CGExprScalar.cpp revision 91a5755ad73c5dc1dfb167e448fdd74e75a6df56
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV) {
86    return CGF.EmitLoadOfLValue(LV).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E));
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    return Builder.CreateIsNotNull(V, "tobool");
144  }
145
146  //===--------------------------------------------------------------------===//
147  //                            Visitor Methods
148  //===--------------------------------------------------------------------===//
149
150  Value *Visit(Expr *E) {
151    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152  }
153
154  Value *VisitStmt(Stmt *S) {
155    S->dump(CGF.getContext().getSourceManager());
156    assert(0 && "Stmt can't have complex result type!");
157    return 0;
158  }
159  Value *VisitExpr(Expr *S);
160
161  Value *VisitParenExpr(ParenExpr *PE) {
162    return Visit(PE->getSubExpr());
163  }
164  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
165    return Visit(E->getReplacement());
166  }
167  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
168    return Visit(GE->getResultExpr());
169  }
170
171  // Leaves.
172  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
173    return Builder.getInt(E->getValue());
174  }
175  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
176    return llvm::ConstantFP::get(VMContext, E->getValue());
177  }
178  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
179    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180  }
181  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
182    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
183  }
184  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
185    return EmitNullValue(E->getType());
186  }
187  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
188    return EmitNullValue(E->getType());
189  }
190  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
191  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
192  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
193    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
194    return Builder.CreateBitCast(V, ConvertType(E->getType()));
195  }
196
197  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
198    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
199  }
200
201  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
202    if (E->isGLValue())
203      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
204
205    // Otherwise, assume the mapping is the scalar directly.
206    return CGF.getOpaqueRValueMapping(E).getScalarVal();
207  }
208
209  // l-values.
210  Value *VisitDeclRefExpr(DeclRefExpr *E) {
211    Expr::EvalResult Result;
212    if (!E->Evaluate(Result, CGF.getContext()))
213      return EmitLoadOfLValue(E);
214
215    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
216
217    llvm::Constant *C;
218    if (Result.Val.isInt())
219      C = Builder.getInt(Result.Val.getInt());
220    else if (Result.Val.isFloat())
221      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
222    else
223      return EmitLoadOfLValue(E);
224
225    // Make sure we emit a debug reference to the global variable.
226    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
227      if (!CGF.getContext().DeclMustBeEmitted(VD))
228        CGF.EmitDeclRefExprDbgValue(E, C);
229    } else if (isa<EnumConstantDecl>(E->getDecl())) {
230      CGF.EmitDeclRefExprDbgValue(E, C);
231    }
232
233    return C;
234  }
235  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
236    return CGF.EmitObjCSelectorExpr(E);
237  }
238  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
239    return CGF.EmitObjCProtocolExpr(E);
240  }
241  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
242    return EmitLoadOfLValue(E);
243  }
244  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
245    assert(E->getObjectKind() == OK_Ordinary &&
246           "reached property reference without lvalue-to-rvalue");
247    return EmitLoadOfLValue(E);
248  }
249  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
250    if (E->getMethodDecl() &&
251        E->getMethodDecl()->getResultType()->isReferenceType())
252      return EmitLoadOfLValue(E);
253    return CGF.EmitObjCMessageExpr(E).getScalarVal();
254  }
255
256  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
257    LValue LV = CGF.EmitObjCIsaExpr(E);
258    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
259    return V;
260  }
261
262  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
263  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
264  Value *VisitMemberExpr(MemberExpr *E);
265  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
266  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
267    return EmitLoadOfLValue(E);
268  }
269
270  Value *VisitInitListExpr(InitListExpr *E);
271
272  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
273    return CGF.CGM.EmitNullConstant(E->getType());
274  }
275  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
276    if (E->getType()->isVariablyModifiedType())
277      CGF.EmitVariablyModifiedType(E->getType());
278    return VisitCastExpr(E);
279  }
280  Value *VisitCastExpr(CastExpr *E);
281
282  Value *VisitCallExpr(const CallExpr *E) {
283    if (E->getCallReturnType()->isReferenceType())
284      return EmitLoadOfLValue(E);
285
286    return CGF.EmitCallExpr(E).getScalarVal();
287  }
288
289  Value *VisitStmtExpr(const StmtExpr *E);
290
291  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
292
293  // Unary Operators.
294  Value *VisitUnaryPostDec(const UnaryOperator *E) {
295    LValue LV = EmitLValue(E->getSubExpr());
296    return EmitScalarPrePostIncDec(E, LV, false, false);
297  }
298  Value *VisitUnaryPostInc(const UnaryOperator *E) {
299    LValue LV = EmitLValue(E->getSubExpr());
300    return EmitScalarPrePostIncDec(E, LV, true, false);
301  }
302  Value *VisitUnaryPreDec(const UnaryOperator *E) {
303    LValue LV = EmitLValue(E->getSubExpr());
304    return EmitScalarPrePostIncDec(E, LV, false, true);
305  }
306  Value *VisitUnaryPreInc(const UnaryOperator *E) {
307    LValue LV = EmitLValue(E->getSubExpr());
308    return EmitScalarPrePostIncDec(E, LV, true, true);
309  }
310
311  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
312                                               llvm::Value *InVal,
313                                               llvm::Value *NextVal,
314                                               bool IsInc);
315
316  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
317                                       bool isInc, bool isPre);
318
319
320  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
321    if (isa<MemberPointerType>(E->getType())) // never sugared
322      return CGF.CGM.getMemberPointerConstant(E);
323
324    return EmitLValue(E->getSubExpr()).getAddress();
325  }
326  Value *VisitUnaryDeref(const UnaryOperator *E) {
327    if (E->getType()->isVoidType())
328      return Visit(E->getSubExpr()); // the actual value should be unused
329    return EmitLoadOfLValue(E);
330  }
331  Value *VisitUnaryPlus(const UnaryOperator *E) {
332    // This differs from gcc, though, most likely due to a bug in gcc.
333    TestAndClearIgnoreResultAssign();
334    return Visit(E->getSubExpr());
335  }
336  Value *VisitUnaryMinus    (const UnaryOperator *E);
337  Value *VisitUnaryNot      (const UnaryOperator *E);
338  Value *VisitUnaryLNot     (const UnaryOperator *E);
339  Value *VisitUnaryReal     (const UnaryOperator *E);
340  Value *VisitUnaryImag     (const UnaryOperator *E);
341  Value *VisitUnaryExtension(const UnaryOperator *E) {
342    return Visit(E->getSubExpr());
343  }
344
345  // C++
346  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
347    return Visit(DAE->getExpr());
348  }
349  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
350    return CGF.LoadCXXThis();
351  }
352
353  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
354    return CGF.EmitExprWithCleanups(E).getScalarVal();
355  }
356  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357    return CGF.EmitCXXNewExpr(E);
358  }
359  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360    CGF.EmitCXXDeleteExpr(E);
361    return 0;
362  }
363  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364    return Builder.getInt1(E->getValue());
365  }
366
367  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369  }
370
371  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
372    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
373  }
374
375  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
376    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
377  }
378
379  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
380    // C++ [expr.pseudo]p1:
381    //   The result shall only be used as the operand for the function call
382    //   operator (), and the result of such a call has type void. The only
383    //   effect is the evaluation of the postfix-expression before the dot or
384    //   arrow.
385    CGF.EmitScalarExpr(E->getBase());
386    return 0;
387  }
388
389  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
390    return EmitNullValue(E->getType());
391  }
392
393  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
394    CGF.EmitCXXThrowExpr(E);
395    return 0;
396  }
397
398  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
399    return Builder.getInt1(E->getValue());
400  }
401
402  // Binary Operators.
403  Value *EmitMul(const BinOpInfo &Ops) {
404    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
405      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
406      case LangOptions::SOB_Undefined:
407        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
408      case LangOptions::SOB_Defined:
409        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
410      case LangOptions::SOB_Trapping:
411        return EmitOverflowCheckedBinOp(Ops);
412      }
413    }
414
415    if (Ops.LHS->getType()->isFPOrFPVectorTy())
416      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
417    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
418  }
419  bool isTrapvOverflowBehavior() {
420    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
421               == LangOptions::SOB_Trapping;
422  }
423  /// Create a binary op that checks for overflow.
424  /// Currently only supports +, - and *.
425  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
426  // Emit the overflow BB when -ftrapv option is activated.
427  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
428    Builder.SetInsertPoint(overflowBB);
429    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
430    Builder.CreateCall(Trap);
431    Builder.CreateUnreachable();
432  }
433  // Check for undefined division and modulus behaviors.
434  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
435                                                  llvm::Value *Zero,bool isDiv);
436  Value *EmitDiv(const BinOpInfo &Ops);
437  Value *EmitRem(const BinOpInfo &Ops);
438  Value *EmitAdd(const BinOpInfo &Ops);
439  Value *EmitSub(const BinOpInfo &Ops);
440  Value *EmitShl(const BinOpInfo &Ops);
441  Value *EmitShr(const BinOpInfo &Ops);
442  Value *EmitAnd(const BinOpInfo &Ops) {
443    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
444  }
445  Value *EmitXor(const BinOpInfo &Ops) {
446    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
447  }
448  Value *EmitOr (const BinOpInfo &Ops) {
449    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
450  }
451
452  BinOpInfo EmitBinOps(const BinaryOperator *E);
453  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
454                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
455                                  Value *&Result);
456
457  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
458                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
459
460  // Binary operators and binary compound assignment operators.
461#define HANDLEBINOP(OP) \
462  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
463    return Emit ## OP(EmitBinOps(E));                                      \
464  }                                                                        \
465  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
466    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
467  }
468  HANDLEBINOP(Mul)
469  HANDLEBINOP(Div)
470  HANDLEBINOP(Rem)
471  HANDLEBINOP(Add)
472  HANDLEBINOP(Sub)
473  HANDLEBINOP(Shl)
474  HANDLEBINOP(Shr)
475  HANDLEBINOP(And)
476  HANDLEBINOP(Xor)
477  HANDLEBINOP(Or)
478#undef HANDLEBINOP
479
480  // Comparisons.
481  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
482                     unsigned SICmpOpc, unsigned FCmpOpc);
483#define VISITCOMP(CODE, UI, SI, FP) \
484    Value *VisitBin##CODE(const BinaryOperator *E) { \
485      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
486                         llvm::FCmpInst::FP); }
487  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
488  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
489  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
490  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
491  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
492  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
493#undef VISITCOMP
494
495  Value *VisitBinAssign     (const BinaryOperator *E);
496
497  Value *VisitBinLAnd       (const BinaryOperator *E);
498  Value *VisitBinLOr        (const BinaryOperator *E);
499  Value *VisitBinComma      (const BinaryOperator *E);
500
501  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
502  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
503
504  // Other Operators.
505  Value *VisitBlockExpr(const BlockExpr *BE);
506  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
507  Value *VisitChooseExpr(ChooseExpr *CE);
508  Value *VisitVAArgExpr(VAArgExpr *VE);
509  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
510    return CGF.EmitObjCStringLiteral(E);
511  }
512  Value *VisitAsTypeExpr(AsTypeExpr *CE);
513};
514}  // end anonymous namespace.
515
516//===----------------------------------------------------------------------===//
517//                                Utilities
518//===----------------------------------------------------------------------===//
519
520/// EmitConversionToBool - Convert the specified expression value to a
521/// boolean (i1) truth value.  This is equivalent to "Val != 0".
522Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
523  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
524
525  if (SrcType->isRealFloatingType())
526    return EmitFloatToBoolConversion(Src);
527
528  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
529    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
530
531  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
532         "Unknown scalar type to convert");
533
534  if (isa<llvm::IntegerType>(Src->getType()))
535    return EmitIntToBoolConversion(Src);
536
537  assert(isa<llvm::PointerType>(Src->getType()));
538  return EmitPointerToBoolConversion(Src);
539}
540
541/// EmitScalarConversion - Emit a conversion from the specified type to the
542/// specified destination type, both of which are LLVM scalar types.
543Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
544                                               QualType DstType) {
545  SrcType = CGF.getContext().getCanonicalType(SrcType);
546  DstType = CGF.getContext().getCanonicalType(DstType);
547  if (SrcType == DstType) return Src;
548
549  if (DstType->isVoidType()) return 0;
550
551  // Handle conversions to bool first, they are special: comparisons against 0.
552  if (DstType->isBooleanType())
553    return EmitConversionToBool(Src, SrcType);
554
555  const llvm::Type *DstTy = ConvertType(DstType);
556
557  // Ignore conversions like int -> uint.
558  if (Src->getType() == DstTy)
559    return Src;
560
561  // Handle pointer conversions next: pointers can only be converted to/from
562  // other pointers and integers. Check for pointer types in terms of LLVM, as
563  // some native types (like Obj-C id) may map to a pointer type.
564  if (isa<llvm::PointerType>(DstTy)) {
565    // The source value may be an integer, or a pointer.
566    if (isa<llvm::PointerType>(Src->getType()))
567      return Builder.CreateBitCast(Src, DstTy, "conv");
568
569    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
570    // First, convert to the correct width so that we control the kind of
571    // extension.
572    const llvm::Type *MiddleTy = CGF.IntPtrTy;
573    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
574    llvm::Value* IntResult =
575        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
576    // Then, cast to pointer.
577    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
578  }
579
580  if (isa<llvm::PointerType>(Src->getType())) {
581    // Must be an ptr to int cast.
582    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
583    return Builder.CreatePtrToInt(Src, DstTy, "conv");
584  }
585
586  // A scalar can be splatted to an extended vector of the same element type
587  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
588    // Cast the scalar to element type
589    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
590    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
591
592    // Insert the element in element zero of an undef vector
593    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
594    llvm::Value *Idx = Builder.getInt32(0);
595    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
596
597    // Splat the element across to all elements
598    llvm::SmallVector<llvm::Constant*, 16> Args;
599    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
600    for (unsigned i = 0; i != NumElements; ++i)
601      Args.push_back(Builder.getInt32(0));
602
603    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
604    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
605    return Yay;
606  }
607
608  // Allow bitcast from vector to integer/fp of the same size.
609  if (isa<llvm::VectorType>(Src->getType()) ||
610      isa<llvm::VectorType>(DstTy))
611    return Builder.CreateBitCast(Src, DstTy, "conv");
612
613  // Finally, we have the arithmetic types: real int/float.
614  if (isa<llvm::IntegerType>(Src->getType())) {
615    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
616    if (isa<llvm::IntegerType>(DstTy))
617      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
618    else if (InputSigned)
619      return Builder.CreateSIToFP(Src, DstTy, "conv");
620    else
621      return Builder.CreateUIToFP(Src, DstTy, "conv");
622  }
623
624  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
625  if (isa<llvm::IntegerType>(DstTy)) {
626    if (DstType->isSignedIntegerOrEnumerationType())
627      return Builder.CreateFPToSI(Src, DstTy, "conv");
628    else
629      return Builder.CreateFPToUI(Src, DstTy, "conv");
630  }
631
632  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
633  if (DstTy->getTypeID() < Src->getType()->getTypeID())
634    return Builder.CreateFPTrunc(Src, DstTy, "conv");
635  else
636    return Builder.CreateFPExt(Src, DstTy, "conv");
637}
638
639/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
640/// type to the specified destination type, where the destination type is an
641/// LLVM scalar type.
642Value *ScalarExprEmitter::
643EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
644                              QualType SrcTy, QualType DstTy) {
645  // Get the source element type.
646  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
647
648  // Handle conversions to bool first, they are special: comparisons against 0.
649  if (DstTy->isBooleanType()) {
650    //  Complex != 0  -> (Real != 0) | (Imag != 0)
651    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
652    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
653    return Builder.CreateOr(Src.first, Src.second, "tobool");
654  }
655
656  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
657  // the imaginary part of the complex value is discarded and the value of the
658  // real part is converted according to the conversion rules for the
659  // corresponding real type.
660  return EmitScalarConversion(Src.first, SrcTy, DstTy);
661}
662
663Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
664  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
665    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
666
667  return llvm::Constant::getNullValue(ConvertType(Ty));
668}
669
670//===----------------------------------------------------------------------===//
671//                            Visitor Methods
672//===----------------------------------------------------------------------===//
673
674Value *ScalarExprEmitter::VisitExpr(Expr *E) {
675  CGF.ErrorUnsupported(E, "scalar expression");
676  if (E->getType()->isVoidType())
677    return 0;
678  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
679}
680
681Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
682  // Vector Mask Case
683  if (E->getNumSubExprs() == 2 ||
684      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
685    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
686    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
687    Value *Mask;
688
689    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
690    unsigned LHSElts = LTy->getNumElements();
691
692    if (E->getNumSubExprs() == 3) {
693      Mask = CGF.EmitScalarExpr(E->getExpr(2));
694
695      // Shuffle LHS & RHS into one input vector.
696      llvm::SmallVector<llvm::Constant*, 32> concat;
697      for (unsigned i = 0; i != LHSElts; ++i) {
698        concat.push_back(Builder.getInt32(2*i));
699        concat.push_back(Builder.getInt32(2*i+1));
700      }
701
702      Value* CV = llvm::ConstantVector::get(concat);
703      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
704      LHSElts *= 2;
705    } else {
706      Mask = RHS;
707    }
708
709    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
710    llvm::Constant* EltMask;
711
712    // Treat vec3 like vec4.
713    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
714      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
715                                       (1 << llvm::Log2_32(LHSElts+2))-1);
716    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
717      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
718                                       (1 << llvm::Log2_32(LHSElts+1))-1);
719    else
720      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
721                                       (1 << llvm::Log2_32(LHSElts))-1);
722
723    // Mask off the high bits of each shuffle index.
724    llvm::SmallVector<llvm::Constant *, 32> MaskV;
725    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
726      MaskV.push_back(EltMask);
727
728    Value* MaskBits = llvm::ConstantVector::get(MaskV);
729    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
730
731    // newv = undef
732    // mask = mask & maskbits
733    // for each elt
734    //   n = extract mask i
735    //   x = extract val n
736    //   newv = insert newv, x, i
737    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
738                                                        MTy->getNumElements());
739    Value* NewV = llvm::UndefValue::get(RTy);
740    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
741      Value *Indx = Builder.getInt32(i);
742      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
743      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
744
745      // Handle vec3 special since the index will be off by one for the RHS.
746      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
747        Value *cmpIndx, *newIndx;
748        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
749                                        "cmp_shuf_idx");
750        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
751        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
752      }
753      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
754      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
755    }
756    return NewV;
757  }
758
759  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
760  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
761
762  // Handle vec3 special since the index will be off by one for the RHS.
763  const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
764  llvm::SmallVector<llvm::Constant*, 32> indices;
765  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
766    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
767    if (VTy->getNumElements() == 3 && Idx > 3)
768      Idx -= 1;
769    indices.push_back(Builder.getInt32(Idx));
770  }
771
772  Value *SV = llvm::ConstantVector::get(indices);
773  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
774}
775Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
776  Expr::EvalResult Result;
777  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
778    if (E->isArrow())
779      CGF.EmitScalarExpr(E->getBase());
780    else
781      EmitLValue(E->getBase());
782    return Builder.getInt(Result.Val.getInt());
783  }
784
785  // Emit debug info for aggregate now, if it was delayed to reduce
786  // debug info size.
787  CGDebugInfo *DI = CGF.getDebugInfo();
788  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
789    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
790    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
791      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
792        DI->getOrCreateRecordType(PTy->getPointeeType(),
793                                  M->getParent()->getLocation());
794  }
795  return EmitLoadOfLValue(E);
796}
797
798Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
799  TestAndClearIgnoreResultAssign();
800
801  // Emit subscript expressions in rvalue context's.  For most cases, this just
802  // loads the lvalue formed by the subscript expr.  However, we have to be
803  // careful, because the base of a vector subscript is occasionally an rvalue,
804  // so we can't get it as an lvalue.
805  if (!E->getBase()->getType()->isVectorType())
806    return EmitLoadOfLValue(E);
807
808  // Handle the vector case.  The base must be a vector, the index must be an
809  // integer value.
810  Value *Base = Visit(E->getBase());
811  Value *Idx  = Visit(E->getIdx());
812  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
813  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
814  return Builder.CreateExtractElement(Base, Idx, "vecext");
815}
816
817static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
818                                  unsigned Off, const llvm::Type *I32Ty) {
819  int MV = SVI->getMaskValue(Idx);
820  if (MV == -1)
821    return llvm::UndefValue::get(I32Ty);
822  return llvm::ConstantInt::get(I32Ty, Off+MV);
823}
824
825Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
826  bool Ignore = TestAndClearIgnoreResultAssign();
827  (void)Ignore;
828  assert (Ignore == false && "init list ignored");
829  unsigned NumInitElements = E->getNumInits();
830
831  if (E->hadArrayRangeDesignator())
832    CGF.ErrorUnsupported(E, "GNU array range designator extension");
833
834  const llvm::VectorType *VType =
835    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
836
837  // We have a scalar in braces. Just use the first element.
838  if (!VType)
839    return Visit(E->getInit(0));
840
841  unsigned ResElts = VType->getNumElements();
842
843  // Loop over initializers collecting the Value for each, and remembering
844  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
845  // us to fold the shuffle for the swizzle into the shuffle for the vector
846  // initializer, since LLVM optimizers generally do not want to touch
847  // shuffles.
848  unsigned CurIdx = 0;
849  bool VIsUndefShuffle = false;
850  llvm::Value *V = llvm::UndefValue::get(VType);
851  for (unsigned i = 0; i != NumInitElements; ++i) {
852    Expr *IE = E->getInit(i);
853    Value *Init = Visit(IE);
854    llvm::SmallVector<llvm::Constant*, 16> Args;
855
856    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
857
858    // Handle scalar elements.  If the scalar initializer is actually one
859    // element of a different vector of the same width, use shuffle instead of
860    // extract+insert.
861    if (!VVT) {
862      if (isa<ExtVectorElementExpr>(IE)) {
863        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
864
865        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
866          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
867          Value *LHS = 0, *RHS = 0;
868          if (CurIdx == 0) {
869            // insert into undef -> shuffle (src, undef)
870            Args.push_back(C);
871            for (unsigned j = 1; j != ResElts; ++j)
872              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
873
874            LHS = EI->getVectorOperand();
875            RHS = V;
876            VIsUndefShuffle = true;
877          } else if (VIsUndefShuffle) {
878            // insert into undefshuffle && size match -> shuffle (v, src)
879            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
880            for (unsigned j = 0; j != CurIdx; ++j)
881              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
882            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
883            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
884              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
885
886            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
887            RHS = EI->getVectorOperand();
888            VIsUndefShuffle = false;
889          }
890          if (!Args.empty()) {
891            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
892            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
893            ++CurIdx;
894            continue;
895          }
896        }
897      }
898      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
899                                      "vecinit");
900      VIsUndefShuffle = false;
901      ++CurIdx;
902      continue;
903    }
904
905    unsigned InitElts = VVT->getNumElements();
906
907    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
908    // input is the same width as the vector being constructed, generate an
909    // optimized shuffle of the swizzle input into the result.
910    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
911    if (isa<ExtVectorElementExpr>(IE)) {
912      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
913      Value *SVOp = SVI->getOperand(0);
914      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
915
916      if (OpTy->getNumElements() == ResElts) {
917        for (unsigned j = 0; j != CurIdx; ++j) {
918          // If the current vector initializer is a shuffle with undef, merge
919          // this shuffle directly into it.
920          if (VIsUndefShuffle) {
921            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
922                                      CGF.Int32Ty));
923          } else {
924            Args.push_back(Builder.getInt32(j));
925          }
926        }
927        for (unsigned j = 0, je = InitElts; j != je; ++j)
928          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
929        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
930          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
931
932        if (VIsUndefShuffle)
933          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
934
935        Init = SVOp;
936      }
937    }
938
939    // Extend init to result vector length, and then shuffle its contribution
940    // to the vector initializer into V.
941    if (Args.empty()) {
942      for (unsigned j = 0; j != InitElts; ++j)
943        Args.push_back(Builder.getInt32(j));
944      for (unsigned j = InitElts; j != ResElts; ++j)
945        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
946      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
947      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
948                                         Mask, "vext");
949
950      Args.clear();
951      for (unsigned j = 0; j != CurIdx; ++j)
952        Args.push_back(Builder.getInt32(j));
953      for (unsigned j = 0; j != InitElts; ++j)
954        Args.push_back(Builder.getInt32(j+Offset));
955      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
956        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
957    }
958
959    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
960    // merging subsequent shuffles into this one.
961    if (CurIdx == 0)
962      std::swap(V, Init);
963    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
964    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
965    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
966    CurIdx += InitElts;
967  }
968
969  // FIXME: evaluate codegen vs. shuffling against constant null vector.
970  // Emit remaining default initializers.
971  const llvm::Type *EltTy = VType->getElementType();
972
973  // Emit remaining default initializers
974  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
975    Value *Idx = Builder.getInt32(CurIdx);
976    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
977    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
978  }
979  return V;
980}
981
982static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
983  const Expr *E = CE->getSubExpr();
984
985  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
986    return false;
987
988  if (isa<CXXThisExpr>(E)) {
989    // We always assume that 'this' is never null.
990    return false;
991  }
992
993  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
994    // And that glvalue casts are never null.
995    if (ICE->getValueKind() != VK_RValue)
996      return false;
997  }
998
999  return true;
1000}
1001
1002// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1003// have to handle a more broad range of conversions than explicit casts, as they
1004// handle things like function to ptr-to-function decay etc.
1005Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1006  Expr *E = CE->getSubExpr();
1007  QualType DestTy = CE->getType();
1008  CastKind Kind = CE->getCastKind();
1009
1010  if (!DestTy->isVoidType())
1011    TestAndClearIgnoreResultAssign();
1012
1013  // Since almost all cast kinds apply to scalars, this switch doesn't have
1014  // a default case, so the compiler will warn on a missing case.  The cases
1015  // are in the same order as in the CastKind enum.
1016  switch (Kind) {
1017  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1018
1019  case CK_LValueBitCast:
1020  case CK_ObjCObjectLValueCast: {
1021    Value *V = EmitLValue(E).getAddress();
1022    V = Builder.CreateBitCast(V,
1023                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1024    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
1025  }
1026
1027  case CK_AnyPointerToObjCPointerCast:
1028  case CK_AnyPointerToBlockPointerCast:
1029  case CK_BitCast: {
1030    Value *Src = Visit(const_cast<Expr*>(E));
1031    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1032  }
1033  case CK_NoOp:
1034  case CK_UserDefinedConversion:
1035    return Visit(const_cast<Expr*>(E));
1036
1037  case CK_BaseToDerived: {
1038    const CXXRecordDecl *DerivedClassDecl =
1039      DestTy->getCXXRecordDeclForPointerType();
1040
1041    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1042                                        CE->path_begin(), CE->path_end(),
1043                                        ShouldNullCheckClassCastValue(CE));
1044  }
1045  case CK_UncheckedDerivedToBase:
1046  case CK_DerivedToBase: {
1047    const RecordType *DerivedClassTy =
1048      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1049    CXXRecordDecl *DerivedClassDecl =
1050      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1051
1052    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1053                                     CE->path_begin(), CE->path_end(),
1054                                     ShouldNullCheckClassCastValue(CE));
1055  }
1056  case CK_Dynamic: {
1057    Value *V = Visit(const_cast<Expr*>(E));
1058    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1059    return CGF.EmitDynamicCast(V, DCE);
1060  }
1061
1062  case CK_ArrayToPointerDecay: {
1063    assert(E->getType()->isArrayType() &&
1064           "Array to pointer decay must have array source type!");
1065
1066    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1067
1068    // Note that VLA pointers are always decayed, so we don't need to do
1069    // anything here.
1070    if (!E->getType()->isVariableArrayType()) {
1071      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1072      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1073                                 ->getElementType()) &&
1074             "Expected pointer to array");
1075      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1076    }
1077
1078    return V;
1079  }
1080  case CK_FunctionToPointerDecay:
1081    return EmitLValue(E).getAddress();
1082
1083  case CK_NullToPointer:
1084    if (MustVisitNullValue(E))
1085      (void) Visit(E);
1086
1087    return llvm::ConstantPointerNull::get(
1088                               cast<llvm::PointerType>(ConvertType(DestTy)));
1089
1090  case CK_NullToMemberPointer: {
1091    if (MustVisitNullValue(E))
1092      (void) Visit(E);
1093
1094    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1095    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1096  }
1097
1098  case CK_BaseToDerivedMemberPointer:
1099  case CK_DerivedToBaseMemberPointer: {
1100    Value *Src = Visit(E);
1101
1102    // Note that the AST doesn't distinguish between checked and
1103    // unchecked member pointer conversions, so we always have to
1104    // implement checked conversions here.  This is inefficient when
1105    // actual control flow may be required in order to perform the
1106    // check, which it is for data member pointers (but not member
1107    // function pointers on Itanium and ARM).
1108    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1109  }
1110
1111  case CK_ObjCProduceObject:
1112    return CGF.EmitARCRetainScalarExpr(E);
1113  case CK_ObjCConsumeObject:
1114    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1115  case CK_ObjCReclaimReturnedObject: {
1116    llvm::Value *value = Visit(E);
1117    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1118    return CGF.EmitObjCConsumeObject(E->getType(), value);
1119  }
1120
1121  case CK_FloatingRealToComplex:
1122  case CK_FloatingComplexCast:
1123  case CK_IntegralRealToComplex:
1124  case CK_IntegralComplexCast:
1125  case CK_IntegralComplexToFloatingComplex:
1126  case CK_FloatingComplexToIntegralComplex:
1127  case CK_ConstructorConversion:
1128  case CK_ToUnion:
1129    llvm_unreachable("scalar cast to non-scalar value");
1130    break;
1131
1132  case CK_GetObjCProperty: {
1133    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1134    assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1135           "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1136    RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
1137    return RV.getScalarVal();
1138  }
1139
1140  case CK_LValueToRValue:
1141    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1142    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1143    return Visit(const_cast<Expr*>(E));
1144
1145  case CK_IntegralToPointer: {
1146    Value *Src = Visit(const_cast<Expr*>(E));
1147
1148    // First, convert to the correct width so that we control the kind of
1149    // extension.
1150    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1151    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1152    llvm::Value* IntResult =
1153      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1154
1155    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1156  }
1157  case CK_PointerToIntegral:
1158    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1159    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1160
1161  case CK_ToVoid: {
1162    CGF.EmitIgnoredExpr(E);
1163    return 0;
1164  }
1165  case CK_VectorSplat: {
1166    const llvm::Type *DstTy = ConvertType(DestTy);
1167    Value *Elt = Visit(const_cast<Expr*>(E));
1168
1169    // Insert the element in element zero of an undef vector
1170    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1171    llvm::Value *Idx = Builder.getInt32(0);
1172    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1173
1174    // Splat the element across to all elements
1175    llvm::SmallVector<llvm::Constant*, 16> Args;
1176    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1177    llvm::Constant *Zero = Builder.getInt32(0);
1178    for (unsigned i = 0; i < NumElements; i++)
1179      Args.push_back(Zero);
1180
1181    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1182    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1183    return Yay;
1184  }
1185
1186  case CK_IntegralCast:
1187  case CK_IntegralToFloating:
1188  case CK_FloatingToIntegral:
1189  case CK_FloatingCast:
1190    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1191
1192  case CK_IntegralToBoolean:
1193    return EmitIntToBoolConversion(Visit(E));
1194  case CK_PointerToBoolean:
1195    return EmitPointerToBoolConversion(Visit(E));
1196  case CK_FloatingToBoolean:
1197    return EmitFloatToBoolConversion(Visit(E));
1198  case CK_MemberPointerToBoolean: {
1199    llvm::Value *MemPtr = Visit(E);
1200    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1201    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1202  }
1203
1204  case CK_FloatingComplexToReal:
1205  case CK_IntegralComplexToReal:
1206    return CGF.EmitComplexExpr(E, false, true).first;
1207
1208  case CK_FloatingComplexToBoolean:
1209  case CK_IntegralComplexToBoolean: {
1210    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1211
1212    // TODO: kill this function off, inline appropriate case here
1213    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1214  }
1215
1216  }
1217
1218  llvm_unreachable("unknown scalar cast");
1219  return 0;
1220}
1221
1222Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1223  CodeGenFunction::StmtExprEvaluation eval(CGF);
1224  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1225    .getScalarVal();
1226}
1227
1228Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1229  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1230  return CGF.EmitLoadOfLValue(LV).getScalarVal();
1231}
1232
1233//===----------------------------------------------------------------------===//
1234//                             Unary Operators
1235//===----------------------------------------------------------------------===//
1236
1237llvm::Value *ScalarExprEmitter::
1238EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1239                                llvm::Value *InVal,
1240                                llvm::Value *NextVal, bool IsInc) {
1241  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1242  case LangOptions::SOB_Undefined:
1243    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1244    break;
1245  case LangOptions::SOB_Defined:
1246    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1247    break;
1248  case LangOptions::SOB_Trapping:
1249    BinOpInfo BinOp;
1250    BinOp.LHS = InVal;
1251    BinOp.RHS = NextVal;
1252    BinOp.Ty = E->getType();
1253    BinOp.Opcode = BO_Add;
1254    BinOp.E = E;
1255    return EmitOverflowCheckedBinOp(BinOp);
1256    break;
1257  }
1258  assert(false && "Unknown SignedOverflowBehaviorTy");
1259  return 0;
1260}
1261
1262llvm::Value *
1263ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1264                                           bool isInc, bool isPre) {
1265
1266  QualType type = E->getSubExpr()->getType();
1267  llvm::Value *value = EmitLoadOfLValue(LV);
1268  llvm::Value *input = value;
1269
1270  int amount = (isInc ? 1 : -1);
1271
1272  // Special case of integer increment that we have to check first: bool++.
1273  // Due to promotion rules, we get:
1274  //   bool++ -> bool = bool + 1
1275  //          -> bool = (int)bool + 1
1276  //          -> bool = ((int)bool + 1 != 0)
1277  // An interesting aspect of this is that increment is always true.
1278  // Decrement does not have this property.
1279  if (isInc && type->isBooleanType()) {
1280    value = Builder.getTrue();
1281
1282  // Most common case by far: integer increment.
1283  } else if (type->isIntegerType()) {
1284
1285    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1286
1287    // Note that signed integer inc/dec with width less than int can't
1288    // overflow because of promotion rules; we're just eliding a few steps here.
1289    if (type->isSignedIntegerOrEnumerationType() &&
1290        value->getType()->getPrimitiveSizeInBits() >=
1291            CGF.IntTy->getBitWidth())
1292      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1293    else
1294      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1295
1296  // Next most common: pointer increment.
1297  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1298    QualType type = ptr->getPointeeType();
1299
1300    // VLA types don't have constant size.
1301    if (const VariableArrayType *vla
1302          = CGF.getContext().getAsVariableArrayType(type)) {
1303      llvm::Value *numElts = CGF.getVLASize(vla).first;
1304      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1305      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1306        value = Builder.CreateGEP(value, numElts, "vla.inc");
1307      else
1308        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1309
1310    // Arithmetic on function pointers (!) is just +-1.
1311    } else if (type->isFunctionType()) {
1312      llvm::Value *amt = Builder.getInt32(amount);
1313
1314      value = CGF.EmitCastToVoidPtr(value);
1315      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1316        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1317      else
1318        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1319      value = Builder.CreateBitCast(value, input->getType());
1320
1321    // For everything else, we can just do a simple increment.
1322    } else {
1323      llvm::Value *amt = Builder.getInt32(amount);
1324      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1325        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1326      else
1327        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1328    }
1329
1330  // Vector increment/decrement.
1331  } else if (type->isVectorType()) {
1332    if (type->hasIntegerRepresentation()) {
1333      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1334
1335      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1336    } else {
1337      value = Builder.CreateFAdd(
1338                  value,
1339                  llvm::ConstantFP::get(value->getType(), amount),
1340                  isInc ? "inc" : "dec");
1341    }
1342
1343  // Floating point.
1344  } else if (type->isRealFloatingType()) {
1345    // Add the inc/dec to the real part.
1346    llvm::Value *amt;
1347    if (value->getType()->isFloatTy())
1348      amt = llvm::ConstantFP::get(VMContext,
1349                                  llvm::APFloat(static_cast<float>(amount)));
1350    else if (value->getType()->isDoubleTy())
1351      amt = llvm::ConstantFP::get(VMContext,
1352                                  llvm::APFloat(static_cast<double>(amount)));
1353    else {
1354      llvm::APFloat F(static_cast<float>(amount));
1355      bool ignored;
1356      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1357                &ignored);
1358      amt = llvm::ConstantFP::get(VMContext, F);
1359    }
1360    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1361
1362  // Objective-C pointer types.
1363  } else {
1364    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1365    value = CGF.EmitCastToVoidPtr(value);
1366
1367    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1368    if (!isInc) size = -size;
1369    llvm::Value *sizeValue =
1370      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1371
1372    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1373      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1374    else
1375      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1376    value = Builder.CreateBitCast(value, input->getType());
1377  }
1378
1379  // Store the updated result through the lvalue.
1380  if (LV.isBitField())
1381    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1382  else
1383    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1384
1385  // If this is a postinc, return the value read from memory, otherwise use the
1386  // updated value.
1387  return isPre ? value : input;
1388}
1389
1390
1391
1392Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1393  TestAndClearIgnoreResultAssign();
1394  // Emit unary minus with EmitSub so we handle overflow cases etc.
1395  BinOpInfo BinOp;
1396  BinOp.RHS = Visit(E->getSubExpr());
1397
1398  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1399    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1400  else
1401    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1402  BinOp.Ty = E->getType();
1403  BinOp.Opcode = BO_Sub;
1404  BinOp.E = E;
1405  return EmitSub(BinOp);
1406}
1407
1408Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1409  TestAndClearIgnoreResultAssign();
1410  Value *Op = Visit(E->getSubExpr());
1411  return Builder.CreateNot(Op, "neg");
1412}
1413
1414Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1415  // Compare operand to zero.
1416  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1417
1418  // Invert value.
1419  // TODO: Could dynamically modify easy computations here.  For example, if
1420  // the operand is an icmp ne, turn into icmp eq.
1421  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1422
1423  // ZExt result to the expr type.
1424  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1425}
1426
1427Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1428  // Try folding the offsetof to a constant.
1429  Expr::EvalResult EvalResult;
1430  if (E->Evaluate(EvalResult, CGF.getContext()))
1431    return Builder.getInt(EvalResult.Val.getInt());
1432
1433  // Loop over the components of the offsetof to compute the value.
1434  unsigned n = E->getNumComponents();
1435  const llvm::Type* ResultType = ConvertType(E->getType());
1436  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1437  QualType CurrentType = E->getTypeSourceInfo()->getType();
1438  for (unsigned i = 0; i != n; ++i) {
1439    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1440    llvm::Value *Offset = 0;
1441    switch (ON.getKind()) {
1442    case OffsetOfExpr::OffsetOfNode::Array: {
1443      // Compute the index
1444      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1445      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1446      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1447      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1448
1449      // Save the element type
1450      CurrentType =
1451          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1452
1453      // Compute the element size
1454      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1455          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1456
1457      // Multiply out to compute the result
1458      Offset = Builder.CreateMul(Idx, ElemSize);
1459      break;
1460    }
1461
1462    case OffsetOfExpr::OffsetOfNode::Field: {
1463      FieldDecl *MemberDecl = ON.getField();
1464      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1465      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1466
1467      // Compute the index of the field in its parent.
1468      unsigned i = 0;
1469      // FIXME: It would be nice if we didn't have to loop here!
1470      for (RecordDecl::field_iterator Field = RD->field_begin(),
1471                                      FieldEnd = RD->field_end();
1472           Field != FieldEnd; (void)++Field, ++i) {
1473        if (*Field == MemberDecl)
1474          break;
1475      }
1476      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1477
1478      // Compute the offset to the field
1479      int64_t OffsetInt = RL.getFieldOffset(i) /
1480                          CGF.getContext().getCharWidth();
1481      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1482
1483      // Save the element type.
1484      CurrentType = MemberDecl->getType();
1485      break;
1486    }
1487
1488    case OffsetOfExpr::OffsetOfNode::Identifier:
1489      llvm_unreachable("dependent __builtin_offsetof");
1490
1491    case OffsetOfExpr::OffsetOfNode::Base: {
1492      if (ON.getBase()->isVirtual()) {
1493        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1494        continue;
1495      }
1496
1497      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1498      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1499
1500      // Save the element type.
1501      CurrentType = ON.getBase()->getType();
1502
1503      // Compute the offset to the base.
1504      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1505      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1506      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1507                          CGF.getContext().getCharWidth();
1508      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1509      break;
1510    }
1511    }
1512    Result = Builder.CreateAdd(Result, Offset);
1513  }
1514  return Result;
1515}
1516
1517/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1518/// argument of the sizeof expression as an integer.
1519Value *
1520ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1521                              const UnaryExprOrTypeTraitExpr *E) {
1522  QualType TypeToSize = E->getTypeOfArgument();
1523  if (E->getKind() == UETT_SizeOf) {
1524    if (const VariableArrayType *VAT =
1525          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1526      if (E->isArgumentType()) {
1527        // sizeof(type) - make sure to emit the VLA size.
1528        CGF.EmitVariablyModifiedType(TypeToSize);
1529      } else {
1530        // C99 6.5.3.4p2: If the argument is an expression of type
1531        // VLA, it is evaluated.
1532        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1533      }
1534
1535      QualType eltType;
1536      llvm::Value *numElts;
1537      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1538
1539      llvm::Value *size = numElts;
1540
1541      // Scale the number of non-VLA elements by the non-VLA element size.
1542      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1543      if (!eltSize.isOne())
1544        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1545
1546      return size;
1547    }
1548  }
1549
1550  // If this isn't sizeof(vla), the result must be constant; use the constant
1551  // folding logic so we don't have to duplicate it here.
1552  Expr::EvalResult Result;
1553  E->Evaluate(Result, CGF.getContext());
1554  return Builder.getInt(Result.Val.getInt());
1555}
1556
1557Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1558  Expr *Op = E->getSubExpr();
1559  if (Op->getType()->isAnyComplexType()) {
1560    // If it's an l-value, load through the appropriate subobject l-value.
1561    // Note that we have to ask E because Op might be an l-value that
1562    // this won't work for, e.g. an Obj-C property.
1563    if (E->isGLValue())
1564      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1565
1566    // Otherwise, calculate and project.
1567    return CGF.EmitComplexExpr(Op, false, true).first;
1568  }
1569
1570  return Visit(Op);
1571}
1572
1573Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1574  Expr *Op = E->getSubExpr();
1575  if (Op->getType()->isAnyComplexType()) {
1576    // If it's an l-value, load through the appropriate subobject l-value.
1577    // Note that we have to ask E because Op might be an l-value that
1578    // this won't work for, e.g. an Obj-C property.
1579    if (Op->isGLValue())
1580      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1581
1582    // Otherwise, calculate and project.
1583    return CGF.EmitComplexExpr(Op, true, false).second;
1584  }
1585
1586  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1587  // effects are evaluated, but not the actual value.
1588  CGF.EmitScalarExpr(Op, true);
1589  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1590}
1591
1592//===----------------------------------------------------------------------===//
1593//                           Binary Operators
1594//===----------------------------------------------------------------------===//
1595
1596BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1597  TestAndClearIgnoreResultAssign();
1598  BinOpInfo Result;
1599  Result.LHS = Visit(E->getLHS());
1600  Result.RHS = Visit(E->getRHS());
1601  Result.Ty  = E->getType();
1602  Result.Opcode = E->getOpcode();
1603  Result.E = E;
1604  return Result;
1605}
1606
1607LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1608                                              const CompoundAssignOperator *E,
1609                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1610                                                   Value *&Result) {
1611  QualType LHSTy = E->getLHS()->getType();
1612  BinOpInfo OpInfo;
1613
1614  if (E->getComputationResultType()->isAnyComplexType()) {
1615    // This needs to go through the complex expression emitter, but it's a tad
1616    // complicated to do that... I'm leaving it out for now.  (Note that we do
1617    // actually need the imaginary part of the RHS for multiplication and
1618    // division.)
1619    CGF.ErrorUnsupported(E, "complex compound assignment");
1620    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1621    return LValue();
1622  }
1623
1624  // Emit the RHS first.  __block variables need to have the rhs evaluated
1625  // first, plus this should improve codegen a little.
1626  OpInfo.RHS = Visit(E->getRHS());
1627  OpInfo.Ty = E->getComputationResultType();
1628  OpInfo.Opcode = E->getOpcode();
1629  OpInfo.E = E;
1630  // Load/convert the LHS.
1631  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1632  OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1633  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1634                                    E->getComputationLHSType());
1635
1636  // Expand the binary operator.
1637  Result = (this->*Func)(OpInfo);
1638
1639  // Convert the result back to the LHS type.
1640  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1641
1642  // Store the result value into the LHS lvalue. Bit-fields are handled
1643  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1644  // 'An assignment expression has the value of the left operand after the
1645  // assignment...'.
1646  if (LHSLV.isBitField())
1647    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1648  else
1649    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1650
1651  return LHSLV;
1652}
1653
1654Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1655                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1656  bool Ignore = TestAndClearIgnoreResultAssign();
1657  Value *RHS;
1658  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1659
1660  // If the result is clearly ignored, return now.
1661  if (Ignore)
1662    return 0;
1663
1664  // The result of an assignment in C is the assigned r-value.
1665  if (!CGF.getContext().getLangOptions().CPlusPlus)
1666    return RHS;
1667
1668  // Objective-C property assignment never reloads the value following a store.
1669  if (LHS.isPropertyRef())
1670    return RHS;
1671
1672  // If the lvalue is non-volatile, return the computed value of the assignment.
1673  if (!LHS.isVolatileQualified())
1674    return RHS;
1675
1676  // Otherwise, reload the value.
1677  return EmitLoadOfLValue(LHS);
1678}
1679
1680void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1681     					    const BinOpInfo &Ops,
1682				     	    llvm::Value *Zero, bool isDiv) {
1683  llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1684  llvm::BasicBlock *contBB =
1685    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1686                         llvm::next(insertPt));
1687  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1688
1689  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1690
1691  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1692    llvm::Value *IntMin =
1693      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1694    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1695
1696    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1697    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1698    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1699    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1700    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1701                         overflowBB, contBB);
1702  } else {
1703    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1704                             overflowBB, contBB);
1705  }
1706  EmitOverflowBB(overflowBB);
1707  Builder.SetInsertPoint(contBB);
1708}
1709
1710Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1711  if (isTrapvOverflowBehavior()) {
1712    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1713
1714    if (Ops.Ty->isIntegerType())
1715      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1716    else if (Ops.Ty->isRealFloatingType()) {
1717      llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1718      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1719                                                       llvm::next(insertPt));
1720      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1721                                                          CGF.CurFn);
1722      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1723                               overflowBB, DivCont);
1724      EmitOverflowBB(overflowBB);
1725      Builder.SetInsertPoint(DivCont);
1726    }
1727  }
1728  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1729    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1730  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1731    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1732  else
1733    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1734}
1735
1736Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1737  // Rem in C can't be a floating point type: C99 6.5.5p2.
1738  if (isTrapvOverflowBehavior()) {
1739    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1740
1741    if (Ops.Ty->isIntegerType())
1742      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1743  }
1744
1745  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1746    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1747  else
1748    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1749}
1750
1751Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1752  unsigned IID;
1753  unsigned OpID = 0;
1754
1755  switch (Ops.Opcode) {
1756  case BO_Add:
1757  case BO_AddAssign:
1758    OpID = 1;
1759    IID = llvm::Intrinsic::sadd_with_overflow;
1760    break;
1761  case BO_Sub:
1762  case BO_SubAssign:
1763    OpID = 2;
1764    IID = llvm::Intrinsic::ssub_with_overflow;
1765    break;
1766  case BO_Mul:
1767  case BO_MulAssign:
1768    OpID = 3;
1769    IID = llvm::Intrinsic::smul_with_overflow;
1770    break;
1771  default:
1772    assert(false && "Unsupported operation for overflow detection");
1773    IID = 0;
1774  }
1775  OpID <<= 1;
1776  OpID |= 1;
1777
1778  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1779
1780  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1781
1782  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1783  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1784  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1785
1786  // Branch in case of overflow.
1787  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1788  llvm::Function::iterator insertPt = initialBB;
1789  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1790                                                      llvm::next(insertPt));
1791  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1792
1793  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1794
1795  // Handle overflow with llvm.trap.
1796  const std::string *handlerName =
1797    &CGF.getContext().getLangOptions().OverflowHandler;
1798  if (handlerName->empty()) {
1799    EmitOverflowBB(overflowBB);
1800    Builder.SetInsertPoint(continueBB);
1801    return result;
1802  }
1803
1804  // If an overflow handler is set, then we want to call it and then use its
1805  // result, if it returns.
1806  Builder.SetInsertPoint(overflowBB);
1807
1808  // Get the overflow handler.
1809  llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1810  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1811  llvm::FunctionType *handlerTy =
1812      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1813  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1814
1815  // Sign extend the args to 64-bit, so that we can use the same handler for
1816  // all types of overflow.
1817  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1818  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1819
1820  // Call the handler with the two arguments, the operation, and the size of
1821  // the result.
1822  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1823      Builder.getInt8(OpID),
1824      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1825
1826  // Truncate the result back to the desired size.
1827  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1828  Builder.CreateBr(continueBB);
1829
1830  Builder.SetInsertPoint(continueBB);
1831  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1832  phi->addIncoming(result, initialBB);
1833  phi->addIncoming(handlerResult, overflowBB);
1834
1835  return phi;
1836}
1837
1838/// Emit pointer + index arithmetic.
1839static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1840                                    const BinOpInfo &op,
1841                                    bool isSubtraction) {
1842  // Must have binary (not unary) expr here.  Unary pointer
1843  // increment/decrement doesn't use this path.
1844  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1845
1846  Value *pointer = op.LHS;
1847  Expr *pointerOperand = expr->getLHS();
1848  Value *index = op.RHS;
1849  Expr *indexOperand = expr->getRHS();
1850
1851  // In a subtraction, the LHS is always the pointer.
1852  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1853    std::swap(pointer, index);
1854    std::swap(pointerOperand, indexOperand);
1855  }
1856
1857  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1858  if (width != CGF.PointerWidthInBits) {
1859    // Zero-extend or sign-extend the pointer value according to
1860    // whether the index is signed or not.
1861    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1862    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1863                                      "idx.ext");
1864  }
1865
1866  // If this is subtraction, negate the index.
1867  if (isSubtraction)
1868    index = CGF.Builder.CreateNeg(index, "idx.neg");
1869
1870  const PointerType *pointerType
1871    = pointerOperand->getType()->getAs<PointerType>();
1872  if (!pointerType) {
1873    QualType objectType = pointerOperand->getType()
1874                                        ->castAs<ObjCObjectPointerType>()
1875                                        ->getPointeeType();
1876    llvm::Value *objectSize
1877      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1878
1879    index = CGF.Builder.CreateMul(index, objectSize);
1880
1881    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1882    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1883    return CGF.Builder.CreateBitCast(result, pointer->getType());
1884  }
1885
1886  QualType elementType = pointerType->getPointeeType();
1887  if (const VariableArrayType *vla
1888        = CGF.getContext().getAsVariableArrayType(elementType)) {
1889    // The element count here is the total number of non-VLA elements.
1890    llvm::Value *numElements = CGF.getVLASize(vla).first;
1891
1892    // Effectively, the multiply by the VLA size is part of the GEP.
1893    // GEP indexes are signed, and scaling an index isn't permitted to
1894    // signed-overflow, so we use the same semantics for our explicit
1895    // multiply.  We suppress this if overflow is not undefined behavior.
1896    if (CGF.getLangOptions().isSignedOverflowDefined()) {
1897      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1898      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1899    } else {
1900      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1901      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1902    }
1903    return pointer;
1904  }
1905
1906  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1907  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1908  // future proof.
1909  if (elementType->isVoidType() || elementType->isFunctionType()) {
1910    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1911    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1912    return CGF.Builder.CreateBitCast(result, pointer->getType());
1913  }
1914
1915  if (CGF.getLangOptions().isSignedOverflowDefined())
1916    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1917
1918  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1919}
1920
1921Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
1922  if (op.LHS->getType()->isPointerTy() ||
1923      op.RHS->getType()->isPointerTy())
1924    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
1925
1926  if (op.Ty->isSignedIntegerOrEnumerationType()) {
1927    switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1928    case LangOptions::SOB_Undefined:
1929      return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
1930    case LangOptions::SOB_Defined:
1931      return Builder.CreateAdd(op.LHS, op.RHS, "add");
1932    case LangOptions::SOB_Trapping:
1933      return EmitOverflowCheckedBinOp(op);
1934    }
1935  }
1936
1937  if (op.LHS->getType()->isFPOrFPVectorTy())
1938    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
1939
1940  return Builder.CreateAdd(op.LHS, op.RHS, "add");
1941}
1942
1943Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
1944  // The LHS is always a pointer if either side is.
1945  if (!op.LHS->getType()->isPointerTy()) {
1946    if (op.Ty->isSignedIntegerOrEnumerationType()) {
1947      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1948      case LangOptions::SOB_Undefined:
1949        return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
1950      case LangOptions::SOB_Defined:
1951        return Builder.CreateSub(op.LHS, op.RHS, "sub");
1952      case LangOptions::SOB_Trapping:
1953        return EmitOverflowCheckedBinOp(op);
1954      }
1955    }
1956
1957    if (op.LHS->getType()->isFPOrFPVectorTy())
1958      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
1959
1960    return Builder.CreateSub(op.LHS, op.RHS, "sub");
1961  }
1962
1963  // If the RHS is not a pointer, then we have normal pointer
1964  // arithmetic.
1965  if (!op.RHS->getType()->isPointerTy())
1966    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
1967
1968  // Otherwise, this is a pointer subtraction.
1969
1970  // Do the raw subtraction part.
1971  llvm::Value *LHS
1972    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
1973  llvm::Value *RHS
1974    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
1975  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1976
1977  // Okay, figure out the element size.
1978  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1979  QualType elementType = expr->getLHS()->getType()->getPointeeType();
1980
1981  llvm::Value *divisor = 0;
1982
1983  // For a variable-length array, this is going to be non-constant.
1984  if (const VariableArrayType *vla
1985        = CGF.getContext().getAsVariableArrayType(elementType)) {
1986    llvm::Value *numElements;
1987    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
1988
1989    divisor = numElements;
1990
1991    // Scale the number of non-VLA elements by the non-VLA element size.
1992    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
1993    if (!eltSize.isOne())
1994      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
1995
1996  // For everything elese, we can just compute it, safe in the
1997  // assumption that Sema won't let anything through that we can't
1998  // safely compute the size of.
1999  } else {
2000    CharUnits elementSize;
2001    // Handle GCC extension for pointer arithmetic on void* and
2002    // function pointer types.
2003    if (elementType->isVoidType() || elementType->isFunctionType())
2004      elementSize = CharUnits::One();
2005    else
2006      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2007
2008    // Don't even emit the divide for element size of 1.
2009    if (elementSize.isOne())
2010      return diffInChars;
2011
2012    divisor = CGF.CGM.getSize(elementSize);
2013  }
2014
2015  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2016  // pointer difference in C is only defined in the case where both operands
2017  // are pointing to elements of an array.
2018  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2019}
2020
2021Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2022  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2023  // RHS to the same size as the LHS.
2024  Value *RHS = Ops.RHS;
2025  if (Ops.LHS->getType() != RHS->getType())
2026    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2027
2028  if (CGF.CatchUndefined
2029      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2030    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2031    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2032    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2033                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2034                             Cont, CGF.getTrapBB());
2035    CGF.EmitBlock(Cont);
2036  }
2037
2038  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2039}
2040
2041Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2042  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2043  // RHS to the same size as the LHS.
2044  Value *RHS = Ops.RHS;
2045  if (Ops.LHS->getType() != RHS->getType())
2046    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2047
2048  if (CGF.CatchUndefined
2049      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2050    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2051    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2052    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2053                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2054                             Cont, CGF.getTrapBB());
2055    CGF.EmitBlock(Cont);
2056  }
2057
2058  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2059    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2060  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2061}
2062
2063enum IntrinsicType { VCMPEQ, VCMPGT };
2064// return corresponding comparison intrinsic for given vector type
2065static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2066                                        BuiltinType::Kind ElemKind) {
2067  switch (ElemKind) {
2068  default: assert(0 && "unexpected element type");
2069  case BuiltinType::Char_U:
2070  case BuiltinType::UChar:
2071    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2072                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2073    break;
2074  case BuiltinType::Char_S:
2075  case BuiltinType::SChar:
2076    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2077                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2078    break;
2079  case BuiltinType::UShort:
2080    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2081                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2082    break;
2083  case BuiltinType::Short:
2084    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2085                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2086    break;
2087  case BuiltinType::UInt:
2088  case BuiltinType::ULong:
2089    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2090                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2091    break;
2092  case BuiltinType::Int:
2093  case BuiltinType::Long:
2094    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2095                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2096    break;
2097  case BuiltinType::Float:
2098    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2099                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2100    break;
2101  }
2102  return llvm::Intrinsic::not_intrinsic;
2103}
2104
2105Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2106                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2107  TestAndClearIgnoreResultAssign();
2108  Value *Result;
2109  QualType LHSTy = E->getLHS()->getType();
2110  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2111    assert(E->getOpcode() == BO_EQ ||
2112           E->getOpcode() == BO_NE);
2113    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2114    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2115    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2116                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2117  } else if (!LHSTy->isAnyComplexType()) {
2118    Value *LHS = Visit(E->getLHS());
2119    Value *RHS = Visit(E->getRHS());
2120
2121    // If AltiVec, the comparison results in a numeric type, so we use
2122    // intrinsics comparing vectors and giving 0 or 1 as a result
2123    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2124      // constants for mapping CR6 register bits to predicate result
2125      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2126
2127      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2128
2129      // in several cases vector arguments order will be reversed
2130      Value *FirstVecArg = LHS,
2131            *SecondVecArg = RHS;
2132
2133      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2134      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2135      BuiltinType::Kind ElementKind = BTy->getKind();
2136
2137      switch(E->getOpcode()) {
2138      default: assert(0 && "is not a comparison operation");
2139      case BO_EQ:
2140        CR6 = CR6_LT;
2141        ID = GetIntrinsic(VCMPEQ, ElementKind);
2142        break;
2143      case BO_NE:
2144        CR6 = CR6_EQ;
2145        ID = GetIntrinsic(VCMPEQ, ElementKind);
2146        break;
2147      case BO_LT:
2148        CR6 = CR6_LT;
2149        ID = GetIntrinsic(VCMPGT, ElementKind);
2150        std::swap(FirstVecArg, SecondVecArg);
2151        break;
2152      case BO_GT:
2153        CR6 = CR6_LT;
2154        ID = GetIntrinsic(VCMPGT, ElementKind);
2155        break;
2156      case BO_LE:
2157        if (ElementKind == BuiltinType::Float) {
2158          CR6 = CR6_LT;
2159          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2160          std::swap(FirstVecArg, SecondVecArg);
2161        }
2162        else {
2163          CR6 = CR6_EQ;
2164          ID = GetIntrinsic(VCMPGT, ElementKind);
2165        }
2166        break;
2167      case BO_GE:
2168        if (ElementKind == BuiltinType::Float) {
2169          CR6 = CR6_LT;
2170          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2171        }
2172        else {
2173          CR6 = CR6_EQ;
2174          ID = GetIntrinsic(VCMPGT, ElementKind);
2175          std::swap(FirstVecArg, SecondVecArg);
2176        }
2177        break;
2178      }
2179
2180      Value *CR6Param = Builder.getInt32(CR6);
2181      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2182      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2183      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2184    }
2185
2186    if (LHS->getType()->isFPOrFPVectorTy()) {
2187      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2188                                  LHS, RHS, "cmp");
2189    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2190      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2191                                  LHS, RHS, "cmp");
2192    } else {
2193      // Unsigned integers and pointers.
2194      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2195                                  LHS, RHS, "cmp");
2196    }
2197
2198    // If this is a vector comparison, sign extend the result to the appropriate
2199    // vector integer type and return it (don't convert to bool).
2200    if (LHSTy->isVectorType())
2201      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2202
2203  } else {
2204    // Complex Comparison: can only be an equality comparison.
2205    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2206    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2207
2208    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2209
2210    Value *ResultR, *ResultI;
2211    if (CETy->isRealFloatingType()) {
2212      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2213                                   LHS.first, RHS.first, "cmp.r");
2214      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2215                                   LHS.second, RHS.second, "cmp.i");
2216    } else {
2217      // Complex comparisons can only be equality comparisons.  As such, signed
2218      // and unsigned opcodes are the same.
2219      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2220                                   LHS.first, RHS.first, "cmp.r");
2221      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2222                                   LHS.second, RHS.second, "cmp.i");
2223    }
2224
2225    if (E->getOpcode() == BO_EQ) {
2226      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2227    } else {
2228      assert(E->getOpcode() == BO_NE &&
2229             "Complex comparison other than == or != ?");
2230      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2231    }
2232  }
2233
2234  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2235}
2236
2237Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2238  bool Ignore = TestAndClearIgnoreResultAssign();
2239
2240  Value *RHS;
2241  LValue LHS;
2242
2243  switch (E->getLHS()->getType().getObjCLifetime()) {
2244  case Qualifiers::OCL_Strong:
2245    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2246    break;
2247
2248  case Qualifiers::OCL_Autoreleasing:
2249    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2250    break;
2251
2252  case Qualifiers::OCL_Weak:
2253    RHS = Visit(E->getRHS());
2254    LHS = EmitCheckedLValue(E->getLHS());
2255    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2256    break;
2257
2258  // No reason to do any of these differently.
2259  case Qualifiers::OCL_None:
2260  case Qualifiers::OCL_ExplicitNone:
2261    // __block variables need to have the rhs evaluated first, plus
2262    // this should improve codegen just a little.
2263    RHS = Visit(E->getRHS());
2264    LHS = EmitCheckedLValue(E->getLHS());
2265
2266    // Store the value into the LHS.  Bit-fields are handled specially
2267    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2268    // 'An assignment expression has the value of the left operand after
2269    // the assignment...'.
2270    if (LHS.isBitField())
2271      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2272    else
2273      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2274  }
2275
2276  // If the result is clearly ignored, return now.
2277  if (Ignore)
2278    return 0;
2279
2280  // The result of an assignment in C is the assigned r-value.
2281  if (!CGF.getContext().getLangOptions().CPlusPlus)
2282    return RHS;
2283
2284  // Objective-C property assignment never reloads the value following a store.
2285  if (LHS.isPropertyRef())
2286    return RHS;
2287
2288  // If the lvalue is non-volatile, return the computed value of the assignment.
2289  if (!LHS.isVolatileQualified())
2290    return RHS;
2291
2292  // Otherwise, reload the value.
2293  return EmitLoadOfLValue(LHS);
2294}
2295
2296Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2297  const llvm::Type *ResTy = ConvertType(E->getType());
2298
2299  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2300  // If we have 1 && X, just emit X without inserting the control flow.
2301  bool LHSCondVal;
2302  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2303    if (LHSCondVal) { // If we have 1 && X, just emit X.
2304      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2305      // ZExt result to int or bool.
2306      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2307    }
2308
2309    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2310    if (!CGF.ContainsLabel(E->getRHS()))
2311      return llvm::Constant::getNullValue(ResTy);
2312  }
2313
2314  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2315  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2316
2317  CodeGenFunction::ConditionalEvaluation eval(CGF);
2318
2319  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2320  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2321
2322  // Any edges into the ContBlock are now from an (indeterminate number of)
2323  // edges from this first condition.  All of these values will be false.  Start
2324  // setting up the PHI node in the Cont Block for this.
2325  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2326                                            "", ContBlock);
2327  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2328       PI != PE; ++PI)
2329    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2330
2331  eval.begin(CGF);
2332  CGF.EmitBlock(RHSBlock);
2333  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2334  eval.end(CGF);
2335
2336  // Reaquire the RHS block, as there may be subblocks inserted.
2337  RHSBlock = Builder.GetInsertBlock();
2338
2339  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2340  // into the phi node for the edge with the value of RHSCond.
2341  if (CGF.getDebugInfo())
2342    // There is no need to emit line number for unconditional branch.
2343    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2344  CGF.EmitBlock(ContBlock);
2345  PN->addIncoming(RHSCond, RHSBlock);
2346
2347  // ZExt result to int.
2348  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2349}
2350
2351Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2352  const llvm::Type *ResTy = ConvertType(E->getType());
2353
2354  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2355  // If we have 0 || X, just emit X without inserting the control flow.
2356  bool LHSCondVal;
2357  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2358    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2359      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2360      // ZExt result to int or bool.
2361      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2362    }
2363
2364    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2365    if (!CGF.ContainsLabel(E->getRHS()))
2366      return llvm::ConstantInt::get(ResTy, 1);
2367  }
2368
2369  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2370  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2371
2372  CodeGenFunction::ConditionalEvaluation eval(CGF);
2373
2374  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2375  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2376
2377  // Any edges into the ContBlock are now from an (indeterminate number of)
2378  // edges from this first condition.  All of these values will be true.  Start
2379  // setting up the PHI node in the Cont Block for this.
2380  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2381                                            "", ContBlock);
2382  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2383       PI != PE; ++PI)
2384    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2385
2386  eval.begin(CGF);
2387
2388  // Emit the RHS condition as a bool value.
2389  CGF.EmitBlock(RHSBlock);
2390  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2391
2392  eval.end(CGF);
2393
2394  // Reaquire the RHS block, as there may be subblocks inserted.
2395  RHSBlock = Builder.GetInsertBlock();
2396
2397  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2398  // into the phi node for the edge with the value of RHSCond.
2399  CGF.EmitBlock(ContBlock);
2400  PN->addIncoming(RHSCond, RHSBlock);
2401
2402  // ZExt result to int.
2403  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2404}
2405
2406Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2407  CGF.EmitIgnoredExpr(E->getLHS());
2408  CGF.EnsureInsertPoint();
2409  return Visit(E->getRHS());
2410}
2411
2412//===----------------------------------------------------------------------===//
2413//                             Other Operators
2414//===----------------------------------------------------------------------===//
2415
2416/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2417/// expression is cheap enough and side-effect-free enough to evaluate
2418/// unconditionally instead of conditionally.  This is used to convert control
2419/// flow into selects in some cases.
2420static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2421                                                   CodeGenFunction &CGF) {
2422  E = E->IgnoreParens();
2423
2424  // Anything that is an integer or floating point constant is fine.
2425  if (E->isConstantInitializer(CGF.getContext(), false))
2426    return true;
2427
2428  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2429  // X and Y are local variables.
2430  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2431    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2432      if (VD->hasLocalStorage() && !(CGF.getContext()
2433                                     .getCanonicalType(VD->getType())
2434                                     .isVolatileQualified()))
2435        return true;
2436
2437  return false;
2438}
2439
2440
2441Value *ScalarExprEmitter::
2442VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2443  TestAndClearIgnoreResultAssign();
2444
2445  // Bind the common expression if necessary.
2446  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2447
2448  Expr *condExpr = E->getCond();
2449  Expr *lhsExpr = E->getTrueExpr();
2450  Expr *rhsExpr = E->getFalseExpr();
2451
2452  // If the condition constant folds and can be elided, try to avoid emitting
2453  // the condition and the dead arm.
2454  bool CondExprBool;
2455  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2456    Expr *live = lhsExpr, *dead = rhsExpr;
2457    if (!CondExprBool) std::swap(live, dead);
2458
2459    // If the dead side doesn't have labels we need, and if the Live side isn't
2460    // the gnu missing ?: extension (which we could handle, but don't bother
2461    // to), just emit the Live part.
2462    if (!CGF.ContainsLabel(dead))
2463      return Visit(live);
2464  }
2465
2466  // OpenCL: If the condition is a vector, we can treat this condition like
2467  // the select function.
2468  if (CGF.getContext().getLangOptions().OpenCL
2469      && condExpr->getType()->isVectorType()) {
2470    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2471    llvm::Value *LHS = Visit(lhsExpr);
2472    llvm::Value *RHS = Visit(rhsExpr);
2473
2474    const llvm::Type *condType = ConvertType(condExpr->getType());
2475    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2476
2477    unsigned numElem = vecTy->getNumElements();
2478    const llvm::Type *elemType = vecTy->getElementType();
2479
2480    std::vector<llvm::Constant*> Zvals;
2481    for (unsigned i = 0; i < numElem; ++i)
2482      Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2483
2484    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2485    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2486    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2487                                          llvm::VectorType::get(elemType,
2488                                                                numElem),
2489                                          "sext");
2490    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2491
2492    // Cast float to int to perform ANDs if necessary.
2493    llvm::Value *RHSTmp = RHS;
2494    llvm::Value *LHSTmp = LHS;
2495    bool wasCast = false;
2496    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2497    if (rhsVTy->getElementType()->isFloatTy()) {
2498      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2499      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2500      wasCast = true;
2501    }
2502
2503    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2504    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2505    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2506    if (wasCast)
2507      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2508
2509    return tmp5;
2510  }
2511
2512  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2513  // select instead of as control flow.  We can only do this if it is cheap and
2514  // safe to evaluate the LHS and RHS unconditionally.
2515  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2516      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2517    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2518    llvm::Value *LHS = Visit(lhsExpr);
2519    llvm::Value *RHS = Visit(rhsExpr);
2520    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2521  }
2522
2523  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2524  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2525  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2526
2527  CodeGenFunction::ConditionalEvaluation eval(CGF);
2528  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2529
2530  CGF.EmitBlock(LHSBlock);
2531  eval.begin(CGF);
2532  Value *LHS = Visit(lhsExpr);
2533  eval.end(CGF);
2534
2535  LHSBlock = Builder.GetInsertBlock();
2536  Builder.CreateBr(ContBlock);
2537
2538  CGF.EmitBlock(RHSBlock);
2539  eval.begin(CGF);
2540  Value *RHS = Visit(rhsExpr);
2541  eval.end(CGF);
2542
2543  RHSBlock = Builder.GetInsertBlock();
2544  CGF.EmitBlock(ContBlock);
2545
2546  // If the LHS or RHS is a throw expression, it will be legitimately null.
2547  if (!LHS)
2548    return RHS;
2549  if (!RHS)
2550    return LHS;
2551
2552  // Create a PHI node for the real part.
2553  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2554  PN->addIncoming(LHS, LHSBlock);
2555  PN->addIncoming(RHS, RHSBlock);
2556  return PN;
2557}
2558
2559Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2560  return Visit(E->getChosenSubExpr(CGF.getContext()));
2561}
2562
2563Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2564  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2565  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2566
2567  // If EmitVAArg fails, we fall back to the LLVM instruction.
2568  if (!ArgPtr)
2569    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2570
2571  // FIXME Volatility.
2572  return Builder.CreateLoad(ArgPtr);
2573}
2574
2575Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2576  return CGF.EmitBlockLiteral(block);
2577}
2578
2579Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2580  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2581  const llvm::Type * DstTy = ConvertType(E->getDstType());
2582
2583  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2584  // a shuffle vector instead of a bitcast.
2585  const llvm::Type *SrcTy = Src->getType();
2586  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2587    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2588    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2589    if ((numElementsDst == 3 && numElementsSrc == 4)
2590        || (numElementsDst == 4 && numElementsSrc == 3)) {
2591
2592
2593      // In the case of going from int4->float3, a bitcast is needed before
2594      // doing a shuffle.
2595      const llvm::Type *srcElemTy =
2596      cast<llvm::VectorType>(SrcTy)->getElementType();
2597      const llvm::Type *dstElemTy =
2598      cast<llvm::VectorType>(DstTy)->getElementType();
2599
2600      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2601          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2602        // Create a float type of the same size as the source or destination.
2603        const llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2604                                                                 numElementsSrc);
2605
2606        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2607      }
2608
2609      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2610
2611      llvm::SmallVector<llvm::Constant*, 3> Args;
2612      Args.push_back(Builder.getInt32(0));
2613      Args.push_back(Builder.getInt32(1));
2614      Args.push_back(Builder.getInt32(2));
2615
2616      if (numElementsDst == 4)
2617        Args.push_back(llvm::UndefValue::get(
2618                                             llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2619
2620      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2621
2622      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2623    }
2624  }
2625
2626  return Builder.CreateBitCast(Src, DstTy, "astype");
2627}
2628
2629//===----------------------------------------------------------------------===//
2630//                         Entry Point into this File
2631//===----------------------------------------------------------------------===//
2632
2633/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2634/// type, ignoring the result.
2635Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2636  assert(E && !hasAggregateLLVMType(E->getType()) &&
2637         "Invalid scalar expression to emit");
2638
2639  if (isa<CXXDefaultArgExpr>(E))
2640    disableDebugInfo();
2641  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2642    .Visit(const_cast<Expr*>(E));
2643  if (isa<CXXDefaultArgExpr>(E))
2644    enableDebugInfo();
2645  return V;
2646}
2647
2648/// EmitScalarConversion - Emit a conversion from the specified type to the
2649/// specified destination type, both of which are LLVM scalar types.
2650Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2651                                             QualType DstTy) {
2652  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2653         "Invalid scalar expression to emit");
2654  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2655}
2656
2657/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2658/// type to the specified destination type, where the destination type is an
2659/// LLVM scalar type.
2660Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2661                                                      QualType SrcTy,
2662                                                      QualType DstTy) {
2663  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2664         "Invalid complex -> scalar conversion");
2665  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2666                                                                DstTy);
2667}
2668
2669
2670llvm::Value *CodeGenFunction::
2671EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2672                        bool isInc, bool isPre) {
2673  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2674}
2675
2676LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2677  llvm::Value *V;
2678  // object->isa or (*object).isa
2679  // Generate code as for: *(Class*)object
2680  // build Class* type
2681  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2682
2683  Expr *BaseExpr = E->getBase();
2684  if (BaseExpr->isRValue()) {
2685    V = CreateTempAlloca(ClassPtrTy, "resval");
2686    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2687    Builder.CreateStore(Src, V);
2688    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2689      MakeAddrLValue(V, E->getType()));
2690  } else {
2691    if (E->isArrow())
2692      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2693    else
2694      V = EmitLValue(BaseExpr).getAddress();
2695  }
2696
2697  // build Class* type
2698  ClassPtrTy = ClassPtrTy->getPointerTo();
2699  V = Builder.CreateBitCast(V, ClassPtrTy);
2700  return MakeAddrLValue(V, E->getType());
2701}
2702
2703
2704LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2705                                            const CompoundAssignOperator *E) {
2706  ScalarExprEmitter Scalar(*this);
2707  Value *Result = 0;
2708  switch (E->getOpcode()) {
2709#define COMPOUND_OP(Op)                                                       \
2710    case BO_##Op##Assign:                                                     \
2711      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2712                                             Result)
2713  COMPOUND_OP(Mul);
2714  COMPOUND_OP(Div);
2715  COMPOUND_OP(Rem);
2716  COMPOUND_OP(Add);
2717  COMPOUND_OP(Sub);
2718  COMPOUND_OP(Shl);
2719  COMPOUND_OP(Shr);
2720  COMPOUND_OP(And);
2721  COMPOUND_OP(Xor);
2722  COMPOUND_OP(Or);
2723#undef COMPOUND_OP
2724
2725  case BO_PtrMemD:
2726  case BO_PtrMemI:
2727  case BO_Mul:
2728  case BO_Div:
2729  case BO_Rem:
2730  case BO_Add:
2731  case BO_Sub:
2732  case BO_Shl:
2733  case BO_Shr:
2734  case BO_LT:
2735  case BO_GT:
2736  case BO_LE:
2737  case BO_GE:
2738  case BO_EQ:
2739  case BO_NE:
2740  case BO_And:
2741  case BO_Xor:
2742  case BO_Or:
2743  case BO_LAnd:
2744  case BO_LOr:
2745  case BO_Assign:
2746  case BO_Comma:
2747    assert(false && "Not valid compound assignment operators");
2748    break;
2749  }
2750
2751  llvm_unreachable("Unhandled compound assignment operator");
2752}
2753