the real part.
967    if (InVal->getType()->isFloatTy())
968      NextVal =
969        llvm::ConstantFP::get(VMContext,
970                              llvm::APFloat(static_cast<float>(AmountVal)));
971    else if (InVal->getType()->isDoubleTy())
972      NextVal =
973        llvm::ConstantFP::get(VMContext,
974                              llvm::APFloat(static_cast<double>(AmountVal)));
975    else {
976      llvm::APFloat F(static_cast<float>(AmountVal));
977      bool ignored;
978      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
979                &ignored);
980      NextVal = llvm::ConstantFP::get(VMContext, F);
981    }
982    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
983  }
984
985  // Store the updated result through the lvalue.
986  if (LV.isBitfield())
987    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
988                                       &NextVal);
989  else
990    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
991
992  // If this is a postinc, return the value read from memory, otherwise use the
993  // updated value.
994  return isPre ? NextVal : InVal;
995}
996
997
998Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
999  TestAndClearIgnoreResultAssign();
1000  Value *Op = Visit(E->getSubExpr());
1001  if (Op->getType()->isFPOrFPVector())
1002    return Builder.CreateFNeg(Op, "neg");
1003  return Builder.CreateNeg(Op, "neg");
1004}
1005
1006Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1007  TestAndClearIgnoreResultAssign();
1008  Value *Op = Visit(E->getSubExpr());
1009  return Builder.CreateNot(Op, "neg");
1010}
1011
1012Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1013  // Compare operand to zero.
1014  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1015
1016  // Invert value.
1017  // TODO: Could dynamically modify easy computations here.  For example, if
1018  // the operand is an icmp ne, turn into icmp eq.
1019  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1020
1021  // ZExt result to the expr type.
1022  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1023}
1024
1025/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1026/// argument of the sizeof expression as an integer.
1027Value *
1028ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1029  QualType TypeToSize = E->getTypeOfArgument();
1030  if (E->isSizeOf()) {
1031    if (const VariableArrayType *VAT =
1032          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1033      if (E->isArgumentType()) {
1034        // sizeof(type) - make sure to emit the VLA size.
1035        CGF.EmitVLASize(TypeToSize);
1036      } else {
1037        // C99 6.5.3.4p2: If the argument is an expression of type
1038        // VLA, it is evaluated.
1039        CGF.EmitAnyExpr(E->getArgumentExpr());
1040      }
1041
1042      return CGF.GetVLASize(VAT);
1043    }
1044  }
1045
1046  // If this isn't sizeof(vla), the result must be constant; use the constant
1047  // folding logic so we don't have to duplicate it here.
1048  Expr::EvalResult Result;
1049  E->Evaluate(Result, CGF.getContext());
1050  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1051}
1052
1053Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1054  Expr *Op = E->getSubExpr();
1055  if (Op->getType()->isAnyComplexType())
1056    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1057  return Visit(Op);
1058}
1059Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1060  Expr *Op = E->getSubExpr();
1061  if (Op->getType()->isAnyComplexType())
1062    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1063
1064  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1065  // effects are evaluated, but not the actual value.
1066  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1067    CGF.EmitLValue(Op);
1068  else
1069    CGF.EmitScalarExpr(Op, true);
1070  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1071}
1072
1073Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1074  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1075  const llvm::Type* ResultType = ConvertType(E->getType());
1076  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1077}
1078
1079//===----------------------------------------------------------------------===//
1080//                           Binary Operators
1081//===----------------------------------------------------------------------===//
1082
1083BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1084  TestAndClearIgnoreResultAssign();
1085  BinOpInfo Result;
1086  Result.LHS = Visit(E->getLHS());
1087  Result.RHS = Visit(E->getRHS());
1088  Result.Ty  = E->getType();
1089  Result.E = E;
1090  return Result;
1091}
1092
1093Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1094                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1095  bool Ignore = TestAndClearIgnoreResultAssign();
1096  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
1097
1098  BinOpInfo OpInfo;
1099
1100  if (E->getComputationResultType()->isAnyComplexType()) {
1101    // This needs to go through the complex expression emitter, but it's a tad
1102    // complicated to do that... I'm leaving it out for now.  (Note that we do
1103    // actually need the imaginary part of the RHS for multiplication and
1104    // division.)
1105    CGF.ErrorUnsupported(E, "complex compound assignment");
1106    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1107  }
1108
1109  // Emit the RHS first.  __block variables need to have the rhs evaluated
1110  // first, plus this should improve codegen a little.
1111  OpInfo.RHS = Visit(E->getRHS());
1112  OpInfo.Ty = E->getComputationResultType();
1113  OpInfo.E = E;
1114  // Load/convert the LHS.
1115  LValue LHSLV = EmitLValue(E->getLHS());
1116  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1117  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1118                                    E->getComputationLHSType());
1119
1120  // Expand the binary operator.
1121  Value *Result = (this->*Func)(OpInfo);
1122
1123  // Convert the result back to the LHS type.
1124  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1125
1126  // Store the result value into the LHS lvalue. Bit-fields are handled
1127  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1128  // 'An assignment expression has the value of the left operand after the
1129  // assignment...'.
1130  if (LHSLV.isBitfield()) {
1131    if (!LHSLV.isVolatileQualified()) {
1132      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1133                                         &Result);
1134      return Result;
1135    } else
1136      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1137  } else
1138    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1139  if (Ignore)
1140    return 0;
1141  return EmitLoadOfLValue(LHSLV, E->getType());
1142}
1143
1144
1145Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1146  if (Ops.LHS->getType()->isFPOrFPVector())
1147    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1148  else if (Ops.Ty->isUnsignedIntegerType())
1149    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1150  else
1151    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1152}
1153
1154Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1155  // Rem in C can't be a floating point type: C99 6.5.5p2.
1156  if (Ops.Ty->isUnsignedIntegerType())
1157    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1158  else
1159    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1160}
1161
1162Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1163  unsigned IID;
1164  unsigned OpID = 0;
1165
1166  switch (Ops.E->getOpcode()) {
1167  case BinaryOperator::Add:
1168  case BinaryOperator::AddAssign:
1169    OpID = 1;
1170    IID = llvm::Intrinsic::sadd_with_overflow;
1171    break;
1172  case BinaryOperator::Sub:
1173  case BinaryOperator::SubAssign:
1174    OpID = 2;
1175    IID = llvm::Intrinsic::ssub_with_overflow;
1176    break;
1177  case BinaryOperator::Mul:
1178  case BinaryOperator::MulAssign:
1179    OpID = 3;
1180    IID = llvm::Intrinsic::smul_with_overflow;
1181    break;
1182  default:
1183    assert(false && "Unsupported operation for overflow detection");
1184    IID = 0;
1185  }
1186  OpID <<= 1;
1187  OpID |= 1;
1188
1189  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1190
1191  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1192
1193  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1194  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1195  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1196
1197  // Branch in case of overflow.
1198  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1199  llvm::BasicBlock *overflowBB =
1200    CGF.createBasicBlock("overflow", CGF.CurFn);
1201  llvm::BasicBlock *continueBB =
1202    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1203
1204  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1205
1206  // Handle overflow
1207
1208  Builder.SetInsertPoint(overflowBB);
1209
1210  // Handler is:
1211  // long long *__overflow_handler)(long long a, long long b, char op,
1212  // char width)
1213  std::vector<const llvm::Type*> handerArgTypes;
1214  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1215  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1216  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1217  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1218  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1219      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1220  llvm::Value *handlerFunction =
1221    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1222        llvm::PointerType::getUnqual(handlerTy));
1223  handlerFunction = Builder.CreateLoad(handlerFunction);
1224
1225  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1226      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1227      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1228      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1229      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1230        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1231
1232  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1233
1234  Builder.CreateBr(continueBB);
1235
1236  // Set up the continuation
1237  Builder.SetInsertPoint(continueBB);
1238  // Get the correct result
1239  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1240  phi->reserveOperandSpace(2);
1241  phi->addIncoming(result, initialBB);
1242  phi->addIncoming(handlerResult, overflowBB);
1243
1244  return phi;
1245}
1246
1247Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1248  if (!Ops.Ty->isAnyPointerType()) {
1249    if (CGF.getContext().getLangOptions().OverflowChecking &&
1250        Ops.Ty->isSignedIntegerType())
1251      return EmitOverflowCheckedBinOp(Ops);
1252
1253    if (Ops.LHS->getType()->isFPOrFPVector())
1254      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1255
1256    // Signed integer overflow is undefined behavior.
1257    if (Ops.Ty->isSignedIntegerType())
1258      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1259
1260    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1261  }
1262
1263  if (Ops.Ty->isPointerType() &&
1264      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1265    // The amount of the addition needs to account for the VLA size
1266    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1267  }
1268  Value *Ptr, *Idx;
1269  Expr *IdxExp;
1270  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1271  const ObjCObjectPointerType *OPT =
1272    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1273  if (PT || OPT) {
1274    Ptr = Ops.LHS;
1275    Idx = Ops.RHS;
1276    IdxExp = Ops.E->getRHS();
1277  } else {  // int + pointer
1278    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1279    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1280    assert((PT || OPT) && "Invalid add expr");
1281    Ptr = Ops.RHS;
1282    Idx = Ops.LHS;
1283    IdxExp = Ops.E->getLHS();
1284  }
1285
1286  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1287  if (Width < CGF.LLVMPointerWidth) {
1288    // Zero or sign extend the pointer value based on whether the index is
1289    // signed or not.
1290    const llvm::Type *IdxType =
1291        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1292    if (IdxExp->getType()->isSignedIntegerType())
1293      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1294    else
1295      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1296  }
1297  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1298  // Handle interface types, which are not represented with a concrete type.
1299  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1300    llvm::Value *InterfaceSize =
1301      llvm::ConstantInt::get(Idx->getType(),
1302                             CGF.getContext().getTypeSize(OIT) / 8);
1303    Idx = Builder.CreateMul(Idx, InterfaceSize);
1304    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1305    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1306    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1307    return Builder.CreateBitCast(Res, Ptr->getType());
1308  }
1309
1310  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1311  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1312  // future proof.
1313  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1314    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1315    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1316    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1317    return Builder.CreateBitCast(Res, Ptr->getType());
1318  }
1319
1320  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1321}
1322
1323Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1324  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1325    if (CGF.getContext().getLangOptions().OverflowChecking
1326        && Ops.Ty->isSignedIntegerType())
1327      return EmitOverflowCheckedBinOp(Ops);
1328
1329    if (Ops.LHS->getType()->isFPOrFPVector())
1330      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1331    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1332  }
1333
1334  if (Ops.E->getLHS()->getType()->isPointerType() &&
1335      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1336    // The amount of the addition needs to account for the VLA size for
1337    // ptr-int
1338    // The amount of the division needs to account for the VLA size for
1339    // ptr-ptr.
1340    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1341  }
1342
1343  const QualType LHSType = Ops.E->getLHS()->getType();
1344  const QualType LHSElementType = LHSType->getPointeeType();
1345  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1346    // pointer - int
1347    Value *Idx = Ops.RHS;
1348    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1349    if (Width < CGF.LLVMPointerWidth) {
1350      // Zero or sign extend the pointer value based on whether the index is
1351      // signed or not.
1352      const llvm::Type *IdxType =
1353          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1354      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1355        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1356      else
1357        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1358    }
1359    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1360
1361    // Handle interface types, which are not represented with a concrete type.
1362    if (const ObjCInterfaceType *OIT =
1363        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1364      llvm::Value *InterfaceSize =
1365        llvm::ConstantInt::get(Idx->getType(),
1366                               CGF.getContext().getTypeSize(OIT) / 8);
1367      Idx = Builder.CreateMul(Idx, InterfaceSize);
1368      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1369      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1370      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1371      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1372    }
1373
1374    // Explicitly handle GNU void* and function pointer arithmetic
1375    // extensions. The GNU void* casts amount to no-ops since our void* type is
1376    // i8*, but this is future proof.
1377    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1378      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1379      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1380      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1381      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1382    }
1383
1384    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1385  } else {
1386    // pointer - pointer
1387    Value *LHS = Ops.LHS;
1388    Value *RHS = Ops.RHS;
1389
1390    uint64_t ElementSize;
1391
1392    // Handle GCC extension for pointer arithmetic on void* and function pointer
1393    // types.
1394    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1395      ElementSize = 1;
1396    } else {
1397      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1398    }
1399
1400    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1401    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1402    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1403    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1404
1405    // Optimize out the shift for element size of 1.
1406    if (ElementSize == 1)
1407      return BytesBetween;
1408
1409    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1410    // pointer difference in C is only defined in the case where both operands
1411    // are pointing to elements of an array.
1412    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1413    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1414  }
1415}
1416
1417Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1418  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1419  // RHS to the same size as the LHS.
1420  Value *RHS = Ops.RHS;
1421  if (Ops.LHS->getType() != RHS->getType())
1422    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1423
1424  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1425}
1426
1427Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1428  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1429  // RHS to the same size as the LHS.
1430  Value *RHS = Ops.RHS;
1431  if (Ops.LHS->getType() != RHS->getType())
1432    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1433
1434  if (Ops.Ty->isUnsignedIntegerType())
1435    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1436  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1437}
1438
1439Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1440                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1441  TestAndClearIgnoreResultAssign();
1442  Value *Result;
1443  QualType LHSTy = E->getLHS()->getType();
1444  if (!LHSTy->isAnyComplexType()) {
1445    Value *LHS = Visit(E->getLHS());
1446    Value *RHS = Visit(E->getRHS());
1447
1448    if (LHS->getType()->isFPOrFPVector()) {
1449      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1450                                  LHS, RHS, "cmp");
1451    } else if (LHSTy->isSignedIntegerType()) {
1452      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1453                                  LHS, RHS, "cmp");
1454    } else {
1455      // Unsigned integers and pointers.
1456      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1457                                  LHS, RHS, "cmp");
1458    }
1459
1460    // If this is a vector comparison, sign extend the result to the appropriate
1461    // vector integer type and return it (don't convert to bool).
1462    if (LHSTy->isVectorType())
1463      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1464
1465  } else {
1466    // Complex Comparison: can only be an equality comparison.
1467    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1468    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1469
1470    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1471
1472    Value *ResultR, *ResultI;
1473    if (CETy->isRealFloatingType()) {
1474      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1475                                   LHS.first, RHS.first, "cmp.r");
1476      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1477                                   LHS.second, RHS.second, "cmp.i");
1478    } else {
1479      // Complex comparisons can only be equality comparisons.  As such, signed
1480      // and unsigned opcodes are the same.
1481      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1482                                   LHS.first, RHS.first, "cmp.r");
1483      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1484                                   LHS.second, RHS.second, "cmp.i");
1485    }
1486
1487    if (E->getOpcode() == BinaryOperator::EQ) {
1488      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1489    } else {
1490      assert(E->getOpcode() == BinaryOperator::NE &&
1491             "Complex comparison other than == or != ?");
1492      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1493    }
1494  }
1495
1496  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1497}
1498
1499Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1500  bool Ignore = TestAndClearIgnoreResultAssign();
1501
1502  // __block variables need to have the rhs evaluated first, plus this should
1503  // improve codegen just a little.
1504  Value *RHS = Visit(E->getRHS());
1505  LValue LHS = EmitLValue(E->getLHS());
1506
1507  // Store the value into the LHS.  Bit-fields are handled specially
1508  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1509  // 'An assignment expression has the value of the left operand after
1510  // the assignment...'.
1511  if (LHS.isBitfield()) {
1512    if (!LHS.isVolatileQualified()) {
1513      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1514                                         &RHS);
1515      return RHS;
1516    } else
1517      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1518  } else
1519    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1520  if (Ignore)
1521    return 0;
1522  return EmitLoadOfLValue(LHS, E->getType());
1523}
1524
1525Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1526  const llvm::Type *ResTy = ConvertType(E->getType());
1527
1528  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1529  // If we have 1 && X, just emit X without inserting the control flow.
1530  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1531    if (Cond == 1) { // If we have 1 && X, just emit X.
1532      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1533      // ZExt result to int or bool.
1534      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1535    }
1536
1537    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1538    if (!CGF.ContainsLabel(E->getRHS()))
1539      return llvm::Constant::getNullValue(ResTy);
1540  }
1541
1542  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1543  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1544
1545  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1546  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1547
1548  // Any edges into the ContBlock are now from an (indeterminate number of)
1549  // edges from this first condition.  All of these values will be false.  Start
1550  // setting up the PHI node in the Cont Block for this.
1551  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1552                                            "", ContBlock);
1553  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1554  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1555       PI != PE; ++PI)
1556    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1557
1558  CGF.PushConditionalTempDestruction();
1559  CGF.EmitBlock(RHSBlock);
1560  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1561  CGF.PopConditionalTempDestruction();
1562
1563  // Reaquire the RHS block, as there may be subblocks inserted.
1564  RHSBlock = Builder.GetInsertBlock();
1565
1566  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1567  // into the phi node for the edge with the value of RHSCond.
1568  CGF.EmitBlock(ContBlock);
1569  PN->addIncoming(RHSCond, RHSBlock);
1570
1571  // ZExt result to int.
1572  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1573}
1574
1575Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1576  const llvm::Type *ResTy = ConvertType(E->getType());
1577
1578  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1579  // If we have 0 || X, just emit X without inserting the control flow.
1580  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1581    if (Cond == -1) { // If we have 0 || X, just emit X.
1582      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1583      // ZExt result to int or bool.
1584      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1585    }
1586
1587    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1588    if (!CGF.ContainsLabel(E->getRHS()))
1589      return llvm::ConstantInt::get(ResTy, 1);
1590  }
1591
1592  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1593  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1594
1595  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1596  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1597
1598  // Any edges into the ContBlock are now from an (indeterminate number of)
1599  // edges from this first condition.  All of these values will be true.  Start
1600  // setting up the PHI node in the Cont Block for this.
1601  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1602                                            "", ContBlock);
1603  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1604  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1605       PI != PE; ++PI)
1606    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1607
1608  CGF.PushConditionalTempDestruction();
1609
1610  // Emit the RHS condition as a bool value.
1611  CGF.EmitBlock(RHSBlock);
1612  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1613
1614  CGF.PopConditionalTempDestruction();
1615
1616  // Reaquire the RHS block, as there may be subblocks inserted.
1617  RHSBlock = Builder.GetInsertBlock();
1618
1619  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1620  // into the phi node for the edge with the value of RHSCond.
1621  CGF.EmitBlock(ContBlock);
1622  PN->addIncoming(RHSCond, RHSBlock);
1623
1624  // ZExt result to int.
1625  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1626}
1627
1628Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1629  CGF.EmitStmt(E->getLHS());
1630  CGF.EnsureInsertPoint();
1631  return Visit(E->getRHS());
1632}
1633
1634//===----------------------------------------------------------------------===//
1635//                             Other Operators
1636//===----------------------------------------------------------------------===//
1637
1638/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1639/// expression is cheap enough and side-effect-free enough to evaluate
1640/// unconditionally instead of conditionally.  This is used to convert control
1641/// flow into selects in some cases.
1642static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1643  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1644    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1645
1646  // TODO: Allow anything we can constant fold to an integer or fp constant.
1647  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1648      isa<FloatingLiteral>(E))
1649    return true;
1650
1651  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1652  // X and Y are local variables.
1653  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1654    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1655      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1656        return true;
1657
1658  return false;
1659}
1660
1661
1662Value *ScalarExprEmitter::
1663VisitConditionalOperator(const ConditionalOperator *E) {
1664  TestAndClearIgnoreResultAssign();
1665  // If the condition constant folds and can be elided, try to avoid emitting
1666  // the condition and the dead arm.
1667  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1668    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1669    if (Cond == -1)
1670      std::swap(Live, Dead);
1671
1672    // If the dead side doesn't have labels we need, and if the Live side isn't
1673    // the gnu missing ?: extension (which we could handle, but don't bother
1674    // to), just emit the Live part.
1675    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1676        Live)                                   // Live part isn't missing.
1677      return Visit(Live);
1678  }
1679
1680
1681  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1682  // select instead of as control flow.  We can only do this if it is cheap and
1683  // safe to evaluate the LHS and RHS unconditionally.
1684  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1685      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1686    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1687    llvm::Value *LHS = Visit(E->getLHS());
1688    llvm::Value *RHS = Visit(E->getRHS());
1689    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1690  }
1691
1692
1693  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1694  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1695  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1696  Value *CondVal = 0;
1697
1698  // If we don't have the GNU missing condition extension, emit a branch on bool
1699  // the normal way.
1700  if (E->getLHS()) {
1701    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1702    // the branch on bool.
1703    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1704  } else {
1705    // Otherwise, for the ?: extension, evaluate the conditional and then
1706    // convert it to bool the hard way.  We do this explicitly because we need
1707    // the unconverted value for the missing middle value of the ?:.
1708    CondVal = CGF.EmitScalarExpr(E->getCond());
1709
1710    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1711    // if there are no extra uses (an optimization).  Inhibit this by making an
1712    // extra dead use, because we're going to add a use of CondVal later.  We
1713    // don't use the builder for this, because we don't want it to get optimized
1714    // away.  This leaves dead code, but the ?: extension isn't common.
1715    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1716                          Builder.GetInsertBlock());
1717
1718    Value *CondBoolVal =
1719      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1720                               CGF.getContext().BoolTy);
1721    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1722  }
1723
1724  CGF.PushConditionalTempDestruction();
1725  CGF.EmitBlock(LHSBlock);
1726
1727  // Handle the GNU extension for missing LHS.
1728  Value *LHS;
1729  if (E->getLHS())
1730    LHS = Visit(E->getLHS());
1731  else    // Perform promotions, to handle cases like "short ?: int"
1732    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1733
1734  CGF.PopConditionalTempDestruction();
1735  LHSBlock = Builder.GetInsertBlock();
1736  CGF.EmitBranch(ContBlock);
1737
1738  CGF.PushConditionalTempDestruction();
1739  CGF.EmitBlock(RHSBlock);
1740
1741  Value *RHS = Visit(E->getRHS());
1742  CGF.PopConditionalTempDestruction();
1743  RHSBlock = Builder.GetInsertBlock();
1744  CGF.EmitBranch(ContBlock);
1745
1746  CGF.EmitBlock(ContBlock);
1747
1748  if (!LHS || !RHS) {
1749    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1750    return 0;
1751  }
1752
1753  // Create a PHI node for the real part.
1754  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1755  PN->reserveOperandSpace(2);
1756  PN->addIncoming(LHS, LHSBlock);
1757  PN->addIncoming(RHS, RHSBlock);
1758  return PN;
1759}
1760
1761Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1762  return Visit(E->getChosenSubExpr(CGF.getContext()));
1763}
1764
1765Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1766  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1767  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1768
1769  // If EmitVAArg fails, we fall back to the LLVM instruction.
1770  if (!ArgPtr)
1771    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1772
1773  // FIXME Volatility.
1774  return Builder.CreateLoad(ArgPtr);
1775}
1776
1777Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1778  return CGF.BuildBlockLiteralTmp(BE);
1779}
1780
1781//===----------------------------------------------------------------------===//
1782//                         Entry Point into this File
1783//===----------------------------------------------------------------------===//
1784
1785/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1786/// type, ignoring the result.
1787Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1788  assert(E && !hasAggregateLLVMType(E->getType()) &&
1789         "Invalid scalar expression to emit");
1790
1791  return ScalarExprEmitter(*this, IgnoreResultAssign)
1792    .Visit(const_cast<Expr*>(E));
1793}
1794
1795/// EmitScalarConversion - Emit a conversion from the specified type to the
1796/// specified destination type, both of which are LLVM scalar types.
1797Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1798                                             QualType DstTy) {
1799  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1800         "Invalid scalar expression to emit");
1801  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1802}
1803
1804/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1805/// type to the specified destination type, where the destination type is an
1806/// LLVM scalar type.
1807Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1808                                                      QualType SrcTy,
1809                                                      QualType DstTy) {
1810  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1811         "Invalid complex -> scalar conversion");
1812  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1813                                                                DstTy);
1814}
1815
1816Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1817  assert(V1->getType() == V2->getType() &&
1818         "Vector operands must be of the same type");
1819  unsigned NumElements =
1820    cast<llvm::VectorType>(V1->getType())->getNumElements();
1821
1822  va_list va;
1823  va_start(va, V2);
1824
1825  llvm::SmallVector<llvm::Constant*, 16> Args;
1826  for (unsigned i = 0; i < NumElements; i++) {
1827    int n = va_arg(va, int);
1828    assert(n >= 0 && n < (int)NumElements * 2 &&
1829           "Vector shuffle index out of bounds!");
1830    Args.push_back(llvm::ConstantInt::get(
1831                                         llvm::Type::getInt32Ty(VMContext), n));
1832  }
1833
1834  const char *Name = va_arg(va, const char *);
1835  va_end(va);
1836
1837  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1838
1839  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1840}
1841
1842llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1843                                         unsigned NumVals, bool isSplat) {
1844  llvm::Value *Vec
1845    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1846
1847  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1848    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1849    llvm::Value *Idx = llvm::ConstantInt::get(
1850                                          llvm::Type::getInt32Ty(VMContext), i);
1851    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1852  }
1853
1854  return Vec;
1855}
1856