CGExprScalar.cpp revision be07f60131bc6f8d6696f4644df1ef667a1730d5
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51  bool IgnoreResultAssign;
52  llvm::LLVMContext &VMContext;
53public:
54
55  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57      VMContext(cgf.getLLVMContext()) {
58  }
59
60  //===--------------------------------------------------------------------===//
61  //                               Utilities
62  //===--------------------------------------------------------------------===//
63
64  bool TestAndClearIgnoreResultAssign() {
65    bool I = IgnoreResultAssign;
66    IgnoreResultAssign = false;
67    return I;
68  }
69
70  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72
73  Value *EmitLoadOfLValue(LValue LV, QualType T) {
74    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
75  }
76
77  /// EmitLoadOfLValue - Given an expression with complex type that represents a
78  /// value l-value, this method emits the address of the l-value, then loads
79  /// and returns the result.
80  Value *EmitLoadOfLValue(const Expr *E) {
81    return EmitLoadOfLValue(EmitLValue(E), E->getType());
82  }
83
84  /// EmitConversionToBool - Convert the specified expression value to a
85  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
86  Value *EmitConversionToBool(Value *Src, QualType DstTy);
87
88  /// EmitScalarConversion - Emit a conversion from the specified type to the
89  /// specified destination type, both of which are LLVM scalar types.
90  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
91
92  /// EmitComplexToScalarConversion - Emit a conversion from the specified
93  /// complex type to the specified destination type, where the destination type
94  /// is an LLVM scalar type.
95  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
96                                       QualType SrcTy, QualType DstTy);
97
98  //===--------------------------------------------------------------------===//
99  //                            Visitor Methods
100  //===--------------------------------------------------------------------===//
101
102  Value *VisitStmt(Stmt *S) {
103    S->dump(CGF.getContext().getSourceManager());
104    assert(0 && "Stmt can't have complex result type!");
105    return 0;
106  }
107  Value *VisitExpr(Expr *S);
108
109  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
110
111  // Leaves.
112  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
113    return llvm::ConstantInt::get(VMContext, E->getValue());
114  }
115  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
116    return llvm::ConstantFP::get(VMContext, E->getValue());
117  }
118  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
119    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
120  }
121  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
122    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
123  }
124  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
125    return llvm::Constant::getNullValue(ConvertType(E->getType()));
126  }
127  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
128    return llvm::Constant::getNullValue(ConvertType(E->getType()));
129  }
130  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
131    return llvm::ConstantInt::get(ConvertType(E->getType()),
132                                  CGF.getContext().typesAreCompatible(
133                                    E->getArgType1(), E->getArgType2()));
134  }
135  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
136  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
137    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
138    return Builder.CreateBitCast(V, ConvertType(E->getType()));
139  }
140
141  // l-values.
142  Value *VisitDeclRefExpr(DeclRefExpr *E) {
143    Expr::EvalResult Result;
144    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
145      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
146      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
147    }
148    return EmitLoadOfLValue(E);
149  }
150  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
151    return CGF.EmitObjCSelectorExpr(E);
152  }
153  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
154    return CGF.EmitObjCProtocolExpr(E);
155  }
156  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
157    return EmitLoadOfLValue(E);
158  }
159  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
160    return EmitLoadOfLValue(E);
161  }
162  Value *VisitObjCImplicitSetterGetterRefExpr(
163                        ObjCImplicitSetterGetterRefExpr *E) {
164    return EmitLoadOfLValue(E);
165  }
166  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
167    return CGF.EmitObjCMessageExpr(E).getScalarVal();
168  }
169
170  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
171    LValue LV = CGF.EmitObjCIsaExpr(E);
172    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
173    return V;
174  }
175
176  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
177  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
178  Value *VisitMemberExpr(MemberExpr *E);
179  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
180  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
181    return EmitLoadOfLValue(E);
182  }
183  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
184  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
185     return EmitLValue(E).getAddress();
186  }
187
188  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
189
190  Value *VisitInitListExpr(InitListExpr *E);
191
192  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
193    return llvm::Constant::getNullValue(ConvertType(E->getType()));
194  }
195  Value *VisitCastExpr(CastExpr *E) {
196    // Make sure to evaluate VLA bounds now so that we have them for later.
197    if (E->getType()->isVariablyModifiedType())
198      CGF.EmitVLASize(E->getType());
199
200    return EmitCastExpr(E);
201  }
202  Value *EmitCastExpr(CastExpr *E);
203
204  Value *VisitCallExpr(const CallExpr *E) {
205    if (E->getCallReturnType()->isReferenceType())
206      return EmitLoadOfLValue(E);
207
208    return CGF.EmitCallExpr(E).getScalarVal();
209  }
210
211  Value *VisitStmtExpr(const StmtExpr *E);
212
213  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
214
215  // Unary Operators.
216  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
217  Value *VisitUnaryPostDec(const UnaryOperator *E) {
218    return VisitPrePostIncDec(E, false, false);
219  }
220  Value *VisitUnaryPostInc(const UnaryOperator *E) {
221    return VisitPrePostIncDec(E, true, false);
222  }
223  Value *VisitUnaryPreDec(const UnaryOperator *E) {
224    return VisitPrePostIncDec(E, false, true);
225  }
226  Value *VisitUnaryPreInc(const UnaryOperator *E) {
227    return VisitPrePostIncDec(E, true, true);
228  }
229  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
230    return EmitLValue(E->getSubExpr()).getAddress();
231  }
232  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
233  Value *VisitUnaryPlus(const UnaryOperator *E) {
234    // This differs from gcc, though, most likely due to a bug in gcc.
235    TestAndClearIgnoreResultAssign();
236    return Visit(E->getSubExpr());
237  }
238  Value *VisitUnaryMinus    (const UnaryOperator *E);
239  Value *VisitUnaryNot      (const UnaryOperator *E);
240  Value *VisitUnaryLNot     (const UnaryOperator *E);
241  Value *VisitUnaryReal     (const UnaryOperator *E);
242  Value *VisitUnaryImag     (const UnaryOperator *E);
243  Value *VisitUnaryExtension(const UnaryOperator *E) {
244    return Visit(E->getSubExpr());
245  }
246  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
247
248  // C++
249  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
250    return Visit(DAE->getExpr());
251  }
252  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
253    return CGF.LoadCXXThis();
254  }
255
256  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
257    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
258  }
259  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
260    return CGF.EmitCXXNewExpr(E);
261  }
262  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
263    CGF.EmitCXXDeleteExpr(E);
264    return 0;
265  }
266  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
267    return llvm::ConstantInt::get(Builder.getInt1Ty(),
268                                  E->EvaluateTrait(CGF.getContext()));
269  }
270
271  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
272    // C++ [expr.pseudo]p1:
273    //   The result shall only be used as the operand for the function call
274    //   operator (), and the result of such a call has type void. The only
275    //   effect is the evaluation of the postfix-expression before the dot or
276    //   arrow.
277    CGF.EmitScalarExpr(E->getBase());
278    return 0;
279  }
280
281  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
282    return llvm::Constant::getNullValue(ConvertType(E->getType()));
283  }
284
285  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
286    CGF.EmitCXXThrowExpr(E);
287    return 0;
288  }
289
290  // Binary Operators.
291  Value *EmitMul(const BinOpInfo &Ops) {
292    if (CGF.getContext().getLangOptions().OverflowChecking
293        && Ops.Ty->isSignedIntegerType())
294      return EmitOverflowCheckedBinOp(Ops);
295    if (Ops.LHS->getType()->isFPOrFPVector())
296      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
297    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
298  }
299  /// Create a binary op that checks for overflow.
300  /// Currently only supports +, - and *.
301  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
302  Value *EmitDiv(const BinOpInfo &Ops);
303  Value *EmitRem(const BinOpInfo &Ops);
304  Value *EmitAdd(const BinOpInfo &Ops);
305  Value *EmitSub(const BinOpInfo &Ops);
306  Value *EmitShl(const BinOpInfo &Ops);
307  Value *EmitShr(const BinOpInfo &Ops);
308  Value *EmitAnd(const BinOpInfo &Ops) {
309    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
310  }
311  Value *EmitXor(const BinOpInfo &Ops) {
312    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
313  }
314  Value *EmitOr (const BinOpInfo &Ops) {
315    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
316  }
317
318  BinOpInfo EmitBinOps(const BinaryOperator *E);
319  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
320                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
321
322  // Binary operators and binary compound assignment operators.
323#define HANDLEBINOP(OP) \
324  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
325    return Emit ## OP(EmitBinOps(E));                                      \
326  }                                                                        \
327  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
328    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
329  }
330  HANDLEBINOP(Mul);
331  HANDLEBINOP(Div);
332  HANDLEBINOP(Rem);
333  HANDLEBINOP(Add);
334  HANDLEBINOP(Sub);
335  HANDLEBINOP(Shl);
336  HANDLEBINOP(Shr);
337  HANDLEBINOP(And);
338  HANDLEBINOP(Xor);
339  HANDLEBINOP(Or);
340#undef HANDLEBINOP
341
342  // Comparisons.
343  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
344                     unsigned SICmpOpc, unsigned FCmpOpc);
345#define VISITCOMP(CODE, UI, SI, FP) \
346    Value *VisitBin##CODE(const BinaryOperator *E) { \
347      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
348                         llvm::FCmpInst::FP); }
349  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
350  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
351  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
352  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
353  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
354  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
355#undef VISITCOMP
356
357  Value *VisitBinAssign     (const BinaryOperator *E);
358
359  Value *VisitBinLAnd       (const BinaryOperator *E);
360  Value *VisitBinLOr        (const BinaryOperator *E);
361  Value *VisitBinComma      (const BinaryOperator *E);
362
363  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
364  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
365
366  // Other Operators.
367  Value *VisitBlockExpr(const BlockExpr *BE);
368  Value *VisitConditionalOperator(const ConditionalOperator *CO);
369  Value *VisitChooseExpr(ChooseExpr *CE);
370  Value *VisitVAArgExpr(VAArgExpr *VE);
371  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
372    return CGF.EmitObjCStringLiteral(E);
373  }
374};
375}  // end anonymous namespace.
376
377//===----------------------------------------------------------------------===//
378//                                Utilities
379//===----------------------------------------------------------------------===//
380
381/// EmitConversionToBool - Convert the specified expression value to a
382/// boolean (i1) truth value.  This is equivalent to "Val != 0".
383Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
384  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
385
386  if (SrcType->isRealFloatingType()) {
387    // Compare against 0.0 for fp scalars.
388    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
389    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
390  }
391
392  if (SrcType->isMemberPointerType()) {
393    // FIXME: This is ABI specific.
394
395    // Compare against -1.
396    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
397    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
398  }
399
400  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
401         "Unknown scalar type to convert");
402
403  // Because of the type rules of C, we often end up computing a logical value,
404  // then zero extending it to int, then wanting it as a logical value again.
405  // Optimize this common case.
406  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
407    if (ZI->getOperand(0)->getType() ==
408        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
409      Value *Result = ZI->getOperand(0);
410      // If there aren't any more uses, zap the instruction to save space.
411      // Note that there can be more uses, for example if this
412      // is the result of an assignment.
413      if (ZI->use_empty())
414        ZI->eraseFromParent();
415      return Result;
416    }
417  }
418
419  // Compare against an integer or pointer null.
420  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
421  return Builder.CreateICmpNE(Src, Zero, "tobool");
422}
423
424/// EmitScalarConversion - Emit a conversion from the specified type to the
425/// specified destination type, both of which are LLVM scalar types.
426Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
427                                               QualType DstType) {
428  SrcType = CGF.getContext().getCanonicalType(SrcType);
429  DstType = CGF.getContext().getCanonicalType(DstType);
430  if (SrcType == DstType) return Src;
431
432  if (DstType->isVoidType()) return 0;
433
434  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
435
436  // Handle conversions to bool first, they are special: comparisons against 0.
437  if (DstType->isBooleanType())
438    return EmitConversionToBool(Src, SrcType);
439
440  const llvm::Type *DstTy = ConvertType(DstType);
441
442  // Ignore conversions like int -> uint.
443  if (Src->getType() == DstTy)
444    return Src;
445
446  // Handle pointer conversions next: pointers can only be converted to/from
447  // other pointers and integers. Check for pointer types in terms of LLVM, as
448  // some native types (like Obj-C id) may map to a pointer type.
449  if (isa<llvm::PointerType>(DstTy)) {
450    // The source value may be an integer, or a pointer.
451    if (isa<llvm::PointerType>(Src->getType()))
452      return Builder.CreateBitCast(Src, DstTy, "conv");
453
454    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
455    // First, convert to the correct width so that we control the kind of
456    // extension.
457    const llvm::Type *MiddleTy =
458          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
459    bool InputSigned = SrcType->isSignedIntegerType();
460    llvm::Value* IntResult =
461        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
462    // Then, cast to pointer.
463    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
464  }
465
466  if (isa<llvm::PointerType>(Src->getType())) {
467    // Must be an ptr to int cast.
468    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
469    return Builder.CreatePtrToInt(Src, DstTy, "conv");
470  }
471
472  // A scalar can be splatted to an extended vector of the same element type
473  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
474    // Cast the scalar to element type
475    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
476    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
477
478    // Insert the element in element zero of an undef vector
479    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
480    llvm::Value *Idx =
481        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
482    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
483
484    // Splat the element across to all elements
485    llvm::SmallVector<llvm::Constant*, 16> Args;
486    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
487    for (unsigned i = 0; i < NumElements; i++)
488      Args.push_back(llvm::ConstantInt::get(
489                                        llvm::Type::getInt32Ty(VMContext), 0));
490
491    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
492    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
493    return Yay;
494  }
495
496  // Allow bitcast from vector to integer/fp of the same size.
497  if (isa<llvm::VectorType>(Src->getType()) ||
498      isa<llvm::VectorType>(DstTy))
499    return Builder.CreateBitCast(Src, DstTy, "conv");
500
501  // Finally, we have the arithmetic types: real int/float.
502  if (isa<llvm::IntegerType>(Src->getType())) {
503    bool InputSigned = SrcType->isSignedIntegerType();
504    if (isa<llvm::IntegerType>(DstTy))
505      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
506    else if (InputSigned)
507      return Builder.CreateSIToFP(Src, DstTy, "conv");
508    else
509      return Builder.CreateUIToFP(Src, DstTy, "conv");
510  }
511
512  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
513  if (isa<llvm::IntegerType>(DstTy)) {
514    if (DstType->isSignedIntegerType())
515      return Builder.CreateFPToSI(Src, DstTy, "conv");
516    else
517      return Builder.CreateFPToUI(Src, DstTy, "conv");
518  }
519
520  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
521  if (DstTy->getTypeID() < Src->getType()->getTypeID())
522    return Builder.CreateFPTrunc(Src, DstTy, "conv");
523  else
524    return Builder.CreateFPExt(Src, DstTy, "conv");
525}
526
527/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
528/// type to the specified destination type, where the destination type is an
529/// LLVM scalar type.
530Value *ScalarExprEmitter::
531EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
532                              QualType SrcTy, QualType DstTy) {
533  // Get the source element type.
534  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
535
536  // Handle conversions to bool first, they are special: comparisons against 0.
537  if (DstTy->isBooleanType()) {
538    //  Complex != 0  -> (Real != 0) | (Imag != 0)
539    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
540    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
541    return Builder.CreateOr(Src.first, Src.second, "tobool");
542  }
543
544  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
545  // the imaginary part of the complex value is discarded and the value of the
546  // real part is converted according to the conversion rules for the
547  // corresponding real type.
548  return EmitScalarConversion(Src.first, SrcTy, DstTy);
549}
550
551
552//===----------------------------------------------------------------------===//
553//                            Visitor Methods
554//===----------------------------------------------------------------------===//
555
556Value *ScalarExprEmitter::VisitExpr(Expr *E) {
557  CGF.ErrorUnsupported(E, "scalar expression");
558  if (E->getType()->isVoidType())
559    return 0;
560  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
561}
562
563Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
564  llvm::SmallVector<llvm::Constant*, 32> indices;
565  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
566    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
567  }
568  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
569  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
570  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
571  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
572}
573Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
574  Expr::EvalResult Result;
575  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
576    if (E->isArrow())
577      CGF.EmitScalarExpr(E->getBase());
578    else
579      EmitLValue(E->getBase());
580    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
581  }
582  return EmitLoadOfLValue(E);
583}
584
585Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
586  TestAndClearIgnoreResultAssign();
587
588  // Emit subscript expressions in rvalue context's.  For most cases, this just
589  // loads the lvalue formed by the subscript expr.  However, we have to be
590  // careful, because the base of a vector subscript is occasionally an rvalue,
591  // so we can't get it as an lvalue.
592  if (!E->getBase()->getType()->isVectorType())
593    return EmitLoadOfLValue(E);
594
595  // Handle the vector case.  The base must be a vector, the index must be an
596  // integer value.
597  Value *Base = Visit(E->getBase());
598  Value *Idx  = Visit(E->getIdx());
599  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
600  Idx = Builder.CreateIntCast(Idx,
601                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
602                              IdxSigned,
603                              "vecidxcast");
604  return Builder.CreateExtractElement(Base, Idx, "vecext");
605}
606
607static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
608                                  unsigned Off, const llvm::Type *I32Ty) {
609  int MV = SVI->getMaskValue(Idx);
610  if (MV == -1)
611    return llvm::UndefValue::get(I32Ty);
612  return llvm::ConstantInt::get(I32Ty, Off+MV);
613}
614
615Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
616  bool Ignore = TestAndClearIgnoreResultAssign();
617  (void)Ignore;
618  assert (Ignore == false && "init list ignored");
619  unsigned NumInitElements = E->getNumInits();
620
621  if (E->hadArrayRangeDesignator())
622    CGF.ErrorUnsupported(E, "GNU array range designator extension");
623
624  const llvm::VectorType *VType =
625    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
626
627  // We have a scalar in braces. Just use the first element.
628  if (!VType)
629    return Visit(E->getInit(0));
630
631  unsigned ResElts = VType->getNumElements();
632  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
633
634  // Loop over initializers collecting the Value for each, and remembering
635  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
636  // us to fold the shuffle for the swizzle into the shuffle for the vector
637  // initializer, since LLVM optimizers generally do not want to touch
638  // shuffles.
639  unsigned CurIdx = 0;
640  bool VIsUndefShuffle = false;
641  llvm::Value *V = llvm::UndefValue::get(VType);
642  for (unsigned i = 0; i != NumInitElements; ++i) {
643    Expr *IE = E->getInit(i);
644    Value *Init = Visit(IE);
645    llvm::SmallVector<llvm::Constant*, 16> Args;
646
647    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
648
649    // Handle scalar elements.  If the scalar initializer is actually one
650    // element of a different vector of the same width, use shuffle instead of
651    // extract+insert.
652    if (!VVT) {
653      if (isa<ExtVectorElementExpr>(IE)) {
654        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
655
656        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
657          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
658          Value *LHS = 0, *RHS = 0;
659          if (CurIdx == 0) {
660            // insert into undef -> shuffle (src, undef)
661            Args.push_back(C);
662            for (unsigned j = 1; j != ResElts; ++j)
663              Args.push_back(llvm::UndefValue::get(I32Ty));
664
665            LHS = EI->getVectorOperand();
666            RHS = V;
667            VIsUndefShuffle = true;
668          } else if (VIsUndefShuffle) {
669            // insert into undefshuffle && size match -> shuffle (v, src)
670            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
671            for (unsigned j = 0; j != CurIdx; ++j)
672              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
673            Args.push_back(llvm::ConstantInt::get(I32Ty,
674                                                  ResElts + C->getZExtValue()));
675            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
676              Args.push_back(llvm::UndefValue::get(I32Ty));
677
678            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
679            RHS = EI->getVectorOperand();
680            VIsUndefShuffle = false;
681          }
682          if (!Args.empty()) {
683            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
684            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
685            ++CurIdx;
686            continue;
687          }
688        }
689      }
690      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
691      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
692      VIsUndefShuffle = false;
693      ++CurIdx;
694      continue;
695    }
696
697    unsigned InitElts = VVT->getNumElements();
698
699    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
700    // input is the same width as the vector being constructed, generate an
701    // optimized shuffle of the swizzle input into the result.
702    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
703    if (isa<ExtVectorElementExpr>(IE)) {
704      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
705      Value *SVOp = SVI->getOperand(0);
706      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
707
708      if (OpTy->getNumElements() == ResElts) {
709        for (unsigned j = 0; j != CurIdx; ++j) {
710          // If the current vector initializer is a shuffle with undef, merge
711          // this shuffle directly into it.
712          if (VIsUndefShuffle) {
713            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
714                                      I32Ty));
715          } else {
716            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
717          }
718        }
719        for (unsigned j = 0, je = InitElts; j != je; ++j)
720          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
721        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
722          Args.push_back(llvm::UndefValue::get(I32Ty));
723
724        if (VIsUndefShuffle)
725          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
726
727        Init = SVOp;
728      }
729    }
730
731    // Extend init to result vector length, and then shuffle its contribution
732    // to the vector initializer into V.
733    if (Args.empty()) {
734      for (unsigned j = 0; j != InitElts; ++j)
735        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
736      for (unsigned j = InitElts; j != ResElts; ++j)
737        Args.push_back(llvm::UndefValue::get(I32Ty));
738      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
739      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
740                                         Mask, "vext");
741
742      Args.clear();
743      for (unsigned j = 0; j != CurIdx; ++j)
744        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
745      for (unsigned j = 0; j != InitElts; ++j)
746        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
747      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
748        Args.push_back(llvm::UndefValue::get(I32Ty));
749    }
750
751    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
752    // merging subsequent shuffles into this one.
753    if (CurIdx == 0)
754      std::swap(V, Init);
755    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
756    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
757    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
758    CurIdx += InitElts;
759  }
760
761  // FIXME: evaluate codegen vs. shuffling against constant null vector.
762  // Emit remaining default initializers.
763  const llvm::Type *EltTy = VType->getElementType();
764
765  // Emit remaining default initializers
766  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
767    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
768    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
769    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
770  }
771  return V;
772}
773
774static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
775  const Expr *E = CE->getSubExpr();
776
777  if (isa<CXXThisExpr>(E)) {
778    // We always assume that 'this' is never null.
779    return false;
780  }
781
782  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
783    // And that lvalue casts are never null.
784    if (ICE->isLvalueCast())
785      return false;
786  }
787
788  return true;
789}
790
791// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
792// have to handle a more broad range of conversions than explicit casts, as they
793// handle things like function to ptr-to-function decay etc.
794Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
795  Expr *E = CE->getSubExpr();
796  QualType DestTy = CE->getType();
797  CastExpr::CastKind Kind = CE->getCastKind();
798
799  if (!DestTy->isVoidType())
800    TestAndClearIgnoreResultAssign();
801
802  // Since almost all cast kinds apply to scalars, this switch doesn't have
803  // a default case, so the compiler will warn on a missing case.  The cases
804  // are in the same order as in the CastKind enum.
805  switch (Kind) {
806  case CastExpr::CK_Unknown:
807    // FIXME: All casts should have a known kind!
808    //assert(0 && "Unknown cast kind!");
809    break;
810
811  case CastExpr::CK_AnyPointerToObjCPointerCast:
812  case CastExpr::CK_AnyPointerToBlockPointerCast:
813  case CastExpr::CK_BitCast: {
814    Value *Src = Visit(const_cast<Expr*>(E));
815    return Builder.CreateBitCast(Src, ConvertType(DestTy));
816  }
817  case CastExpr::CK_NoOp:
818    return Visit(const_cast<Expr*>(E));
819
820  case CastExpr::CK_BaseToDerived: {
821    const CXXRecordDecl *BaseClassDecl =
822      E->getType()->getCXXRecordDeclForPointerType();
823    const CXXRecordDecl *DerivedClassDecl =
824      DestTy->getCXXRecordDeclForPointerType();
825
826    Value *Src = Visit(const_cast<Expr*>(E));
827
828    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
829    return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl,
830                                        NullCheckValue);
831  }
832  case CastExpr::CK_DerivedToBase: {
833    const RecordType *DerivedClassTy =
834      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
835    CXXRecordDecl *DerivedClassDecl =
836      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
837
838    const RecordType *BaseClassTy =
839      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
840    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
841
842    Value *Src = Visit(const_cast<Expr*>(E));
843
844    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
845    return CGF.GetAddressOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
846                                     NullCheckValue);
847  }
848  case CastExpr::CK_Dynamic: {
849    Value *V = Visit(const_cast<Expr*>(E));
850    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
851    return CGF.EmitDynamicCast(V, DCE);
852  }
853  case CastExpr::CK_ToUnion:
854    assert(0 && "Should be unreachable!");
855    break;
856
857  case CastExpr::CK_ArrayToPointerDecay: {
858    assert(E->getType()->isArrayType() &&
859           "Array to pointer decay must have array source type!");
860
861    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
862
863    // Note that VLA pointers are always decayed, so we don't need to do
864    // anything here.
865    if (!E->getType()->isVariableArrayType()) {
866      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
867      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
868                                 ->getElementType()) &&
869             "Expected pointer to array");
870      V = Builder.CreateStructGEP(V, 0, "arraydecay");
871    }
872
873    return V;
874  }
875  case CastExpr::CK_FunctionToPointerDecay:
876    return EmitLValue(E).getAddress();
877
878  case CastExpr::CK_NullToMemberPointer:
879    return CGF.CGM.EmitNullConstant(DestTy);
880
881  case CastExpr::CK_BaseToDerivedMemberPointer:
882  case CastExpr::CK_DerivedToBaseMemberPointer: {
883    Value *Src = Visit(E);
884
885    // See if we need to adjust the pointer.
886    const CXXRecordDecl *BaseDecl =
887      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
888                          getClass()->getAs<RecordType>()->getDecl());
889    const CXXRecordDecl *DerivedDecl =
890      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
891                          getClass()->getAs<RecordType>()->getDecl());
892    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
893      std::swap(DerivedDecl, BaseDecl);
894
895    llvm::Constant *Adj = CGF.CGM.GetCXXBaseClassOffset(DerivedDecl, BaseDecl);
896    if (Adj) {
897      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
898        Src = Builder.CreateSub(Src, Adj, "adj");
899      else
900        Src = Builder.CreateAdd(Src, Adj, "adj");
901    }
902    return Src;
903  }
904
905  case CastExpr::CK_UserDefinedConversion:
906  case CastExpr::CK_ConstructorConversion:
907    assert(0 && "Should be unreachable!");
908    break;
909
910  case CastExpr::CK_IntegralToPointer: {
911    Value *Src = Visit(const_cast<Expr*>(E));
912
913    // First, convert to the correct width so that we control the kind of
914    // extension.
915    const llvm::Type *MiddleTy =
916      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
917    bool InputSigned = E->getType()->isSignedIntegerType();
918    llvm::Value* IntResult =
919      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
920
921    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
922  }
923  case CastExpr::CK_PointerToIntegral: {
924    Value *Src = Visit(const_cast<Expr*>(E));
925    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
926  }
927  case CastExpr::CK_ToVoid: {
928    CGF.EmitAnyExpr(E, 0, false, true);
929    return 0;
930  }
931  case CastExpr::CK_VectorSplat: {
932    const llvm::Type *DstTy = ConvertType(DestTy);
933    Value *Elt = Visit(const_cast<Expr*>(E));
934
935    // Insert the element in element zero of an undef vector
936    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
937    llvm::Value *Idx =
938        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
939    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
940
941    // Splat the element across to all elements
942    llvm::SmallVector<llvm::Constant*, 16> Args;
943    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
944    for (unsigned i = 0; i < NumElements; i++)
945      Args.push_back(llvm::ConstantInt::get(
946                                        llvm::Type::getInt32Ty(VMContext), 0));
947
948    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
949    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
950    return Yay;
951  }
952  case CastExpr::CK_IntegralCast:
953  case CastExpr::CK_IntegralToFloating:
954  case CastExpr::CK_FloatingToIntegral:
955  case CastExpr::CK_FloatingCast:
956    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
957
958  case CastExpr::CK_MemberPointerToBoolean:
959    return CGF.EvaluateExprAsBool(E);
960  }
961
962  // Handle cases where the source is an non-complex type.
963
964  if (!CGF.hasAggregateLLVMType(E->getType())) {
965    Value *Src = Visit(const_cast<Expr*>(E));
966
967    // Use EmitScalarConversion to perform the conversion.
968    return EmitScalarConversion(Src, E->getType(), DestTy);
969  }
970
971  if (E->getType()->isAnyComplexType()) {
972    // Handle cases where the source is a complex type.
973    bool IgnoreImag = true;
974    bool IgnoreImagAssign = true;
975    bool IgnoreReal = IgnoreResultAssign;
976    bool IgnoreRealAssign = IgnoreResultAssign;
977    if (DestTy->isBooleanType())
978      IgnoreImagAssign = IgnoreImag = false;
979    else if (DestTy->isVoidType()) {
980      IgnoreReal = IgnoreImag = false;
981      IgnoreRealAssign = IgnoreImagAssign = true;
982    }
983    CodeGenFunction::ComplexPairTy V
984      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
985                            IgnoreImagAssign);
986    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
987  }
988
989  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
990  // evaluate the result and return.
991  CGF.EmitAggExpr(E, 0, false, true);
992  return 0;
993}
994
995Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
996  return CGF.EmitCompoundStmt(*E->getSubStmt(),
997                              !E->getType()->isVoidType()).getScalarVal();
998}
999
1000Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1001  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1002  if (E->getType().isObjCGCWeak())
1003    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1004  return Builder.CreateLoad(V, "tmp");
1005}
1006
1007//===----------------------------------------------------------------------===//
1008//                             Unary Operators
1009//===----------------------------------------------------------------------===//
1010
1011Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
1012                                             bool isInc, bool isPre) {
1013  LValue LV = EmitLValue(E->getSubExpr());
1014  QualType ValTy = E->getSubExpr()->getType();
1015  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
1016
1017  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1018
1019  int AmountVal = isInc ? 1 : -1;
1020
1021  if (ValTy->isPointerType() &&
1022      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1023    // The amount of the addition/subtraction needs to account for the VLA size
1024    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1025  }
1026
1027  Value *NextVal;
1028  if (const llvm::PointerType *PT =
1029         dyn_cast<llvm::PointerType>(InVal->getType())) {
1030    llvm::Constant *Inc =
1031      llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
1032    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1033      QualType PTEE = ValTy->getPointeeType();
1034      if (const ObjCInterfaceType *OIT =
1035          dyn_cast<ObjCInterfaceType>(PTEE)) {
1036        // Handle interface types, which are not represented with a concrete type.
1037        int size = CGF.getContext().getTypeSize(OIT) / 8;
1038        if (!isInc)
1039          size = -size;
1040        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1041        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1042        InVal = Builder.CreateBitCast(InVal, i8Ty);
1043        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1044        llvm::Value *lhs = LV.getAddress();
1045        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1046        LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
1047      } else
1048        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1049    } else {
1050      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1051      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1052      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1053      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1054    }
1055  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
1056    // Bool++ is an interesting case, due to promotion rules, we get:
1057    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1058    // Bool = ((int)Bool+1) != 0
1059    // An interesting aspect of this is that increment is always true.
1060    // Decrement does not have this property.
1061    NextVal = llvm::ConstantInt::getTrue(VMContext);
1062  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1063    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1064
1065    // Signed integer overflow is undefined behavior.
1066    if (ValTy->isSignedIntegerType())
1067      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1068    else
1069      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1070  } else {
1071    // Add the inc/dec to the real part.
1072    if (InVal->getType()->isFloatTy())
1073      NextVal =
1074        llvm::ConstantFP::get(VMContext,
1075                              llvm::APFloat(static_cast<float>(AmountVal)));
1076    else if (InVal->getType()->isDoubleTy())
1077      NextVal =
1078        llvm::ConstantFP::get(VMContext,
1079                              llvm::APFloat(static_cast<double>(AmountVal)));
1080    else {
1081      llvm::APFloat F(static_cast<float>(AmountVal));
1082      bool ignored;
1083      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1084                &ignored);
1085      NextVal = llvm::ConstantFP::get(VMContext, F);
1086    }
1087    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1088  }
1089
1090  // Store the updated result through the lvalue.
1091  if (LV.isBitfield())
1092    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
1093                                       &NextVal);
1094  else
1095    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1096
1097  // If this is a postinc, return the value read from memory, otherwise use the
1098  // updated value.
1099  return isPre ? NextVal : InVal;
1100}
1101
1102
1103Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1104  TestAndClearIgnoreResultAssign();
1105  Value *Op = Visit(E->getSubExpr());
1106  if (Op->getType()->isFPOrFPVector())
1107    return Builder.CreateFNeg(Op, "neg");
1108  return Builder.CreateNeg(Op, "neg");
1109}
1110
1111Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1112  TestAndClearIgnoreResultAssign();
1113  Value *Op = Visit(E->getSubExpr());
1114  return Builder.CreateNot(Op, "neg");
1115}
1116
1117Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1118  // Compare operand to zero.
1119  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1120
1121  // Invert value.
1122  // TODO: Could dynamically modify easy computations here.  For example, if
1123  // the operand is an icmp ne, turn into icmp eq.
1124  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1125
1126  // ZExt result to the expr type.
1127  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1128}
1129
1130/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1131/// argument of the sizeof expression as an integer.
1132Value *
1133ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1134  QualType TypeToSize = E->getTypeOfArgument();
1135  if (E->isSizeOf()) {
1136    if (const VariableArrayType *VAT =
1137          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1138      if (E->isArgumentType()) {
1139        // sizeof(type) - make sure to emit the VLA size.
1140        CGF.EmitVLASize(TypeToSize);
1141      } else {
1142        // C99 6.5.3.4p2: If the argument is an expression of type
1143        // VLA, it is evaluated.
1144        CGF.EmitAnyExpr(E->getArgumentExpr());
1145      }
1146
1147      return CGF.GetVLASize(VAT);
1148    }
1149  }
1150
1151  // If this isn't sizeof(vla), the result must be constant; use the constant
1152  // folding logic so we don't have to duplicate it here.
1153  Expr::EvalResult Result;
1154  E->Evaluate(Result, CGF.getContext());
1155  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1156}
1157
1158Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1159  Expr *Op = E->getSubExpr();
1160  if (Op->getType()->isAnyComplexType())
1161    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1162  return Visit(Op);
1163}
1164Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1165  Expr *Op = E->getSubExpr();
1166  if (Op->getType()->isAnyComplexType())
1167    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1168
1169  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1170  // effects are evaluated, but not the actual value.
1171  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1172    CGF.EmitLValue(Op);
1173  else
1174    CGF.EmitScalarExpr(Op, true);
1175  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1176}
1177
1178Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1179  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1180  const llvm::Type* ResultType = ConvertType(E->getType());
1181  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1182}
1183
1184//===----------------------------------------------------------------------===//
1185//                           Binary Operators
1186//===----------------------------------------------------------------------===//
1187
1188BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1189  TestAndClearIgnoreResultAssign();
1190  BinOpInfo Result;
1191  Result.LHS = Visit(E->getLHS());
1192  Result.RHS = Visit(E->getRHS());
1193  Result.Ty  = E->getType();
1194  Result.E = E;
1195  return Result;
1196}
1197
1198Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1199                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1200  bool Ignore = TestAndClearIgnoreResultAssign();
1201  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
1202
1203  BinOpInfo OpInfo;
1204
1205  if (E->getComputationResultType()->isAnyComplexType()) {
1206    // This needs to go through the complex expression emitter, but it's a tad
1207    // complicated to do that... I'm leaving it out for now.  (Note that we do
1208    // actually need the imaginary part of the RHS for multiplication and
1209    // division.)
1210    CGF.ErrorUnsupported(E, "complex compound assignment");
1211    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1212  }
1213
1214  // Emit the RHS first.  __block variables need to have the rhs evaluated
1215  // first, plus this should improve codegen a little.
1216  OpInfo.RHS = Visit(E->getRHS());
1217  OpInfo.Ty = E->getComputationResultType();
1218  OpInfo.E = E;
1219  // Load/convert the LHS.
1220  LValue LHSLV = EmitLValue(E->getLHS());
1221  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1222  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1223                                    E->getComputationLHSType());
1224
1225  // Expand the binary operator.
1226  Value *Result = (this->*Func)(OpInfo);
1227
1228  // Convert the result back to the LHS type.
1229  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1230
1231  // Store the result value into the LHS lvalue. Bit-fields are handled
1232  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1233  // 'An assignment expression has the value of the left operand after the
1234  // assignment...'.
1235  if (LHSLV.isBitfield()) {
1236    if (!LHSLV.isVolatileQualified()) {
1237      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1238                                         &Result);
1239      return Result;
1240    } else
1241      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1242  } else
1243    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1244  if (Ignore)
1245    return 0;
1246  return EmitLoadOfLValue(LHSLV, E->getType());
1247}
1248
1249
1250Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1251  if (Ops.LHS->getType()->isFPOrFPVector())
1252    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1253  else if (Ops.Ty->isUnsignedIntegerType())
1254    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1255  else
1256    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1257}
1258
1259Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1260  // Rem in C can't be a floating point type: C99 6.5.5p2.
1261  if (Ops.Ty->isUnsignedIntegerType())
1262    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1263  else
1264    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1265}
1266
1267Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1268  unsigned IID;
1269  unsigned OpID = 0;
1270
1271  switch (Ops.E->getOpcode()) {
1272  case BinaryOperator::Add:
1273  case BinaryOperator::AddAssign:
1274    OpID = 1;
1275    IID = llvm::Intrinsic::sadd_with_overflow;
1276    break;
1277  case BinaryOperator::Sub:
1278  case BinaryOperator::SubAssign:
1279    OpID = 2;
1280    IID = llvm::Intrinsic::ssub_with_overflow;
1281    break;
1282  case BinaryOperator::Mul:
1283  case BinaryOperator::MulAssign:
1284    OpID = 3;
1285    IID = llvm::Intrinsic::smul_with_overflow;
1286    break;
1287  default:
1288    assert(false && "Unsupported operation for overflow detection");
1289    IID = 0;
1290  }
1291  OpID <<= 1;
1292  OpID |= 1;
1293
1294  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1295
1296  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1297
1298  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1299  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1300  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1301
1302  // Branch in case of overflow.
1303  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1304  llvm::BasicBlock *overflowBB =
1305    CGF.createBasicBlock("overflow", CGF.CurFn);
1306  llvm::BasicBlock *continueBB =
1307    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1308
1309  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1310
1311  // Handle overflow
1312
1313  Builder.SetInsertPoint(overflowBB);
1314
1315  // Handler is:
1316  // long long *__overflow_handler)(long long a, long long b, char op,
1317  // char width)
1318  std::vector<const llvm::Type*> handerArgTypes;
1319  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1320  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1321  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1322  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1323  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1324      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1325  llvm::Value *handlerFunction =
1326    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1327        llvm::PointerType::getUnqual(handlerTy));
1328  handlerFunction = Builder.CreateLoad(handlerFunction);
1329
1330  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1331      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1332      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1333      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1334      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1335        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1336
1337  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1338
1339  Builder.CreateBr(continueBB);
1340
1341  // Set up the continuation
1342  Builder.SetInsertPoint(continueBB);
1343  // Get the correct result
1344  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1345  phi->reserveOperandSpace(2);
1346  phi->addIncoming(result, initialBB);
1347  phi->addIncoming(handlerResult, overflowBB);
1348
1349  return phi;
1350}
1351
1352Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1353  if (!Ops.Ty->isAnyPointerType()) {
1354    if (CGF.getContext().getLangOptions().OverflowChecking &&
1355        Ops.Ty->isSignedIntegerType())
1356      return EmitOverflowCheckedBinOp(Ops);
1357
1358    if (Ops.LHS->getType()->isFPOrFPVector())
1359      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1360
1361    // Signed integer overflow is undefined behavior.
1362    if (Ops.Ty->isSignedIntegerType())
1363      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1364
1365    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1366  }
1367
1368  if (Ops.Ty->isPointerType() &&
1369      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1370    // The amount of the addition needs to account for the VLA size
1371    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1372  }
1373  Value *Ptr, *Idx;
1374  Expr *IdxExp;
1375  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1376  const ObjCObjectPointerType *OPT =
1377    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1378  if (PT || OPT) {
1379    Ptr = Ops.LHS;
1380    Idx = Ops.RHS;
1381    IdxExp = Ops.E->getRHS();
1382  } else {  // int + pointer
1383    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1384    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1385    assert((PT || OPT) && "Invalid add expr");
1386    Ptr = Ops.RHS;
1387    Idx = Ops.LHS;
1388    IdxExp = Ops.E->getLHS();
1389  }
1390
1391  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1392  if (Width < CGF.LLVMPointerWidth) {
1393    // Zero or sign extend the pointer value based on whether the index is
1394    // signed or not.
1395    const llvm::Type *IdxType =
1396        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1397    if (IdxExp->getType()->isSignedIntegerType())
1398      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1399    else
1400      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1401  }
1402  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1403  // Handle interface types, which are not represented with a concrete type.
1404  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1405    llvm::Value *InterfaceSize =
1406      llvm::ConstantInt::get(Idx->getType(),
1407                             CGF.getContext().getTypeSize(OIT) / 8);
1408    Idx = Builder.CreateMul(Idx, InterfaceSize);
1409    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1410    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1411    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1412    return Builder.CreateBitCast(Res, Ptr->getType());
1413  }
1414
1415  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1416  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1417  // future proof.
1418  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1419    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1420    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1421    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1422    return Builder.CreateBitCast(Res, Ptr->getType());
1423  }
1424
1425  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1426}
1427
1428Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1429  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1430    if (CGF.getContext().getLangOptions().OverflowChecking
1431        && Ops.Ty->isSignedIntegerType())
1432      return EmitOverflowCheckedBinOp(Ops);
1433
1434    if (Ops.LHS->getType()->isFPOrFPVector())
1435      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1436    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1437  }
1438
1439  if (Ops.E->getLHS()->getType()->isPointerType() &&
1440      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1441    // The amount of the addition needs to account for the VLA size for
1442    // ptr-int
1443    // The amount of the division needs to account for the VLA size for
1444    // ptr-ptr.
1445    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1446  }
1447
1448  const QualType LHSType = Ops.E->getLHS()->getType();
1449  const QualType LHSElementType = LHSType->getPointeeType();
1450  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1451    // pointer - int
1452    Value *Idx = Ops.RHS;
1453    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1454    if (Width < CGF.LLVMPointerWidth) {
1455      // Zero or sign extend the pointer value based on whether the index is
1456      // signed or not.
1457      const llvm::Type *IdxType =
1458          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1459      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1460        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1461      else
1462        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1463    }
1464    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1465
1466    // Handle interface types, which are not represented with a concrete type.
1467    if (const ObjCInterfaceType *OIT =
1468        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1469      llvm::Value *InterfaceSize =
1470        llvm::ConstantInt::get(Idx->getType(),
1471                               CGF.getContext().getTypeSize(OIT) / 8);
1472      Idx = Builder.CreateMul(Idx, InterfaceSize);
1473      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1474      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1475      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1476      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1477    }
1478
1479    // Explicitly handle GNU void* and function pointer arithmetic
1480    // extensions. The GNU void* casts amount to no-ops since our void* type is
1481    // i8*, but this is future proof.
1482    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1483      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1484      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1485      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1486      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1487    }
1488
1489    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1490  } else {
1491    // pointer - pointer
1492    Value *LHS = Ops.LHS;
1493    Value *RHS = Ops.RHS;
1494
1495    uint64_t ElementSize;
1496
1497    // Handle GCC extension for pointer arithmetic on void* and function pointer
1498    // types.
1499    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1500      ElementSize = 1;
1501    } else {
1502      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1503    }
1504
1505    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1506    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1507    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1508    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1509
1510    // Optimize out the shift for element size of 1.
1511    if (ElementSize == 1)
1512      return BytesBetween;
1513
1514    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1515    // pointer difference in C is only defined in the case where both operands
1516    // are pointing to elements of an array.
1517    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1518    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1519  }
1520}
1521
1522Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1523  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1524  // RHS to the same size as the LHS.
1525  Value *RHS = Ops.RHS;
1526  if (Ops.LHS->getType() != RHS->getType())
1527    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1528
1529  if (CGF.CatchUndefined
1530      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1531    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1532    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1533    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1534                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1535                             Cont, CGF.getAbortBB());
1536    CGF.EmitBlock(Cont);
1537  }
1538
1539  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1540}
1541
1542Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1543  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1544  // RHS to the same size as the LHS.
1545  Value *RHS = Ops.RHS;
1546  if (Ops.LHS->getType() != RHS->getType())
1547    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1548
1549  if (CGF.CatchUndefined
1550      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1551    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1552    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1553    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1554                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1555                             Cont, CGF.getAbortBB());
1556    CGF.EmitBlock(Cont);
1557  }
1558
1559  if (Ops.Ty->isUnsignedIntegerType())
1560    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1561  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1562}
1563
1564Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1565                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1566  TestAndClearIgnoreResultAssign();
1567  Value *Result;
1568  QualType LHSTy = E->getLHS()->getType();
1569  if (LHSTy->isMemberFunctionPointerType()) {
1570    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1571    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1572    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1573    LHSFunc = Builder.CreateLoad(LHSFunc);
1574    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1575    RHSFunc = Builder.CreateLoad(RHSFunc);
1576    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1577                                        LHSFunc, RHSFunc, "cmp.func");
1578    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1579    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1580                                           LHSFunc, NullPtr, "cmp.null");
1581    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1582    LHSAdj = Builder.CreateLoad(LHSAdj);
1583    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1584    RHSAdj = Builder.CreateLoad(RHSAdj);
1585    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1586                                        LHSAdj, RHSAdj, "cmp.adj");
1587    if (E->getOpcode() == BinaryOperator::EQ) {
1588      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1589      Result = Builder.CreateAnd(Result, ResultF, "and.f");
1590    } else {
1591      assert(E->getOpcode() == BinaryOperator::NE &&
1592             "Member pointer comparison other than == or != ?");
1593      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1594      Result = Builder.CreateOr(Result, ResultF, "or.f");
1595    }
1596  } else if (!LHSTy->isAnyComplexType()) {
1597    Value *LHS = Visit(E->getLHS());
1598    Value *RHS = Visit(E->getRHS());
1599
1600    if (LHS->getType()->isFPOrFPVector()) {
1601      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1602                                  LHS, RHS, "cmp");
1603    } else if (LHSTy->isSignedIntegerType()) {
1604      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1605                                  LHS, RHS, "cmp");
1606    } else {
1607      // Unsigned integers and pointers.
1608      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1609                                  LHS, RHS, "cmp");
1610    }
1611
1612    // If this is a vector comparison, sign extend the result to the appropriate
1613    // vector integer type and return it (don't convert to bool).
1614    if (LHSTy->isVectorType())
1615      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1616
1617  } else {
1618    // Complex Comparison: can only be an equality comparison.
1619    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1620    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1621
1622    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1623
1624    Value *ResultR, *ResultI;
1625    if (CETy->isRealFloatingType()) {
1626      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1627                                   LHS.first, RHS.first, "cmp.r");
1628      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1629                                   LHS.second, RHS.second, "cmp.i");
1630    } else {
1631      // Complex comparisons can only be equality comparisons.  As such, signed
1632      // and unsigned opcodes are the same.
1633      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1634                                   LHS.first, RHS.first, "cmp.r");
1635      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1636                                   LHS.second, RHS.second, "cmp.i");
1637    }
1638
1639    if (E->getOpcode() == BinaryOperator::EQ) {
1640      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1641    } else {
1642      assert(E->getOpcode() == BinaryOperator::NE &&
1643             "Complex comparison other than == or != ?");
1644      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1645    }
1646  }
1647
1648  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1649}
1650
1651Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1652  bool Ignore = TestAndClearIgnoreResultAssign();
1653
1654  // __block variables need to have the rhs evaluated first, plus this should
1655  // improve codegen just a little.
1656  Value *RHS = Visit(E->getRHS());
1657  LValue LHS = EmitLValue(E->getLHS());
1658
1659  // Store the value into the LHS.  Bit-fields are handled specially
1660  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1661  // 'An assignment expression has the value of the left operand after
1662  // the assignment...'.
1663  if (LHS.isBitfield()) {
1664    if (!LHS.isVolatileQualified()) {
1665      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1666                                         &RHS);
1667      return RHS;
1668    } else
1669      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1670  } else
1671    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1672  if (Ignore)
1673    return 0;
1674  return EmitLoadOfLValue(LHS, E->getType());
1675}
1676
1677Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1678  const llvm::Type *ResTy = ConvertType(E->getType());
1679
1680  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1681  // If we have 1 && X, just emit X without inserting the control flow.
1682  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1683    if (Cond == 1) { // If we have 1 && X, just emit X.
1684      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1685      // ZExt result to int or bool.
1686      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1687    }
1688
1689    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1690    if (!CGF.ContainsLabel(E->getRHS()))
1691      return llvm::Constant::getNullValue(ResTy);
1692  }
1693
1694  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1695  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1696
1697  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1698  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1699
1700  // Any edges into the ContBlock are now from an (indeterminate number of)
1701  // edges from this first condition.  All of these values will be false.  Start
1702  // setting up the PHI node in the Cont Block for this.
1703  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1704                                            "", ContBlock);
1705  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1706  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1707       PI != PE; ++PI)
1708    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1709
1710  CGF.StartConditionalBranch();
1711  CGF.EmitBlock(RHSBlock);
1712  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1713  CGF.FinishConditionalBranch();
1714
1715  // Reaquire the RHS block, as there may be subblocks inserted.
1716  RHSBlock = Builder.GetInsertBlock();
1717
1718  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1719  // into the phi node for the edge with the value of RHSCond.
1720  CGF.EmitBlock(ContBlock);
1721  PN->addIncoming(RHSCond, RHSBlock);
1722
1723  // ZExt result to int.
1724  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1725}
1726
1727Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1728  const llvm::Type *ResTy = ConvertType(E->getType());
1729
1730  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1731  // If we have 0 || X, just emit X without inserting the control flow.
1732  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1733    if (Cond == -1) { // If we have 0 || X, just emit X.
1734      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1735      // ZExt result to int or bool.
1736      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1737    }
1738
1739    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1740    if (!CGF.ContainsLabel(E->getRHS()))
1741      return llvm::ConstantInt::get(ResTy, 1);
1742  }
1743
1744  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1745  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1746
1747  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1748  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1749
1750  // Any edges into the ContBlock are now from an (indeterminate number of)
1751  // edges from this first condition.  All of these values will be true.  Start
1752  // setting up the PHI node in the Cont Block for this.
1753  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1754                                            "", ContBlock);
1755  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1756  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1757       PI != PE; ++PI)
1758    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1759
1760  CGF.StartConditionalBranch();
1761
1762  // Emit the RHS condition as a bool value.
1763  CGF.EmitBlock(RHSBlock);
1764  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1765
1766  CGF.FinishConditionalBranch();
1767
1768  // Reaquire the RHS block, as there may be subblocks inserted.
1769  RHSBlock = Builder.GetInsertBlock();
1770
1771  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1772  // into the phi node for the edge with the value of RHSCond.
1773  CGF.EmitBlock(ContBlock);
1774  PN->addIncoming(RHSCond, RHSBlock);
1775
1776  // ZExt result to int.
1777  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1778}
1779
1780Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1781  CGF.EmitStmt(E->getLHS());
1782  CGF.EnsureInsertPoint();
1783  return Visit(E->getRHS());
1784}
1785
1786//===----------------------------------------------------------------------===//
1787//                             Other Operators
1788//===----------------------------------------------------------------------===//
1789
1790/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1791/// expression is cheap enough and side-effect-free enough to evaluate
1792/// unconditionally instead of conditionally.  This is used to convert control
1793/// flow into selects in some cases.
1794static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1795                                                   CodeGenFunction &CGF) {
1796  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1797    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1798
1799  // TODO: Allow anything we can constant fold to an integer or fp constant.
1800  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1801      isa<FloatingLiteral>(E))
1802    return true;
1803
1804  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1805  // X and Y are local variables.
1806  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1807    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1808      if (VD->hasLocalStorage() && !(CGF.getContext()
1809                                     .getCanonicalType(VD->getType())
1810                                     .isVolatileQualified()))
1811        return true;
1812
1813  return false;
1814}
1815
1816
1817Value *ScalarExprEmitter::
1818VisitConditionalOperator(const ConditionalOperator *E) {
1819  TestAndClearIgnoreResultAssign();
1820  // If the condition constant folds and can be elided, try to avoid emitting
1821  // the condition and the dead arm.
1822  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1823    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1824    if (Cond == -1)
1825      std::swap(Live, Dead);
1826
1827    // If the dead side doesn't have labels we need, and if the Live side isn't
1828    // the gnu missing ?: extension (which we could handle, but don't bother
1829    // to), just emit the Live part.
1830    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1831        Live)                                   // Live part isn't missing.
1832      return Visit(Live);
1833  }
1834
1835
1836  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1837  // select instead of as control flow.  We can only do this if it is cheap and
1838  // safe to evaluate the LHS and RHS unconditionally.
1839  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1840                                                            CGF) &&
1841      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1842    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1843    llvm::Value *LHS = Visit(E->getLHS());
1844    llvm::Value *RHS = Visit(E->getRHS());
1845    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1846  }
1847
1848
1849  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1850  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1851  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1852  Value *CondVal = 0;
1853
1854  // If we don't have the GNU missing condition extension, emit a branch on bool
1855  // the normal way.
1856  if (E->getLHS()) {
1857    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1858    // the branch on bool.
1859    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1860  } else {
1861    // Otherwise, for the ?: extension, evaluate the conditional and then
1862    // convert it to bool the hard way.  We do this explicitly because we need
1863    // the unconverted value for the missing middle value of the ?:.
1864    CondVal = CGF.EmitScalarExpr(E->getCond());
1865
1866    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1867    // if there are no extra uses (an optimization).  Inhibit this by making an
1868    // extra dead use, because we're going to add a use of CondVal later.  We
1869    // don't use the builder for this, because we don't want it to get optimized
1870    // away.  This leaves dead code, but the ?: extension isn't common.
1871    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1872                          Builder.GetInsertBlock());
1873
1874    Value *CondBoolVal =
1875      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1876                               CGF.getContext().BoolTy);
1877    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1878  }
1879
1880  CGF.StartConditionalBranch();
1881  CGF.EmitBlock(LHSBlock);
1882
1883  // Handle the GNU extension for missing LHS.
1884  Value *LHS;
1885  if (E->getLHS())
1886    LHS = Visit(E->getLHS());
1887  else    // Perform promotions, to handle cases like "short ?: int"
1888    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1889
1890  CGF.FinishConditionalBranch();
1891  LHSBlock = Builder.GetInsertBlock();
1892  CGF.EmitBranch(ContBlock);
1893
1894  CGF.StartConditionalBranch();
1895  CGF.EmitBlock(RHSBlock);
1896
1897  Value *RHS = Visit(E->getRHS());
1898  CGF.FinishConditionalBranch();
1899  RHSBlock = Builder.GetInsertBlock();
1900  CGF.EmitBranch(ContBlock);
1901
1902  CGF.EmitBlock(ContBlock);
1903
1904  // If the LHS or RHS is a throw expression, it will be legitimately null.
1905  if (!LHS)
1906    return RHS;
1907  if (!RHS)
1908    return LHS;
1909
1910  // Create a PHI node for the real part.
1911  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1912  PN->reserveOperandSpace(2);
1913  PN->addIncoming(LHS, LHSBlock);
1914  PN->addIncoming(RHS, RHSBlock);
1915  return PN;
1916}
1917
1918Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1919  return Visit(E->getChosenSubExpr(CGF.getContext()));
1920}
1921
1922Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1923  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1924  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1925
1926  // If EmitVAArg fails, we fall back to the LLVM instruction.
1927  if (!ArgPtr)
1928    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1929
1930  // FIXME Volatility.
1931  return Builder.CreateLoad(ArgPtr);
1932}
1933
1934Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1935  return CGF.BuildBlockLiteralTmp(BE);
1936}
1937
1938//===----------------------------------------------------------------------===//
1939//                         Entry Point into this File
1940//===----------------------------------------------------------------------===//
1941
1942/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1943/// type, ignoring the result.
1944Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1945  assert(E && !hasAggregateLLVMType(E->getType()) &&
1946         "Invalid scalar expression to emit");
1947
1948  return ScalarExprEmitter(*this, IgnoreResultAssign)
1949    .Visit(const_cast<Expr*>(E));
1950}
1951
1952/// EmitScalarConversion - Emit a conversion from the specified type to the
1953/// specified destination type, both of which are LLVM scalar types.
1954Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1955                                             QualType DstTy) {
1956  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1957         "Invalid scalar expression to emit");
1958  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1959}
1960
1961/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1962/// type to the specified destination type, where the destination type is an
1963/// LLVM scalar type.
1964Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1965                                                      QualType SrcTy,
1966                                                      QualType DstTy) {
1967  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1968         "Invalid complex -> scalar conversion");
1969  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1970                                                                DstTy);
1971}
1972
1973Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1974  assert(V1->getType() == V2->getType() &&
1975         "Vector operands must be of the same type");
1976  unsigned NumElements =
1977    cast<llvm::VectorType>(V1->getType())->getNumElements();
1978
1979  va_list va;
1980  va_start(va, V2);
1981
1982  llvm::SmallVector<llvm::Constant*, 16> Args;
1983  for (unsigned i = 0; i < NumElements; i++) {
1984    int n = va_arg(va, int);
1985    assert(n >= 0 && n < (int)NumElements * 2 &&
1986           "Vector shuffle index out of bounds!");
1987    Args.push_back(llvm::ConstantInt::get(
1988                                         llvm::Type::getInt32Ty(VMContext), n));
1989  }
1990
1991  const char *Name = va_arg(va, const char *);
1992  va_end(va);
1993
1994  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1995
1996  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1997}
1998
1999llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
2000                                         unsigned NumVals, bool isSplat) {
2001  llvm::Value *Vec
2002    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
2003
2004  for (unsigned i = 0, e = NumVals; i != e; ++i) {
2005    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
2006    llvm::Value *Idx = llvm::ConstantInt::get(
2007                                          llvm::Type::getInt32Ty(VMContext), i);
2008    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
2009  }
2010
2011  return Vec;
2012}
2013
2014LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2015  llvm::Value *V;
2016  // object->isa or (*object).isa
2017  // Generate code as for: *(Class*)object
2018  Expr *BaseExpr = E->getBase();
2019  if (E->isArrow())
2020    V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2021  else
2022    V  = EmitLValue(BaseExpr).getAddress();
2023
2024  // build Class* type
2025  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2026  ClassPtrTy = ClassPtrTy->getPointerTo();
2027  V = Builder.CreateBitCast(V, ClassPtrTy);
2028  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
2029  return LV;
2030}
2031
2032