CGExprScalar.cpp revision a71d819bb8f50c28938db0f2867d3fb6e2ce5910
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Module.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class VISIBILITY_HIDDEN ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51  bool IgnoreResultAssign;
52  llvm::LLVMContext &VMContext;
53public:
54
55  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57      VMContext(cgf.getLLVMContext()) {
58  }
59
60  //===--------------------------------------------------------------------===//
61  //                               Utilities
62  //===--------------------------------------------------------------------===//
63
64  bool TestAndClearIgnoreResultAssign() {
65    bool I = IgnoreResultAssign;
66    IgnoreResultAssign = false;
67    return I;
68  }
69
70  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72
73  Value *EmitLoadOfLValue(LValue LV, QualType T) {
74    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
75  }
76
77  /// EmitLoadOfLValue - Given an expression with complex type that represents a
78  /// value l-value, this method emits the address of the l-value, then loads
79  /// and returns the result.
80  Value *EmitLoadOfLValue(const Expr *E) {
81    return EmitLoadOfLValue(EmitLValue(E), E->getType());
82  }
83
84  /// EmitConversionToBool - Convert the specified expression value to a
85  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
86  Value *EmitConversionToBool(Value *Src, QualType DstTy);
87
88  /// EmitScalarConversion - Emit a conversion from the specified type to the
89  /// specified destination type, both of which are LLVM scalar types.
90  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
91
92  /// EmitComplexToScalarConversion - Emit a conversion from the specified
93  /// complex type to the specified destination type, where the destination
94  /// type is an LLVM scalar type.
95  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
96                                       QualType SrcTy, QualType DstTy);
97
98  //===--------------------------------------------------------------------===//
99  //                            Visitor Methods
100  //===--------------------------------------------------------------------===//
101
102  Value *VisitStmt(Stmt *S) {
103    S->dump(CGF.getContext().getSourceManager());
104    assert(0 && "Stmt can't have complex result type!");
105    return 0;
106  }
107  Value *VisitExpr(Expr *S);
108  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
109
110  // Leaves.
111  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
112    return llvm::ConstantInt::get(VMContext, E->getValue());
113  }
114  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
115    return llvm::ConstantFP::get(VMContext, E->getValue());
116  }
117  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
118    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
119  }
120  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
121    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
122  }
123  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
124    return llvm::Constant::getNullValue(ConvertType(E->getType()));
125  }
126  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
127    return llvm::Constant::getNullValue(ConvertType(E->getType()));
128  }
129  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
130    return llvm::ConstantInt::get(ConvertType(E->getType()),
131                                  CGF.getContext().typesAreCompatible(
132                                    E->getArgType1(), E->getArgType2()));
133  }
134  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
135  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
136    llvm::Value *V =
137      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
138                             CGF.GetIDForAddrOfLabel(E->getLabel()));
139
140    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
141  }
142
143  // l-values.
144  Value *VisitDeclRefExpr(DeclRefExpr *E) {
145    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
146      return llvm::ConstantInt::get(VMContext, EC->getInitVal());
147    return EmitLoadOfLValue(E);
148  }
149  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
150    return CGF.EmitObjCSelectorExpr(E);
151  }
152  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
153    return CGF.EmitObjCProtocolExpr(E);
154  }
155  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
156    return EmitLoadOfLValue(E);
157  }
158  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
159    return EmitLoadOfLValue(E);
160  }
161  Value *VisitObjCImplicitSetterGetterRefExpr(
162                        ObjCImplicitSetterGetterRefExpr *E) {
163    return EmitLoadOfLValue(E);
164  }
165  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
166    return CGF.EmitObjCMessageExpr(E).getScalarVal();
167  }
168
169  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
170  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
171  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
172  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
173  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
174    return EmitLoadOfLValue(E);
175  }
176  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
177  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
178     return EmitLValue(E).getAddress();
179  }
180
181  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
182
183  Value *VisitInitListExpr(InitListExpr *E) {
184    bool Ignore = TestAndClearIgnoreResultAssign();
185    (void)Ignore;
186    assert (Ignore == false && "init list ignored");
187    unsigned NumInitElements = E->getNumInits();
188
189    if (E->hadArrayRangeDesignator()) {
190      CGF.ErrorUnsupported(E, "GNU array range designator extension");
191    }
192
193    const llvm::VectorType *VType =
194      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
195
196    // We have a scalar in braces. Just use the first element.
197    if (!VType)
198      return Visit(E->getInit(0));
199
200    unsigned NumVectorElements = VType->getNumElements();
201    const llvm::Type *ElementType = VType->getElementType();
202
203    // Emit individual vector element stores.
204    llvm::Value *V = llvm::UndefValue::get(VType);
205
206    // Emit initializers
207    unsigned i;
208    for (i = 0; i < NumInitElements; ++i) {
209      Value *NewV = Visit(E->getInit(i));
210      Value *Idx =
211        llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), i);
212      V = Builder.CreateInsertElement(V, NewV, Idx);
213    }
214
215    // Emit remaining default initializers
216    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
217      Value *Idx =
218        llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), i);
219      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
220      V = Builder.CreateInsertElement(V, NewV, Idx);
221    }
222
223    return V;
224  }
225
226  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
227    return llvm::Constant::getNullValue(ConvertType(E->getType()));
228  }
229  Value *VisitCastExpr(const CastExpr *E) {
230    if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) {
231      if (const CXXFunctionalCastExpr *CXXFExpr =
232            dyn_cast<CXXFunctionalCastExpr>(E))
233        return CGF.EmitCXXFunctionalCastExpr(CXXFExpr).getScalarVal();
234      assert(isa<CStyleCastExpr>(E) &&
235             "VisitCastExpr - missing CStyleCastExpr");
236    }
237
238    // Make sure to evaluate VLA bounds now so that we have them for later.
239    if (E->getType()->isVariablyModifiedType())
240      CGF.EmitVLASize(E->getType());
241
242    return EmitCastExpr(E->getSubExpr(), E->getType(), E->getCastKind());
243  }
244  Value *EmitCastExpr(const Expr *E, QualType T, CastExpr::CastKind Kind);
245
246  Value *VisitCallExpr(const CallExpr *E) {
247    if (E->getCallReturnType()->isReferenceType())
248      return EmitLoadOfLValue(E);
249
250    return CGF.EmitCallExpr(E).getScalarVal();
251  }
252
253  Value *VisitStmtExpr(const StmtExpr *E);
254
255  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
256
257  // Unary Operators.
258  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
259  Value *VisitUnaryPostDec(const UnaryOperator *E) {
260    return VisitPrePostIncDec(E, false, false);
261  }
262  Value *VisitUnaryPostInc(const UnaryOperator *E) {
263    return VisitPrePostIncDec(E, true, false);
264  }
265  Value *VisitUnaryPreDec(const UnaryOperator *E) {
266    return VisitPrePostIncDec(E, false, true);
267  }
268  Value *VisitUnaryPreInc(const UnaryOperator *E) {
269    return VisitPrePostIncDec(E, true, true);
270  }
271  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
272    return EmitLValue(E->getSubExpr()).getAddress();
273  }
274  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
275  Value *VisitUnaryPlus(const UnaryOperator *E) {
276    // This differs from gcc, though, most likely due to a bug in gcc.
277    TestAndClearIgnoreResultAssign();
278    return Visit(E->getSubExpr());
279  }
280  Value *VisitUnaryMinus    (const UnaryOperator *E);
281  Value *VisitUnaryNot      (const UnaryOperator *E);
282  Value *VisitUnaryLNot     (const UnaryOperator *E);
283  Value *VisitUnaryReal     (const UnaryOperator *E);
284  Value *VisitUnaryImag     (const UnaryOperator *E);
285  Value *VisitUnaryExtension(const UnaryOperator *E) {
286    return Visit(E->getSubExpr());
287  }
288  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
289
290  // C++
291  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
292    return Visit(DAE->getExpr());
293  }
294  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
295    return CGF.LoadCXXThis();
296  }
297
298  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
299    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
300  }
301  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
302    return CGF.EmitCXXNewExpr(E);
303  }
304  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
305    CGF.EmitCXXDeleteExpr(E);
306    return 0;
307  }
308
309  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
310    // C++ [expr.pseudo]p1:
311    //   The result shall only be used as the operand for the function call
312    //   operator (), and the result of such a call has type void. The only
313    //   effect is the evaluation of the postfix-expression before the dot or
314    //   arrow.
315    CGF.EmitScalarExpr(E->getBase());
316    return 0;
317  }
318
319  // Binary Operators.
320  Value *EmitMul(const BinOpInfo &Ops) {
321    if (CGF.getContext().getLangOptions().OverflowChecking
322        && Ops.Ty->isSignedIntegerType())
323      return EmitOverflowCheckedBinOp(Ops);
324    if (Ops.LHS->getType()->isFPOrFPVector())
325      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
326    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
327  }
328  /// Create a binary op that checks for overflow.
329  /// Currently only supports +, - and *.
330  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
331  Value *EmitDiv(const BinOpInfo &Ops);
332  Value *EmitRem(const BinOpInfo &Ops);
333  Value *EmitAdd(const BinOpInfo &Ops);
334  Value *EmitSub(const BinOpInfo &Ops);
335  Value *EmitShl(const BinOpInfo &Ops);
336  Value *EmitShr(const BinOpInfo &Ops);
337  Value *EmitAnd(const BinOpInfo &Ops) {
338    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
339  }
340  Value *EmitXor(const BinOpInfo &Ops) {
341    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
342  }
343  Value *EmitOr (const BinOpInfo &Ops) {
344    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
345  }
346
347  BinOpInfo EmitBinOps(const BinaryOperator *E);
348  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
349                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
350
351  // Binary operators and binary compound assignment operators.
352#define HANDLEBINOP(OP) \
353  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
354    return Emit ## OP(EmitBinOps(E));                                      \
355  }                                                                        \
356  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
357    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
358  }
359  HANDLEBINOP(Mul);
360  HANDLEBINOP(Div);
361  HANDLEBINOP(Rem);
362  HANDLEBINOP(Add);
363  HANDLEBINOP(Sub);
364  HANDLEBINOP(Shl);
365  HANDLEBINOP(Shr);
366  HANDLEBINOP(And);
367  HANDLEBINOP(Xor);
368  HANDLEBINOP(Or);
369#undef HANDLEBINOP
370
371  // Comparisons.
372  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
373                     unsigned SICmpOpc, unsigned FCmpOpc);
374#define VISITCOMP(CODE, UI, SI, FP) \
375    Value *VisitBin##CODE(const BinaryOperator *E) { \
376      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
377                         llvm::FCmpInst::FP); }
378  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
379  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
380  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
381  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
382  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
383  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
384#undef VISITCOMP
385
386  Value *VisitBinAssign     (const BinaryOperator *E);
387
388  Value *VisitBinLAnd       (const BinaryOperator *E);
389  Value *VisitBinLOr        (const BinaryOperator *E);
390  Value *VisitBinComma      (const BinaryOperator *E);
391
392  // Other Operators.
393  Value *VisitBlockExpr(const BlockExpr *BE);
394  Value *VisitConditionalOperator(const ConditionalOperator *CO);
395  Value *VisitChooseExpr(ChooseExpr *CE);
396  Value *VisitVAArgExpr(VAArgExpr *VE);
397  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
398    return CGF.EmitObjCStringLiteral(E);
399  }
400};
401}  // end anonymous namespace.
402
403//===----------------------------------------------------------------------===//
404//                                Utilities
405//===----------------------------------------------------------------------===//
406
407/// EmitConversionToBool - Convert the specified expression value to a
408/// boolean (i1) truth value.  This is equivalent to "Val != 0".
409Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
410  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
411
412  if (SrcType->isRealFloatingType()) {
413    // Compare against 0.0 for fp scalars.
414    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
415    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
416  }
417
418  if (SrcType->isMemberPointerType()) {
419    // FIXME: This is ABI specific.
420
421    // Compare against -1.
422    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
423    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
424  }
425
426  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
427         "Unknown scalar type to convert");
428
429  // Because of the type rules of C, we often end up computing a logical value,
430  // then zero extending it to int, then wanting it as a logical value again.
431  // Optimize this common case.
432  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
433    if (ZI->getOperand(0)->getType() ==
434        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
435      Value *Result = ZI->getOperand(0);
436      // If there aren't any more uses, zap the instruction to save space.
437      // Note that there can be more uses, for example if this
438      // is the result of an assignment.
439      if (ZI->use_empty())
440        ZI->eraseFromParent();
441      return Result;
442    }
443  }
444
445  // Compare against an integer or pointer null.
446  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
447  return Builder.CreateICmpNE(Src, Zero, "tobool");
448}
449
450/// EmitScalarConversion - Emit a conversion from the specified type to the
451/// specified destination type, both of which are LLVM scalar types.
452Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
453                                               QualType DstType) {
454  SrcType = CGF.getContext().getCanonicalType(SrcType);
455  DstType = CGF.getContext().getCanonicalType(DstType);
456  if (SrcType == DstType) return Src;
457
458  if (DstType->isVoidType()) return 0;
459
460  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
461
462  // Handle conversions to bool first, they are special: comparisons against 0.
463  if (DstType->isBooleanType())
464    return EmitConversionToBool(Src, SrcType);
465
466  const llvm::Type *DstTy = ConvertType(DstType);
467
468  // Ignore conversions like int -> uint.
469  if (Src->getType() == DstTy)
470    return Src;
471
472  // Handle pointer conversions next: pointers can only be converted
473  // to/from other pointers and integers. Check for pointer types in
474  // terms of LLVM, as some native types (like Obj-C id) may map to a
475  // pointer type.
476  if (isa<llvm::PointerType>(DstTy)) {
477    // The source value may be an integer, or a pointer.
478    if (isa<llvm::PointerType>(Src->getType())) {
479      // Some heavy lifting for derived to base conversion.
480      if (const CXXRecordDecl *ClassDecl =
481            SrcType->getCXXRecordDeclForPointerType())
482        if (const CXXRecordDecl *BaseClassDecl =
483              DstType->getCXXRecordDeclForPointerType())
484          Src = CGF.AddressCXXOfBaseClass(Src, ClassDecl, BaseClassDecl);
485      return Builder.CreateBitCast(Src, DstTy, "conv");
486    }
487    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
488    // First, convert to the correct width so that we control the kind of
489    // extension.
490    const llvm::Type *MiddleTy =
491          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
492    bool InputSigned = SrcType->isSignedIntegerType();
493    llvm::Value* IntResult =
494        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
495    // Then, cast to pointer.
496    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
497  }
498
499  if (isa<llvm::PointerType>(Src->getType())) {
500    // Must be an ptr to int cast.
501    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
502    return Builder.CreatePtrToInt(Src, DstTy, "conv");
503  }
504
505  // A scalar can be splatted to an extended vector of the same element type
506  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
507    // Cast the scalar to element type
508    QualType EltTy = DstType->getAsExtVectorType()->getElementType();
509    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
510
511    // Insert the element in element zero of an undef vector
512    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
513    llvm::Value *Idx =
514        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
515    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
516
517    // Splat the element across to all elements
518    llvm::SmallVector<llvm::Constant*, 16> Args;
519    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
520    for (unsigned i = 0; i < NumElements; i++)
521      Args.push_back(llvm::ConstantInt::get(
522                                        llvm::Type::getInt32Ty(VMContext), 0));
523
524    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
525    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
526    return Yay;
527  }
528
529  // Allow bitcast from vector to integer/fp of the same size.
530  if (isa<llvm::VectorType>(Src->getType()) ||
531      isa<llvm::VectorType>(DstTy))
532    return Builder.CreateBitCast(Src, DstTy, "conv");
533
534  // Finally, we have the arithmetic types: real int/float.
535  if (isa<llvm::IntegerType>(Src->getType())) {
536    bool InputSigned = SrcType->isSignedIntegerType();
537    if (isa<llvm::IntegerType>(DstTy))
538      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
539    else if (InputSigned)
540      return Builder.CreateSIToFP(Src, DstTy, "conv");
541    else
542      return Builder.CreateUIToFP(Src, DstTy, "conv");
543  }
544
545  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
546  if (isa<llvm::IntegerType>(DstTy)) {
547    if (DstType->isSignedIntegerType())
548      return Builder.CreateFPToSI(Src, DstTy, "conv");
549    else
550      return Builder.CreateFPToUI(Src, DstTy, "conv");
551  }
552
553  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
554  if (DstTy->getTypeID() < Src->getType()->getTypeID())
555    return Builder.CreateFPTrunc(Src, DstTy, "conv");
556  else
557    return Builder.CreateFPExt(Src, DstTy, "conv");
558}
559
560/// EmitComplexToScalarConversion - Emit a conversion from the specified
561/// complex type to the specified destination type, where the destination
562/// type is an LLVM scalar type.
563Value *ScalarExprEmitter::
564EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
565                              QualType SrcTy, QualType DstTy) {
566  // Get the source element type.
567  SrcTy = SrcTy->getAsComplexType()->getElementType();
568
569  // Handle conversions to bool first, they are special: comparisons against 0.
570  if (DstTy->isBooleanType()) {
571    //  Complex != 0  -> (Real != 0) | (Imag != 0)
572    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
573    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
574    return Builder.CreateOr(Src.first, Src.second, "tobool");
575  }
576
577  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
578  // the imaginary part of the complex value is discarded and the value of the
579  // real part is converted according to the conversion rules for the
580  // corresponding real type.
581  return EmitScalarConversion(Src.first, SrcTy, DstTy);
582}
583
584
585//===----------------------------------------------------------------------===//
586//                            Visitor Methods
587//===----------------------------------------------------------------------===//
588
589Value *ScalarExprEmitter::VisitExpr(Expr *E) {
590  CGF.ErrorUnsupported(E, "scalar expression");
591  if (E->getType()->isVoidType())
592    return 0;
593  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
594}
595
596Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
597  llvm::SmallVector<llvm::Constant*, 32> indices;
598  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
599    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
600  }
601  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
602  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
603  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
604  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
605}
606
607Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
608  TestAndClearIgnoreResultAssign();
609
610  // Emit subscript expressions in rvalue context's.  For most cases, this just
611  // loads the lvalue formed by the subscript expr.  However, we have to be
612  // careful, because the base of a vector subscript is occasionally an rvalue,
613  // so we can't get it as an lvalue.
614  if (!E->getBase()->getType()->isVectorType())
615    return EmitLoadOfLValue(E);
616
617  // Handle the vector case.  The base must be a vector, the index must be an
618  // integer value.
619  Value *Base = Visit(E->getBase());
620  Value *Idx  = Visit(E->getIdx());
621  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
622  Idx = Builder.CreateIntCast(Idx,
623                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
624                              IdxSigned,
625                              "vecidxcast");
626  return Builder.CreateExtractElement(Base, Idx, "vecext");
627}
628
629// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
630// have to handle a more broad range of conversions than explicit casts, as they
631// handle things like function to ptr-to-function decay etc.
632Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy,
633                                       CastExpr::CastKind Kind) {
634  if (!DestTy->isVoidType())
635    TestAndClearIgnoreResultAssign();
636
637  switch (Kind) {
638  default:
639    break;
640  case CastExpr::CK_BitCast: {
641    Value *Src = Visit(const_cast<Expr*>(E));
642    return Builder.CreateBitCast(Src, ConvertType(DestTy));
643  }
644  case CastExpr::CK_ArrayToPointerDecay: {
645    assert(E->getType()->isArrayType() &&
646           "Array to pointer decay must have array source type!");
647
648    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
649
650    // Note that VLA pointers are always decayed, so we don't need to do
651    // anything here.
652    if (!E->getType()->isVariableArrayType()) {
653      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
654      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
655                                 ->getElementType()) &&
656             "Expected pointer to array");
657      V = Builder.CreateStructGEP(V, 0, "arraydecay");
658    }
659
660    // The resultant pointer type can be implicitly casted to other pointer
661    // types as well (e.g. void*) and can be implicitly converted to integer.
662    const llvm::Type *DestLTy = ConvertType(DestTy);
663    if (V->getType() != DestLTy) {
664      if (isa<llvm::PointerType>(DestLTy))
665        V = Builder.CreateBitCast(V, DestLTy, "ptrconv");
666      else {
667        assert(isa<llvm::IntegerType>(DestLTy) && "Unknown array decay");
668        V = Builder.CreatePtrToInt(V, DestLTy, "ptrconv");
669      }
670    }
671    return V;
672  }
673  case CastExpr::CK_NullToMemberPointer:
674    return CGF.CGM.EmitNullConstant(DestTy);
675  }
676
677  // Handle cases where the source is an non-complex type.
678
679  if (!CGF.hasAggregateLLVMType(E->getType())) {
680    Value *Src = Visit(const_cast<Expr*>(E));
681
682    // Use EmitScalarConversion to perform the conversion.
683    return EmitScalarConversion(Src, E->getType(), DestTy);
684  }
685
686  if (E->getType()->isAnyComplexType()) {
687    // Handle cases where the source is a complex type.
688    bool IgnoreImag = true;
689    bool IgnoreImagAssign = true;
690    bool IgnoreReal = IgnoreResultAssign;
691    bool IgnoreRealAssign = IgnoreResultAssign;
692    if (DestTy->isBooleanType())
693      IgnoreImagAssign = IgnoreImag = false;
694    else if (DestTy->isVoidType()) {
695      IgnoreReal = IgnoreImag = false;
696      IgnoreRealAssign = IgnoreImagAssign = true;
697    }
698    CodeGenFunction::ComplexPairTy V
699      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
700                            IgnoreImagAssign);
701    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
702  }
703
704  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
705  // evaluate the result and return.
706  CGF.EmitAggExpr(E, 0, false, true);
707  return 0;
708}
709
710Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
711  return CGF.EmitCompoundStmt(*E->getSubStmt(),
712                              !E->getType()->isVoidType()).getScalarVal();
713}
714
715Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
716  return Builder.CreateLoad(CGF.GetAddrOfBlockDecl(E), false, "tmp");
717}
718
719//===----------------------------------------------------------------------===//
720//                             Unary Operators
721//===----------------------------------------------------------------------===//
722
723Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
724                                             bool isInc, bool isPre) {
725  LValue LV = EmitLValue(E->getSubExpr());
726  QualType ValTy = E->getSubExpr()->getType();
727  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
728
729  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
730
731  int AmountVal = isInc ? 1 : -1;
732
733  if (ValTy->isPointerType() &&
734      ValTy->getAs<PointerType>()->isVariableArrayType()) {
735    // The amount of the addition/subtraction needs to account for the VLA size
736    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
737  }
738
739  Value *NextVal;
740  if (const llvm::PointerType *PT =
741         dyn_cast<llvm::PointerType>(InVal->getType())) {
742    llvm::Constant *Inc =
743      llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
744    if (!isa<llvm::FunctionType>(PT->getElementType())) {
745      QualType PTEE = ValTy->getPointeeType();
746      if (const ObjCInterfaceType *OIT =
747          dyn_cast<ObjCInterfaceType>(PTEE)) {
748        // Handle interface types, which are not represented with a concrete type.
749        int size = CGF.getContext().getTypeSize(OIT) / 8;
750        if (!isInc)
751          size = -size;
752        Inc = llvm::ConstantInt::get(Inc->getType(), size);
753        const llvm::Type *i8Ty =
754          llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
755        InVal = Builder.CreateBitCast(InVal, i8Ty);
756        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
757        llvm::Value *lhs = LV.getAddress();
758        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
759        LV = LValue::MakeAddr(lhs, ValTy.getCVRQualifiers(),
760                              CGF.getContext().getObjCGCAttrKind(ValTy));
761      } else
762        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
763    } else {
764      const llvm::Type *i8Ty =
765        llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
766      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
767      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
768      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
769    }
770  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
771    // Bool++ is an interesting case, due to promotion rules, we get:
772    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
773    // Bool = ((int)Bool+1) != 0
774    // An interesting aspect of this is that increment is always true.
775    // Decrement does not have this property.
776    NextVal = llvm::ConstantInt::getTrue(VMContext);
777  } else if (isa<llvm::IntegerType>(InVal->getType())) {
778    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
779
780    // Signed integer overflow is undefined behavior.
781    if (ValTy->isSignedIntegerType())
782      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
783    else
784      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
785  } else {
786    // Add the inc/dec to the real part.
787    if (InVal->getType() == llvm::Type::getFloatTy(VMContext))
788      NextVal =
789        llvm::ConstantFP::get(VMContext,
790                              llvm::APFloat(static_cast<float>(AmountVal)));
791    else if (InVal->getType() == llvm::Type::getDoubleTy(VMContext))
792      NextVal =
793        llvm::ConstantFP::get(VMContext,
794                              llvm::APFloat(static_cast<double>(AmountVal)));
795    else {
796      llvm::APFloat F(static_cast<float>(AmountVal));
797      bool ignored;
798      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
799                &ignored);
800      NextVal = llvm::ConstantFP::get(VMContext, F);
801    }
802    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
803  }
804
805  // Store the updated result through the lvalue.
806  if (LV.isBitfield())
807    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
808                                       &NextVal);
809  else
810    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
811
812  // If this is a postinc, return the value read from memory, otherwise use the
813  // updated value.
814  return isPre ? NextVal : InVal;
815}
816
817
818Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
819  TestAndClearIgnoreResultAssign();
820  Value *Op = Visit(E->getSubExpr());
821  if (Op->getType()->isFPOrFPVector())
822    return Builder.CreateFNeg(Op, "neg");
823  return Builder.CreateNeg(Op, "neg");
824}
825
826Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
827  TestAndClearIgnoreResultAssign();
828  Value *Op = Visit(E->getSubExpr());
829  return Builder.CreateNot(Op, "neg");
830}
831
832Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
833  // Compare operand to zero.
834  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
835
836  // Invert value.
837  // TODO: Could dynamically modify easy computations here.  For example, if
838  // the operand is an icmp ne, turn into icmp eq.
839  BoolVal = Builder.CreateNot(BoolVal, "lnot");
840
841  // ZExt result to the expr type.
842  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
843}
844
845/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
846/// argument of the sizeof expression as an integer.
847Value *
848ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
849  QualType TypeToSize = E->getTypeOfArgument();
850  if (E->isSizeOf()) {
851    if (const VariableArrayType *VAT =
852          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
853      if (E->isArgumentType()) {
854        // sizeof(type) - make sure to emit the VLA size.
855        CGF.EmitVLASize(TypeToSize);
856      } else {
857        // C99 6.5.3.4p2: If the argument is an expression of type
858        // VLA, it is evaluated.
859        CGF.EmitAnyExpr(E->getArgumentExpr());
860      }
861
862      return CGF.GetVLASize(VAT);
863    }
864  }
865
866  // If this isn't sizeof(vla), the result must be constant; use the
867  // constant folding logic so we don't have to duplicate it here.
868  Expr::EvalResult Result;
869  E->Evaluate(Result, CGF.getContext());
870  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
871}
872
873Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
874  Expr *Op = E->getSubExpr();
875  if (Op->getType()->isAnyComplexType())
876    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
877  return Visit(Op);
878}
879Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
880  Expr *Op = E->getSubExpr();
881  if (Op->getType()->isAnyComplexType())
882    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
883
884  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
885  // effects are evaluated, but not the actual value.
886  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
887    CGF.EmitLValue(Op);
888  else
889    CGF.EmitScalarExpr(Op, true);
890  return llvm::Constant::getNullValue(ConvertType(E->getType()));
891}
892
893Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
894{
895  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
896  const llvm::Type* ResultType = ConvertType(E->getType());
897  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
898}
899
900//===----------------------------------------------------------------------===//
901//                           Binary Operators
902//===----------------------------------------------------------------------===//
903
904BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
905  TestAndClearIgnoreResultAssign();
906  BinOpInfo Result;
907  Result.LHS = Visit(E->getLHS());
908  Result.RHS = Visit(E->getRHS());
909  Result.Ty  = E->getType();
910  Result.E = E;
911  return Result;
912}
913
914Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
915                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
916  bool Ignore = TestAndClearIgnoreResultAssign();
917  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
918
919  BinOpInfo OpInfo;
920
921  if (E->getComputationResultType()->isAnyComplexType()) {
922    // This needs to go through the complex expression emitter, but
923    // it's a tad complicated to do that... I'm leaving it out for now.
924    // (Note that we do actually need the imaginary part of the RHS for
925    // multiplication and division.)
926    CGF.ErrorUnsupported(E, "complex compound assignment");
927    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
928  }
929
930  // Emit the RHS first.  __block variables need to have the rhs evaluated
931  // first, plus this should improve codegen a little.
932  OpInfo.RHS = Visit(E->getRHS());
933  OpInfo.Ty = E->getComputationResultType();
934  OpInfo.E = E;
935  // Load/convert the LHS.
936  LValue LHSLV = EmitLValue(E->getLHS());
937  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
938  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
939                                    E->getComputationLHSType());
940
941  // Expand the binary operator.
942  Value *Result = (this->*Func)(OpInfo);
943
944  // Convert the result back to the LHS type.
945  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
946
947  // Store the result value into the LHS lvalue. Bit-fields are
948  // handled specially because the result is altered by the store,
949  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
950  // the left operand after the assignment...'.
951  if (LHSLV.isBitfield()) {
952    if (!LHSLV.isVolatileQualified()) {
953      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
954                                         &Result);
955      return Result;
956    } else
957      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
958  } else
959    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
960  if (Ignore)
961    return 0;
962  return EmitLoadOfLValue(LHSLV, E->getType());
963}
964
965
966Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
967  if (Ops.LHS->getType()->isFPOrFPVector())
968    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
969  else if (Ops.Ty->isUnsignedIntegerType())
970    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
971  else
972    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
973}
974
975Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
976  // Rem in C can't be a floating point type: C99 6.5.5p2.
977  if (Ops.Ty->isUnsignedIntegerType())
978    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
979  else
980    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
981}
982
983Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
984  unsigned IID;
985  unsigned OpID = 0;
986
987  switch (Ops.E->getOpcode()) {
988  case BinaryOperator::Add:
989  case BinaryOperator::AddAssign:
990    OpID = 1;
991    IID = llvm::Intrinsic::sadd_with_overflow;
992    break;
993  case BinaryOperator::Sub:
994  case BinaryOperator::SubAssign:
995    OpID = 2;
996    IID = llvm::Intrinsic::ssub_with_overflow;
997    break;
998  case BinaryOperator::Mul:
999  case BinaryOperator::MulAssign:
1000    OpID = 3;
1001    IID = llvm::Intrinsic::smul_with_overflow;
1002    break;
1003  default:
1004    assert(false && "Unsupported operation for overflow detection");
1005    IID = 0;
1006  }
1007  OpID <<= 1;
1008  OpID |= 1;
1009
1010  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1011
1012  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1013
1014  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1015  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1016  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1017
1018  // Branch in case of overflow.
1019  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1020  llvm::BasicBlock *overflowBB =
1021    CGF.createBasicBlock("overflow", CGF.CurFn);
1022  llvm::BasicBlock *continueBB =
1023    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1024
1025  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1026
1027  // Handle overflow
1028
1029  Builder.SetInsertPoint(overflowBB);
1030
1031  // Handler is:
1032  // long long *__overflow_handler)(long long a, long long b, char op,
1033  // char width)
1034  std::vector<const llvm::Type*> handerArgTypes;
1035  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1036  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1037  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1038  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1039  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1040      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1041  llvm::Value *handlerFunction =
1042    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1043        llvm::PointerType::getUnqual(handlerTy));
1044  handlerFunction = Builder.CreateLoad(handlerFunction);
1045
1046  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1047      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1048      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1049      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1050      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1051        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1052
1053  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1054
1055  Builder.CreateBr(continueBB);
1056
1057  // Set up the continuation
1058  Builder.SetInsertPoint(continueBB);
1059  // Get the correct result
1060  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1061  phi->reserveOperandSpace(2);
1062  phi->addIncoming(result, initialBB);
1063  phi->addIncoming(handlerResult, overflowBB);
1064
1065  return phi;
1066}
1067
1068Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1069  if (!Ops.Ty->isAnyPointerType()) {
1070    if (CGF.getContext().getLangOptions().OverflowChecking &&
1071        Ops.Ty->isSignedIntegerType())
1072      return EmitOverflowCheckedBinOp(Ops);
1073
1074    if (Ops.LHS->getType()->isFPOrFPVector())
1075      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1076
1077    // Signed integer overflow is undefined behavior.
1078    if (Ops.Ty->isSignedIntegerType())
1079      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1080
1081    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1082  }
1083
1084  if (Ops.Ty->isPointerType() &&
1085      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1086    // The amount of the addition needs to account for the VLA size
1087    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1088  }
1089  Value *Ptr, *Idx;
1090  Expr *IdxExp;
1091  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1092  const ObjCObjectPointerType *OPT =
1093    Ops.E->getLHS()->getType()->getAsObjCObjectPointerType();
1094  if (PT || OPT) {
1095    Ptr = Ops.LHS;
1096    Idx = Ops.RHS;
1097    IdxExp = Ops.E->getRHS();
1098  } else {  // int + pointer
1099    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1100    OPT = Ops.E->getRHS()->getType()->getAsObjCObjectPointerType();
1101    assert((PT || OPT) && "Invalid add expr");
1102    Ptr = Ops.RHS;
1103    Idx = Ops.LHS;
1104    IdxExp = Ops.E->getLHS();
1105  }
1106
1107  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1108  if (Width < CGF.LLVMPointerWidth) {
1109    // Zero or sign extend the pointer value based on whether the index is
1110    // signed or not.
1111    const llvm::Type *IdxType =
1112        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1113    if (IdxExp->getType()->isSignedIntegerType())
1114      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1115    else
1116      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1117  }
1118  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1119  // Handle interface types, which are not represented with a concrete
1120  // type.
1121  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1122    llvm::Value *InterfaceSize =
1123      llvm::ConstantInt::get(Idx->getType(),
1124                             CGF.getContext().getTypeSize(OIT) / 8);
1125    Idx = Builder.CreateMul(Idx, InterfaceSize);
1126    const llvm::Type *i8Ty =
1127        llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
1128    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1129    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1130    return Builder.CreateBitCast(Res, Ptr->getType());
1131  }
1132
1133  // Explicitly handle GNU void* and function pointer arithmetic
1134  // extensions. The GNU void* casts amount to no-ops since our void*
1135  // type is i8*, but this is future proof.
1136  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1137    const llvm::Type *i8Ty =
1138        llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
1139    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1140    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1141    return Builder.CreateBitCast(Res, Ptr->getType());
1142  }
1143
1144  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1145}
1146
1147Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1148  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1149    if (CGF.getContext().getLangOptions().OverflowChecking
1150        && Ops.Ty->isSignedIntegerType())
1151      return EmitOverflowCheckedBinOp(Ops);
1152
1153    if (Ops.LHS->getType()->isFPOrFPVector())
1154      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1155    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1156  }
1157
1158  if (Ops.E->getLHS()->getType()->isPointerType() &&
1159      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1160    // The amount of the addition needs to account for the VLA size for
1161    // ptr-int
1162    // The amount of the division needs to account for the VLA size for
1163    // ptr-ptr.
1164    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1165  }
1166
1167  const QualType LHSType = Ops.E->getLHS()->getType();
1168  const QualType LHSElementType = LHSType->getPointeeType();
1169  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1170    // pointer - int
1171    Value *Idx = Ops.RHS;
1172    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1173    if (Width < CGF.LLVMPointerWidth) {
1174      // Zero or sign extend the pointer value based on whether the index is
1175      // signed or not.
1176      const llvm::Type *IdxType =
1177          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1178      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1179        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1180      else
1181        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1182    }
1183    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1184
1185    // Handle interface types, which are not represented with a concrete
1186    // type.
1187    if (const ObjCInterfaceType *OIT =
1188        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1189      llvm::Value *InterfaceSize =
1190        llvm::ConstantInt::get(Idx->getType(),
1191                               CGF.getContext().getTypeSize(OIT) / 8);
1192      Idx = Builder.CreateMul(Idx, InterfaceSize);
1193      const llvm::Type *i8Ty =
1194        llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
1195      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1196      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1197      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1198    }
1199
1200    // Explicitly handle GNU void* and function pointer arithmetic
1201    // extensions. The GNU void* casts amount to no-ops since our
1202    // void* type is i8*, but this is future proof.
1203    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1204      const llvm::Type *i8Ty =
1205        llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
1206      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1207      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1208      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1209    }
1210
1211    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1212  } else {
1213    // pointer - pointer
1214    Value *LHS = Ops.LHS;
1215    Value *RHS = Ops.RHS;
1216
1217    uint64_t ElementSize;
1218
1219    // Handle GCC extension for pointer arithmetic on void* and function pointer
1220    // types.
1221    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1222      ElementSize = 1;
1223    } else {
1224      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1225    }
1226
1227    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1228    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1229    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1230    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1231
1232    // Optimize out the shift for element size of 1.
1233    if (ElementSize == 1)
1234      return BytesBetween;
1235
1236    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1237    // pointer difference in C is only defined in the case where both
1238    // operands are pointing to elements of an array.
1239    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1240    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1241  }
1242}
1243
1244Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1245  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1246  // RHS to the same size as the LHS.
1247  Value *RHS = Ops.RHS;
1248  if (Ops.LHS->getType() != RHS->getType())
1249    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1250
1251  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1252}
1253
1254Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1255  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1256  // RHS to the same size as the LHS.
1257  Value *RHS = Ops.RHS;
1258  if (Ops.LHS->getType() != RHS->getType())
1259    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1260
1261  if (Ops.Ty->isUnsignedIntegerType())
1262    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1263  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1264}
1265
1266Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1267                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1268  TestAndClearIgnoreResultAssign();
1269  Value *Result;
1270  QualType LHSTy = E->getLHS()->getType();
1271  if (!LHSTy->isAnyComplexType()) {
1272    Value *LHS = Visit(E->getLHS());
1273    Value *RHS = Visit(E->getRHS());
1274
1275    if (LHS->getType()->isFPOrFPVector()) {
1276      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1277                                  LHS, RHS, "cmp");
1278    } else if (LHSTy->isSignedIntegerType()) {
1279      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1280                                  LHS, RHS, "cmp");
1281    } else {
1282      // Unsigned integers and pointers.
1283      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1284                                  LHS, RHS, "cmp");
1285    }
1286
1287    // If this is a vector comparison, sign extend the result to the appropriate
1288    // vector integer type and return it (don't convert to bool).
1289    if (LHSTy->isVectorType())
1290      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1291
1292  } else {
1293    // Complex Comparison: can only be an equality comparison.
1294    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1295    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1296
1297    QualType CETy = LHSTy->getAsComplexType()->getElementType();
1298
1299    Value *ResultR, *ResultI;
1300    if (CETy->isRealFloatingType()) {
1301      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1302                                   LHS.first, RHS.first, "cmp.r");
1303      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1304                                   LHS.second, RHS.second, "cmp.i");
1305    } else {
1306      // Complex comparisons can only be equality comparisons.  As such, signed
1307      // and unsigned opcodes are the same.
1308      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1309                                   LHS.first, RHS.first, "cmp.r");
1310      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1311                                   LHS.second, RHS.second, "cmp.i");
1312    }
1313
1314    if (E->getOpcode() == BinaryOperator::EQ) {
1315      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1316    } else {
1317      assert(E->getOpcode() == BinaryOperator::NE &&
1318             "Complex comparison other than == or != ?");
1319      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1320    }
1321  }
1322
1323  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1324}
1325
1326Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1327  bool Ignore = TestAndClearIgnoreResultAssign();
1328
1329  // __block variables need to have the rhs evaluated first, plus this should
1330  // improve codegen just a little.
1331  Value *RHS = Visit(E->getRHS());
1332  LValue LHS = EmitLValue(E->getLHS());
1333
1334  // Store the value into the LHS.  Bit-fields are handled specially
1335  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1336  // 'An assignment expression has the value of the left operand after
1337  // the assignment...'.
1338  if (LHS.isBitfield()) {
1339    if (!LHS.isVolatileQualified()) {
1340      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1341                                         &RHS);
1342      return RHS;
1343    } else
1344      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1345  } else
1346    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1347  if (Ignore)
1348    return 0;
1349  return EmitLoadOfLValue(LHS, E->getType());
1350}
1351
1352Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1353  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1354  // If we have 1 && X, just emit X without inserting the control flow.
1355  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1356    if (Cond == 1) { // If we have 1 && X, just emit X.
1357      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1358      // ZExt result to int.
1359      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1360    }
1361
1362    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1363    if (!CGF.ContainsLabel(E->getRHS()))
1364      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1365  }
1366
1367  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1368  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1369
1370  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1371  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1372
1373  // Any edges into the ContBlock are now from an (indeterminate number of)
1374  // edges from this first condition.  All of these values will be false.  Start
1375  // setting up the PHI node in the Cont Block for this.
1376  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1377                                            "", ContBlock);
1378  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1379  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1380       PI != PE; ++PI)
1381    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1382
1383  CGF.PushConditionalTempDestruction();
1384  CGF.EmitBlock(RHSBlock);
1385  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1386  CGF.PopConditionalTempDestruction();
1387
1388  // Reaquire the RHS block, as there may be subblocks inserted.
1389  RHSBlock = Builder.GetInsertBlock();
1390
1391  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1392  // into the phi node for the edge with the value of RHSCond.
1393  CGF.EmitBlock(ContBlock);
1394  PN->addIncoming(RHSCond, RHSBlock);
1395
1396  // ZExt result to int.
1397  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1398}
1399
1400Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1401  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1402  // If we have 0 || X, just emit X without inserting the control flow.
1403  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1404    if (Cond == -1) { // If we have 0 || X, just emit X.
1405      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1406      // ZExt result to int.
1407      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1408    }
1409
1410    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1411    if (!CGF.ContainsLabel(E->getRHS()))
1412      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1413  }
1414
1415  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1416  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1417
1418  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1419  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1420
1421  // Any edges into the ContBlock are now from an (indeterminate number of)
1422  // edges from this first condition.  All of these values will be true.  Start
1423  // setting up the PHI node in the Cont Block for this.
1424  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1425                                            "", ContBlock);
1426  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1427  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1428       PI != PE; ++PI)
1429    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1430
1431  CGF.PushConditionalTempDestruction();
1432
1433  // Emit the RHS condition as a bool value.
1434  CGF.EmitBlock(RHSBlock);
1435  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1436
1437  CGF.PopConditionalTempDestruction();
1438
1439  // Reaquire the RHS block, as there may be subblocks inserted.
1440  RHSBlock = Builder.GetInsertBlock();
1441
1442  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1443  // into the phi node for the edge with the value of RHSCond.
1444  CGF.EmitBlock(ContBlock);
1445  PN->addIncoming(RHSCond, RHSBlock);
1446
1447  // ZExt result to int.
1448  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1449}
1450
1451Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1452  CGF.EmitStmt(E->getLHS());
1453  CGF.EnsureInsertPoint();
1454  return Visit(E->getRHS());
1455}
1456
1457//===----------------------------------------------------------------------===//
1458//                             Other Operators
1459//===----------------------------------------------------------------------===//
1460
1461/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1462/// expression is cheap enough and side-effect-free enough to evaluate
1463/// unconditionally instead of conditionally.  This is used to convert control
1464/// flow into selects in some cases.
1465static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1466  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1467    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1468
1469  // TODO: Allow anything we can constant fold to an integer or fp constant.
1470  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1471      isa<FloatingLiteral>(E))
1472    return true;
1473
1474  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1475  // X and Y are local variables.
1476  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1477    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1478      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1479        return true;
1480
1481  return false;
1482}
1483
1484
1485Value *ScalarExprEmitter::
1486VisitConditionalOperator(const ConditionalOperator *E) {
1487  TestAndClearIgnoreResultAssign();
1488  // If the condition constant folds and can be elided, try to avoid emitting
1489  // the condition and the dead arm.
1490  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1491    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1492    if (Cond == -1)
1493      std::swap(Live, Dead);
1494
1495    // If the dead side doesn't have labels we need, and if the Live side isn't
1496    // the gnu missing ?: extension (which we could handle, but don't bother
1497    // to), just emit the Live part.
1498    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1499        Live)                                   // Live part isn't missing.
1500      return Visit(Live);
1501  }
1502
1503
1504  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1505  // select instead of as control flow.  We can only do this if it is cheap and
1506  // safe to evaluate the LHS and RHS unconditionally.
1507  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1508      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1509    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1510    llvm::Value *LHS = Visit(E->getLHS());
1511    llvm::Value *RHS = Visit(E->getRHS());
1512    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1513  }
1514
1515
1516  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1517  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1518  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1519  Value *CondVal = 0;
1520
1521  // If we don't have the GNU missing condition extension, emit a branch on
1522  // bool the normal way.
1523  if (E->getLHS()) {
1524    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1525    // the branch on bool.
1526    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1527  } else {
1528    // Otherwise, for the ?: extension, evaluate the conditional and then
1529    // convert it to bool the hard way.  We do this explicitly because we need
1530    // the unconverted value for the missing middle value of the ?:.
1531    CondVal = CGF.EmitScalarExpr(E->getCond());
1532
1533    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1534    // if there are no extra uses (an optimization).  Inhibit this by making an
1535    // extra dead use, because we're going to add a use of CondVal later.  We
1536    // don't use the builder for this, because we don't want it to get optimized
1537    // away.  This leaves dead code, but the ?: extension isn't common.
1538    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1539                          Builder.GetInsertBlock());
1540
1541    Value *CondBoolVal =
1542      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1543                               CGF.getContext().BoolTy);
1544    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1545  }
1546
1547  CGF.PushConditionalTempDestruction();
1548  CGF.EmitBlock(LHSBlock);
1549
1550  // Handle the GNU extension for missing LHS.
1551  Value *LHS;
1552  if (E->getLHS())
1553    LHS = Visit(E->getLHS());
1554  else    // Perform promotions, to handle cases like "short ?: int"
1555    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1556
1557  CGF.PopConditionalTempDestruction();
1558  LHSBlock = Builder.GetInsertBlock();
1559  CGF.EmitBranch(ContBlock);
1560
1561  CGF.PushConditionalTempDestruction();
1562  CGF.EmitBlock(RHSBlock);
1563
1564  Value *RHS = Visit(E->getRHS());
1565  CGF.PopConditionalTempDestruction();
1566  RHSBlock = Builder.GetInsertBlock();
1567  CGF.EmitBranch(ContBlock);
1568
1569  CGF.EmitBlock(ContBlock);
1570
1571  if (!LHS || !RHS) {
1572    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1573    return 0;
1574  }
1575
1576  // Create a PHI node for the real part.
1577  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1578  PN->reserveOperandSpace(2);
1579  PN->addIncoming(LHS, LHSBlock);
1580  PN->addIncoming(RHS, RHSBlock);
1581  return PN;
1582}
1583
1584Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1585  return Visit(E->getChosenSubExpr(CGF.getContext()));
1586}
1587
1588Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1589  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1590  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1591
1592  // If EmitVAArg fails, we fall back to the LLVM instruction.
1593  if (!ArgPtr)
1594    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1595
1596  // FIXME Volatility.
1597  return Builder.CreateLoad(ArgPtr);
1598}
1599
1600Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1601  return CGF.BuildBlockLiteralTmp(BE);
1602}
1603
1604//===----------------------------------------------------------------------===//
1605//                         Entry Point into this File
1606//===----------------------------------------------------------------------===//
1607
1608/// EmitScalarExpr - Emit the computation of the specified expression of
1609/// scalar type, ignoring the result.
1610Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1611  assert(E && !hasAggregateLLVMType(E->getType()) &&
1612         "Invalid scalar expression to emit");
1613
1614  return ScalarExprEmitter(*this, IgnoreResultAssign)
1615    .Visit(const_cast<Expr*>(E));
1616}
1617
1618/// EmitScalarConversion - Emit a conversion from the specified type to the
1619/// specified destination type, both of which are LLVM scalar types.
1620Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1621                                             QualType DstTy) {
1622  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1623         "Invalid scalar expression to emit");
1624  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1625}
1626
1627/// EmitComplexToScalarConversion - Emit a conversion from the specified
1628/// complex type to the specified destination type, where the destination
1629/// type is an LLVM scalar type.
1630Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1631                                                      QualType SrcTy,
1632                                                      QualType DstTy) {
1633  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1634         "Invalid complex -> scalar conversion");
1635  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1636                                                                DstTy);
1637}
1638
1639Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1640  assert(V1->getType() == V2->getType() &&
1641         "Vector operands must be of the same type");
1642  unsigned NumElements =
1643    cast<llvm::VectorType>(V1->getType())->getNumElements();
1644
1645  va_list va;
1646  va_start(va, V2);
1647
1648  llvm::SmallVector<llvm::Constant*, 16> Args;
1649  for (unsigned i = 0; i < NumElements; i++) {
1650    int n = va_arg(va, int);
1651    assert(n >= 0 && n < (int)NumElements * 2 &&
1652           "Vector shuffle index out of bounds!");
1653    Args.push_back(llvm::ConstantInt::get(
1654                                         llvm::Type::getInt32Ty(VMContext), n));
1655  }
1656
1657  const char *Name = va_arg(va, const char *);
1658  va_end(va);
1659
1660  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1661
1662  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1663}
1664
1665llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1666                                         unsigned NumVals, bool isSplat) {
1667  llvm::Value *Vec
1668    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1669
1670  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1671    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1672    llvm::Value *Idx = llvm::ConstantInt::get(
1673                                          llvm::Type::getInt32Ty(VMContext), i);
1674    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1675  }
1676
1677  return Vec;
1678}
1679