CGExprScalar.cpp revision bbf3bacb3e0c1ebb3e8a4a8b1330404a7e379315
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV, QualType T) {
86    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    const llvm::IntegerType *Ty = cast<llvm::IntegerType>(V->getType());
144    Value *Zero = llvm::ConstantInt::get(Ty, 0);
145    return Builder.CreateICmpNE(V, Zero, "tobool");
146  }
147
148  //===--------------------------------------------------------------------===//
149  //                            Visitor Methods
150  //===--------------------------------------------------------------------===//
151
152  Value *Visit(Expr *E) {
153    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
154  }
155
156  Value *VisitStmt(Stmt *S) {
157    S->dump(CGF.getContext().getSourceManager());
158    assert(0 && "Stmt can't have complex result type!");
159    return 0;
160  }
161  Value *VisitExpr(Expr *S);
162
163  Value *VisitParenExpr(ParenExpr *PE) {
164    return Visit(PE->getSubExpr());
165  }
166
167  // Leaves.
168  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
169    return llvm::ConstantInt::get(VMContext, E->getValue());
170  }
171  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
172    return llvm::ConstantFP::get(VMContext, E->getValue());
173  }
174  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
175    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
176  }
177  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
178    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179  }
180  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
181    return EmitNullValue(E->getType());
182  }
183  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
184    return EmitNullValue(E->getType());
185  }
186  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
187  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
188  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
189    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
190    return Builder.CreateBitCast(V, ConvertType(E->getType()));
191  }
192
193  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
194    return llvm::ConstantInt::get(ConvertType(E->getType()),
195                                  E->getPackLength());
196  }
197
198  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
199    if (E->isGLValue())
200      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getType());
201
202    // Otherwise, assume the mapping is the scalar directly.
203    return CGF.getOpaqueRValueMapping(E).getScalarVal();
204  }
205
206  // l-values.
207  Value *VisitDeclRefExpr(DeclRefExpr *E) {
208    Expr::EvalResult Result;
209    if (!E->Evaluate(Result, CGF.getContext()))
210      return EmitLoadOfLValue(E);
211
212    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
213
214    llvm::Constant *C;
215    if (Result.Val.isInt()) {
216      C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
217    } else if (Result.Val.isFloat()) {
218      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
219    } else {
220      return EmitLoadOfLValue(E);
221    }
222
223    // Make sure we emit a debug reference to the global variable.
224    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
225      if (!CGF.getContext().DeclMustBeEmitted(VD))
226        CGF.EmitDeclRefExprDbgValue(E, C);
227    } else if (isa<EnumConstantDecl>(E->getDecl())) {
228      CGF.EmitDeclRefExprDbgValue(E, C);
229    }
230
231    return C;
232  }
233  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
234    return CGF.EmitObjCSelectorExpr(E);
235  }
236  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
237    return CGF.EmitObjCProtocolExpr(E);
238  }
239  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
240    return EmitLoadOfLValue(E);
241  }
242  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
243    assert(E->getObjectKind() == OK_Ordinary &&
244           "reached property reference without lvalue-to-rvalue");
245    return EmitLoadOfLValue(E);
246  }
247  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248    if (E->getMethodDecl() &&
249        E->getMethodDecl()->getResultType()->isReferenceType())
250      return EmitLoadOfLValue(E);
251    return CGF.EmitObjCMessageExpr(E).getScalarVal();
252  }
253
254  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255    LValue LV = CGF.EmitObjCIsaExpr(E);
256    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
257    return V;
258  }
259
260  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262  Value *VisitMemberExpr(MemberExpr *E);
263  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
264  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
265    return EmitLoadOfLValue(E);
266  }
267
268  Value *VisitInitListExpr(InitListExpr *E);
269
270  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
271    return CGF.CGM.EmitNullConstant(E->getType());
272  }
273  Value *VisitCastExpr(CastExpr *E) {
274    // Make sure to evaluate VLA bounds now so that we have them for later.
275    if (E->getType()->isVariablyModifiedType())
276      CGF.EmitVLASize(E->getType());
277
278    return EmitCastExpr(E);
279  }
280  Value *EmitCastExpr(CastExpr *E);
281
282  Value *VisitCallExpr(const CallExpr *E) {
283    if (E->getCallReturnType()->isReferenceType())
284      return EmitLoadOfLValue(E);
285
286    return CGF.EmitCallExpr(E).getScalarVal();
287  }
288
289  Value *VisitStmtExpr(const StmtExpr *E);
290
291  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
292
293  // Unary Operators.
294  Value *VisitUnaryPostDec(const UnaryOperator *E) {
295    LValue LV = EmitLValue(E->getSubExpr());
296    return EmitScalarPrePostIncDec(E, LV, false, false);
297  }
298  Value *VisitUnaryPostInc(const UnaryOperator *E) {
299    LValue LV = EmitLValue(E->getSubExpr());
300    return EmitScalarPrePostIncDec(E, LV, true, false);
301  }
302  Value *VisitUnaryPreDec(const UnaryOperator *E) {
303    LValue LV = EmitLValue(E->getSubExpr());
304    return EmitScalarPrePostIncDec(E, LV, false, true);
305  }
306  Value *VisitUnaryPreInc(const UnaryOperator *E) {
307    LValue LV = EmitLValue(E->getSubExpr());
308    return EmitScalarPrePostIncDec(E, LV, true, true);
309  }
310
311  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
312                                               llvm::Value *InVal,
313                                               llvm::Value *NextVal,
314                                               bool IsInc);
315
316  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
317                                       bool isInc, bool isPre);
318
319
320  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
321    if (isa<MemberPointerType>(E->getType())) // never sugared
322      return CGF.CGM.getMemberPointerConstant(E);
323
324    return EmitLValue(E->getSubExpr()).getAddress();
325  }
326  Value *VisitUnaryDeref(const UnaryOperator *E) {
327    if (E->getType()->isVoidType())
328      return Visit(E->getSubExpr()); // the actual value should be unused
329    return EmitLoadOfLValue(E);
330  }
331  Value *VisitUnaryPlus(const UnaryOperator *E) {
332    // This differs from gcc, though, most likely due to a bug in gcc.
333    TestAndClearIgnoreResultAssign();
334    return Visit(E->getSubExpr());
335  }
336  Value *VisitUnaryMinus    (const UnaryOperator *E);
337  Value *VisitUnaryNot      (const UnaryOperator *E);
338  Value *VisitUnaryLNot     (const UnaryOperator *E);
339  Value *VisitUnaryReal     (const UnaryOperator *E);
340  Value *VisitUnaryImag     (const UnaryOperator *E);
341  Value *VisitUnaryExtension(const UnaryOperator *E) {
342    return Visit(E->getSubExpr());
343  }
344
345  // C++
346  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
347    return Visit(DAE->getExpr());
348  }
349  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
350    return CGF.LoadCXXThis();
351  }
352
353  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
354    return CGF.EmitExprWithCleanups(E).getScalarVal();
355  }
356  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357    return CGF.EmitCXXNewExpr(E);
358  }
359  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360    CGF.EmitCXXDeleteExpr(E);
361    return 0;
362  }
363  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
365  }
366
367  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369  }
370
371  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
372    // C++ [expr.pseudo]p1:
373    //   The result shall only be used as the operand for the function call
374    //   operator (), and the result of such a call has type void. The only
375    //   effect is the evaluation of the postfix-expression before the dot or
376    //   arrow.
377    CGF.EmitScalarExpr(E->getBase());
378    return 0;
379  }
380
381  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
382    return EmitNullValue(E->getType());
383  }
384
385  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
386    CGF.EmitCXXThrowExpr(E);
387    return 0;
388  }
389
390  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
391    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
392  }
393
394  // Binary Operators.
395  Value *EmitMul(const BinOpInfo &Ops) {
396    if (Ops.Ty->hasSignedIntegerRepresentation()) {
397      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
398      case LangOptions::SOB_Undefined:
399        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
400      case LangOptions::SOB_Defined:
401        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
402      case LangOptions::SOB_Trapping:
403        return EmitOverflowCheckedBinOp(Ops);
404      }
405    }
406
407    if (Ops.LHS->getType()->isFPOrFPVectorTy())
408      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
409    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
410  }
411  bool isTrapvOverflowBehavior() {
412    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
413               == LangOptions::SOB_Trapping;
414  }
415  /// Create a binary op that checks for overflow.
416  /// Currently only supports +, - and *.
417  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
418  // Emit the overflow BB when -ftrapv option is activated.
419  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
420    Builder.SetInsertPoint(overflowBB);
421    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
422    Builder.CreateCall(Trap);
423    Builder.CreateUnreachable();
424  }
425  // Check for undefined division and modulus behaviors.
426  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
427                                                  llvm::Value *Zero,bool isDiv);
428  Value *EmitDiv(const BinOpInfo &Ops);
429  Value *EmitRem(const BinOpInfo &Ops);
430  Value *EmitAdd(const BinOpInfo &Ops);
431  Value *EmitSub(const BinOpInfo &Ops);
432  Value *EmitShl(const BinOpInfo &Ops);
433  Value *EmitShr(const BinOpInfo &Ops);
434  Value *EmitAnd(const BinOpInfo &Ops) {
435    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
436  }
437  Value *EmitXor(const BinOpInfo &Ops) {
438    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
439  }
440  Value *EmitOr (const BinOpInfo &Ops) {
441    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
442  }
443
444  BinOpInfo EmitBinOps(const BinaryOperator *E);
445  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
446                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
447                                  Value *&Result);
448
449  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
450                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
451
452  // Binary operators and binary compound assignment operators.
453#define HANDLEBINOP(OP) \
454  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
455    return Emit ## OP(EmitBinOps(E));                                      \
456  }                                                                        \
457  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
458    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
459  }
460  HANDLEBINOP(Mul)
461  HANDLEBINOP(Div)
462  HANDLEBINOP(Rem)
463  HANDLEBINOP(Add)
464  HANDLEBINOP(Sub)
465  HANDLEBINOP(Shl)
466  HANDLEBINOP(Shr)
467  HANDLEBINOP(And)
468  HANDLEBINOP(Xor)
469  HANDLEBINOP(Or)
470#undef HANDLEBINOP
471
472  // Comparisons.
473  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
474                     unsigned SICmpOpc, unsigned FCmpOpc);
475#define VISITCOMP(CODE, UI, SI, FP) \
476    Value *VisitBin##CODE(const BinaryOperator *E) { \
477      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
478                         llvm::FCmpInst::FP); }
479  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
480  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
481  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
482  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
483  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
484  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
485#undef VISITCOMP
486
487  Value *VisitBinAssign     (const BinaryOperator *E);
488
489  Value *VisitBinLAnd       (const BinaryOperator *E);
490  Value *VisitBinLOr        (const BinaryOperator *E);
491  Value *VisitBinComma      (const BinaryOperator *E);
492
493  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
494  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
495
496  // Other Operators.
497  Value *VisitBlockExpr(const BlockExpr *BE);
498  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
499  Value *VisitChooseExpr(ChooseExpr *CE);
500  Value *VisitVAArgExpr(VAArgExpr *VE);
501  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
502    return CGF.EmitObjCStringLiteral(E);
503  }
504};
505}  // end anonymous namespace.
506
507//===----------------------------------------------------------------------===//
508//                                Utilities
509//===----------------------------------------------------------------------===//
510
511/// EmitConversionToBool - Convert the specified expression value to a
512/// boolean (i1) truth value.  This is equivalent to "Val != 0".
513Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
514  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
515
516  if (SrcType->isRealFloatingType())
517    return EmitFloatToBoolConversion(Src);
518
519  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
520    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
521
522  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
523         "Unknown scalar type to convert");
524
525  if (isa<llvm::IntegerType>(Src->getType()))
526    return EmitIntToBoolConversion(Src);
527
528  assert(isa<llvm::PointerType>(Src->getType()));
529  return EmitPointerToBoolConversion(Src);
530}
531
532/// EmitScalarConversion - Emit a conversion from the specified type to the
533/// specified destination type, both of which are LLVM scalar types.
534Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
535                                               QualType DstType) {
536  SrcType = CGF.getContext().getCanonicalType(SrcType);
537  DstType = CGF.getContext().getCanonicalType(DstType);
538  if (SrcType == DstType) return Src;
539
540  if (DstType->isVoidType()) return 0;
541
542  // Handle conversions to bool first, they are special: comparisons against 0.
543  if (DstType->isBooleanType())
544    return EmitConversionToBool(Src, SrcType);
545
546  const llvm::Type *DstTy = ConvertType(DstType);
547
548  // Ignore conversions like int -> uint.
549  if (Src->getType() == DstTy)
550    return Src;
551
552  // Handle pointer conversions next: pointers can only be converted to/from
553  // other pointers and integers. Check for pointer types in terms of LLVM, as
554  // some native types (like Obj-C id) may map to a pointer type.
555  if (isa<llvm::PointerType>(DstTy)) {
556    // The source value may be an integer, or a pointer.
557    if (isa<llvm::PointerType>(Src->getType()))
558      return Builder.CreateBitCast(Src, DstTy, "conv");
559
560    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
561    // First, convert to the correct width so that we control the kind of
562    // extension.
563    const llvm::Type *MiddleTy = CGF.IntPtrTy;
564    bool InputSigned = SrcType->isSignedIntegerType();
565    llvm::Value* IntResult =
566        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
567    // Then, cast to pointer.
568    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
569  }
570
571  if (isa<llvm::PointerType>(Src->getType())) {
572    // Must be an ptr to int cast.
573    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
574    return Builder.CreatePtrToInt(Src, DstTy, "conv");
575  }
576
577  // A scalar can be splatted to an extended vector of the same element type
578  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
579    // Cast the scalar to element type
580    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
581    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
582
583    // Insert the element in element zero of an undef vector
584    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
585    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
586    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
587
588    // Splat the element across to all elements
589    llvm::SmallVector<llvm::Constant*, 16> Args;
590    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
591    for (unsigned i = 0; i != NumElements; ++i)
592      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
593
594    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
595    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
596    return Yay;
597  }
598
599  // Allow bitcast from vector to integer/fp of the same size.
600  if (isa<llvm::VectorType>(Src->getType()) ||
601      isa<llvm::VectorType>(DstTy))
602    return Builder.CreateBitCast(Src, DstTy, "conv");
603
604  // Finally, we have the arithmetic types: real int/float.
605  if (isa<llvm::IntegerType>(Src->getType())) {
606    bool InputSigned = SrcType->isSignedIntegerType();
607    if (isa<llvm::IntegerType>(DstTy))
608      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
609    else if (InputSigned)
610      return Builder.CreateSIToFP(Src, DstTy, "conv");
611    else
612      return Builder.CreateUIToFP(Src, DstTy, "conv");
613  }
614
615  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
616  if (isa<llvm::IntegerType>(DstTy)) {
617    if (DstType->isSignedIntegerType())
618      return Builder.CreateFPToSI(Src, DstTy, "conv");
619    else
620      return Builder.CreateFPToUI(Src, DstTy, "conv");
621  }
622
623  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
624  if (DstTy->getTypeID() < Src->getType()->getTypeID())
625    return Builder.CreateFPTrunc(Src, DstTy, "conv");
626  else
627    return Builder.CreateFPExt(Src, DstTy, "conv");
628}
629
630/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
631/// type to the specified destination type, where the destination type is an
632/// LLVM scalar type.
633Value *ScalarExprEmitter::
634EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
635                              QualType SrcTy, QualType DstTy) {
636  // Get the source element type.
637  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
638
639  // Handle conversions to bool first, they are special: comparisons against 0.
640  if (DstTy->isBooleanType()) {
641    //  Complex != 0  -> (Real != 0) | (Imag != 0)
642    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
643    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
644    return Builder.CreateOr(Src.first, Src.second, "tobool");
645  }
646
647  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
648  // the imaginary part of the complex value is discarded and the value of the
649  // real part is converted according to the conversion rules for the
650  // corresponding real type.
651  return EmitScalarConversion(Src.first, SrcTy, DstTy);
652}
653
654Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
655  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
656    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
657
658  return llvm::Constant::getNullValue(ConvertType(Ty));
659}
660
661//===----------------------------------------------------------------------===//
662//                            Visitor Methods
663//===----------------------------------------------------------------------===//
664
665Value *ScalarExprEmitter::VisitExpr(Expr *E) {
666  CGF.ErrorUnsupported(E, "scalar expression");
667  if (E->getType()->isVoidType())
668    return 0;
669  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
670}
671
672Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
673  // Vector Mask Case
674  if (E->getNumSubExprs() == 2 ||
675      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
676    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
677    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
678    Value *Mask;
679
680    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
681    unsigned LHSElts = LTy->getNumElements();
682
683    if (E->getNumSubExprs() == 3) {
684      Mask = CGF.EmitScalarExpr(E->getExpr(2));
685
686      // Shuffle LHS & RHS into one input vector.
687      llvm::SmallVector<llvm::Constant*, 32> concat;
688      for (unsigned i = 0; i != LHSElts; ++i) {
689        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
690        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
691      }
692
693      Value* CV = llvm::ConstantVector::get(concat);
694      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
695      LHSElts *= 2;
696    } else {
697      Mask = RHS;
698    }
699
700    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
701    llvm::Constant* EltMask;
702
703    // Treat vec3 like vec4.
704    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
705      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
706                                       (1 << llvm::Log2_32(LHSElts+2))-1);
707    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
708      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
709                                       (1 << llvm::Log2_32(LHSElts+1))-1);
710    else
711      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
712                                       (1 << llvm::Log2_32(LHSElts))-1);
713
714    // Mask off the high bits of each shuffle index.
715    llvm::SmallVector<llvm::Constant *, 32> MaskV;
716    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
717      MaskV.push_back(EltMask);
718
719    Value* MaskBits = llvm::ConstantVector::get(MaskV);
720    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
721
722    // newv = undef
723    // mask = mask & maskbits
724    // for each elt
725    //   n = extract mask i
726    //   x = extract val n
727    //   newv = insert newv, x, i
728    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
729                                                        MTy->getNumElements());
730    Value* NewV = llvm::UndefValue::get(RTy);
731    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
732      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
733      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
734      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
735
736      // Handle vec3 special since the index will be off by one for the RHS.
737      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
738        Value *cmpIndx, *newIndx;
739        cmpIndx = Builder.CreateICmpUGT(Indx,
740                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
741                                        "cmp_shuf_idx");
742        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
743                                    "shuf_idx_adj");
744        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
745      }
746      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
747      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
748    }
749    return NewV;
750  }
751
752  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
753  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
754
755  // Handle vec3 special since the index will be off by one for the RHS.
756  llvm::SmallVector<llvm::Constant*, 32> indices;
757  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
758    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
759    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
760    if (VTy->getNumElements() == 3) {
761      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
762        uint64_t cVal = CI->getZExtValue();
763        if (cVal > 3) {
764          C = llvm::ConstantInt::get(C->getType(), cVal-1);
765        }
766      }
767    }
768    indices.push_back(C);
769  }
770
771  Value *SV = llvm::ConstantVector::get(indices);
772  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
773}
774Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
775  Expr::EvalResult Result;
776  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
777    if (E->isArrow())
778      CGF.EmitScalarExpr(E->getBase());
779    else
780      EmitLValue(E->getBase());
781    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
782  }
783
784  // Emit debug info for aggregate now, if it was delayed to reduce
785  // debug info size.
786  CGDebugInfo *DI = CGF.getDebugInfo();
787  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
788    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
789    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
790      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
791        DI->getOrCreateRecordType(PTy->getPointeeType(),
792                                  M->getParent()->getLocation());
793  }
794  return EmitLoadOfLValue(E);
795}
796
797Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
798  TestAndClearIgnoreResultAssign();
799
800  // Emit subscript expressions in rvalue context's.  For most cases, this just
801  // loads the lvalue formed by the subscript expr.  However, we have to be
802  // careful, because the base of a vector subscript is occasionally an rvalue,
803  // so we can't get it as an lvalue.
804  if (!E->getBase()->getType()->isVectorType())
805    return EmitLoadOfLValue(E);
806
807  // Handle the vector case.  The base must be a vector, the index must be an
808  // integer value.
809  Value *Base = Visit(E->getBase());
810  Value *Idx  = Visit(E->getIdx());
811  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
812  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
813  return Builder.CreateExtractElement(Base, Idx, "vecext");
814}
815
816static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
817                                  unsigned Off, const llvm::Type *I32Ty) {
818  int MV = SVI->getMaskValue(Idx);
819  if (MV == -1)
820    return llvm::UndefValue::get(I32Ty);
821  return llvm::ConstantInt::get(I32Ty, Off+MV);
822}
823
824Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
825  bool Ignore = TestAndClearIgnoreResultAssign();
826  (void)Ignore;
827  assert (Ignore == false && "init list ignored");
828  unsigned NumInitElements = E->getNumInits();
829
830  if (E->hadArrayRangeDesignator())
831    CGF.ErrorUnsupported(E, "GNU array range designator extension");
832
833  const llvm::VectorType *VType =
834    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
835
836  // We have a scalar in braces. Just use the first element.
837  if (!VType)
838    return Visit(E->getInit(0));
839
840  unsigned ResElts = VType->getNumElements();
841
842  // Loop over initializers collecting the Value for each, and remembering
843  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
844  // us to fold the shuffle for the swizzle into the shuffle for the vector
845  // initializer, since LLVM optimizers generally do not want to touch
846  // shuffles.
847  unsigned CurIdx = 0;
848  bool VIsUndefShuffle = false;
849  llvm::Value *V = llvm::UndefValue::get(VType);
850  for (unsigned i = 0; i != NumInitElements; ++i) {
851    Expr *IE = E->getInit(i);
852    Value *Init = Visit(IE);
853    llvm::SmallVector<llvm::Constant*, 16> Args;
854
855    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
856
857    // Handle scalar elements.  If the scalar initializer is actually one
858    // element of a different vector of the same width, use shuffle instead of
859    // extract+insert.
860    if (!VVT) {
861      if (isa<ExtVectorElementExpr>(IE)) {
862        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
863
864        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
865          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
866          Value *LHS = 0, *RHS = 0;
867          if (CurIdx == 0) {
868            // insert into undef -> shuffle (src, undef)
869            Args.push_back(C);
870            for (unsigned j = 1; j != ResElts; ++j)
871              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
872
873            LHS = EI->getVectorOperand();
874            RHS = V;
875            VIsUndefShuffle = true;
876          } else if (VIsUndefShuffle) {
877            // insert into undefshuffle && size match -> shuffle (v, src)
878            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
879            for (unsigned j = 0; j != CurIdx; ++j)
880              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
881            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
882                                                  ResElts + C->getZExtValue()));
883            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
884              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
885
886            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
887            RHS = EI->getVectorOperand();
888            VIsUndefShuffle = false;
889          }
890          if (!Args.empty()) {
891            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
892            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
893            ++CurIdx;
894            continue;
895          }
896        }
897      }
898      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
899      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
900      VIsUndefShuffle = false;
901      ++CurIdx;
902      continue;
903    }
904
905    unsigned InitElts = VVT->getNumElements();
906
907    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
908    // input is the same width as the vector being constructed, generate an
909    // optimized shuffle of the swizzle input into the result.
910    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
911    if (isa<ExtVectorElementExpr>(IE)) {
912      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
913      Value *SVOp = SVI->getOperand(0);
914      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
915
916      if (OpTy->getNumElements() == ResElts) {
917        for (unsigned j = 0; j != CurIdx; ++j) {
918          // If the current vector initializer is a shuffle with undef, merge
919          // this shuffle directly into it.
920          if (VIsUndefShuffle) {
921            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
922                                      CGF.Int32Ty));
923          } else {
924            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
925          }
926        }
927        for (unsigned j = 0, je = InitElts; j != je; ++j)
928          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
929        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
930          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
931
932        if (VIsUndefShuffle)
933          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
934
935        Init = SVOp;
936      }
937    }
938
939    // Extend init to result vector length, and then shuffle its contribution
940    // to the vector initializer into V.
941    if (Args.empty()) {
942      for (unsigned j = 0; j != InitElts; ++j)
943        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
944      for (unsigned j = InitElts; j != ResElts; ++j)
945        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
946      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
947      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
948                                         Mask, "vext");
949
950      Args.clear();
951      for (unsigned j = 0; j != CurIdx; ++j)
952        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
953      for (unsigned j = 0; j != InitElts; ++j)
954        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
955      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
956        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
957    }
958
959    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
960    // merging subsequent shuffles into this one.
961    if (CurIdx == 0)
962      std::swap(V, Init);
963    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
964    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
965    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
966    CurIdx += InitElts;
967  }
968
969  // FIXME: evaluate codegen vs. shuffling against constant null vector.
970  // Emit remaining default initializers.
971  const llvm::Type *EltTy = VType->getElementType();
972
973  // Emit remaining default initializers
974  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
975    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
976    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
977    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
978  }
979  return V;
980}
981
982static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
983  const Expr *E = CE->getSubExpr();
984
985  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
986    return false;
987
988  if (isa<CXXThisExpr>(E)) {
989    // We always assume that 'this' is never null.
990    return false;
991  }
992
993  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
994    // And that glvalue casts are never null.
995    if (ICE->getValueKind() != VK_RValue)
996      return false;
997  }
998
999  return true;
1000}
1001
1002// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1003// have to handle a more broad range of conversions than explicit casts, as they
1004// handle things like function to ptr-to-function decay etc.
1005Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
1006  Expr *E = CE->getSubExpr();
1007  QualType DestTy = CE->getType();
1008  CastKind Kind = CE->getCastKind();
1009
1010  if (!DestTy->isVoidType())
1011    TestAndClearIgnoreResultAssign();
1012
1013  // Since almost all cast kinds apply to scalars, this switch doesn't have
1014  // a default case, so the compiler will warn on a missing case.  The cases
1015  // are in the same order as in the CastKind enum.
1016  switch (Kind) {
1017  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1018
1019  case CK_LValueBitCast:
1020  case CK_ObjCObjectLValueCast: {
1021    Value *V = EmitLValue(E).getAddress();
1022    V = Builder.CreateBitCast(V,
1023                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1024    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1025  }
1026
1027  case CK_AnyPointerToObjCPointerCast:
1028  case CK_AnyPointerToBlockPointerCast:
1029  case CK_BitCast: {
1030    Value *Src = Visit(const_cast<Expr*>(E));
1031    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1032  }
1033  case CK_NoOp:
1034  case CK_UserDefinedConversion:
1035    return Visit(const_cast<Expr*>(E));
1036
1037  case CK_BaseToDerived: {
1038    const CXXRecordDecl *DerivedClassDecl =
1039      DestTy->getCXXRecordDeclForPointerType();
1040
1041    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1042                                        CE->path_begin(), CE->path_end(),
1043                                        ShouldNullCheckClassCastValue(CE));
1044  }
1045  case CK_UncheckedDerivedToBase:
1046  case CK_DerivedToBase: {
1047    const RecordType *DerivedClassTy =
1048      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1049    CXXRecordDecl *DerivedClassDecl =
1050      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1051
1052    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1053                                     CE->path_begin(), CE->path_end(),
1054                                     ShouldNullCheckClassCastValue(CE));
1055  }
1056  case CK_Dynamic: {
1057    Value *V = Visit(const_cast<Expr*>(E));
1058    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1059    return CGF.EmitDynamicCast(V, DCE);
1060  }
1061
1062  case CK_ArrayToPointerDecay: {
1063    assert(E->getType()->isArrayType() &&
1064           "Array to pointer decay must have array source type!");
1065
1066    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1067
1068    // Note that VLA pointers are always decayed, so we don't need to do
1069    // anything here.
1070    if (!E->getType()->isVariableArrayType()) {
1071      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1072      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1073                                 ->getElementType()) &&
1074             "Expected pointer to array");
1075      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1076    }
1077
1078    return V;
1079  }
1080  case CK_FunctionToPointerDecay:
1081    return EmitLValue(E).getAddress();
1082
1083  case CK_NullToPointer:
1084    if (MustVisitNullValue(E))
1085      (void) Visit(E);
1086
1087    return llvm::ConstantPointerNull::get(
1088                               cast<llvm::PointerType>(ConvertType(DestTy)));
1089
1090  case CK_NullToMemberPointer: {
1091    if (MustVisitNullValue(E))
1092      (void) Visit(E);
1093
1094    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1095    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1096  }
1097
1098  case CK_BaseToDerivedMemberPointer:
1099  case CK_DerivedToBaseMemberPointer: {
1100    Value *Src = Visit(E);
1101
1102    // Note that the AST doesn't distinguish between checked and
1103    // unchecked member pointer conversions, so we always have to
1104    // implement checked conversions here.  This is inefficient when
1105    // actual control flow may be required in order to perform the
1106    // check, which it is for data member pointers (but not member
1107    // function pointers on Itanium and ARM).
1108    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1109  }
1110
1111  case CK_FloatingRealToComplex:
1112  case CK_FloatingComplexCast:
1113  case CK_IntegralRealToComplex:
1114  case CK_IntegralComplexCast:
1115  case CK_IntegralComplexToFloatingComplex:
1116  case CK_FloatingComplexToIntegralComplex:
1117  case CK_ConstructorConversion:
1118  case CK_ToUnion:
1119    llvm_unreachable("scalar cast to non-scalar value");
1120    break;
1121
1122  case CK_GetObjCProperty: {
1123    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1124    assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1125           "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1126    RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
1127    return RV.getScalarVal();
1128  }
1129
1130  case CK_LValueToRValue:
1131    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1132    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1133    return Visit(const_cast<Expr*>(E));
1134
1135  case CK_IntegralToPointer: {
1136    Value *Src = Visit(const_cast<Expr*>(E));
1137
1138    // First, convert to the correct width so that we control the kind of
1139    // extension.
1140    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1141    bool InputSigned = E->getType()->isSignedIntegerType();
1142    llvm::Value* IntResult =
1143      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1144
1145    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1146  }
1147  case CK_PointerToIntegral: {
1148    Value *Src = Visit(const_cast<Expr*>(E));
1149
1150    // Handle conversion to bool correctly.
1151    if (DestTy->isBooleanType())
1152      return EmitScalarConversion(Src, E->getType(), DestTy);
1153
1154    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1155  }
1156  case CK_ToVoid: {
1157    CGF.EmitIgnoredExpr(E);
1158    return 0;
1159  }
1160  case CK_VectorSplat: {
1161    const llvm::Type *DstTy = ConvertType(DestTy);
1162    Value *Elt = Visit(const_cast<Expr*>(E));
1163
1164    // Insert the element in element zero of an undef vector
1165    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1166    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1167    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1168
1169    // Splat the element across to all elements
1170    llvm::SmallVector<llvm::Constant*, 16> Args;
1171    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1172    llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1173    for (unsigned i = 0; i < NumElements; i++)
1174      Args.push_back(Zero);
1175
1176    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1177    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1178    return Yay;
1179  }
1180
1181  case CK_IntegralCast:
1182  case CK_IntegralToFloating:
1183  case CK_FloatingToIntegral:
1184  case CK_FloatingCast:
1185    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1186
1187  case CK_IntegralToBoolean:
1188    return EmitIntToBoolConversion(Visit(E));
1189  case CK_PointerToBoolean:
1190    return EmitPointerToBoolConversion(Visit(E));
1191  case CK_FloatingToBoolean:
1192    return EmitFloatToBoolConversion(Visit(E));
1193  case CK_MemberPointerToBoolean: {
1194    llvm::Value *MemPtr = Visit(E);
1195    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1196    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1197  }
1198
1199  case CK_FloatingComplexToReal:
1200  case CK_IntegralComplexToReal:
1201    return CGF.EmitComplexExpr(E, false, true).first;
1202
1203  case CK_FloatingComplexToBoolean:
1204  case CK_IntegralComplexToBoolean: {
1205    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1206
1207    // TODO: kill this function off, inline appropriate case here
1208    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1209  }
1210
1211  }
1212
1213  llvm_unreachable("unknown scalar cast");
1214  return 0;
1215}
1216
1217Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1218  CodeGenFunction::StmtExprEvaluation eval(CGF);
1219  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1220    .getScalarVal();
1221}
1222
1223Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1224  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1225  return CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
1226}
1227
1228//===----------------------------------------------------------------------===//
1229//                             Unary Operators
1230//===----------------------------------------------------------------------===//
1231
1232llvm::Value *ScalarExprEmitter::
1233EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1234                                llvm::Value *InVal,
1235                                llvm::Value *NextVal, bool IsInc) {
1236  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1237  case LangOptions::SOB_Undefined:
1238    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1239    break;
1240  case LangOptions::SOB_Defined:
1241    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1242    break;
1243  case LangOptions::SOB_Trapping:
1244    BinOpInfo BinOp;
1245    BinOp.LHS = InVal;
1246    BinOp.RHS = NextVal;
1247    BinOp.Ty = E->getType();
1248    BinOp.Opcode = BO_Add;
1249    BinOp.E = E;
1250    return EmitOverflowCheckedBinOp(BinOp);
1251    break;
1252  }
1253  assert(false && "Unknown SignedOverflowBehaviorTy");
1254  return 0;
1255}
1256
1257llvm::Value *
1258ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1259                                           bool isInc, bool isPre) {
1260
1261  QualType type = E->getSubExpr()->getType();
1262  llvm::Value *value = EmitLoadOfLValue(LV, type);
1263  llvm::Value *input = value;
1264
1265  int amount = (isInc ? 1 : -1);
1266
1267  // Special case of integer increment that we have to check first: bool++.
1268  // Due to promotion rules, we get:
1269  //   bool++ -> bool = bool + 1
1270  //          -> bool = (int)bool + 1
1271  //          -> bool = ((int)bool + 1 != 0)
1272  // An interesting aspect of this is that increment is always true.
1273  // Decrement does not have this property.
1274  if (isInc && type->isBooleanType()) {
1275    value = Builder.getTrue();
1276
1277  // Most common case by far: integer increment.
1278  } else if (type->isIntegerType()) {
1279
1280    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1281
1282    // Note that signed integer inc/dec with width less than int can't
1283    // overflow because of promotion rules; we're just eliding a few steps here.
1284    if (type->isSignedIntegerType() &&
1285        value->getType()->getPrimitiveSizeInBits() >=
1286            CGF.CGM.IntTy->getBitWidth())
1287      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1288    else
1289      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1290
1291  // Next most common: pointer increment.
1292  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1293    QualType type = ptr->getPointeeType();
1294
1295    // VLA types don't have constant size.
1296    if (type->isVariableArrayType()) {
1297      llvm::Value *vlaSize =
1298        CGF.GetVLASize(CGF.getContext().getAsVariableArrayType(type));
1299      value = CGF.EmitCastToVoidPtr(value);
1300      if (!isInc) vlaSize = Builder.CreateNSWNeg(vlaSize, "vla.negsize");
1301      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1302        value = Builder.CreateGEP(value, vlaSize, "vla.inc");
1303      else
1304        value = Builder.CreateInBoundsGEP(value, vlaSize, "vla.inc");
1305      value = Builder.CreateBitCast(value, input->getType());
1306
1307    // Arithmetic on function pointers (!) is just +-1.
1308    } else if (type->isFunctionType()) {
1309      llvm::Value *amt = llvm::ConstantInt::get(CGF.Int32Ty, amount);
1310
1311      value = CGF.EmitCastToVoidPtr(value);
1312      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1313        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1314      else
1315        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1316      value = Builder.CreateBitCast(value, input->getType());
1317
1318    // For everything else, we can just do a simple increment.
1319    } else {
1320      llvm::Value *amt = llvm::ConstantInt::get(CGF.Int32Ty, amount);
1321      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1322        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1323      else
1324        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1325    }
1326
1327  // Vector increment/decrement.
1328  } else if (type->isVectorType()) {
1329    if (type->hasIntegerRepresentation()) {
1330      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1331
1332      if (type->hasSignedIntegerRepresentation())
1333        value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1334      else
1335        value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1336    } else {
1337      value = Builder.CreateFAdd(
1338                  value,
1339                  llvm::ConstantFP::get(value->getType(), amount),
1340                  isInc ? "inc" : "dec");
1341    }
1342
1343  // Floating point.
1344  } else if (type->isRealFloatingType()) {
1345    // Add the inc/dec to the real part.
1346    llvm::Value *amt;
1347    if (value->getType()->isFloatTy())
1348      amt = llvm::ConstantFP::get(VMContext,
1349                                  llvm::APFloat(static_cast<float>(amount)));
1350    else if (value->getType()->isDoubleTy())
1351      amt = llvm::ConstantFP::get(VMContext,
1352                                  llvm::APFloat(static_cast<double>(amount)));
1353    else {
1354      llvm::APFloat F(static_cast<float>(amount));
1355      bool ignored;
1356      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1357                &ignored);
1358      amt = llvm::ConstantFP::get(VMContext, F);
1359    }
1360    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1361
1362  // Objective-C pointer types.
1363  } else {
1364    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1365    value = CGF.EmitCastToVoidPtr(value);
1366
1367    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1368    if (!isInc) size = -size;
1369    llvm::Value *sizeValue =
1370      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1371
1372    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1373      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1374    else
1375      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1376    value = Builder.CreateBitCast(value, input->getType());
1377  }
1378
1379  // Store the updated result through the lvalue.
1380  if (LV.isBitField())
1381    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, type, &value);
1382  else
1383    CGF.EmitStoreThroughLValue(RValue::get(value), LV, type);
1384
1385  // If this is a postinc, return the value read from memory, otherwise use the
1386  // updated value.
1387  return isPre ? value : input;
1388}
1389
1390
1391
1392Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1393  TestAndClearIgnoreResultAssign();
1394  // Emit unary minus with EmitSub so we handle overflow cases etc.
1395  BinOpInfo BinOp;
1396  BinOp.RHS = Visit(E->getSubExpr());
1397
1398  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1399    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1400  else
1401    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1402  BinOp.Ty = E->getType();
1403  BinOp.Opcode = BO_Sub;
1404  BinOp.E = E;
1405  return EmitSub(BinOp);
1406}
1407
1408Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1409  TestAndClearIgnoreResultAssign();
1410  Value *Op = Visit(E->getSubExpr());
1411  return Builder.CreateNot(Op, "neg");
1412}
1413
1414Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1415  // Compare operand to zero.
1416  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1417
1418  // Invert value.
1419  // TODO: Could dynamically modify easy computations here.  For example, if
1420  // the operand is an icmp ne, turn into icmp eq.
1421  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1422
1423  // ZExt result to the expr type.
1424  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1425}
1426
1427Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1428  // Try folding the offsetof to a constant.
1429  Expr::EvalResult EvalResult;
1430  if (E->Evaluate(EvalResult, CGF.getContext()))
1431    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1432
1433  // Loop over the components of the offsetof to compute the value.
1434  unsigned n = E->getNumComponents();
1435  const llvm::Type* ResultType = ConvertType(E->getType());
1436  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1437  QualType CurrentType = E->getTypeSourceInfo()->getType();
1438  for (unsigned i = 0; i != n; ++i) {
1439    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1440    llvm::Value *Offset = 0;
1441    switch (ON.getKind()) {
1442    case OffsetOfExpr::OffsetOfNode::Array: {
1443      // Compute the index
1444      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1445      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1446      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1447      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1448
1449      // Save the element type
1450      CurrentType =
1451          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1452
1453      // Compute the element size
1454      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1455          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1456
1457      // Multiply out to compute the result
1458      Offset = Builder.CreateMul(Idx, ElemSize);
1459      break;
1460    }
1461
1462    case OffsetOfExpr::OffsetOfNode::Field: {
1463      FieldDecl *MemberDecl = ON.getField();
1464      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1465      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1466
1467      // Compute the index of the field in its parent.
1468      unsigned i = 0;
1469      // FIXME: It would be nice if we didn't have to loop here!
1470      for (RecordDecl::field_iterator Field = RD->field_begin(),
1471                                      FieldEnd = RD->field_end();
1472           Field != FieldEnd; (void)++Field, ++i) {
1473        if (*Field == MemberDecl)
1474          break;
1475      }
1476      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1477
1478      // Compute the offset to the field
1479      int64_t OffsetInt = RL.getFieldOffset(i) /
1480                          CGF.getContext().getCharWidth();
1481      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1482
1483      // Save the element type.
1484      CurrentType = MemberDecl->getType();
1485      break;
1486    }
1487
1488    case OffsetOfExpr::OffsetOfNode::Identifier:
1489      llvm_unreachable("dependent __builtin_offsetof");
1490
1491    case OffsetOfExpr::OffsetOfNode::Base: {
1492      if (ON.getBase()->isVirtual()) {
1493        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1494        continue;
1495      }
1496
1497      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1498      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1499
1500      // Save the element type.
1501      CurrentType = ON.getBase()->getType();
1502
1503      // Compute the offset to the base.
1504      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1505      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1506      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1507                          CGF.getContext().getCharWidth();
1508      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1509      break;
1510    }
1511    }
1512    Result = Builder.CreateAdd(Result, Offset);
1513  }
1514  return Result;
1515}
1516
1517/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1518/// argument of the sizeof expression as an integer.
1519Value *
1520ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1521                              const UnaryExprOrTypeTraitExpr *E) {
1522  QualType TypeToSize = E->getTypeOfArgument();
1523  if (E->getKind() == UETT_SizeOf) {
1524    if (const VariableArrayType *VAT =
1525          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1526      if (E->isArgumentType()) {
1527        // sizeof(type) - make sure to emit the VLA size.
1528        CGF.EmitVLASize(TypeToSize);
1529      } else {
1530        // C99 6.5.3.4p2: If the argument is an expression of type
1531        // VLA, it is evaluated.
1532        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1533      }
1534
1535      return CGF.GetVLASize(VAT);
1536    }
1537  }
1538
1539  // If this isn't sizeof(vla), the result must be constant; use the constant
1540  // folding logic so we don't have to duplicate it here.
1541  Expr::EvalResult Result;
1542  E->Evaluate(Result, CGF.getContext());
1543  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1544}
1545
1546Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1547  Expr *Op = E->getSubExpr();
1548  if (Op->getType()->isAnyComplexType()) {
1549    // If it's an l-value, load through the appropriate subobject l-value.
1550    // Note that we have to ask E because Op might be an l-value that
1551    // this won't work for, e.g. an Obj-C property.
1552    if (E->isGLValue())
1553      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1554                .getScalarVal();
1555
1556    // Otherwise, calculate and project.
1557    return CGF.EmitComplexExpr(Op, false, true).first;
1558  }
1559
1560  return Visit(Op);
1561}
1562
1563Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1564  Expr *Op = E->getSubExpr();
1565  if (Op->getType()->isAnyComplexType()) {
1566    // If it's an l-value, load through the appropriate subobject l-value.
1567    // Note that we have to ask E because Op might be an l-value that
1568    // this won't work for, e.g. an Obj-C property.
1569    if (Op->isGLValue())
1570      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1571                .getScalarVal();
1572
1573    // Otherwise, calculate and project.
1574    return CGF.EmitComplexExpr(Op, true, false).second;
1575  }
1576
1577  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1578  // effects are evaluated, but not the actual value.
1579  CGF.EmitScalarExpr(Op, true);
1580  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1581}
1582
1583//===----------------------------------------------------------------------===//
1584//                           Binary Operators
1585//===----------------------------------------------------------------------===//
1586
1587BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1588  TestAndClearIgnoreResultAssign();
1589  BinOpInfo Result;
1590  Result.LHS = Visit(E->getLHS());
1591  Result.RHS = Visit(E->getRHS());
1592  Result.Ty  = E->getType();
1593  Result.Opcode = E->getOpcode();
1594  Result.E = E;
1595  return Result;
1596}
1597
1598LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1599                                              const CompoundAssignOperator *E,
1600                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1601                                                   Value *&Result) {
1602  QualType LHSTy = E->getLHS()->getType();
1603  BinOpInfo OpInfo;
1604
1605  if (E->getComputationResultType()->isAnyComplexType()) {
1606    // This needs to go through the complex expression emitter, but it's a tad
1607    // complicated to do that... I'm leaving it out for now.  (Note that we do
1608    // actually need the imaginary part of the RHS for multiplication and
1609    // division.)
1610    CGF.ErrorUnsupported(E, "complex compound assignment");
1611    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1612    return LValue();
1613  }
1614
1615  // Emit the RHS first.  __block variables need to have the rhs evaluated
1616  // first, plus this should improve codegen a little.
1617  OpInfo.RHS = Visit(E->getRHS());
1618  OpInfo.Ty = E->getComputationResultType();
1619  OpInfo.Opcode = E->getOpcode();
1620  OpInfo.E = E;
1621  // Load/convert the LHS.
1622  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1623  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1624  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1625                                    E->getComputationLHSType());
1626
1627  // Expand the binary operator.
1628  Result = (this->*Func)(OpInfo);
1629
1630  // Convert the result back to the LHS type.
1631  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1632
1633  // Store the result value into the LHS lvalue. Bit-fields are handled
1634  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1635  // 'An assignment expression has the value of the left operand after the
1636  // assignment...'.
1637  if (LHSLV.isBitField())
1638    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1639                                       &Result);
1640  else
1641    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1642
1643  return LHSLV;
1644}
1645
1646Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1647                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1648  bool Ignore = TestAndClearIgnoreResultAssign();
1649  Value *RHS;
1650  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1651
1652  // If the result is clearly ignored, return now.
1653  if (Ignore)
1654    return 0;
1655
1656  // The result of an assignment in C is the assigned r-value.
1657  if (!CGF.getContext().getLangOptions().CPlusPlus)
1658    return RHS;
1659
1660  // Objective-C property assignment never reloads the value following a store.
1661  if (LHS.isPropertyRef())
1662    return RHS;
1663
1664  // If the lvalue is non-volatile, return the computed value of the assignment.
1665  if (!LHS.isVolatileQualified())
1666    return RHS;
1667
1668  // Otherwise, reload the value.
1669  return EmitLoadOfLValue(LHS, E->getType());
1670}
1671
1672void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1673     					    const BinOpInfo &Ops,
1674				     	    llvm::Value *Zero, bool isDiv) {
1675  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1676  llvm::BasicBlock *contBB =
1677    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1678
1679  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1680
1681  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1682    llvm::Value *IntMin =
1683      llvm::ConstantInt::get(VMContext,
1684                             llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1685    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1686
1687    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1688    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1689    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1690    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1691    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1692                         overflowBB, contBB);
1693  } else {
1694    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1695                             overflowBB, contBB);
1696  }
1697  EmitOverflowBB(overflowBB);
1698  Builder.SetInsertPoint(contBB);
1699}
1700
1701Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1702  if (isTrapvOverflowBehavior()) {
1703    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1704
1705    if (Ops.Ty->isIntegerType())
1706      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1707    else if (Ops.Ty->isRealFloatingType()) {
1708      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1709                                                          CGF.CurFn);
1710      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1711      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1712                               overflowBB, DivCont);
1713      EmitOverflowBB(overflowBB);
1714      Builder.SetInsertPoint(DivCont);
1715    }
1716  }
1717  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1718    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1719  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1720    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1721  else
1722    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1723}
1724
1725Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1726  // Rem in C can't be a floating point type: C99 6.5.5p2.
1727  if (isTrapvOverflowBehavior()) {
1728    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1729
1730    if (Ops.Ty->isIntegerType())
1731      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1732  }
1733
1734  if (Ops.Ty->isUnsignedIntegerType())
1735    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1736  else
1737    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1738}
1739
1740Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1741  unsigned IID;
1742  unsigned OpID = 0;
1743
1744  switch (Ops.Opcode) {
1745  case BO_Add:
1746  case BO_AddAssign:
1747    OpID = 1;
1748    IID = llvm::Intrinsic::sadd_with_overflow;
1749    break;
1750  case BO_Sub:
1751  case BO_SubAssign:
1752    OpID = 2;
1753    IID = llvm::Intrinsic::ssub_with_overflow;
1754    break;
1755  case BO_Mul:
1756  case BO_MulAssign:
1757    OpID = 3;
1758    IID = llvm::Intrinsic::smul_with_overflow;
1759    break;
1760  default:
1761    assert(false && "Unsupported operation for overflow detection");
1762    IID = 0;
1763  }
1764  OpID <<= 1;
1765  OpID |= 1;
1766
1767  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1768
1769  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1770
1771  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1772  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1773  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1774
1775  // Branch in case of overflow.
1776  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1777  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1778  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1779
1780  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1781
1782  // Handle overflow with llvm.trap.
1783  const std::string *handlerName =
1784    &CGF.getContext().getLangOptions().OverflowHandler;
1785  if (handlerName->empty()) {
1786    EmitOverflowBB(overflowBB);
1787    Builder.SetInsertPoint(continueBB);
1788    return result;
1789  }
1790
1791  // If an overflow handler is set, then we want to call it and then use its
1792  // result, if it returns.
1793  Builder.SetInsertPoint(overflowBB);
1794
1795  // Get the overflow handler.
1796  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1797  std::vector<const llvm::Type*> argTypes;
1798  argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1799  argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1800  llvm::FunctionType *handlerTy =
1801      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1802  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1803
1804  // Sign extend the args to 64-bit, so that we can use the same handler for
1805  // all types of overflow.
1806  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1807  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1808
1809  // Call the handler with the two arguments, the operation, and the size of
1810  // the result.
1811  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1812      Builder.getInt8(OpID),
1813      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1814
1815  // Truncate the result back to the desired size.
1816  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1817  Builder.CreateBr(continueBB);
1818
1819  Builder.SetInsertPoint(continueBB);
1820  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1821  phi->addIncoming(result, initialBB);
1822  phi->addIncoming(handlerResult, overflowBB);
1823
1824  return phi;
1825}
1826
1827Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1828  if (!Ops.Ty->isAnyPointerType()) {
1829    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1830      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1831      case LangOptions::SOB_Undefined:
1832        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1833      case LangOptions::SOB_Defined:
1834        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1835      case LangOptions::SOB_Trapping:
1836        return EmitOverflowCheckedBinOp(Ops);
1837      }
1838    }
1839
1840    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1841      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1842
1843    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1844  }
1845
1846  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1847  // use this path.
1848  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1849
1850  if (Ops.Ty->isPointerType() &&
1851      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1852    // The amount of the addition needs to account for the VLA size
1853    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1854  }
1855
1856  Value *Ptr, *Idx;
1857  Expr *IdxExp;
1858  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1859  const ObjCObjectPointerType *OPT =
1860    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1861  if (PT || OPT) {
1862    Ptr = Ops.LHS;
1863    Idx = Ops.RHS;
1864    IdxExp = BinOp->getRHS();
1865  } else {  // int + pointer
1866    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1867    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1868    assert((PT || OPT) && "Invalid add expr");
1869    Ptr = Ops.RHS;
1870    Idx = Ops.LHS;
1871    IdxExp = BinOp->getLHS();
1872  }
1873
1874  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1875  if (Width < CGF.PointerWidthInBits) {
1876    // Zero or sign extend the pointer value based on whether the index is
1877    // signed or not.
1878    const llvm::Type *IdxType = CGF.IntPtrTy;
1879    if (IdxExp->getType()->isSignedIntegerType())
1880      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1881    else
1882      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1883  }
1884  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1885  // Handle interface types, which are not represented with a concrete type.
1886  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1887    llvm::Value *InterfaceSize =
1888      llvm::ConstantInt::get(Idx->getType(),
1889          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1890    Idx = Builder.CreateMul(Idx, InterfaceSize);
1891    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1892    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1893    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1894    return Builder.CreateBitCast(Res, Ptr->getType());
1895  }
1896
1897  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1898  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1899  // future proof.
1900  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1901    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1902    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1903    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1904    return Builder.CreateBitCast(Res, Ptr->getType());
1905  }
1906
1907  if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1908    return Builder.CreateGEP(Ptr, Idx, "add.ptr");
1909  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1910}
1911
1912Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1913  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1914    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1915      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1916      case LangOptions::SOB_Undefined:
1917        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1918      case LangOptions::SOB_Defined:
1919        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1920      case LangOptions::SOB_Trapping:
1921        return EmitOverflowCheckedBinOp(Ops);
1922      }
1923    }
1924
1925    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1926      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1927
1928    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1929  }
1930
1931  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1932  // use this path.
1933  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1934
1935  if (BinOp->getLHS()->getType()->isPointerType() &&
1936      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1937    // The amount of the addition needs to account for the VLA size for
1938    // ptr-int
1939    // The amount of the division needs to account for the VLA size for
1940    // ptr-ptr.
1941    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1942  }
1943
1944  const QualType LHSType = BinOp->getLHS()->getType();
1945  const QualType LHSElementType = LHSType->getPointeeType();
1946  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1947    // pointer - int
1948    Value *Idx = Ops.RHS;
1949    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1950    if (Width < CGF.PointerWidthInBits) {
1951      // Zero or sign extend the pointer value based on whether the index is
1952      // signed or not.
1953      const llvm::Type *IdxType = CGF.IntPtrTy;
1954      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1955        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1956      else
1957        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1958    }
1959    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1960
1961    // Handle interface types, which are not represented with a concrete type.
1962    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1963      llvm::Value *InterfaceSize =
1964        llvm::ConstantInt::get(Idx->getType(),
1965                               CGF.getContext().
1966                                 getTypeSizeInChars(OIT).getQuantity());
1967      Idx = Builder.CreateMul(Idx, InterfaceSize);
1968      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1969      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1970      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1971      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1972    }
1973
1974    // Explicitly handle GNU void* and function pointer arithmetic
1975    // extensions. The GNU void* casts amount to no-ops since our void* type is
1976    // i8*, but this is future proof.
1977    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1978      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1979      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1980      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1981      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1982    }
1983
1984    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1985      return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1986    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1987  }
1988
1989  // pointer - pointer
1990  Value *LHS = Ops.LHS;
1991  Value *RHS = Ops.RHS;
1992
1993  CharUnits ElementSize;
1994
1995  // Handle GCC extension for pointer arithmetic on void* and function pointer
1996  // types.
1997  if (LHSElementType->isVoidType() || LHSElementType->isFunctionType())
1998    ElementSize = CharUnits::One();
1999  else
2000    ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
2001
2002  const llvm::Type *ResultType = ConvertType(Ops.Ty);
2003  LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
2004  RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2005  Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2006
2007  // Optimize out the shift for element size of 1.
2008  if (ElementSize.isOne())
2009    return BytesBetween;
2010
2011  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2012  // pointer difference in C is only defined in the case where both operands
2013  // are pointing to elements of an array.
2014  Value *BytesPerElt =
2015      llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
2016  return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
2017}
2018
2019Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2020  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2021  // RHS to the same size as the LHS.
2022  Value *RHS = Ops.RHS;
2023  if (Ops.LHS->getType() != RHS->getType())
2024    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2025
2026  if (CGF.CatchUndefined
2027      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2028    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2029    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2030    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2031                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2032                             Cont, CGF.getTrapBB());
2033    CGF.EmitBlock(Cont);
2034  }
2035
2036  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2037}
2038
2039Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2040  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2041  // RHS to the same size as the LHS.
2042  Value *RHS = Ops.RHS;
2043  if (Ops.LHS->getType() != RHS->getType())
2044    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2045
2046  if (CGF.CatchUndefined
2047      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2048    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2049    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2050    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2051                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2052                             Cont, CGF.getTrapBB());
2053    CGF.EmitBlock(Cont);
2054  }
2055
2056  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2057    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2058  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2059}
2060
2061enum IntrinsicType { VCMPEQ, VCMPGT };
2062// return corresponding comparison intrinsic for given vector type
2063static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2064                                        BuiltinType::Kind ElemKind) {
2065  switch (ElemKind) {
2066  default: assert(0 && "unexpected element type");
2067  case BuiltinType::Char_U:
2068  case BuiltinType::UChar:
2069    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2070                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2071    break;
2072  case BuiltinType::Char_S:
2073  case BuiltinType::SChar:
2074    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2075                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2076    break;
2077  case BuiltinType::UShort:
2078    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2079                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2080    break;
2081  case BuiltinType::Short:
2082    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2083                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2084    break;
2085  case BuiltinType::UInt:
2086  case BuiltinType::ULong:
2087    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2088                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2089    break;
2090  case BuiltinType::Int:
2091  case BuiltinType::Long:
2092    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2093                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2094    break;
2095  case BuiltinType::Float:
2096    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2097                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2098    break;
2099  }
2100  return llvm::Intrinsic::not_intrinsic;
2101}
2102
2103Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2104                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2105  TestAndClearIgnoreResultAssign();
2106  Value *Result;
2107  QualType LHSTy = E->getLHS()->getType();
2108  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2109    assert(E->getOpcode() == BO_EQ ||
2110           E->getOpcode() == BO_NE);
2111    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2112    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2113    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2114                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2115  } else if (!LHSTy->isAnyComplexType()) {
2116    Value *LHS = Visit(E->getLHS());
2117    Value *RHS = Visit(E->getRHS());
2118
2119    // If AltiVec, the comparison results in a numeric type, so we use
2120    // intrinsics comparing vectors and giving 0 or 1 as a result
2121    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2122      // constants for mapping CR6 register bits to predicate result
2123      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2124
2125      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2126
2127      // in several cases vector arguments order will be reversed
2128      Value *FirstVecArg = LHS,
2129            *SecondVecArg = RHS;
2130
2131      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2132      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2133      BuiltinType::Kind ElementKind = BTy->getKind();
2134
2135      switch(E->getOpcode()) {
2136      default: assert(0 && "is not a comparison operation");
2137      case BO_EQ:
2138        CR6 = CR6_LT;
2139        ID = GetIntrinsic(VCMPEQ, ElementKind);
2140        break;
2141      case BO_NE:
2142        CR6 = CR6_EQ;
2143        ID = GetIntrinsic(VCMPEQ, ElementKind);
2144        break;
2145      case BO_LT:
2146        CR6 = CR6_LT;
2147        ID = GetIntrinsic(VCMPGT, ElementKind);
2148        std::swap(FirstVecArg, SecondVecArg);
2149        break;
2150      case BO_GT:
2151        CR6 = CR6_LT;
2152        ID = GetIntrinsic(VCMPGT, ElementKind);
2153        break;
2154      case BO_LE:
2155        if (ElementKind == BuiltinType::Float) {
2156          CR6 = CR6_LT;
2157          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2158          std::swap(FirstVecArg, SecondVecArg);
2159        }
2160        else {
2161          CR6 = CR6_EQ;
2162          ID = GetIntrinsic(VCMPGT, ElementKind);
2163        }
2164        break;
2165      case BO_GE:
2166        if (ElementKind == BuiltinType::Float) {
2167          CR6 = CR6_LT;
2168          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2169        }
2170        else {
2171          CR6 = CR6_EQ;
2172          ID = GetIntrinsic(VCMPGT, ElementKind);
2173          std::swap(FirstVecArg, SecondVecArg);
2174        }
2175        break;
2176      }
2177
2178      Value *CR6Param = llvm::ConstantInt::get(CGF.Int32Ty, CR6);
2179      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2180      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2181      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2182    }
2183
2184    if (LHS->getType()->isFPOrFPVectorTy()) {
2185      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2186                                  LHS, RHS, "cmp");
2187    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2188      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2189                                  LHS, RHS, "cmp");
2190    } else {
2191      // Unsigned integers and pointers.
2192      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2193                                  LHS, RHS, "cmp");
2194    }
2195
2196    // If this is a vector comparison, sign extend the result to the appropriate
2197    // vector integer type and return it (don't convert to bool).
2198    if (LHSTy->isVectorType())
2199      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2200
2201  } else {
2202    // Complex Comparison: can only be an equality comparison.
2203    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2204    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2205
2206    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2207
2208    Value *ResultR, *ResultI;
2209    if (CETy->isRealFloatingType()) {
2210      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2211                                   LHS.first, RHS.first, "cmp.r");
2212      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2213                                   LHS.second, RHS.second, "cmp.i");
2214    } else {
2215      // Complex comparisons can only be equality comparisons.  As such, signed
2216      // and unsigned opcodes are the same.
2217      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2218                                   LHS.first, RHS.first, "cmp.r");
2219      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2220                                   LHS.second, RHS.second, "cmp.i");
2221    }
2222
2223    if (E->getOpcode() == BO_EQ) {
2224      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2225    } else {
2226      assert(E->getOpcode() == BO_NE &&
2227             "Complex comparison other than == or != ?");
2228      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2229    }
2230  }
2231
2232  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2233}
2234
2235Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2236  bool Ignore = TestAndClearIgnoreResultAssign();
2237
2238  // __block variables need to have the rhs evaluated first, plus this should
2239  // improve codegen just a little.
2240  Value *RHS = Visit(E->getRHS());
2241  LValue LHS = EmitCheckedLValue(E->getLHS());
2242
2243  // Store the value into the LHS.  Bit-fields are handled specially
2244  // because the result is altered by the store, i.e., [C99 6.5.16p1]
2245  // 'An assignment expression has the value of the left operand after
2246  // the assignment...'.
2247  if (LHS.isBitField())
2248    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2249                                       &RHS);
2250  else
2251    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2252
2253  // If the result is clearly ignored, return now.
2254  if (Ignore)
2255    return 0;
2256
2257  // The result of an assignment in C is the assigned r-value.
2258  if (!CGF.getContext().getLangOptions().CPlusPlus)
2259    return RHS;
2260
2261  // Objective-C property assignment never reloads the value following a store.
2262  if (LHS.isPropertyRef())
2263    return RHS;
2264
2265  // If the lvalue is non-volatile, return the computed value of the assignment.
2266  if (!LHS.isVolatileQualified())
2267    return RHS;
2268
2269  // Otherwise, reload the value.
2270  return EmitLoadOfLValue(LHS, E->getType());
2271}
2272
2273Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2274  const llvm::Type *ResTy = ConvertType(E->getType());
2275
2276  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2277  // If we have 1 && X, just emit X without inserting the control flow.
2278  bool LHSCondVal;
2279  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2280    if (LHSCondVal) { // If we have 1 && X, just emit X.
2281      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2282      // ZExt result to int or bool.
2283      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2284    }
2285
2286    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2287    if (!CGF.ContainsLabel(E->getRHS()))
2288      return llvm::Constant::getNullValue(ResTy);
2289  }
2290
2291  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2292  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2293
2294  CodeGenFunction::ConditionalEvaluation eval(CGF);
2295
2296  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2297  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2298
2299  // Any edges into the ContBlock are now from an (indeterminate number of)
2300  // edges from this first condition.  All of these values will be false.  Start
2301  // setting up the PHI node in the Cont Block for this.
2302  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2303                                            "", ContBlock);
2304  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2305       PI != PE; ++PI)
2306    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2307
2308  eval.begin(CGF);
2309  CGF.EmitBlock(RHSBlock);
2310  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2311  eval.end(CGF);
2312
2313  // Reaquire the RHS block, as there may be subblocks inserted.
2314  RHSBlock = Builder.GetInsertBlock();
2315
2316  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2317  // into the phi node for the edge with the value of RHSCond.
2318  if (CGF.getDebugInfo())
2319    // There is no need to emit line number for unconditional branch.
2320    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2321  CGF.EmitBlock(ContBlock);
2322  PN->addIncoming(RHSCond, RHSBlock);
2323
2324  // ZExt result to int.
2325  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2326}
2327
2328Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2329  const llvm::Type *ResTy = ConvertType(E->getType());
2330
2331  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2332  // If we have 0 || X, just emit X without inserting the control flow.
2333  bool LHSCondVal;
2334  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2335    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2336      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2337      // ZExt result to int or bool.
2338      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2339    }
2340
2341    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2342    if (!CGF.ContainsLabel(E->getRHS()))
2343      return llvm::ConstantInt::get(ResTy, 1);
2344  }
2345
2346  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2347  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2348
2349  CodeGenFunction::ConditionalEvaluation eval(CGF);
2350
2351  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2352  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2353
2354  // Any edges into the ContBlock are now from an (indeterminate number of)
2355  // edges from this first condition.  All of these values will be true.  Start
2356  // setting up the PHI node in the Cont Block for this.
2357  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2358                                            "", ContBlock);
2359  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2360       PI != PE; ++PI)
2361    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2362
2363  eval.begin(CGF);
2364
2365  // Emit the RHS condition as a bool value.
2366  CGF.EmitBlock(RHSBlock);
2367  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2368
2369  eval.end(CGF);
2370
2371  // Reaquire the RHS block, as there may be subblocks inserted.
2372  RHSBlock = Builder.GetInsertBlock();
2373
2374  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2375  // into the phi node for the edge with the value of RHSCond.
2376  CGF.EmitBlock(ContBlock);
2377  PN->addIncoming(RHSCond, RHSBlock);
2378
2379  // ZExt result to int.
2380  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2381}
2382
2383Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2384  CGF.EmitIgnoredExpr(E->getLHS());
2385  CGF.EnsureInsertPoint();
2386  return Visit(E->getRHS());
2387}
2388
2389//===----------------------------------------------------------------------===//
2390//                             Other Operators
2391//===----------------------------------------------------------------------===//
2392
2393/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2394/// expression is cheap enough and side-effect-free enough to evaluate
2395/// unconditionally instead of conditionally.  This is used to convert control
2396/// flow into selects in some cases.
2397static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2398                                                   CodeGenFunction &CGF) {
2399  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2400    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2401
2402  // TODO: Allow anything we can constant fold to an integer or fp constant.
2403  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2404      isa<FloatingLiteral>(E))
2405    return true;
2406
2407  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2408  // X and Y are local variables.
2409  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2410    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2411      if (VD->hasLocalStorage() && !(CGF.getContext()
2412                                     .getCanonicalType(VD->getType())
2413                                     .isVolatileQualified()))
2414        return true;
2415
2416  return false;
2417}
2418
2419
2420Value *ScalarExprEmitter::
2421VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2422  TestAndClearIgnoreResultAssign();
2423
2424  // Bind the common expression if necessary.
2425  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2426
2427  Expr *condExpr = E->getCond();
2428  Expr *lhsExpr = E->getTrueExpr();
2429  Expr *rhsExpr = E->getFalseExpr();
2430
2431  // If the condition constant folds and can be elided, try to avoid emitting
2432  // the condition and the dead arm.
2433  bool CondExprBool;
2434  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2435    Expr *live = lhsExpr, *dead = rhsExpr;
2436    if (!CondExprBool) std::swap(live, dead);
2437
2438    // If the dead side doesn't have labels we need, and if the Live side isn't
2439    // the gnu missing ?: extension (which we could handle, but don't bother
2440    // to), just emit the Live part.
2441    if (!CGF.ContainsLabel(dead))
2442      return Visit(live);
2443  }
2444
2445  // OpenCL: If the condition is a vector, we can treat this condition like
2446  // the select function.
2447  if (CGF.getContext().getLangOptions().OpenCL
2448      && condExpr->getType()->isVectorType()) {
2449    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2450    llvm::Value *LHS = Visit(lhsExpr);
2451    llvm::Value *RHS = Visit(rhsExpr);
2452
2453    const llvm::Type *condType = ConvertType(condExpr->getType());
2454    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2455
2456    unsigned numElem = vecTy->getNumElements();
2457    const llvm::Type *elemType = vecTy->getElementType();
2458
2459    std::vector<llvm::Constant*> Zvals;
2460    for (unsigned i = 0; i < numElem; ++i)
2461      Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2462
2463    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2464    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2465    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2466                                          llvm::VectorType::get(elemType,
2467                                                                numElem),
2468                                          "sext");
2469    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2470
2471    // Cast float to int to perform ANDs if necessary.
2472    llvm::Value *RHSTmp = RHS;
2473    llvm::Value *LHSTmp = LHS;
2474    bool wasCast = false;
2475    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2476    if (rhsVTy->getElementType()->isFloatTy()) {
2477      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2478      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2479      wasCast = true;
2480    }
2481
2482    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2483    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2484    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2485    if (wasCast)
2486      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2487
2488    return tmp5;
2489  }
2490
2491  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2492  // select instead of as control flow.  We can only do this if it is cheap and
2493  // safe to evaluate the LHS and RHS unconditionally.
2494  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2495      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2496    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2497    llvm::Value *LHS = Visit(lhsExpr);
2498    llvm::Value *RHS = Visit(rhsExpr);
2499    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2500  }
2501
2502  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2503  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2504  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2505
2506  CodeGenFunction::ConditionalEvaluation eval(CGF);
2507  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2508
2509  CGF.EmitBlock(LHSBlock);
2510  eval.begin(CGF);
2511  Value *LHS = Visit(lhsExpr);
2512  eval.end(CGF);
2513
2514  LHSBlock = Builder.GetInsertBlock();
2515  Builder.CreateBr(ContBlock);
2516
2517  CGF.EmitBlock(RHSBlock);
2518  eval.begin(CGF);
2519  Value *RHS = Visit(rhsExpr);
2520  eval.end(CGF);
2521
2522  RHSBlock = Builder.GetInsertBlock();
2523  CGF.EmitBlock(ContBlock);
2524
2525  // If the LHS or RHS is a throw expression, it will be legitimately null.
2526  if (!LHS)
2527    return RHS;
2528  if (!RHS)
2529    return LHS;
2530
2531  // Create a PHI node for the real part.
2532  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2533  PN->addIncoming(LHS, LHSBlock);
2534  PN->addIncoming(RHS, RHSBlock);
2535  return PN;
2536}
2537
2538Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2539  return Visit(E->getChosenSubExpr(CGF.getContext()));
2540}
2541
2542Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2543  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2544  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2545
2546  // If EmitVAArg fails, we fall back to the LLVM instruction.
2547  if (!ArgPtr)
2548    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2549
2550  // FIXME Volatility.
2551  return Builder.CreateLoad(ArgPtr);
2552}
2553
2554Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2555  return CGF.EmitBlockLiteral(block);
2556}
2557
2558//===----------------------------------------------------------------------===//
2559//                         Entry Point into this File
2560//===----------------------------------------------------------------------===//
2561
2562/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2563/// type, ignoring the result.
2564Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2565  assert(E && !hasAggregateLLVMType(E->getType()) &&
2566         "Invalid scalar expression to emit");
2567
2568  if (isa<CXXDefaultArgExpr>(E))
2569    disableDebugInfo();
2570  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2571    .Visit(const_cast<Expr*>(E));
2572  if (isa<CXXDefaultArgExpr>(E))
2573    enableDebugInfo();
2574  return V;
2575}
2576
2577/// EmitScalarConversion - Emit a conversion from the specified type to the
2578/// specified destination type, both of which are LLVM scalar types.
2579Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2580                                             QualType DstTy) {
2581  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2582         "Invalid scalar expression to emit");
2583  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2584}
2585
2586/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2587/// type to the specified destination type, where the destination type is an
2588/// LLVM scalar type.
2589Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2590                                                      QualType SrcTy,
2591                                                      QualType DstTy) {
2592  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2593         "Invalid complex -> scalar conversion");
2594  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2595                                                                DstTy);
2596}
2597
2598
2599llvm::Value *CodeGenFunction::
2600EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2601                        bool isInc, bool isPre) {
2602  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2603}
2604
2605LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2606  llvm::Value *V;
2607  // object->isa or (*object).isa
2608  // Generate code as for: *(Class*)object
2609  // build Class* type
2610  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2611
2612  Expr *BaseExpr = E->getBase();
2613  if (BaseExpr->isRValue()) {
2614    V = CreateTempAlloca(ClassPtrTy, "resval");
2615    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2616    Builder.CreateStore(Src, V);
2617    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2618      MakeAddrLValue(V, E->getType()), E->getType());
2619  } else {
2620    if (E->isArrow())
2621      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2622    else
2623      V = EmitLValue(BaseExpr).getAddress();
2624  }
2625
2626  // build Class* type
2627  ClassPtrTy = ClassPtrTy->getPointerTo();
2628  V = Builder.CreateBitCast(V, ClassPtrTy);
2629  return MakeAddrLValue(V, E->getType());
2630}
2631
2632
2633LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2634                                            const CompoundAssignOperator *E) {
2635  ScalarExprEmitter Scalar(*this);
2636  Value *Result = 0;
2637  switch (E->getOpcode()) {
2638#define COMPOUND_OP(Op)                                                       \
2639    case BO_##Op##Assign:                                                     \
2640      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2641                                             Result)
2642  COMPOUND_OP(Mul);
2643  COMPOUND_OP(Div);
2644  COMPOUND_OP(Rem);
2645  COMPOUND_OP(Add);
2646  COMPOUND_OP(Sub);
2647  COMPOUND_OP(Shl);
2648  COMPOUND_OP(Shr);
2649  COMPOUND_OP(And);
2650  COMPOUND_OP(Xor);
2651  COMPOUND_OP(Or);
2652#undef COMPOUND_OP
2653
2654  case BO_PtrMemD:
2655  case BO_PtrMemI:
2656  case BO_Mul:
2657  case BO_Div:
2658  case BO_Rem:
2659  case BO_Add:
2660  case BO_Sub:
2661  case BO_Shl:
2662  case BO_Shr:
2663  case BO_LT:
2664  case BO_GT:
2665  case BO_LE:
2666  case BO_GE:
2667  case BO_EQ:
2668  case BO_NE:
2669  case BO_And:
2670  case BO_Xor:
2671  case BO_Or:
2672  case BO_LAnd:
2673  case BO_LOr:
2674  case BO_Assign:
2675  case BO_Comma:
2676    assert(false && "Not valid compound assignment operators");
2677    break;
2678  }
2679
2680  llvm_unreachable("Unhandled compound assignment operator");
2681}
2682