CGExprScalar.cpp revision daa8e4e888758d55a7a759dd4a91b83921cef222
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV, QualType T) {
86    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    const llvm::IntegerType *Ty = cast<llvm::IntegerType>(V->getType());
144    Value *Zero = llvm::ConstantInt::get(Ty, 0);
145    return Builder.CreateICmpNE(V, Zero, "tobool");
146  }
147
148  //===--------------------------------------------------------------------===//
149  //                            Visitor Methods
150  //===--------------------------------------------------------------------===//
151
152  Value *Visit(Expr *E) {
153    llvm::DenseMap<const Expr *, llvm::Value *>::iterator I =
154      CGF.ConditionalSaveExprs.find(E);
155    if (I != CGF.ConditionalSaveExprs.end())
156      return I->second;
157
158    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
159  }
160
161  Value *VisitStmt(Stmt *S) {
162    S->dump(CGF.getContext().getSourceManager());
163    assert(0 && "Stmt can't have complex result type!");
164    return 0;
165  }
166  Value *VisitExpr(Expr *S);
167
168  Value *VisitParenExpr(ParenExpr *PE) {
169    return Visit(PE->getSubExpr());
170  }
171
172  // Leaves.
173  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
174    return llvm::ConstantInt::get(VMContext, E->getValue());
175  }
176  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
177    return llvm::ConstantFP::get(VMContext, E->getValue());
178  }
179  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
180    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
181  }
182  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
183    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
184  }
185  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
186    return EmitNullValue(E->getType());
187  }
188  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
189    return EmitNullValue(E->getType());
190  }
191  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
192    return llvm::ConstantInt::get(ConvertType(E->getType()),
193                                  CGF.getContext().typesAreCompatible(
194                                    E->getArgType1(), E->getArgType2()));
195  }
196  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
197  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
198  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
199    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
200    return Builder.CreateBitCast(V, ConvertType(E->getType()));
201  }
202
203  // l-values.
204  Value *VisitDeclRefExpr(DeclRefExpr *E) {
205    Expr::EvalResult Result;
206    if (!E->Evaluate(Result, CGF.getContext()))
207      return EmitLoadOfLValue(E);
208
209    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
210
211    llvm::Constant *C;
212    if (Result.Val.isInt()) {
213      C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
214    } else if (Result.Val.isFloat()) {
215      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
216    } else {
217      return EmitLoadOfLValue(E);
218    }
219
220    // Make sure we emit a debug reference to the global variable.
221    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
222      if (!CGF.getContext().DeclMustBeEmitted(VD))
223        CGF.EmitDeclRefExprDbgValue(E, C);
224    } else if (isa<EnumConstantDecl>(E->getDecl())) {
225      CGF.EmitDeclRefExprDbgValue(E, C);
226    }
227
228    return C;
229  }
230  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
231    return CGF.EmitObjCSelectorExpr(E);
232  }
233  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
234    return CGF.EmitObjCProtocolExpr(E);
235  }
236  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
237    return EmitLoadOfLValue(E);
238  }
239  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
240    return EmitLoadOfLValue(E);
241  }
242  Value *VisitObjCImplicitSetterGetterRefExpr(
243                        ObjCImplicitSetterGetterRefExpr *E) {
244    return EmitLoadOfLValue(E);
245  }
246  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
247    return CGF.EmitObjCMessageExpr(E).getScalarVal();
248  }
249
250  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
251    LValue LV = CGF.EmitObjCIsaExpr(E);
252    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
253    return V;
254  }
255
256  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
257  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
258  Value *VisitMemberExpr(MemberExpr *E);
259  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
260  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
261    return EmitLoadOfLValue(E);
262  }
263
264  Value *VisitInitListExpr(InitListExpr *E);
265
266  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
267    return CGF.CGM.EmitNullConstant(E->getType());
268  }
269  Value *VisitCastExpr(CastExpr *E) {
270    // Make sure to evaluate VLA bounds now so that we have them for later.
271    if (E->getType()->isVariablyModifiedType())
272      CGF.EmitVLASize(E->getType());
273
274    return EmitCastExpr(E);
275  }
276  Value *EmitCastExpr(CastExpr *E);
277
278  Value *VisitCallExpr(const CallExpr *E) {
279    if (E->getCallReturnType()->isReferenceType())
280      return EmitLoadOfLValue(E);
281
282    return CGF.EmitCallExpr(E).getScalarVal();
283  }
284
285  Value *VisitStmtExpr(const StmtExpr *E);
286
287  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
288
289  // Unary Operators.
290  Value *VisitUnaryPostDec(const UnaryOperator *E) {
291    LValue LV = EmitLValue(E->getSubExpr());
292    return EmitScalarPrePostIncDec(E, LV, false, false);
293  }
294  Value *VisitUnaryPostInc(const UnaryOperator *E) {
295    LValue LV = EmitLValue(E->getSubExpr());
296    return EmitScalarPrePostIncDec(E, LV, true, false);
297  }
298  Value *VisitUnaryPreDec(const UnaryOperator *E) {
299    LValue LV = EmitLValue(E->getSubExpr());
300    return EmitScalarPrePostIncDec(E, LV, false, true);
301  }
302  Value *VisitUnaryPreInc(const UnaryOperator *E) {
303    LValue LV = EmitLValue(E->getSubExpr());
304    return EmitScalarPrePostIncDec(E, LV, true, true);
305  }
306
307  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
308                                       bool isInc, bool isPre);
309
310
311  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
312    // If the sub-expression is an instance member reference,
313    // EmitDeclRefLValue will magically emit it with the appropriate
314    // value as the "address".
315    return EmitLValue(E->getSubExpr()).getAddress();
316  }
317  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
318  Value *VisitUnaryPlus(const UnaryOperator *E) {
319    // This differs from gcc, though, most likely due to a bug in gcc.
320    TestAndClearIgnoreResultAssign();
321    return Visit(E->getSubExpr());
322  }
323  Value *VisitUnaryMinus    (const UnaryOperator *E);
324  Value *VisitUnaryNot      (const UnaryOperator *E);
325  Value *VisitUnaryLNot     (const UnaryOperator *E);
326  Value *VisitUnaryReal     (const UnaryOperator *E);
327  Value *VisitUnaryImag     (const UnaryOperator *E);
328  Value *VisitUnaryExtension(const UnaryOperator *E) {
329    return Visit(E->getSubExpr());
330  }
331
332  // C++
333  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
334    return Visit(DAE->getExpr());
335  }
336  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
337    return CGF.LoadCXXThis();
338  }
339
340  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
341    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
342  }
343  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
344    return CGF.EmitCXXNewExpr(E);
345  }
346  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
347    CGF.EmitCXXDeleteExpr(E);
348    return 0;
349  }
350  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
351    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
352  }
353
354  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
355    // C++ [expr.pseudo]p1:
356    //   The result shall only be used as the operand for the function call
357    //   operator (), and the result of such a call has type void. The only
358    //   effect is the evaluation of the postfix-expression before the dot or
359    //   arrow.
360    CGF.EmitScalarExpr(E->getBase());
361    return 0;
362  }
363
364  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
365    return EmitNullValue(E->getType());
366  }
367
368  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
369    CGF.EmitCXXThrowExpr(E);
370    return 0;
371  }
372
373  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
374    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
375  }
376
377  // Binary Operators.
378  Value *EmitMul(const BinOpInfo &Ops) {
379    if (Ops.Ty->hasSignedIntegerRepresentation()) {
380      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
381      case LangOptions::SOB_Undefined:
382        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
383      case LangOptions::SOB_Defined:
384        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
385      case LangOptions::SOB_Trapping:
386        return EmitOverflowCheckedBinOp(Ops);
387      }
388    }
389
390    if (Ops.LHS->getType()->isFPOrFPVectorTy())
391      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
392    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
393  }
394  bool isTrapvOverflowBehavior() {
395    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
396               == LangOptions::SOB_Trapping;
397  }
398  /// Create a binary op that checks for overflow.
399  /// Currently only supports +, - and *.
400  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
401  // Emit the overflow BB when -ftrapv option is activated.
402  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
403    Builder.SetInsertPoint(overflowBB);
404    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
405    Builder.CreateCall(Trap);
406    Builder.CreateUnreachable();
407  }
408  // Check for undefined division and modulus behaviors.
409  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
410                                                  llvm::Value *Zero,bool isDiv);
411  Value *EmitDiv(const BinOpInfo &Ops);
412  Value *EmitRem(const BinOpInfo &Ops);
413  Value *EmitAdd(const BinOpInfo &Ops);
414  Value *EmitSub(const BinOpInfo &Ops);
415  Value *EmitShl(const BinOpInfo &Ops);
416  Value *EmitShr(const BinOpInfo &Ops);
417  Value *EmitAnd(const BinOpInfo &Ops) {
418    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
419  }
420  Value *EmitXor(const BinOpInfo &Ops) {
421    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
422  }
423  Value *EmitOr (const BinOpInfo &Ops) {
424    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
425  }
426
427  BinOpInfo EmitBinOps(const BinaryOperator *E);
428  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
429                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
430                                  Value *&Result);
431
432  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
433                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
434
435  // Binary operators and binary compound assignment operators.
436#define HANDLEBINOP(OP) \
437  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
438    return Emit ## OP(EmitBinOps(E));                                      \
439  }                                                                        \
440  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
441    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
442  }
443  HANDLEBINOP(Mul)
444  HANDLEBINOP(Div)
445  HANDLEBINOP(Rem)
446  HANDLEBINOP(Add)
447  HANDLEBINOP(Sub)
448  HANDLEBINOP(Shl)
449  HANDLEBINOP(Shr)
450  HANDLEBINOP(And)
451  HANDLEBINOP(Xor)
452  HANDLEBINOP(Or)
453#undef HANDLEBINOP
454
455  // Comparisons.
456  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
457                     unsigned SICmpOpc, unsigned FCmpOpc);
458#define VISITCOMP(CODE, UI, SI, FP) \
459    Value *VisitBin##CODE(const BinaryOperator *E) { \
460      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
461                         llvm::FCmpInst::FP); }
462  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
463  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
464  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
465  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
466  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
467  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
468#undef VISITCOMP
469
470  Value *VisitBinAssign     (const BinaryOperator *E);
471
472  Value *VisitBinLAnd       (const BinaryOperator *E);
473  Value *VisitBinLOr        (const BinaryOperator *E);
474  Value *VisitBinComma      (const BinaryOperator *E);
475
476  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
477  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
478
479  // Other Operators.
480  Value *VisitBlockExpr(const BlockExpr *BE);
481  Value *VisitConditionalOperator(const ConditionalOperator *CO);
482  Value *VisitChooseExpr(ChooseExpr *CE);
483  Value *VisitVAArgExpr(VAArgExpr *VE);
484  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
485    return CGF.EmitObjCStringLiteral(E);
486  }
487};
488}  // end anonymous namespace.
489
490//===----------------------------------------------------------------------===//
491//                                Utilities
492//===----------------------------------------------------------------------===//
493
494/// EmitConversionToBool - Convert the specified expression value to a
495/// boolean (i1) truth value.  This is equivalent to "Val != 0".
496Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
497  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
498
499  if (SrcType->isRealFloatingType())
500    return EmitFloatToBoolConversion(Src);
501
502  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
503    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
504
505  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
506         "Unknown scalar type to convert");
507
508  if (isa<llvm::IntegerType>(Src->getType()))
509    return EmitIntToBoolConversion(Src);
510
511  assert(isa<llvm::PointerType>(Src->getType()));
512  return EmitPointerToBoolConversion(Src);
513}
514
515/// EmitScalarConversion - Emit a conversion from the specified type to the
516/// specified destination type, both of which are LLVM scalar types.
517Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
518                                               QualType DstType) {
519  SrcType = CGF.getContext().getCanonicalType(SrcType);
520  DstType = CGF.getContext().getCanonicalType(DstType);
521  if (SrcType == DstType) return Src;
522
523  if (DstType->isVoidType()) return 0;
524
525  // Handle conversions to bool first, they are special: comparisons against 0.
526  if (DstType->isBooleanType())
527    return EmitConversionToBool(Src, SrcType);
528
529  const llvm::Type *DstTy = ConvertType(DstType);
530
531  // Ignore conversions like int -> uint.
532  if (Src->getType() == DstTy)
533    return Src;
534
535  // Handle pointer conversions next: pointers can only be converted to/from
536  // other pointers and integers. Check for pointer types in terms of LLVM, as
537  // some native types (like Obj-C id) may map to a pointer type.
538  if (isa<llvm::PointerType>(DstTy)) {
539    // The source value may be an integer, or a pointer.
540    if (isa<llvm::PointerType>(Src->getType()))
541      return Builder.CreateBitCast(Src, DstTy, "conv");
542
543    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
544    // First, convert to the correct width so that we control the kind of
545    // extension.
546    const llvm::Type *MiddleTy = CGF.IntPtrTy;
547    bool InputSigned = SrcType->isSignedIntegerType();
548    llvm::Value* IntResult =
549        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
550    // Then, cast to pointer.
551    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
552  }
553
554  if (isa<llvm::PointerType>(Src->getType())) {
555    // Must be an ptr to int cast.
556    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
557    return Builder.CreatePtrToInt(Src, DstTy, "conv");
558  }
559
560  // A scalar can be splatted to an extended vector of the same element type
561  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
562    // Cast the scalar to element type
563    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
564    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
565
566    // Insert the element in element zero of an undef vector
567    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
568    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
569    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
570
571    // Splat the element across to all elements
572    llvm::SmallVector<llvm::Constant*, 16> Args;
573    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
574    for (unsigned i = 0; i < NumElements; i++)
575      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
576
577    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
578    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
579    return Yay;
580  }
581
582  // Allow bitcast from vector to integer/fp of the same size.
583  if (isa<llvm::VectorType>(Src->getType()) ||
584      isa<llvm::VectorType>(DstTy))
585    return Builder.CreateBitCast(Src, DstTy, "conv");
586
587  // Finally, we have the arithmetic types: real int/float.
588  if (isa<llvm::IntegerType>(Src->getType())) {
589    bool InputSigned = SrcType->isSignedIntegerType();
590    if (isa<llvm::IntegerType>(DstTy))
591      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
592    else if (InputSigned)
593      return Builder.CreateSIToFP(Src, DstTy, "conv");
594    else
595      return Builder.CreateUIToFP(Src, DstTy, "conv");
596  }
597
598  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
599  if (isa<llvm::IntegerType>(DstTy)) {
600    if (DstType->isSignedIntegerType())
601      return Builder.CreateFPToSI(Src, DstTy, "conv");
602    else
603      return Builder.CreateFPToUI(Src, DstTy, "conv");
604  }
605
606  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
607  if (DstTy->getTypeID() < Src->getType()->getTypeID())
608    return Builder.CreateFPTrunc(Src, DstTy, "conv");
609  else
610    return Builder.CreateFPExt(Src, DstTy, "conv");
611}
612
613/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
614/// type to the specified destination type, where the destination type is an
615/// LLVM scalar type.
616Value *ScalarExprEmitter::
617EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
618                              QualType SrcTy, QualType DstTy) {
619  // Get the source element type.
620  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
621
622  // Handle conversions to bool first, they are special: comparisons against 0.
623  if (DstTy->isBooleanType()) {
624    //  Complex != 0  -> (Real != 0) | (Imag != 0)
625    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
626    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
627    return Builder.CreateOr(Src.first, Src.second, "tobool");
628  }
629
630  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
631  // the imaginary part of the complex value is discarded and the value of the
632  // real part is converted according to the conversion rules for the
633  // corresponding real type.
634  return EmitScalarConversion(Src.first, SrcTy, DstTy);
635}
636
637Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
638  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
639    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
640
641  return llvm::Constant::getNullValue(ConvertType(Ty));
642}
643
644//===----------------------------------------------------------------------===//
645//                            Visitor Methods
646//===----------------------------------------------------------------------===//
647
648Value *ScalarExprEmitter::VisitExpr(Expr *E) {
649  CGF.ErrorUnsupported(E, "scalar expression");
650  if (E->getType()->isVoidType())
651    return 0;
652  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
653}
654
655Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
656  // Vector Mask Case
657  if (E->getNumSubExprs() == 2 ||
658      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
659    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
660    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
661    Value *Mask;
662
663    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
664    unsigned LHSElts = LTy->getNumElements();
665
666    if (E->getNumSubExprs() == 3) {
667      Mask = CGF.EmitScalarExpr(E->getExpr(2));
668
669      // Shuffle LHS & RHS into one input vector.
670      llvm::SmallVector<llvm::Constant*, 32> concat;
671      for (unsigned i = 0; i != LHSElts; ++i) {
672        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
673        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
674      }
675
676      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
677      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
678      LHSElts *= 2;
679    } else {
680      Mask = RHS;
681    }
682
683    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
684    llvm::Constant* EltMask;
685
686    // Treat vec3 like vec4.
687    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
688      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
689                                       (1 << llvm::Log2_32(LHSElts+2))-1);
690    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
691      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
692                                       (1 << llvm::Log2_32(LHSElts+1))-1);
693    else
694      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
695                                       (1 << llvm::Log2_32(LHSElts))-1);
696
697    // Mask off the high bits of each shuffle index.
698    llvm::SmallVector<llvm::Constant *, 32> MaskV;
699    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
700      MaskV.push_back(EltMask);
701
702    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
703    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
704
705    // newv = undef
706    // mask = mask & maskbits
707    // for each elt
708    //   n = extract mask i
709    //   x = extract val n
710    //   newv = insert newv, x, i
711    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
712                                                        MTy->getNumElements());
713    Value* NewV = llvm::UndefValue::get(RTy);
714    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
715      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
716      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
717      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
718
719      // Handle vec3 special since the index will be off by one for the RHS.
720      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
721        Value *cmpIndx, *newIndx;
722        cmpIndx = Builder.CreateICmpUGT(Indx,
723                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
724                                        "cmp_shuf_idx");
725        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
726                                    "shuf_idx_adj");
727        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
728      }
729      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
730      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
731    }
732    return NewV;
733  }
734
735  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
736  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
737
738  // Handle vec3 special since the index will be off by one for the RHS.
739  llvm::SmallVector<llvm::Constant*, 32> indices;
740  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
741    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
742    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
743    if (VTy->getNumElements() == 3) {
744      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
745        uint64_t cVal = CI->getZExtValue();
746        if (cVal > 3) {
747          C = llvm::ConstantInt::get(C->getType(), cVal-1);
748        }
749      }
750    }
751    indices.push_back(C);
752  }
753
754  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
755  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
756}
757Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
758  Expr::EvalResult Result;
759  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
760    if (E->isArrow())
761      CGF.EmitScalarExpr(E->getBase());
762    else
763      EmitLValue(E->getBase());
764    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
765  }
766
767  // Emit debug info for aggregate now, if it was delayed to reduce
768  // debug info size.
769  CGDebugInfo *DI = CGF.getDebugInfo();
770  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
771    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
772    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
773      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
774        DI->getOrCreateRecordType(PTy->getPointeeType(),
775                                  M->getParent()->getLocation());
776  }
777  return EmitLoadOfLValue(E);
778}
779
780Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
781  TestAndClearIgnoreResultAssign();
782
783  // Emit subscript expressions in rvalue context's.  For most cases, this just
784  // loads the lvalue formed by the subscript expr.  However, we have to be
785  // careful, because the base of a vector subscript is occasionally an rvalue,
786  // so we can't get it as an lvalue.
787  if (!E->getBase()->getType()->isVectorType())
788    return EmitLoadOfLValue(E);
789
790  // Handle the vector case.  The base must be a vector, the index must be an
791  // integer value.
792  Value *Base = Visit(E->getBase());
793  Value *Idx  = Visit(E->getIdx());
794  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
795  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
796  return Builder.CreateExtractElement(Base, Idx, "vecext");
797}
798
799static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
800                                  unsigned Off, const llvm::Type *I32Ty) {
801  int MV = SVI->getMaskValue(Idx);
802  if (MV == -1)
803    return llvm::UndefValue::get(I32Ty);
804  return llvm::ConstantInt::get(I32Ty, Off+MV);
805}
806
807Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
808  bool Ignore = TestAndClearIgnoreResultAssign();
809  (void)Ignore;
810  assert (Ignore == false && "init list ignored");
811  unsigned NumInitElements = E->getNumInits();
812
813  if (E->hadArrayRangeDesignator())
814    CGF.ErrorUnsupported(E, "GNU array range designator extension");
815
816  const llvm::VectorType *VType =
817    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
818
819  // We have a scalar in braces. Just use the first element.
820  if (!VType)
821    return Visit(E->getInit(0));
822
823  unsigned ResElts = VType->getNumElements();
824
825  // Loop over initializers collecting the Value for each, and remembering
826  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
827  // us to fold the shuffle for the swizzle into the shuffle for the vector
828  // initializer, since LLVM optimizers generally do not want to touch
829  // shuffles.
830  unsigned CurIdx = 0;
831  bool VIsUndefShuffle = false;
832  llvm::Value *V = llvm::UndefValue::get(VType);
833  for (unsigned i = 0; i != NumInitElements; ++i) {
834    Expr *IE = E->getInit(i);
835    Value *Init = Visit(IE);
836    llvm::SmallVector<llvm::Constant*, 16> Args;
837
838    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
839
840    // Handle scalar elements.  If the scalar initializer is actually one
841    // element of a different vector of the same width, use shuffle instead of
842    // extract+insert.
843    if (!VVT) {
844      if (isa<ExtVectorElementExpr>(IE)) {
845        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
846
847        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
848          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
849          Value *LHS = 0, *RHS = 0;
850          if (CurIdx == 0) {
851            // insert into undef -> shuffle (src, undef)
852            Args.push_back(C);
853            for (unsigned j = 1; j != ResElts; ++j)
854              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
855
856            LHS = EI->getVectorOperand();
857            RHS = V;
858            VIsUndefShuffle = true;
859          } else if (VIsUndefShuffle) {
860            // insert into undefshuffle && size match -> shuffle (v, src)
861            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
862            for (unsigned j = 0; j != CurIdx; ++j)
863              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
864            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
865                                                  ResElts + C->getZExtValue()));
866            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
867              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
868
869            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
870            RHS = EI->getVectorOperand();
871            VIsUndefShuffle = false;
872          }
873          if (!Args.empty()) {
874            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
875            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
876            ++CurIdx;
877            continue;
878          }
879        }
880      }
881      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
882      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
883      VIsUndefShuffle = false;
884      ++CurIdx;
885      continue;
886    }
887
888    unsigned InitElts = VVT->getNumElements();
889
890    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
891    // input is the same width as the vector being constructed, generate an
892    // optimized shuffle of the swizzle input into the result.
893    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
894    if (isa<ExtVectorElementExpr>(IE)) {
895      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
896      Value *SVOp = SVI->getOperand(0);
897      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
898
899      if (OpTy->getNumElements() == ResElts) {
900        for (unsigned j = 0; j != CurIdx; ++j) {
901          // If the current vector initializer is a shuffle with undef, merge
902          // this shuffle directly into it.
903          if (VIsUndefShuffle) {
904            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
905                                      CGF.Int32Ty));
906          } else {
907            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
908          }
909        }
910        for (unsigned j = 0, je = InitElts; j != je; ++j)
911          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
912        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
913          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
914
915        if (VIsUndefShuffle)
916          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
917
918        Init = SVOp;
919      }
920    }
921
922    // Extend init to result vector length, and then shuffle its contribution
923    // to the vector initializer into V.
924    if (Args.empty()) {
925      for (unsigned j = 0; j != InitElts; ++j)
926        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
927      for (unsigned j = InitElts; j != ResElts; ++j)
928        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
929      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
930      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
931                                         Mask, "vext");
932
933      Args.clear();
934      for (unsigned j = 0; j != CurIdx; ++j)
935        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
936      for (unsigned j = 0; j != InitElts; ++j)
937        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
938      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
939        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
940    }
941
942    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
943    // merging subsequent shuffles into this one.
944    if (CurIdx == 0)
945      std::swap(V, Init);
946    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
947    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
948    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
949    CurIdx += InitElts;
950  }
951
952  // FIXME: evaluate codegen vs. shuffling against constant null vector.
953  // Emit remaining default initializers.
954  const llvm::Type *EltTy = VType->getElementType();
955
956  // Emit remaining default initializers
957  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
958    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
959    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
960    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
961  }
962  return V;
963}
964
965static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
966  const Expr *E = CE->getSubExpr();
967
968  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
969    return false;
970
971  if (isa<CXXThisExpr>(E)) {
972    // We always assume that 'this' is never null.
973    return false;
974  }
975
976  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
977    // And that glvalue casts are never null.
978    if (ICE->getValueKind() != VK_RValue)
979      return false;
980  }
981
982  return true;
983}
984
985// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
986// have to handle a more broad range of conversions than explicit casts, as they
987// handle things like function to ptr-to-function decay etc.
988Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
989  Expr *E = CE->getSubExpr();
990  QualType DestTy = CE->getType();
991  CastKind Kind = CE->getCastKind();
992
993  if (!DestTy->isVoidType())
994    TestAndClearIgnoreResultAssign();
995
996  // Since almost all cast kinds apply to scalars, this switch doesn't have
997  // a default case, so the compiler will warn on a missing case.  The cases
998  // are in the same order as in the CastKind enum.
999  switch (Kind) {
1000  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1001
1002  case CK_Unknown:
1003    // FIXME: All casts should have a known kind!
1004    //assert(0 && "Unknown cast kind!");
1005    break;
1006
1007  case CK_LValueBitCast:
1008  case CK_ObjCObjectLValueCast: {
1009    Value *V = EmitLValue(E).getAddress();
1010    V = Builder.CreateBitCast(V,
1011                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1012    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1013  }
1014
1015  case CK_AnyPointerToObjCPointerCast:
1016  case CK_AnyPointerToBlockPointerCast:
1017  case CK_BitCast: {
1018    Value *Src = Visit(const_cast<Expr*>(E));
1019    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1020  }
1021  case CK_NoOp:
1022  case CK_UserDefinedConversion:
1023    return Visit(const_cast<Expr*>(E));
1024
1025  case CK_BaseToDerived: {
1026    const CXXRecordDecl *DerivedClassDecl =
1027      DestTy->getCXXRecordDeclForPointerType();
1028
1029    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1030                                        CE->path_begin(), CE->path_end(),
1031                                        ShouldNullCheckClassCastValue(CE));
1032  }
1033  case CK_UncheckedDerivedToBase:
1034  case CK_DerivedToBase: {
1035    const RecordType *DerivedClassTy =
1036      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1037    CXXRecordDecl *DerivedClassDecl =
1038      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1039
1040    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1041                                     CE->path_begin(), CE->path_end(),
1042                                     ShouldNullCheckClassCastValue(CE));
1043  }
1044  case CK_Dynamic: {
1045    Value *V = Visit(const_cast<Expr*>(E));
1046    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1047    return CGF.EmitDynamicCast(V, DCE);
1048  }
1049  case CK_ToUnion:
1050    assert(0 && "Should be unreachable!");
1051    break;
1052
1053  case CK_ArrayToPointerDecay: {
1054    assert(E->getType()->isArrayType() &&
1055           "Array to pointer decay must have array source type!");
1056
1057    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1058
1059    // Note that VLA pointers are always decayed, so we don't need to do
1060    // anything here.
1061    if (!E->getType()->isVariableArrayType()) {
1062      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1063      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1064                                 ->getElementType()) &&
1065             "Expected pointer to array");
1066      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1067    }
1068
1069    return V;
1070  }
1071  case CK_FunctionToPointerDecay:
1072    return EmitLValue(E).getAddress();
1073
1074  case CK_NullToPointer:
1075    if (MustVisitNullValue(E))
1076      (void) Visit(E);
1077
1078    return llvm::ConstantPointerNull::get(
1079                               cast<llvm::PointerType>(ConvertType(DestTy)));
1080
1081  case CK_NullToMemberPointer: {
1082    if (MustVisitNullValue(E))
1083      (void) Visit(E);
1084
1085    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1086    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1087  }
1088
1089  case CK_BaseToDerivedMemberPointer:
1090  case CK_DerivedToBaseMemberPointer: {
1091    Value *Src = Visit(E);
1092
1093    // Note that the AST doesn't distinguish between checked and
1094    // unchecked member pointer conversions, so we always have to
1095    // implement checked conversions here.  This is inefficient when
1096    // actual control flow may be required in order to perform the
1097    // check, which it is for data member pointers (but not member
1098    // function pointers on Itanium and ARM).
1099    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1100  }
1101
1102  case CK_FloatingRealToComplex:
1103  case CK_FloatingComplexCast:
1104  case CK_IntegralRealToComplex:
1105  case CK_IntegralComplexCast:
1106  case CK_IntegralComplexToFloatingComplex:
1107  case CK_FloatingComplexToIntegralComplex:
1108  case CK_ConstructorConversion:
1109    assert(0 && "Should be unreachable!");
1110    break;
1111
1112  case CK_IntegralToPointer: {
1113    Value *Src = Visit(const_cast<Expr*>(E));
1114
1115    // First, convert to the correct width so that we control the kind of
1116    // extension.
1117    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1118    bool InputSigned = E->getType()->isSignedIntegerType();
1119    llvm::Value* IntResult =
1120      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1121
1122    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1123  }
1124  case CK_PointerToIntegral: {
1125    Value *Src = Visit(const_cast<Expr*>(E));
1126
1127    // Handle conversion to bool correctly.
1128    if (DestTy->isBooleanType())
1129      return EmitScalarConversion(Src, E->getType(), DestTy);
1130
1131    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1132  }
1133  case CK_ToVoid: {
1134    if (E->Classify(CGF.getContext()).isGLValue()) {
1135      LValue LV = CGF.EmitLValue(E);
1136      if (LV.isPropertyRef())
1137        CGF.EmitLoadOfPropertyRefLValue(LV, E->getType());
1138      else if (LV.isKVCRef())
1139        CGF.EmitLoadOfKVCRefLValue(LV, E->getType());
1140    }
1141    else
1142      CGF.EmitAnyExpr(E, AggValueSlot::ignored(), true);
1143    return 0;
1144  }
1145  case CK_VectorSplat: {
1146    const llvm::Type *DstTy = ConvertType(DestTy);
1147    Value *Elt = Visit(const_cast<Expr*>(E));
1148
1149    // Insert the element in element zero of an undef vector
1150    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1151    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1152    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1153
1154    // Splat the element across to all elements
1155    llvm::SmallVector<llvm::Constant*, 16> Args;
1156    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1157    llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1158    for (unsigned i = 0; i < NumElements; i++)
1159      Args.push_back(Zero);
1160
1161    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1162    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1163    return Yay;
1164  }
1165
1166  case CK_IntegralCast:
1167  case CK_IntegralToFloating:
1168  case CK_FloatingToIntegral:
1169  case CK_FloatingCast:
1170    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1171
1172  case CK_IntegralToBoolean:
1173    return EmitIntToBoolConversion(Visit(E));
1174  case CK_PointerToBoolean:
1175    return EmitPointerToBoolConversion(Visit(E));
1176  case CK_FloatingToBoolean:
1177    return EmitFloatToBoolConversion(Visit(E));
1178  case CK_MemberPointerToBoolean: {
1179    llvm::Value *MemPtr = Visit(E);
1180    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1181    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1182  }
1183
1184  case CK_FloatingComplexToReal:
1185  case CK_IntegralComplexToReal:
1186    return CGF.EmitComplexExpr(E, false, true, false, true).first;
1187
1188  case CK_FloatingComplexToBoolean:
1189  case CK_IntegralComplexToBoolean: {
1190    CodeGenFunction::ComplexPairTy V
1191      = CGF.EmitComplexExpr(E, false, false, false, false);
1192
1193    // TODO: kill this function off, inline appropriate case here
1194    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1195  }
1196
1197  }
1198
1199  // Handle cases where the source is an non-complex type.
1200
1201  if (!CGF.hasAggregateLLVMType(E->getType())) {
1202    Value *Src = Visit(const_cast<Expr*>(E));
1203
1204    // Use EmitScalarConversion to perform the conversion.
1205    return EmitScalarConversion(Src, E->getType(), DestTy);
1206  }
1207
1208  // Handle cases where the source is a complex type.
1209  // TODO: when we're certain about cast kinds, we should just be able
1210  // to assert that no complexes make it here.
1211  if (E->getType()->isAnyComplexType()) {
1212    bool IgnoreImag = true;
1213    bool IgnoreImagAssign = true;
1214    bool IgnoreReal = IgnoreResultAssign;
1215    bool IgnoreRealAssign = IgnoreResultAssign;
1216    if (DestTy->isBooleanType())
1217      IgnoreImagAssign = IgnoreImag = false;
1218    else if (DestTy->isVoidType()) {
1219      IgnoreReal = IgnoreImag = false;
1220      IgnoreRealAssign = IgnoreImagAssign = true;
1221    }
1222    CodeGenFunction::ComplexPairTy V
1223      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1224                            IgnoreImagAssign);
1225    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1226  }
1227
1228  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1229  // evaluate the result and return.
1230  CGF.EmitAggExpr(E, AggValueSlot::ignored(), true);
1231  return 0;
1232}
1233
1234Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1235  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1236                              !E->getType()->isVoidType()).getScalarVal();
1237}
1238
1239Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1240  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1241  if (E->getType().isObjCGCWeak())
1242    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1243  return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1244}
1245
1246//===----------------------------------------------------------------------===//
1247//                             Unary Operators
1248//===----------------------------------------------------------------------===//
1249
1250llvm::Value *ScalarExprEmitter::
1251EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1252                        bool isInc, bool isPre) {
1253
1254  QualType ValTy = E->getSubExpr()->getType();
1255  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1256
1257  int AmountVal = isInc ? 1 : -1;
1258
1259  if (ValTy->isPointerType() &&
1260      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1261    // The amount of the addition/subtraction needs to account for the VLA size
1262    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1263  }
1264
1265  llvm::Value *NextVal;
1266  if (const llvm::PointerType *PT =
1267      dyn_cast<llvm::PointerType>(InVal->getType())) {
1268    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1269    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1270      QualType PTEE = ValTy->getPointeeType();
1271      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1272        // Handle interface types, which are not represented with a concrete
1273        // type.
1274        int size = CGF.getContext().getTypeSize(OIT) / 8;
1275        if (!isInc)
1276          size = -size;
1277        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1278        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1279        InVal = Builder.CreateBitCast(InVal, i8Ty);
1280        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1281        llvm::Value *lhs = LV.getAddress();
1282        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1283        LV = CGF.MakeAddrLValue(lhs, ValTy);
1284      } else
1285        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1286    } else {
1287      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1288      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1289      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1290      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1291    }
1292  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1293    // Bool++ is an interesting case, due to promotion rules, we get:
1294    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1295    // Bool = ((int)Bool+1) != 0
1296    // An interesting aspect of this is that increment is always true.
1297    // Decrement does not have this property.
1298    NextVal = llvm::ConstantInt::getTrue(VMContext);
1299  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1300    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1301
1302    if (!ValTy->isSignedIntegerType())
1303      // Unsigned integer inc is always two's complement.
1304      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1305    else {
1306      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1307      case LangOptions::SOB_Undefined:
1308        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1309        break;
1310      case LangOptions::SOB_Defined:
1311        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1312        break;
1313      case LangOptions::SOB_Trapping:
1314        BinOpInfo BinOp;
1315        BinOp.LHS = InVal;
1316        BinOp.RHS = NextVal;
1317        BinOp.Ty = E->getType();
1318        BinOp.Opcode = BO_Add;
1319        BinOp.E = E;
1320        NextVal = EmitOverflowCheckedBinOp(BinOp);
1321        break;
1322      }
1323    }
1324  } else {
1325    // Add the inc/dec to the real part.
1326    if (InVal->getType()->isFloatTy())
1327      NextVal =
1328      llvm::ConstantFP::get(VMContext,
1329                            llvm::APFloat(static_cast<float>(AmountVal)));
1330    else if (InVal->getType()->isDoubleTy())
1331      NextVal =
1332      llvm::ConstantFP::get(VMContext,
1333                            llvm::APFloat(static_cast<double>(AmountVal)));
1334    else {
1335      llvm::APFloat F(static_cast<float>(AmountVal));
1336      bool ignored;
1337      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1338                &ignored);
1339      NextVal = llvm::ConstantFP::get(VMContext, F);
1340    }
1341    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1342  }
1343
1344  // Store the updated result through the lvalue.
1345  if (LV.isBitField())
1346    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1347  else
1348    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1349
1350  // If this is a postinc, return the value read from memory, otherwise use the
1351  // updated value.
1352  return isPre ? NextVal : InVal;
1353}
1354
1355
1356
1357Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1358  TestAndClearIgnoreResultAssign();
1359  // Emit unary minus with EmitSub so we handle overflow cases etc.
1360  BinOpInfo BinOp;
1361  BinOp.RHS = Visit(E->getSubExpr());
1362
1363  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1364    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1365  else
1366    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1367  BinOp.Ty = E->getType();
1368  BinOp.Opcode = BO_Sub;
1369  BinOp.E = E;
1370  return EmitSub(BinOp);
1371}
1372
1373Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1374  TestAndClearIgnoreResultAssign();
1375  Value *Op = Visit(E->getSubExpr());
1376  return Builder.CreateNot(Op, "neg");
1377}
1378
1379Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1380  // Compare operand to zero.
1381  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1382
1383  // Invert value.
1384  // TODO: Could dynamically modify easy computations here.  For example, if
1385  // the operand is an icmp ne, turn into icmp eq.
1386  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1387
1388  // ZExt result to the expr type.
1389  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1390}
1391
1392Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1393  // Try folding the offsetof to a constant.
1394  Expr::EvalResult EvalResult;
1395  if (E->Evaluate(EvalResult, CGF.getContext()))
1396    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1397
1398  // Loop over the components of the offsetof to compute the value.
1399  unsigned n = E->getNumComponents();
1400  const llvm::Type* ResultType = ConvertType(E->getType());
1401  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1402  QualType CurrentType = E->getTypeSourceInfo()->getType();
1403  for (unsigned i = 0; i != n; ++i) {
1404    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1405    llvm::Value *Offset = 0;
1406    switch (ON.getKind()) {
1407    case OffsetOfExpr::OffsetOfNode::Array: {
1408      // Compute the index
1409      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1410      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1411      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1412      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1413
1414      // Save the element type
1415      CurrentType =
1416          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1417
1418      // Compute the element size
1419      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1420          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1421
1422      // Multiply out to compute the result
1423      Offset = Builder.CreateMul(Idx, ElemSize);
1424      break;
1425    }
1426
1427    case OffsetOfExpr::OffsetOfNode::Field: {
1428      FieldDecl *MemberDecl = ON.getField();
1429      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1430      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1431
1432      // Compute the index of the field in its parent.
1433      unsigned i = 0;
1434      // FIXME: It would be nice if we didn't have to loop here!
1435      for (RecordDecl::field_iterator Field = RD->field_begin(),
1436                                      FieldEnd = RD->field_end();
1437           Field != FieldEnd; (void)++Field, ++i) {
1438        if (*Field == MemberDecl)
1439          break;
1440      }
1441      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1442
1443      // Compute the offset to the field
1444      int64_t OffsetInt = RL.getFieldOffset(i) /
1445                          CGF.getContext().getCharWidth();
1446      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1447
1448      // Save the element type.
1449      CurrentType = MemberDecl->getType();
1450      break;
1451    }
1452
1453    case OffsetOfExpr::OffsetOfNode::Identifier:
1454      llvm_unreachable("dependent __builtin_offsetof");
1455
1456    case OffsetOfExpr::OffsetOfNode::Base: {
1457      if (ON.getBase()->isVirtual()) {
1458        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1459        continue;
1460      }
1461
1462      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1463      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1464
1465      // Save the element type.
1466      CurrentType = ON.getBase()->getType();
1467
1468      // Compute the offset to the base.
1469      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1470      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1471      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1472                          CGF.getContext().getCharWidth();
1473      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1474      break;
1475    }
1476    }
1477    Result = Builder.CreateAdd(Result, Offset);
1478  }
1479  return Result;
1480}
1481
1482/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1483/// argument of the sizeof expression as an integer.
1484Value *
1485ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1486  QualType TypeToSize = E->getTypeOfArgument();
1487  if (E->isSizeOf()) {
1488    if (const VariableArrayType *VAT =
1489          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1490      if (E->isArgumentType()) {
1491        // sizeof(type) - make sure to emit the VLA size.
1492        CGF.EmitVLASize(TypeToSize);
1493      } else {
1494        // C99 6.5.3.4p2: If the argument is an expression of type
1495        // VLA, it is evaluated.
1496        CGF.EmitAnyExpr(E->getArgumentExpr());
1497      }
1498
1499      return CGF.GetVLASize(VAT);
1500    }
1501  }
1502
1503  // If this isn't sizeof(vla), the result must be constant; use the constant
1504  // folding logic so we don't have to duplicate it here.
1505  Expr::EvalResult Result;
1506  E->Evaluate(Result, CGF.getContext());
1507  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1508}
1509
1510Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1511  Expr *Op = E->getSubExpr();
1512  if (Op->getType()->isAnyComplexType())
1513    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1514  return Visit(Op);
1515}
1516Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1517  Expr *Op = E->getSubExpr();
1518  if (Op->getType()->isAnyComplexType())
1519    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1520
1521  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1522  // effects are evaluated, but not the actual value.
1523  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1524    CGF.EmitLValue(Op);
1525  else
1526    CGF.EmitScalarExpr(Op, true);
1527  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1528}
1529
1530//===----------------------------------------------------------------------===//
1531//                           Binary Operators
1532//===----------------------------------------------------------------------===//
1533
1534BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1535  TestAndClearIgnoreResultAssign();
1536  BinOpInfo Result;
1537  Result.LHS = Visit(E->getLHS());
1538  Result.RHS = Visit(E->getRHS());
1539  Result.Ty  = E->getType();
1540  Result.Opcode = E->getOpcode();
1541  Result.E = E;
1542  return Result;
1543}
1544
1545LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1546                                              const CompoundAssignOperator *E,
1547                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1548                                                   Value *&Result) {
1549  QualType LHSTy = E->getLHS()->getType();
1550  BinOpInfo OpInfo;
1551
1552  if (E->getComputationResultType()->isAnyComplexType()) {
1553    // This needs to go through the complex expression emitter, but it's a tad
1554    // complicated to do that... I'm leaving it out for now.  (Note that we do
1555    // actually need the imaginary part of the RHS for multiplication and
1556    // division.)
1557    CGF.ErrorUnsupported(E, "complex compound assignment");
1558    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1559    return LValue();
1560  }
1561
1562  // Emit the RHS first.  __block variables need to have the rhs evaluated
1563  // first, plus this should improve codegen a little.
1564  OpInfo.RHS = Visit(E->getRHS());
1565  OpInfo.Ty = E->getComputationResultType();
1566  OpInfo.Opcode = E->getOpcode();
1567  OpInfo.E = E;
1568  // Load/convert the LHS.
1569  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1570  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1571  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1572                                    E->getComputationLHSType());
1573
1574  // Expand the binary operator.
1575  Result = (this->*Func)(OpInfo);
1576
1577  // Convert the result back to the LHS type.
1578  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1579
1580  // Store the result value into the LHS lvalue. Bit-fields are handled
1581  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1582  // 'An assignment expression has the value of the left operand after the
1583  // assignment...'.
1584  if (LHSLV.isBitField())
1585    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1586                                       &Result);
1587  else
1588    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1589
1590  return LHSLV;
1591}
1592
1593Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1594                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1595  bool Ignore = TestAndClearIgnoreResultAssign();
1596  Value *RHS;
1597  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1598
1599  // If the result is clearly ignored, return now.
1600  if (Ignore)
1601    return 0;
1602
1603  // Objective-C property assignment never reloads the value following a store.
1604  if (LHS.isPropertyRef() || LHS.isKVCRef())
1605    return RHS;
1606
1607  // If the lvalue is non-volatile, return the computed value of the assignment.
1608  if (!LHS.isVolatileQualified())
1609    return RHS;
1610
1611  // Otherwise, reload the value.
1612  return EmitLoadOfLValue(LHS, E->getType());
1613}
1614
1615void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1616     					    const BinOpInfo &Ops,
1617				     	    llvm::Value *Zero, bool isDiv) {
1618  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1619  llvm::BasicBlock *contBB =
1620    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1621
1622  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1623
1624  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1625    llvm::Value *IntMin =
1626      llvm::ConstantInt::get(VMContext,
1627                             llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1628    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1629
1630    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1631    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1632    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1633    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1634    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1635                         overflowBB, contBB);
1636  } else {
1637    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1638                             overflowBB, contBB);
1639  }
1640  EmitOverflowBB(overflowBB);
1641  Builder.SetInsertPoint(contBB);
1642}
1643
1644Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1645  if (isTrapvOverflowBehavior()) {
1646    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1647
1648    if (Ops.Ty->isIntegerType())
1649      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1650    else if (Ops.Ty->isRealFloatingType()) {
1651      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1652                                                          CGF.CurFn);
1653      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1654      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1655                               overflowBB, DivCont);
1656      EmitOverflowBB(overflowBB);
1657      Builder.SetInsertPoint(DivCont);
1658    }
1659  }
1660  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1661    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1662  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1663    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1664  else
1665    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1666}
1667
1668Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1669  // Rem in C can't be a floating point type: C99 6.5.5p2.
1670  if (isTrapvOverflowBehavior()) {
1671    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1672
1673    if (Ops.Ty->isIntegerType())
1674      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1675  }
1676
1677  if (Ops.Ty->isUnsignedIntegerType())
1678    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1679  else
1680    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1681}
1682
1683Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1684  unsigned IID;
1685  unsigned OpID = 0;
1686
1687  switch (Ops.Opcode) {
1688  case BO_Add:
1689  case BO_AddAssign:
1690    OpID = 1;
1691    IID = llvm::Intrinsic::sadd_with_overflow;
1692    break;
1693  case BO_Sub:
1694  case BO_SubAssign:
1695    OpID = 2;
1696    IID = llvm::Intrinsic::ssub_with_overflow;
1697    break;
1698  case BO_Mul:
1699  case BO_MulAssign:
1700    OpID = 3;
1701    IID = llvm::Intrinsic::smul_with_overflow;
1702    break;
1703  default:
1704    assert(false && "Unsupported operation for overflow detection");
1705    IID = 0;
1706  }
1707  OpID <<= 1;
1708  OpID |= 1;
1709
1710  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1711
1712  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1713
1714  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1715  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1716  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1717
1718  // Branch in case of overflow.
1719  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1720  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1721  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1722
1723  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1724
1725  // Handle overflow with llvm.trap.
1726  const std::string *handlerName =
1727    &CGF.getContext().getLangOptions().OverflowHandler;
1728  if (handlerName->empty()) {
1729    EmitOverflowBB(overflowBB);
1730    Builder.SetInsertPoint(continueBB);
1731    return result;
1732  }
1733
1734  // If an overflow handler is set, then we want to call it and then use its
1735  // result, if it returns.
1736  Builder.SetInsertPoint(overflowBB);
1737
1738  // Get the overflow handler.
1739  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1740  std::vector<const llvm::Type*> argTypes;
1741  argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1742  argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1743  llvm::FunctionType *handlerTy =
1744      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1745  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1746
1747  // Sign extend the args to 64-bit, so that we can use the same handler for
1748  // all types of overflow.
1749  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1750  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1751
1752  // Call the handler with the two arguments, the operation, and the size of
1753  // the result.
1754  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1755      Builder.getInt8(OpID),
1756      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1757
1758  // Truncate the result back to the desired size.
1759  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1760  Builder.CreateBr(continueBB);
1761
1762  Builder.SetInsertPoint(continueBB);
1763  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1764  phi->reserveOperandSpace(2);
1765  phi->addIncoming(result, initialBB);
1766  phi->addIncoming(handlerResult, overflowBB);
1767
1768  return phi;
1769}
1770
1771Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1772  if (!Ops.Ty->isAnyPointerType()) {
1773    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1774      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1775      case LangOptions::SOB_Undefined:
1776        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1777      case LangOptions::SOB_Defined:
1778        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1779      case LangOptions::SOB_Trapping:
1780        return EmitOverflowCheckedBinOp(Ops);
1781      }
1782    }
1783
1784    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1785      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1786
1787    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1788  }
1789
1790  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1791  // use this path.
1792  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1793
1794  if (Ops.Ty->isPointerType() &&
1795      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1796    // The amount of the addition needs to account for the VLA size
1797    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1798  }
1799
1800  Value *Ptr, *Idx;
1801  Expr *IdxExp;
1802  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1803  const ObjCObjectPointerType *OPT =
1804    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1805  if (PT || OPT) {
1806    Ptr = Ops.LHS;
1807    Idx = Ops.RHS;
1808    IdxExp = BinOp->getRHS();
1809  } else {  // int + pointer
1810    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1811    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1812    assert((PT || OPT) && "Invalid add expr");
1813    Ptr = Ops.RHS;
1814    Idx = Ops.LHS;
1815    IdxExp = BinOp->getLHS();
1816  }
1817
1818  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1819  if (Width < CGF.LLVMPointerWidth) {
1820    // Zero or sign extend the pointer value based on whether the index is
1821    // signed or not.
1822    const llvm::Type *IdxType = CGF.IntPtrTy;
1823    if (IdxExp->getType()->isSignedIntegerType())
1824      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1825    else
1826      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1827  }
1828  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1829  // Handle interface types, which are not represented with a concrete type.
1830  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1831    llvm::Value *InterfaceSize =
1832      llvm::ConstantInt::get(Idx->getType(),
1833          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1834    Idx = Builder.CreateMul(Idx, InterfaceSize);
1835    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1836    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1837    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1838    return Builder.CreateBitCast(Res, Ptr->getType());
1839  }
1840
1841  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1842  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1843  // future proof.
1844  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1845    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1846    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1847    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1848    return Builder.CreateBitCast(Res, Ptr->getType());
1849  }
1850
1851  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1852}
1853
1854Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1855  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1856    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1857      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1858      case LangOptions::SOB_Undefined:
1859        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1860      case LangOptions::SOB_Defined:
1861        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1862      case LangOptions::SOB_Trapping:
1863        return EmitOverflowCheckedBinOp(Ops);
1864      }
1865    }
1866
1867    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1868      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1869
1870    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1871  }
1872
1873  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1874  // use this path.
1875  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1876
1877  if (BinOp->getLHS()->getType()->isPointerType() &&
1878      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1879    // The amount of the addition needs to account for the VLA size for
1880    // ptr-int
1881    // The amount of the division needs to account for the VLA size for
1882    // ptr-ptr.
1883    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1884  }
1885
1886  const QualType LHSType = BinOp->getLHS()->getType();
1887  const QualType LHSElementType = LHSType->getPointeeType();
1888  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1889    // pointer - int
1890    Value *Idx = Ops.RHS;
1891    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1892    if (Width < CGF.LLVMPointerWidth) {
1893      // Zero or sign extend the pointer value based on whether the index is
1894      // signed or not.
1895      const llvm::Type *IdxType = CGF.IntPtrTy;
1896      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1897        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1898      else
1899        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1900    }
1901    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1902
1903    // Handle interface types, which are not represented with a concrete type.
1904    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1905      llvm::Value *InterfaceSize =
1906        llvm::ConstantInt::get(Idx->getType(),
1907                               CGF.getContext().
1908                                 getTypeSizeInChars(OIT).getQuantity());
1909      Idx = Builder.CreateMul(Idx, InterfaceSize);
1910      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1911      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1912      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1913      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1914    }
1915
1916    // Explicitly handle GNU void* and function pointer arithmetic
1917    // extensions. The GNU void* casts amount to no-ops since our void* type is
1918    // i8*, but this is future proof.
1919    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1920      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1921      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1922      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1923      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1924    }
1925
1926    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1927  } else {
1928    // pointer - pointer
1929    Value *LHS = Ops.LHS;
1930    Value *RHS = Ops.RHS;
1931
1932    CharUnits ElementSize;
1933
1934    // Handle GCC extension for pointer arithmetic on void* and function pointer
1935    // types.
1936    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1937      ElementSize = CharUnits::One();
1938    } else {
1939      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1940    }
1941
1942    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1943    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1944    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1945    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1946
1947    // Optimize out the shift for element size of 1.
1948    if (ElementSize.isOne())
1949      return BytesBetween;
1950
1951    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1952    // pointer difference in C is only defined in the case where both operands
1953    // are pointing to elements of an array.
1954    Value *BytesPerElt =
1955        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1956    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1957  }
1958}
1959
1960Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1961  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1962  // RHS to the same size as the LHS.
1963  Value *RHS = Ops.RHS;
1964  if (Ops.LHS->getType() != RHS->getType())
1965    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1966
1967  if (CGF.CatchUndefined
1968      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1969    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1970    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1971    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1972                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1973                             Cont, CGF.getTrapBB());
1974    CGF.EmitBlock(Cont);
1975  }
1976
1977  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1978}
1979
1980Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1981  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1982  // RHS to the same size as the LHS.
1983  Value *RHS = Ops.RHS;
1984  if (Ops.LHS->getType() != RHS->getType())
1985    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1986
1987  if (CGF.CatchUndefined
1988      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1989    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1990    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1991    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1992                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1993                             Cont, CGF.getTrapBB());
1994    CGF.EmitBlock(Cont);
1995  }
1996
1997  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1998    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1999  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2000}
2001
2002Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2003                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2004  TestAndClearIgnoreResultAssign();
2005  Value *Result;
2006  QualType LHSTy = E->getLHS()->getType();
2007  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2008    assert(E->getOpcode() == BO_EQ ||
2009           E->getOpcode() == BO_NE);
2010    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2011    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2012    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2013                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2014  } else if (!LHSTy->isAnyComplexType()) {
2015    Value *LHS = Visit(E->getLHS());
2016    Value *RHS = Visit(E->getRHS());
2017
2018    if (LHS->getType()->isFPOrFPVectorTy()) {
2019      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2020                                  LHS, RHS, "cmp");
2021    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2022      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2023                                  LHS, RHS, "cmp");
2024    } else {
2025      // Unsigned integers and pointers.
2026      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2027                                  LHS, RHS, "cmp");
2028    }
2029
2030    // If this is a vector comparison, sign extend the result to the appropriate
2031    // vector integer type and return it (don't convert to bool).
2032    if (LHSTy->isVectorType())
2033      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2034
2035  } else {
2036    // Complex Comparison: can only be an equality comparison.
2037    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2038    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2039
2040    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2041
2042    Value *ResultR, *ResultI;
2043    if (CETy->isRealFloatingType()) {
2044      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2045                                   LHS.first, RHS.first, "cmp.r");
2046      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2047                                   LHS.second, RHS.second, "cmp.i");
2048    } else {
2049      // Complex comparisons can only be equality comparisons.  As such, signed
2050      // and unsigned opcodes are the same.
2051      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2052                                   LHS.first, RHS.first, "cmp.r");
2053      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2054                                   LHS.second, RHS.second, "cmp.i");
2055    }
2056
2057    if (E->getOpcode() == BO_EQ) {
2058      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2059    } else {
2060      assert(E->getOpcode() == BO_NE &&
2061             "Complex comparison other than == or != ?");
2062      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2063    }
2064  }
2065
2066  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2067}
2068
2069Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2070  bool Ignore = TestAndClearIgnoreResultAssign();
2071
2072  // __block variables need to have the rhs evaluated first, plus this should
2073  // improve codegen just a little.
2074  Value *RHS = Visit(E->getRHS());
2075  LValue LHS = EmitCheckedLValue(E->getLHS());
2076
2077  // Store the value into the LHS.  Bit-fields are handled specially
2078  // because the result is altered by the store, i.e., [C99 6.5.16p1]
2079  // 'An assignment expression has the value of the left operand after
2080  // the assignment...'.
2081  if (LHS.isBitField())
2082    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2083                                       &RHS);
2084  else
2085    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2086
2087  // If the result is clearly ignored, return now.
2088  if (Ignore)
2089    return 0;
2090
2091  // Objective-C property assignment never reloads the value following a store.
2092  if (LHS.isPropertyRef() || LHS.isKVCRef())
2093    return RHS;
2094
2095  // If the lvalue is non-volatile, return the computed value of the assignment.
2096  if (!LHS.isVolatileQualified())
2097    return RHS;
2098
2099  // Otherwise, reload the value.
2100  return EmitLoadOfLValue(LHS, E->getType());
2101}
2102
2103Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2104  const llvm::Type *ResTy = ConvertType(E->getType());
2105
2106  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2107  // If we have 1 && X, just emit X without inserting the control flow.
2108  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2109    if (Cond == 1) { // If we have 1 && X, just emit X.
2110      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2111      // ZExt result to int or bool.
2112      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2113    }
2114
2115    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2116    if (!CGF.ContainsLabel(E->getRHS()))
2117      return llvm::Constant::getNullValue(ResTy);
2118  }
2119
2120  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2121  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2122
2123  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2124  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2125
2126  // Any edges into the ContBlock are now from an (indeterminate number of)
2127  // edges from this first condition.  All of these values will be false.  Start
2128  // setting up the PHI node in the Cont Block for this.
2129  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2130                                            "", ContBlock);
2131  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2132  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2133       PI != PE; ++PI)
2134    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2135
2136  CGF.BeginConditionalBranch();
2137  CGF.EmitBlock(RHSBlock);
2138  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2139  CGF.EndConditionalBranch();
2140
2141  // Reaquire the RHS block, as there may be subblocks inserted.
2142  RHSBlock = Builder.GetInsertBlock();
2143
2144  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2145  // into the phi node for the edge with the value of RHSCond.
2146  CGF.EmitBlock(ContBlock);
2147  PN->addIncoming(RHSCond, RHSBlock);
2148
2149  // ZExt result to int.
2150  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2151}
2152
2153Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2154  const llvm::Type *ResTy = ConvertType(E->getType());
2155
2156  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2157  // If we have 0 || X, just emit X without inserting the control flow.
2158  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2159    if (Cond == -1) { // If we have 0 || X, just emit X.
2160      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2161      // ZExt result to int or bool.
2162      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2163    }
2164
2165    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2166    if (!CGF.ContainsLabel(E->getRHS()))
2167      return llvm::ConstantInt::get(ResTy, 1);
2168  }
2169
2170  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2171  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2172
2173  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2174  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2175
2176  // Any edges into the ContBlock are now from an (indeterminate number of)
2177  // edges from this first condition.  All of these values will be true.  Start
2178  // setting up the PHI node in the Cont Block for this.
2179  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2180                                            "", ContBlock);
2181  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2182  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2183       PI != PE; ++PI)
2184    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2185
2186  CGF.BeginConditionalBranch();
2187
2188  // Emit the RHS condition as a bool value.
2189  CGF.EmitBlock(RHSBlock);
2190  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2191
2192  CGF.EndConditionalBranch();
2193
2194  // Reaquire the RHS block, as there may be subblocks inserted.
2195  RHSBlock = Builder.GetInsertBlock();
2196
2197  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2198  // into the phi node for the edge with the value of RHSCond.
2199  CGF.EmitBlock(ContBlock);
2200  PN->addIncoming(RHSCond, RHSBlock);
2201
2202  // ZExt result to int.
2203  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2204}
2205
2206Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2207  CGF.EmitStmt(E->getLHS());
2208  CGF.EnsureInsertPoint();
2209  return Visit(E->getRHS());
2210}
2211
2212//===----------------------------------------------------------------------===//
2213//                             Other Operators
2214//===----------------------------------------------------------------------===//
2215
2216/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2217/// expression is cheap enough and side-effect-free enough to evaluate
2218/// unconditionally instead of conditionally.  This is used to convert control
2219/// flow into selects in some cases.
2220static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2221                                                   CodeGenFunction &CGF) {
2222  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2223    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2224
2225  // TODO: Allow anything we can constant fold to an integer or fp constant.
2226  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2227      isa<FloatingLiteral>(E))
2228    return true;
2229
2230  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2231  // X and Y are local variables.
2232  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2233    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2234      if (VD->hasLocalStorage() && !(CGF.getContext()
2235                                     .getCanonicalType(VD->getType())
2236                                     .isVolatileQualified()))
2237        return true;
2238
2239  return false;
2240}
2241
2242
2243Value *ScalarExprEmitter::
2244VisitConditionalOperator(const ConditionalOperator *E) {
2245  TestAndClearIgnoreResultAssign();
2246  // If the condition constant folds and can be elided, try to avoid emitting
2247  // the condition and the dead arm.
2248  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2249    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2250    if (Cond == -1)
2251      std::swap(Live, Dead);
2252
2253    // If the dead side doesn't have labels we need, and if the Live side isn't
2254    // the gnu missing ?: extension (which we could handle, but don't bother
2255    // to), just emit the Live part.
2256    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2257        Live)                                   // Live part isn't missing.
2258      return Visit(Live);
2259  }
2260
2261  // OpenCL: If the condition is a vector, we can treat this condition like
2262  // the select function.
2263  if (CGF.getContext().getLangOptions().OpenCL
2264      && E->getCond()->getType()->isVectorType()) {
2265    llvm::Value *CondV = CGF.EmitScalarExpr(E->getCond());
2266    llvm::Value *LHS = Visit(E->getLHS());
2267    llvm::Value *RHS = Visit(E->getRHS());
2268
2269    const llvm::Type *condType = ConvertType(E->getCond()->getType());
2270    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2271
2272    unsigned numElem = vecTy->getNumElements();
2273    const llvm::Type *elemType = vecTy->getElementType();
2274
2275    std::vector<llvm::Constant*> Zvals;
2276    for (unsigned i = 0; i < numElem; ++i)
2277      Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2278
2279    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2280    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2281    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2282                                          llvm::VectorType::get(elemType,
2283                                                                numElem),
2284                                          "sext");
2285    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2286
2287    // Cast float to int to perform ANDs if necessary.
2288    llvm::Value *RHSTmp = RHS;
2289    llvm::Value *LHSTmp = LHS;
2290    bool wasCast = false;
2291    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2292    if (rhsVTy->getElementType()->isFloatTy()) {
2293      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2294      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2295      wasCast = true;
2296    }
2297
2298    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2299    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2300    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2301    if (wasCast)
2302      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2303
2304    return tmp5;
2305  }
2306
2307  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2308  // select instead of as control flow.  We can only do this if it is cheap and
2309  // safe to evaluate the LHS and RHS unconditionally.
2310  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2311                                                            CGF) &&
2312      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2313    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2314    llvm::Value *LHS = Visit(E->getLHS());
2315    llvm::Value *RHS = Visit(E->getRHS());
2316    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2317  }
2318
2319  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2320  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2321  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2322
2323  // If we don't have the GNU missing condition extension, emit a branch on bool
2324  // the normal way.
2325  if (E->getLHS()) {
2326    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2327    // the branch on bool.
2328    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2329  } else {
2330    // Otherwise, for the ?: extension, evaluate the conditional and then
2331    // convert it to bool the hard way.  We do this explicitly because we need
2332    // the unconverted value for the missing middle value of the ?:.
2333    Expr *save = E->getSAVE();
2334    assert(save && "VisitConditionalOperator - save is null");
2335    // Intentianlly not doing direct assignment to ConditionalSaveExprs[save] !!
2336    Value *SaveVal = CGF.EmitScalarExpr(save);
2337    CGF.ConditionalSaveExprs[save] = SaveVal;
2338    Value *CondVal = Visit(E->getCond());
2339    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2340    // if there are no extra uses (an optimization).  Inhibit this by making an
2341    // extra dead use, because we're going to add a use of CondVal later.  We
2342    // don't use the builder for this, because we don't want it to get optimized
2343    // away.  This leaves dead code, but the ?: extension isn't common.
2344    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2345                          Builder.GetInsertBlock());
2346
2347    Value *CondBoolVal =
2348      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2349                               CGF.getContext().BoolTy);
2350    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2351  }
2352
2353  CGF.BeginConditionalBranch();
2354  CGF.EmitBlock(LHSBlock);
2355
2356  // Handle the GNU extension for missing LHS.
2357  Value *LHS = Visit(E->getTrueExpr());
2358
2359  CGF.EndConditionalBranch();
2360  LHSBlock = Builder.GetInsertBlock();
2361  CGF.EmitBranch(ContBlock);
2362
2363  CGF.BeginConditionalBranch();
2364  CGF.EmitBlock(RHSBlock);
2365
2366  Value *RHS = Visit(E->getRHS());
2367  CGF.EndConditionalBranch();
2368  RHSBlock = Builder.GetInsertBlock();
2369  CGF.EmitBranch(ContBlock);
2370
2371  CGF.EmitBlock(ContBlock);
2372
2373  // If the LHS or RHS is a throw expression, it will be legitimately null.
2374  if (!LHS)
2375    return RHS;
2376  if (!RHS)
2377    return LHS;
2378
2379  // Create a PHI node for the real part.
2380  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2381  PN->reserveOperandSpace(2);
2382  PN->addIncoming(LHS, LHSBlock);
2383  PN->addIncoming(RHS, RHSBlock);
2384  return PN;
2385}
2386
2387Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2388  return Visit(E->getChosenSubExpr(CGF.getContext()));
2389}
2390
2391Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2392  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2393  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2394
2395  // If EmitVAArg fails, we fall back to the LLVM instruction.
2396  if (!ArgPtr)
2397    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2398
2399  // FIXME Volatility.
2400  return Builder.CreateLoad(ArgPtr);
2401}
2402
2403Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2404  return CGF.BuildBlockLiteralTmp(BE);
2405}
2406
2407//===----------------------------------------------------------------------===//
2408//                         Entry Point into this File
2409//===----------------------------------------------------------------------===//
2410
2411/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2412/// type, ignoring the result.
2413Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2414  assert(E && !hasAggregateLLVMType(E->getType()) &&
2415         "Invalid scalar expression to emit");
2416
2417  return ScalarExprEmitter(*this, IgnoreResultAssign)
2418    .Visit(const_cast<Expr*>(E));
2419}
2420
2421/// EmitScalarConversion - Emit a conversion from the specified type to the
2422/// specified destination type, both of which are LLVM scalar types.
2423Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2424                                             QualType DstTy) {
2425  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2426         "Invalid scalar expression to emit");
2427  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2428}
2429
2430/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2431/// type to the specified destination type, where the destination type is an
2432/// LLVM scalar type.
2433Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2434                                                      QualType SrcTy,
2435                                                      QualType DstTy) {
2436  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2437         "Invalid complex -> scalar conversion");
2438  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2439                                                                DstTy);
2440}
2441
2442
2443llvm::Value *CodeGenFunction::
2444EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2445                        bool isInc, bool isPre) {
2446  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2447}
2448
2449LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2450  llvm::Value *V;
2451  // object->isa or (*object).isa
2452  // Generate code as for: *(Class*)object
2453  // build Class* type
2454  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2455
2456  Expr *BaseExpr = E->getBase();
2457  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2458    V = CreateTempAlloca(ClassPtrTy, "resval");
2459    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2460    Builder.CreateStore(Src, V);
2461    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2462      MakeAddrLValue(V, E->getType()), E->getType());
2463  } else {
2464    if (E->isArrow())
2465      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2466    else
2467      V = EmitLValue(BaseExpr).getAddress();
2468  }
2469
2470  // build Class* type
2471  ClassPtrTy = ClassPtrTy->getPointerTo();
2472  V = Builder.CreateBitCast(V, ClassPtrTy);
2473  return MakeAddrLValue(V, E->getType());
2474}
2475
2476
2477LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2478                                            const CompoundAssignOperator *E) {
2479  ScalarExprEmitter Scalar(*this);
2480  Value *Result = 0;
2481  switch (E->getOpcode()) {
2482#define COMPOUND_OP(Op)                                                       \
2483    case BO_##Op##Assign:                                                     \
2484      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2485                                             Result)
2486  COMPOUND_OP(Mul);
2487  COMPOUND_OP(Div);
2488  COMPOUND_OP(Rem);
2489  COMPOUND_OP(Add);
2490  COMPOUND_OP(Sub);
2491  COMPOUND_OP(Shl);
2492  COMPOUND_OP(Shr);
2493  COMPOUND_OP(And);
2494  COMPOUND_OP(Xor);
2495  COMPOUND_OP(Or);
2496#undef COMPOUND_OP
2497
2498  case BO_PtrMemD:
2499  case BO_PtrMemI:
2500  case BO_Mul:
2501  case BO_Div:
2502  case BO_Rem:
2503  case BO_Add:
2504  case BO_Sub:
2505  case BO_Shl:
2506  case BO_Shr:
2507  case BO_LT:
2508  case BO_GT:
2509  case BO_LE:
2510  case BO_GE:
2511  case BO_EQ:
2512  case BO_NE:
2513  case BO_And:
2514  case BO_Xor:
2515  case BO_Or:
2516  case BO_LAnd:
2517  case BO_LOr:
2518  case BO_Assign:
2519  case BO_Comma:
2520    assert(false && "Not valid compound assignment operators");
2521    break;
2522  }
2523
2524  llvm_unreachable("Unhandled compound assignment operator");
2525}
2526