CGExprScalar.cpp revision 8f426fa9fca022201fc0944d6c1cb2cf9918db7d
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Module.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class VISIBILITY_HIDDEN ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51
52public:
53
54  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
55    Builder(CGF.Builder) {
56  }
57
58  //===--------------------------------------------------------------------===//
59  //                               Utilities
60  //===--------------------------------------------------------------------===//
61
62  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
63  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
64
65  Value *EmitLoadOfLValue(LValue LV, QualType T) {
66    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
67  }
68
69  /// EmitLoadOfLValue - Given an expression with complex type that represents a
70  /// value l-value, this method emits the address of the l-value, then loads
71  /// and returns the result.
72  Value *EmitLoadOfLValue(const Expr *E) {
73    return EmitLoadOfLValue(EmitLValue(E), E->getType());
74  }
75
76  /// EmitConversionToBool - Convert the specified expression value to a
77  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
78  Value *EmitConversionToBool(Value *Src, QualType DstTy);
79
80  /// EmitScalarConversion - Emit a conversion from the specified type to the
81  /// specified destination type, both of which are LLVM scalar types.
82  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
83
84  /// EmitComplexToScalarConversion - Emit a conversion from the specified
85  /// complex type to the specified destination type, where the destination
86  /// type is an LLVM scalar type.
87  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
88                                       QualType SrcTy, QualType DstTy);
89
90  //===--------------------------------------------------------------------===//
91  //                            Visitor Methods
92  //===--------------------------------------------------------------------===//
93
94  Value *VisitStmt(Stmt *S) {
95    S->dump(CGF.getContext().getSourceManager());
96    assert(0 && "Stmt can't have complex result type!");
97    return 0;
98  }
99  Value *VisitExpr(Expr *S);
100  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
101
102  // Leaves.
103  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
104    return llvm::ConstantInt::get(E->getValue());
105  }
106  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
107    return llvm::ConstantFP::get(E->getValue());
108  }
109  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
110    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
111  }
112  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
113    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
114  }
115  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
116    return llvm::Constant::getNullValue(ConvertType(E->getType()));
117  }
118  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
119    return llvm::Constant::getNullValue(ConvertType(E->getType()));
120  }
121  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
122    return llvm::ConstantInt::get(ConvertType(E->getType()),
123                                  CGF.getContext().typesAreCompatible(
124                                    E->getArgType1(), E->getArgType2()));
125  }
126  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
127  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
128    llvm::Value *V =
129      llvm::ConstantInt::get(llvm::Type::Int32Ty,
130                             CGF.GetIDForAddrOfLabel(E->getLabel()));
131
132    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
133  }
134
135  // l-values.
136  Value *VisitDeclRefExpr(DeclRefExpr *E) {
137    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
138      return llvm::ConstantInt::get(EC->getInitVal());
139    return EmitLoadOfLValue(E);
140  }
141  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
142    return CGF.EmitObjCSelectorExpr(E);
143  }
144  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
145    return CGF.EmitObjCProtocolExpr(E);
146  }
147  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
148    return EmitLoadOfLValue(E);
149  }
150  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
151    return EmitLoadOfLValue(E);
152  }
153  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
154    return EmitLoadOfLValue(E);
155  }
156  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
157    return CGF.EmitObjCMessageExpr(E).getScalarVal();
158  }
159
160  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
161  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
162  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
163  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
164  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
165    return EmitLoadOfLValue(E);
166  }
167  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
168  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
169     return EmitLValue(E).getAddress();
170  }
171
172  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
173
174  Value *VisitInitListExpr(InitListExpr *E) {
175    unsigned NumInitElements = E->getNumInits();
176
177    if (E->hadArrayRangeDesignator()) {
178      CGF.ErrorUnsupported(E, "GNU array range designator extension");
179    }
180
181    const llvm::VectorType *VType =
182      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
183
184    // We have a scalar in braces. Just use the first element.
185    if (!VType)
186      return Visit(E->getInit(0));
187
188    unsigned NumVectorElements = VType->getNumElements();
189    const llvm::Type *ElementType = VType->getElementType();
190
191    // Emit individual vector element stores.
192    llvm::Value *V = llvm::UndefValue::get(VType);
193
194    // Emit initializers
195    unsigned i;
196    for (i = 0; i < NumInitElements; ++i) {
197      Value *NewV = Visit(E->getInit(i));
198      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
199      V = Builder.CreateInsertElement(V, NewV, Idx);
200    }
201
202    // Emit remaining default initializers
203    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
204      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
205      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
206      V = Builder.CreateInsertElement(V, NewV, Idx);
207    }
208
209    return V;
210  }
211
212  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
213    return llvm::Constant::getNullValue(ConvertType(E->getType()));
214  }
215  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
216  Value *VisitCastExpr(const CastExpr *E) {
217    return EmitCastExpr(E->getSubExpr(), E->getType());
218  }
219  Value *EmitCastExpr(const Expr *E, QualType T);
220
221  Value *VisitCallExpr(const CallExpr *E) {
222    return CGF.EmitCallExpr(E).getScalarVal();
223  }
224
225  Value *VisitStmtExpr(const StmtExpr *E);
226
227  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
228
229  // Unary Operators.
230  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
231  Value *VisitUnaryPostDec(const UnaryOperator *E) {
232    return VisitPrePostIncDec(E, false, false);
233  }
234  Value *VisitUnaryPostInc(const UnaryOperator *E) {
235    return VisitPrePostIncDec(E, true, false);
236  }
237  Value *VisitUnaryPreDec(const UnaryOperator *E) {
238    return VisitPrePostIncDec(E, false, true);
239  }
240  Value *VisitUnaryPreInc(const UnaryOperator *E) {
241    return VisitPrePostIncDec(E, true, true);
242  }
243  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
244    return EmitLValue(E->getSubExpr()).getAddress();
245  }
246  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
247  Value *VisitUnaryPlus(const UnaryOperator *E) {
248    return Visit(E->getSubExpr());
249  }
250  Value *VisitUnaryMinus    (const UnaryOperator *E);
251  Value *VisitUnaryNot      (const UnaryOperator *E);
252  Value *VisitUnaryLNot     (const UnaryOperator *E);
253  Value *VisitUnaryReal     (const UnaryOperator *E);
254  Value *VisitUnaryImag     (const UnaryOperator *E);
255  Value *VisitUnaryExtension(const UnaryOperator *E) {
256    return Visit(E->getSubExpr());
257  }
258  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
259
260  // C++
261  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
262    return Visit(DAE->getExpr());
263  }
264  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
265    return CGF.LoadCXXThis();
266  }
267
268  // Binary Operators.
269  Value *EmitMul(const BinOpInfo &Ops) {
270    if (CGF.getContext().getLangOptions().OverflowChecking
271        && Ops.Ty->isSignedIntegerType())
272      return EmitOverflowCheckedBinOp(Ops);
273    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
274  }
275  /// Create a binary op that checks for overflow.
276  /// Currently only supports +, - and *.
277  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
278  Value *EmitDiv(const BinOpInfo &Ops);
279  Value *EmitRem(const BinOpInfo &Ops);
280  Value *EmitAdd(const BinOpInfo &Ops);
281  Value *EmitSub(const BinOpInfo &Ops);
282  Value *EmitShl(const BinOpInfo &Ops);
283  Value *EmitShr(const BinOpInfo &Ops);
284  Value *EmitAnd(const BinOpInfo &Ops) {
285    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
286  }
287  Value *EmitXor(const BinOpInfo &Ops) {
288    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
289  }
290  Value *EmitOr (const BinOpInfo &Ops) {
291    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
292  }
293
294  BinOpInfo EmitBinOps(const BinaryOperator *E);
295  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
296                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
297
298  // Binary operators and binary compound assignment operators.
299#define HANDLEBINOP(OP) \
300  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
301    return Emit ## OP(EmitBinOps(E));                                      \
302  }                                                                        \
303  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
304    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
305  }
306  HANDLEBINOP(Mul);
307  HANDLEBINOP(Div);
308  HANDLEBINOP(Rem);
309  HANDLEBINOP(Add);
310  HANDLEBINOP(Sub);
311  HANDLEBINOP(Shl);
312  HANDLEBINOP(Shr);
313  HANDLEBINOP(And);
314  HANDLEBINOP(Xor);
315  HANDLEBINOP(Or);
316#undef HANDLEBINOP
317
318  // Comparisons.
319  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
320                     unsigned SICmpOpc, unsigned FCmpOpc);
321#define VISITCOMP(CODE, UI, SI, FP) \
322    Value *VisitBin##CODE(const BinaryOperator *E) { \
323      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
324                         llvm::FCmpInst::FP); }
325  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
326  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
327  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
328  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
329  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
330  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
331#undef VISITCOMP
332
333  Value *VisitBinAssign     (const BinaryOperator *E);
334
335  Value *VisitBinLAnd       (const BinaryOperator *E);
336  Value *VisitBinLOr        (const BinaryOperator *E);
337  Value *VisitBinComma      (const BinaryOperator *E);
338
339  // Other Operators.
340  Value *VisitBlockExpr(const BlockExpr *BE);
341  Value *VisitConditionalOperator(const ConditionalOperator *CO);
342  Value *VisitChooseExpr(ChooseExpr *CE);
343  Value *VisitVAArgExpr(VAArgExpr *VE);
344  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
345    return CGF.EmitObjCStringLiteral(E);
346  }
347};
348}  // end anonymous namespace.
349
350//===----------------------------------------------------------------------===//
351//                                Utilities
352//===----------------------------------------------------------------------===//
353
354/// EmitConversionToBool - Convert the specified expression value to a
355/// boolean (i1) truth value.  This is equivalent to "Val != 0".
356Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
357  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
358
359  if (SrcType->isRealFloatingType()) {
360    // Compare against 0.0 for fp scalars.
361    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
362    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
363  }
364
365  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
366         "Unknown scalar type to convert");
367
368  // Because of the type rules of C, we often end up computing a logical value,
369  // then zero extending it to int, then wanting it as a logical value again.
370  // Optimize this common case.
371  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
372    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
373      Value *Result = ZI->getOperand(0);
374      // If there aren't any more uses, zap the instruction to save space.
375      // Note that there can be more uses, for example if this
376      // is the result of an assignment.
377      if (ZI->use_empty())
378        ZI->eraseFromParent();
379      return Result;
380    }
381  }
382
383  // Compare against an integer or pointer null.
384  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
385  return Builder.CreateICmpNE(Src, Zero, "tobool");
386}
387
388/// EmitScalarConversion - Emit a conversion from the specified type to the
389/// specified destination type, both of which are LLVM scalar types.
390Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
391                                               QualType DstType) {
392  SrcType = CGF.getContext().getCanonicalType(SrcType);
393  DstType = CGF.getContext().getCanonicalType(DstType);
394  if (SrcType == DstType) return Src;
395
396  if (DstType->isVoidType()) return 0;
397
398  // Handle conversions to bool first, they are special: comparisons against 0.
399  if (DstType->isBooleanType())
400    return EmitConversionToBool(Src, SrcType);
401
402  const llvm::Type *DstTy = ConvertType(DstType);
403
404  // Ignore conversions like int -> uint.
405  if (Src->getType() == DstTy)
406    return Src;
407
408  // Handle pointer conversions next: pointers can only be converted
409  // to/from other pointers and integers. Check for pointer types in
410  // terms of LLVM, as some native types (like Obj-C id) may map to a
411  // pointer type.
412  if (isa<llvm::PointerType>(DstTy)) {
413    // The source value may be an integer, or a pointer.
414    if (isa<llvm::PointerType>(Src->getType()))
415      return Builder.CreateBitCast(Src, DstTy, "conv");
416    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
417    // First, convert to the correct width so that we control the kind of
418    // extension.
419    const llvm::Type *MiddleTy = llvm::IntegerType::get(CGF.LLVMPointerWidth);
420    bool InputSigned = SrcType->isSignedIntegerType();
421    llvm::Value* IntResult =
422        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
423    // Then, cast to pointer.
424    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
425  }
426
427  if (isa<llvm::PointerType>(Src->getType())) {
428    // Must be an ptr to int cast.
429    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
430    return Builder.CreatePtrToInt(Src, DstTy, "conv");
431  }
432
433  // A scalar can be splatted to an extended vector of the same element type
434  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
435    // Cast the scalar to element type
436    QualType EltTy = DstType->getAsExtVectorType()->getElementType();
437    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
438
439    // Insert the element in element zero of an undef vector
440    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
441    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
442    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
443
444    // Splat the element across to all elements
445    llvm::SmallVector<llvm::Constant*, 16> Args;
446    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
447    for (unsigned i = 0; i < NumElements; i++)
448      Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
449
450    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
451    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
452    return Yay;
453  }
454
455  // Allow bitcast from vector to integer/fp of the same size.
456  if (isa<llvm::VectorType>(Src->getType()) ||
457      isa<llvm::VectorType>(DstTy))
458    return Builder.CreateBitCast(Src, DstTy, "conv");
459
460  // Finally, we have the arithmetic types: real int/float.
461  if (isa<llvm::IntegerType>(Src->getType())) {
462    bool InputSigned = SrcType->isSignedIntegerType();
463    if (isa<llvm::IntegerType>(DstTy))
464      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
465    else if (InputSigned)
466      return Builder.CreateSIToFP(Src, DstTy, "conv");
467    else
468      return Builder.CreateUIToFP(Src, DstTy, "conv");
469  }
470
471  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
472  if (isa<llvm::IntegerType>(DstTy)) {
473    if (DstType->isSignedIntegerType())
474      return Builder.CreateFPToSI(Src, DstTy, "conv");
475    else
476      return Builder.CreateFPToUI(Src, DstTy, "conv");
477  }
478
479  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
480  if (DstTy->getTypeID() < Src->getType()->getTypeID())
481    return Builder.CreateFPTrunc(Src, DstTy, "conv");
482  else
483    return Builder.CreateFPExt(Src, DstTy, "conv");
484}
485
486/// EmitComplexToScalarConversion - Emit a conversion from the specified
487/// complex type to the specified destination type, where the destination
488/// type is an LLVM scalar type.
489Value *ScalarExprEmitter::
490EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
491                              QualType SrcTy, QualType DstTy) {
492  // Get the source element type.
493  SrcTy = SrcTy->getAsComplexType()->getElementType();
494
495  // Handle conversions to bool first, they are special: comparisons against 0.
496  if (DstTy->isBooleanType()) {
497    //  Complex != 0  -> (Real != 0) | (Imag != 0)
498    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
499    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
500    return Builder.CreateOr(Src.first, Src.second, "tobool");
501  }
502
503  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
504  // the imaginary part of the complex value is discarded and the value of the
505  // real part is converted according to the conversion rules for the
506  // corresponding real type.
507  return EmitScalarConversion(Src.first, SrcTy, DstTy);
508}
509
510
511//===----------------------------------------------------------------------===//
512//                            Visitor Methods
513//===----------------------------------------------------------------------===//
514
515Value *ScalarExprEmitter::VisitExpr(Expr *E) {
516  CGF.ErrorUnsupported(E, "scalar expression");
517  if (E->getType()->isVoidType())
518    return 0;
519  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
520}
521
522Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
523  llvm::SmallVector<llvm::Constant*, 32> indices;
524  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
525    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
526  }
527  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
528  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
529  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
530  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
531}
532
533Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
534  // Emit subscript expressions in rvalue context's.  For most cases, this just
535  // loads the lvalue formed by the subscript expr.  However, we have to be
536  // careful, because the base of a vector subscript is occasionally an rvalue,
537  // so we can't get it as an lvalue.
538  if (!E->getBase()->getType()->isVectorType())
539    return EmitLoadOfLValue(E);
540
541  // Handle the vector case.  The base must be a vector, the index must be an
542  // integer value.
543  Value *Base = Visit(E->getBase());
544  Value *Idx  = Visit(E->getIdx());
545  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
546  Idx = Builder.CreateIntCast(Idx, llvm::Type::Int32Ty, IdxSigned,
547                              "vecidxcast");
548  return Builder.CreateExtractElement(Base, Idx, "vecext");
549}
550
551/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
552/// also handle things like function to pointer-to-function decay, and array to
553/// pointer decay.
554Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
555  const Expr *Op = E->getSubExpr();
556
557  // If this is due to array->pointer conversion, emit the array expression as
558  // an l-value.
559  if (Op->getType()->isArrayType()) {
560    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
561
562    // Note that VLA pointers are always decayed, so we don't need to do
563    // anything here.
564    if (!Op->getType()->isVariableArrayType()) {
565      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
566      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
567                                 ->getElementType()) &&
568             "Expected pointer to array");
569      V = Builder.CreateStructGEP(V, 0, "arraydecay");
570    }
571
572    // The resultant pointer type can be implicitly casted to other pointer
573    // types as well (e.g. void*) and can be implicitly converted to integer.
574    const llvm::Type *DestTy = ConvertType(E->getType());
575    if (V->getType() != DestTy) {
576      if (isa<llvm::PointerType>(DestTy))
577        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
578      else {
579        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
580        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
581      }
582    }
583    return V;
584  }
585
586  return EmitCastExpr(Op, E->getType());
587}
588
589
590// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
591// have to handle a more broad range of conversions than explicit casts, as they
592// handle things like function to ptr-to-function decay etc.
593Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
594  // Handle cases where the source is an non-complex type.
595
596  if (!CGF.hasAggregateLLVMType(E->getType())) {
597    Value *Src = Visit(const_cast<Expr*>(E));
598
599    // Use EmitScalarConversion to perform the conversion.
600    return EmitScalarConversion(Src, E->getType(), DestTy);
601  }
602
603  if (E->getType()->isAnyComplexType()) {
604    // Handle cases where the source is a complex type.
605    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
606                                         DestTy);
607  }
608
609  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
610  // evaluate the result and return.
611  CGF.EmitAggExpr(E, 0, false);
612  return 0;
613}
614
615Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
616  return CGF.EmitCompoundStmt(*E->getSubStmt(),
617                              !E->getType()->isVoidType()).getScalarVal();
618}
619
620Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
621  return Builder.CreateLoad(CGF.GetAddrOfBlockDecl(E), false, "tmp");
622}
623
624//===----------------------------------------------------------------------===//
625//                             Unary Operators
626//===----------------------------------------------------------------------===//
627
628Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
629                                             bool isInc, bool isPre) {
630  LValue LV = EmitLValue(E->getSubExpr());
631  QualType ValTy = E->getSubExpr()->getType();
632  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
633
634  int AmountVal = isInc ? 1 : -1;
635
636  if (ValTy->isPointerType() &&
637      ValTy->getAsPointerType()->isVariableArrayType()) {
638    // The amount of the addition/subtraction needs to account for the VLA size
639    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
640  }
641
642  Value *NextVal;
643  if (const llvm::PointerType *PT =
644         dyn_cast<llvm::PointerType>(InVal->getType())) {
645    llvm::Constant *Inc =llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
646    if (!isa<llvm::FunctionType>(PT->getElementType())) {
647      NextVal = Builder.CreateGEP(InVal, Inc, "ptrincdec");
648    } else {
649      const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
650      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
651      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
652      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
653    }
654  } else if (InVal->getType() == llvm::Type::Int1Ty && isInc) {
655    // Bool++ is an interesting case, due to promotion rules, we get:
656    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
657    // Bool = ((int)Bool+1) != 0
658    // An interesting aspect of this is that increment is always true.
659    // Decrement does not have this property.
660    NextVal = llvm::ConstantInt::getTrue();
661  } else {
662    // Add the inc/dec to the real part.
663    if (isa<llvm::IntegerType>(InVal->getType()))
664      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
665    else if (InVal->getType() == llvm::Type::FloatTy)
666      NextVal =
667        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
668    else if (InVal->getType() == llvm::Type::DoubleTy)
669      NextVal =
670        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
671    else {
672      llvm::APFloat F(static_cast<float>(AmountVal));
673      bool ignored;
674      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
675                &ignored);
676      NextVal = llvm::ConstantFP::get(F);
677    }
678    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
679  }
680
681  // Store the updated result through the lvalue.
682  if (LV.isBitfield())
683    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
684                                       &NextVal);
685  else
686    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
687
688  // If this is a postinc, return the value read from memory, otherwise use the
689  // updated value.
690  return isPre ? NextVal : InVal;
691}
692
693
694Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
695  Value *Op = Visit(E->getSubExpr());
696  return Builder.CreateNeg(Op, "neg");
697}
698
699Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
700  Value *Op = Visit(E->getSubExpr());
701  return Builder.CreateNot(Op, "neg");
702}
703
704Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
705  // Compare operand to zero.
706  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
707
708  // Invert value.
709  // TODO: Could dynamically modify easy computations here.  For example, if
710  // the operand is an icmp ne, turn into icmp eq.
711  BoolVal = Builder.CreateNot(BoolVal, "lnot");
712
713  // ZExt result to int.
714  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
715}
716
717/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
718/// argument of the sizeof expression as an integer.
719Value *
720ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
721  QualType TypeToSize = E->getTypeOfArgument();
722  if (E->isSizeOf()) {
723    if (const VariableArrayType *VAT =
724          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
725      if (E->isArgumentType()) {
726        // sizeof(type) - make sure to emit the VLA size.
727        CGF.EmitVLASize(TypeToSize);
728      } else {
729        // C99 6.5.3.4p2: If the argument is an expression of type
730        // VLA, it is evaluated.
731        CGF.EmitAnyExpr(E->getArgumentExpr());
732      }
733
734      return CGF.GetVLASize(VAT);
735    }
736  }
737
738  // If this isn't sizeof(vla), the result must be constant; use the
739  // constant folding logic so we don't have to duplicate it here.
740  Expr::EvalResult Result;
741  E->Evaluate(Result, CGF.getContext());
742  return llvm::ConstantInt::get(Result.Val.getInt());
743}
744
745Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
746  Expr *Op = E->getSubExpr();
747  if (Op->getType()->isAnyComplexType())
748    return CGF.EmitComplexExpr(Op).first;
749  return Visit(Op);
750}
751Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
752  Expr *Op = E->getSubExpr();
753  if (Op->getType()->isAnyComplexType())
754    return CGF.EmitComplexExpr(Op).second;
755
756  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
757  // effects are evaluated.
758  CGF.EmitScalarExpr(Op);
759  return llvm::Constant::getNullValue(ConvertType(E->getType()));
760}
761
762Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
763{
764  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
765  const llvm::Type* ResultType = ConvertType(E->getType());
766  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
767}
768
769//===----------------------------------------------------------------------===//
770//                           Binary Operators
771//===----------------------------------------------------------------------===//
772
773BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
774  BinOpInfo Result;
775  Result.LHS = Visit(E->getLHS());
776  Result.RHS = Visit(E->getRHS());
777  Result.Ty  = E->getType();
778  Result.E = E;
779  return Result;
780}
781
782Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
783                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
784  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
785
786  BinOpInfo OpInfo;
787
788  if (E->getComputationResultType()->isAnyComplexType()) {
789    // This needs to go through the complex expression emitter, but
790    // it's a tad complicated to do that... I'm leaving it out for now.
791    // (Note that we do actually need the imaginary part of the RHS for
792    // multiplication and division.)
793    CGF.ErrorUnsupported(E, "complex compound assignment");
794    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
795  }
796
797  // Load/convert the LHS.
798  LValue LHSLV = EmitLValue(E->getLHS());
799  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
800  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
801                                    E->getComputationLHSType());
802  // Emit the RHS.
803  OpInfo.RHS = Visit(E->getRHS());
804  OpInfo.Ty = E->getComputationResultType();
805  OpInfo.E = E;
806
807  // Expand the binary operator.
808  Value *Result = (this->*Func)(OpInfo);
809
810  // Convert the result back to the LHS type.
811  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
812
813  // Store the result value into the LHS lvalue. Bit-fields are
814  // handled specially because the result is altered by the store,
815  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
816  // the left operand after the assignment...'.
817  if (LHSLV.isBitfield())
818    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
819                                       &Result);
820  else
821    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
822
823  return Result;
824}
825
826
827Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
828  if (Ops.LHS->getType()->isFPOrFPVector())
829    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
830  else if (Ops.Ty->isUnsignedIntegerType())
831    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
832  else
833    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
834}
835
836Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
837  // Rem in C can't be a floating point type: C99 6.5.5p2.
838  if (Ops.Ty->isUnsignedIntegerType())
839    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
840  else
841    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
842}
843
844Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
845  unsigned IID;
846  unsigned OpID = 0;
847
848  switch (Ops.E->getOpcode()) {
849  case BinaryOperator::Add:
850  case BinaryOperator::AddAssign:
851    OpID = 1;
852    IID = llvm::Intrinsic::sadd_with_overflow;
853    break;
854  case BinaryOperator::Sub:
855  case BinaryOperator::SubAssign:
856    OpID = 2;
857    IID = llvm::Intrinsic::ssub_with_overflow;
858    break;
859  case BinaryOperator::Mul:
860  case BinaryOperator::MulAssign:
861    OpID = 3;
862    IID = llvm::Intrinsic::smul_with_overflow;
863    break;
864  default:
865    assert(false && "Unsupported operation for overflow detection");
866    IID = 0;
867  }
868  OpID <<= 1;
869  OpID |= 1;
870
871  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
872
873  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
874
875  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
876  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
877  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
878
879  // Branch in case of overflow.
880  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
881  llvm::BasicBlock *overflowBB =
882    CGF.createBasicBlock("overflow", CGF.CurFn);
883  llvm::BasicBlock *continueBB =
884    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
885
886  Builder.CreateCondBr(overflow, overflowBB, continueBB);
887
888  // Handle overflow
889
890  Builder.SetInsertPoint(overflowBB);
891
892  // Handler is:
893  // long long *__overflow_handler)(long long a, long long b, char op,
894  // char width)
895  std::vector<const llvm::Type*> handerArgTypes;
896  handerArgTypes.push_back(llvm::Type::Int64Ty);
897  handerArgTypes.push_back(llvm::Type::Int64Ty);
898  handerArgTypes.push_back(llvm::Type::Int8Ty);
899  handerArgTypes.push_back(llvm::Type::Int8Ty);
900  llvm::FunctionType *handlerTy = llvm::FunctionType::get(llvm::Type::Int64Ty,
901      handerArgTypes, false);
902  llvm::Value *handlerFunction =
903    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
904        llvm::PointerType::getUnqual(handlerTy));
905  handlerFunction = Builder.CreateLoad(handlerFunction);
906
907  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
908      Builder.CreateSExt(Ops.LHS, llvm::Type::Int64Ty),
909      Builder.CreateSExt(Ops.RHS, llvm::Type::Int64Ty),
910      llvm::ConstantInt::get(llvm::Type::Int8Ty, OpID),
911      llvm::ConstantInt::get(llvm::Type::Int8Ty,
912        cast<llvm::IntegerType>(opTy)->getBitWidth()));
913
914  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
915
916  Builder.CreateBr(continueBB);
917
918  // Set up the continuation
919  Builder.SetInsertPoint(continueBB);
920  // Get the correct result
921  llvm::PHINode *phi = Builder.CreatePHI(opTy);
922  phi->reserveOperandSpace(2);
923  phi->addIncoming(result, initialBB);
924  phi->addIncoming(handlerResult, overflowBB);
925
926  return phi;
927}
928
929Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
930  if (!Ops.Ty->isPointerType()) {
931    if (CGF.getContext().getLangOptions().OverflowChecking
932        && Ops.Ty->isSignedIntegerType())
933      return EmitOverflowCheckedBinOp(Ops);
934    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
935  }
936
937  if (Ops.Ty->getAsPointerType()->isVariableArrayType()) {
938    // The amount of the addition needs to account for the VLA size
939    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
940  }
941  Value *Ptr, *Idx;
942  Expr *IdxExp;
943  const PointerType *PT;
944  if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
945    Ptr = Ops.LHS;
946    Idx = Ops.RHS;
947    IdxExp = Ops.E->getRHS();
948  } else {                                           // int + pointer
949    PT = Ops.E->getRHS()->getType()->getAsPointerType();
950    assert(PT && "Invalid add expr");
951    Ptr = Ops.RHS;
952    Idx = Ops.LHS;
953    IdxExp = Ops.E->getLHS();
954  }
955
956  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
957  // Only 32 and 64 are valid index widths. So if a target has shorter
958  // pointe width, extend to 32 at least.
959  unsigned IdxValidWidth
960    = (CGF.LLVMPointerWidth < 32) ? 32 : CGF.LLVMPointerWidth;
961  if (Width < IdxValidWidth) {
962    // Zero or sign extend the pointer value based on whether the index is
963    // signed or not.
964    const llvm::Type *IdxType = llvm::IntegerType::get(IdxValidWidth);
965    if (IdxExp->getType()->isSignedIntegerType())
966      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
967    else
968      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
969  }
970
971  // Explicitly handle GNU void* and function pointer arithmetic
972  // extensions. The GNU void* casts amount to no-ops since our void*
973  // type is i8*, but this is future proof.
974  const QualType ElementType = PT->getPointeeType();
975  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
976    const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
977    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
978    Value *Res = Builder.CreateGEP(Casted, Idx, "sub.ptr");
979    return Builder.CreateBitCast(Res, Ptr->getType());
980  }
981
982  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
983}
984
985Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
986  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
987    if (CGF.getContext().getLangOptions().OverflowChecking
988        && Ops.Ty->isSignedIntegerType())
989      return EmitOverflowCheckedBinOp(Ops);
990    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
991  }
992
993  if (Ops.E->getLHS()->getType()->getAsPointerType()->isVariableArrayType()) {
994    // The amount of the addition needs to account for the VLA size for
995    // ptr-int
996    // The amount of the division needs to account for the VLA size for
997    // ptr-ptr.
998    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
999  }
1000
1001  const QualType LHSType = Ops.E->getLHS()->getType();
1002  const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
1003  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1004    // pointer - int
1005    Value *Idx = Ops.RHS;
1006    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1007    unsigned IdxValidWidth
1008      = (CGF.LLVMPointerWidth < 32) ? 32 : CGF.LLVMPointerWidth;
1009    if (Width < IdxValidWidth) {
1010      // Zero or sign extend the pointer value based on whether the index is
1011      // signed or not.
1012      const llvm::Type *IdxType = llvm::IntegerType::get(IdxValidWidth);
1013      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1014        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1015      else
1016        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1017    }
1018    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1019
1020    // Explicitly handle GNU void* and function pointer arithmetic
1021    // extensions. The GNU void* casts amount to no-ops since our
1022    // void* type is i8*, but this is future proof.
1023    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1024      const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1025      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1026      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1027      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1028    }
1029
1030    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1031  } else {
1032    // pointer - pointer
1033    Value *LHS = Ops.LHS;
1034    Value *RHS = Ops.RHS;
1035
1036    uint64_t ElementSize;
1037
1038    // Handle GCC extension for pointer arithmetic on void* and function pointer
1039    // types.
1040    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1041      ElementSize = 1;
1042    } else {
1043      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1044    }
1045
1046    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1047    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1048    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1049    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1050
1051    // Optimize out the shift for element size of 1.
1052    if (ElementSize == 1)
1053      return BytesBetween;
1054
1055    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
1056    // remainder.  As such, we handle common power-of-two cases here to generate
1057    // better code. See PR2247.
1058    if (llvm::isPowerOf2_64(ElementSize)) {
1059      Value *ShAmt =
1060        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
1061      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
1062    }
1063
1064    // Otherwise, do a full sdiv.
1065    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1066    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1067  }
1068}
1069
1070Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1071  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1072  // RHS to the same size as the LHS.
1073  Value *RHS = Ops.RHS;
1074  if (Ops.LHS->getType() != RHS->getType())
1075    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1076
1077  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1078}
1079
1080Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1081  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1082  // RHS to the same size as the LHS.
1083  Value *RHS = Ops.RHS;
1084  if (Ops.LHS->getType() != RHS->getType())
1085    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1086
1087  if (Ops.Ty->isUnsignedIntegerType())
1088    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1089  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1090}
1091
1092Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1093                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1094  Value *Result;
1095  QualType LHSTy = E->getLHS()->getType();
1096  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
1097    Value *LHS = Visit(E->getLHS());
1098    Value *RHS = Visit(E->getRHS());
1099
1100    if (LHS->getType()->isFloatingPoint()) {
1101      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1102                                  LHS, RHS, "cmp");
1103    } else if (LHSTy->isSignedIntegerType()) {
1104      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1105                                  LHS, RHS, "cmp");
1106    } else {
1107      // Unsigned integers and pointers.
1108      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1109                                  LHS, RHS, "cmp");
1110    }
1111  } else if (LHSTy->isVectorType()) {
1112    Value *LHS = Visit(E->getLHS());
1113    Value *RHS = Visit(E->getRHS());
1114
1115    if (LHS->getType()->isFPOrFPVector()) {
1116      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1117                                  LHS, RHS, "cmp");
1118    } else if (LHSTy->isUnsignedIntegerType()) {
1119      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
1120                                  LHS, RHS, "cmp");
1121    } else {
1122      // Signed integers and pointers.
1123      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
1124                                  LHS, RHS, "cmp");
1125    }
1126    return Result;
1127  } else {
1128    // Complex Comparison: can only be an equality comparison.
1129    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1130    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1131
1132    QualType CETy = LHSTy->getAsComplexType()->getElementType();
1133
1134    Value *ResultR, *ResultI;
1135    if (CETy->isRealFloatingType()) {
1136      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1137                                   LHS.first, RHS.first, "cmp.r");
1138      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1139                                   LHS.second, RHS.second, "cmp.i");
1140    } else {
1141      // Complex comparisons can only be equality comparisons.  As such, signed
1142      // and unsigned opcodes are the same.
1143      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1144                                   LHS.first, RHS.first, "cmp.r");
1145      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1146                                   LHS.second, RHS.second, "cmp.i");
1147    }
1148
1149    if (E->getOpcode() == BinaryOperator::EQ) {
1150      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1151    } else {
1152      assert(E->getOpcode() == BinaryOperator::NE &&
1153             "Complex comparison other than == or != ?");
1154      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1155    }
1156  }
1157
1158  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1159}
1160
1161Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1162  LValue LHS = EmitLValue(E->getLHS());
1163  Value *RHS = Visit(E->getRHS());
1164
1165  // Store the value into the LHS.  Bit-fields are handled specially
1166  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1167  // 'An assignment expression has the value of the left operand after
1168  // the assignment...'.
1169  if (LHS.isBitfield())
1170    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1171                                       &RHS);
1172  else
1173    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1174
1175  // Return the RHS.
1176  return RHS;
1177}
1178
1179Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1180  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1181  // If we have 1 && X, just emit X without inserting the control flow.
1182  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1183    if (Cond == 1) { // If we have 1 && X, just emit X.
1184      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1185      // ZExt result to int.
1186      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1187    }
1188
1189    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1190    if (!CGF.ContainsLabel(E->getRHS()))
1191      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1192  }
1193
1194  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1195  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1196
1197  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1198  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1199
1200  // Any edges into the ContBlock are now from an (indeterminate number of)
1201  // edges from this first condition.  All of these values will be false.  Start
1202  // setting up the PHI node in the Cont Block for this.
1203  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1204  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1205  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1206       PI != PE; ++PI)
1207    PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
1208
1209  CGF.EmitBlock(RHSBlock);
1210  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1211
1212  // Reaquire the RHS block, as there may be subblocks inserted.
1213  RHSBlock = Builder.GetInsertBlock();
1214
1215  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1216  // into the phi node for the edge with the value of RHSCond.
1217  CGF.EmitBlock(ContBlock);
1218  PN->addIncoming(RHSCond, RHSBlock);
1219
1220  // ZExt result to int.
1221  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1222}
1223
1224Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1225  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1226  // If we have 0 || X, just emit X without inserting the control flow.
1227  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1228    if (Cond == -1) { // If we have 0 || X, just emit X.
1229      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1230      // ZExt result to int.
1231      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1232    }
1233
1234    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1235    if (!CGF.ContainsLabel(E->getRHS()))
1236      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1237  }
1238
1239  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1240  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1241
1242  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1243  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1244
1245  // Any edges into the ContBlock are now from an (indeterminate number of)
1246  // edges from this first condition.  All of these values will be true.  Start
1247  // setting up the PHI node in the Cont Block for this.
1248  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1249  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1250  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1251       PI != PE; ++PI)
1252    PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1253
1254  // Emit the RHS condition as a bool value.
1255  CGF.EmitBlock(RHSBlock);
1256  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1257
1258  // Reaquire the RHS block, as there may be subblocks inserted.
1259  RHSBlock = Builder.GetInsertBlock();
1260
1261  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1262  // into the phi node for the edge with the value of RHSCond.
1263  CGF.EmitBlock(ContBlock);
1264  PN->addIncoming(RHSCond, RHSBlock);
1265
1266  // ZExt result to int.
1267  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1268}
1269
1270Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1271  CGF.EmitStmt(E->getLHS());
1272  CGF.EnsureInsertPoint();
1273  return Visit(E->getRHS());
1274}
1275
1276//===----------------------------------------------------------------------===//
1277//                             Other Operators
1278//===----------------------------------------------------------------------===//
1279
1280/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1281/// expression is cheap enough and side-effect-free enough to evaluate
1282/// unconditionally instead of conditionally.  This is used to convert control
1283/// flow into selects in some cases.
1284static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1285  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1286    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1287
1288  // TODO: Allow anything we can constant fold to an integer or fp constant.
1289  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1290      isa<FloatingLiteral>(E))
1291    return true;
1292
1293  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1294  // X and Y are local variables.
1295  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1296    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1297      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1298        return true;
1299
1300  return false;
1301}
1302
1303
1304Value *ScalarExprEmitter::
1305VisitConditionalOperator(const ConditionalOperator *E) {
1306  // If the condition constant folds and can be elided, try to avoid emitting
1307  // the condition and the dead arm.
1308  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1309    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1310    if (Cond == -1)
1311      std::swap(Live, Dead);
1312
1313    // If the dead side doesn't have labels we need, and if the Live side isn't
1314    // the gnu missing ?: extension (which we could handle, but don't bother
1315    // to), just emit the Live part.
1316    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1317        Live)                                   // Live part isn't missing.
1318      return Visit(Live);
1319  }
1320
1321
1322  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1323  // select instead of as control flow.  We can only do this if it is cheap and
1324  // safe to evaluate the LHS and RHS unconditionally.
1325  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1326      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1327    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1328    llvm::Value *LHS = Visit(E->getLHS());
1329    llvm::Value *RHS = Visit(E->getRHS());
1330    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1331  }
1332
1333
1334  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1335  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1336  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1337  Value *CondVal = 0;
1338
1339  // If we don't have the GNU missing condition extension, emit a branch on
1340  // bool the normal way.
1341  if (E->getLHS()) {
1342    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1343    // the branch on bool.
1344    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1345  } else {
1346    // Otherwise, for the ?: extension, evaluate the conditional and then
1347    // convert it to bool the hard way.  We do this explicitly because we need
1348    // the unconverted value for the missing middle value of the ?:.
1349    CondVal = CGF.EmitScalarExpr(E->getCond());
1350
1351    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1352    // if there are no extra uses (an optimization).  Inhibit this by making an
1353    // extra dead use, because we're going to add a use of CondVal later.  We
1354    // don't use the builder for this, because we don't want it to get optimized
1355    // away.  This leaves dead code, but the ?: extension isn't common.
1356    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1357                          Builder.GetInsertBlock());
1358
1359    Value *CondBoolVal =
1360      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1361                               CGF.getContext().BoolTy);
1362    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1363  }
1364
1365  CGF.EmitBlock(LHSBlock);
1366
1367  // Handle the GNU extension for missing LHS.
1368  Value *LHS;
1369  if (E->getLHS())
1370    LHS = Visit(E->getLHS());
1371  else    // Perform promotions, to handle cases like "short ?: int"
1372    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1373
1374  LHSBlock = Builder.GetInsertBlock();
1375  CGF.EmitBranch(ContBlock);
1376
1377  CGF.EmitBlock(RHSBlock);
1378
1379  Value *RHS = Visit(E->getRHS());
1380  RHSBlock = Builder.GetInsertBlock();
1381  CGF.EmitBranch(ContBlock);
1382
1383  CGF.EmitBlock(ContBlock);
1384
1385  if (!LHS || !RHS) {
1386    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1387    return 0;
1388  }
1389
1390  // Create a PHI node for the real part.
1391  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1392  PN->reserveOperandSpace(2);
1393  PN->addIncoming(LHS, LHSBlock);
1394  PN->addIncoming(RHS, RHSBlock);
1395  return PN;
1396}
1397
1398Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1399  return Visit(E->getChosenSubExpr(CGF.getContext()));
1400}
1401
1402Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1403  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1404  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1405
1406  // If EmitVAArg fails, we fall back to the LLVM instruction.
1407  if (!ArgPtr)
1408    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1409
1410  return Builder.CreateLoad(ArgPtr);
1411}
1412
1413Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1414  return CGF.BuildBlockLiteralTmp(BE);
1415}
1416
1417//===----------------------------------------------------------------------===//
1418//                         Entry Point into this File
1419//===----------------------------------------------------------------------===//
1420
1421/// EmitComplexExpr - Emit the computation of the specified expression of
1422/// complex type, ignoring the result.
1423Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1424  assert(E && !hasAggregateLLVMType(E->getType()) &&
1425         "Invalid scalar expression to emit");
1426
1427  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1428}
1429
1430/// EmitScalarConversion - Emit a conversion from the specified type to the
1431/// specified destination type, both of which are LLVM scalar types.
1432Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1433                                             QualType DstTy) {
1434  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1435         "Invalid scalar expression to emit");
1436  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1437}
1438
1439/// EmitComplexToScalarConversion - Emit a conversion from the specified
1440/// complex type to the specified destination type, where the destination
1441/// type is an LLVM scalar type.
1442Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1443                                                      QualType SrcTy,
1444                                                      QualType DstTy) {
1445  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1446         "Invalid complex -> scalar conversion");
1447  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1448                                                                DstTy);
1449}
1450
1451Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1452  assert(V1->getType() == V2->getType() &&
1453         "Vector operands must be of the same type");
1454  unsigned NumElements =
1455    cast<llvm::VectorType>(V1->getType())->getNumElements();
1456
1457  va_list va;
1458  va_start(va, V2);
1459
1460  llvm::SmallVector<llvm::Constant*, 16> Args;
1461  for (unsigned i = 0; i < NumElements; i++) {
1462    int n = va_arg(va, int);
1463    assert(n >= 0 && n < (int)NumElements * 2 &&
1464           "Vector shuffle index out of bounds!");
1465    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1466  }
1467
1468  const char *Name = va_arg(va, const char *);
1469  va_end(va);
1470
1471  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1472
1473  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1474}
1475
1476llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1477                                         unsigned NumVals, bool isSplat) {
1478  llvm::Value *Vec
1479    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1480
1481  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1482    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1483    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1484    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1485  }
1486
1487  return Vec;
1488}
1489