CGExprScalar.cpp revision db68e28c05a67735211e688009890cf834c22e75
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
44  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
45};
46
47namespace {
48class ScalarExprEmitter
49  : public StmtVisitor<ScalarExprEmitter, Value*> {
50  CodeGenFunction &CGF;
51  CGBuilderTy &Builder;
52  bool IgnoreResultAssign;
53  llvm::LLVMContext &VMContext;
54public:
55
56  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
57    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
58      VMContext(cgf.getLLVMContext()) {
59  }
60
61  //===--------------------------------------------------------------------===//
62  //                               Utilities
63  //===--------------------------------------------------------------------===//
64
65  bool TestAndClearIgnoreResultAssign() {
66    bool I = IgnoreResultAssign;
67    IgnoreResultAssign = false;
68    return I;
69  }
70
71  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
72  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
73  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
74
75  Value *EmitLoadOfLValue(LValue LV, QualType T) {
76    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
77  }
78
79  /// EmitLoadOfLValue - Given an expression with complex type that represents a
80  /// value l-value, this method emits the address of the l-value, then loads
81  /// and returns the result.
82  Value *EmitLoadOfLValue(const Expr *E) {
83    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
84  }
85
86  /// EmitConversionToBool - Convert the specified expression value to a
87  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
88  Value *EmitConversionToBool(Value *Src, QualType DstTy);
89
90  /// EmitScalarConversion - Emit a conversion from the specified type to the
91  /// specified destination type, both of which are LLVM scalar types.
92  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
93
94  /// EmitComplexToScalarConversion - Emit a conversion from the specified
95  /// complex type to the specified destination type, where the destination type
96  /// is an LLVM scalar type.
97  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
98                                       QualType SrcTy, QualType DstTy);
99
100  /// EmitNullValue - Emit a value that corresponds to null for the given type.
101  Value *EmitNullValue(QualType Ty);
102
103  //===--------------------------------------------------------------------===//
104  //                            Visitor Methods
105  //===--------------------------------------------------------------------===//
106
107  Value *VisitStmt(Stmt *S) {
108    S->dump(CGF.getContext().getSourceManager());
109    assert(0 && "Stmt can't have complex result type!");
110    return 0;
111  }
112  Value *VisitExpr(Expr *S);
113
114  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
115
116  // Leaves.
117  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
118    return llvm::ConstantInt::get(VMContext, E->getValue());
119  }
120  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
121    return llvm::ConstantFP::get(VMContext, E->getValue());
122  }
123  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
124    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
125  }
126  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
127    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
128  }
129  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
130    return EmitNullValue(E->getType());
131  }
132  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
133    return EmitNullValue(E->getType());
134  }
135  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
136    return llvm::ConstantInt::get(ConvertType(E->getType()),
137                                  CGF.getContext().typesAreCompatible(
138                                    E->getArgType1(), E->getArgType2()));
139  }
140  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
141  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
142  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
143    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
144    return Builder.CreateBitCast(V, ConvertType(E->getType()));
145  }
146
147  // l-values.
148  Value *VisitDeclRefExpr(DeclRefExpr *E) {
149    Expr::EvalResult Result;
150    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
151      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
152      llvm::ConstantInt *CI
153        = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
154      CGF.EmitDeclRefExprDbgValue(E, CI);
155      return CI;
156    }
157    return EmitLoadOfLValue(E);
158  }
159  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
160    return CGF.EmitObjCSelectorExpr(E);
161  }
162  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
163    return CGF.EmitObjCProtocolExpr(E);
164  }
165  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
166    return EmitLoadOfLValue(E);
167  }
168  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
169    return EmitLoadOfLValue(E);
170  }
171  Value *VisitObjCImplicitSetterGetterRefExpr(
172                        ObjCImplicitSetterGetterRefExpr *E) {
173    return EmitLoadOfLValue(E);
174  }
175  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
176    return CGF.EmitObjCMessageExpr(E).getScalarVal();
177  }
178
179  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
180    LValue LV = CGF.EmitObjCIsaExpr(E);
181    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
182    return V;
183  }
184
185  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
186  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
187  Value *VisitMemberExpr(MemberExpr *E);
188  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
189  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
190    return EmitLoadOfLValue(E);
191  }
192
193  Value *VisitInitListExpr(InitListExpr *E);
194
195  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
196    return CGF.CGM.EmitNullConstant(E->getType());
197  }
198  Value *VisitCastExpr(CastExpr *E) {
199    // Make sure to evaluate VLA bounds now so that we have them for later.
200    if (E->getType()->isVariablyModifiedType())
201      CGF.EmitVLASize(E->getType());
202
203    return EmitCastExpr(E);
204  }
205  Value *EmitCastExpr(CastExpr *E);
206
207  Value *VisitCallExpr(const CallExpr *E) {
208    if (E->getCallReturnType()->isReferenceType())
209      return EmitLoadOfLValue(E);
210
211    return CGF.EmitCallExpr(E).getScalarVal();
212  }
213
214  Value *VisitStmtExpr(const StmtExpr *E);
215
216  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
217
218  // Unary Operators.
219  Value *VisitUnaryPostDec(const UnaryOperator *E) {
220    LValue LV = EmitLValue(E->getSubExpr());
221    return EmitScalarPrePostIncDec(E, LV, false, false);
222  }
223  Value *VisitUnaryPostInc(const UnaryOperator *E) {
224    LValue LV = EmitLValue(E->getSubExpr());
225    return EmitScalarPrePostIncDec(E, LV, true, false);
226  }
227  Value *VisitUnaryPreDec(const UnaryOperator *E) {
228    LValue LV = EmitLValue(E->getSubExpr());
229    return EmitScalarPrePostIncDec(E, LV, false, true);
230  }
231  Value *VisitUnaryPreInc(const UnaryOperator *E) {
232    LValue LV = EmitLValue(E->getSubExpr());
233    return EmitScalarPrePostIncDec(E, LV, true, true);
234  }
235
236  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
237                                       bool isInc, bool isPre);
238
239
240  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
241    // If the sub-expression is an instance member reference,
242    // EmitDeclRefLValue will magically emit it with the appropriate
243    // value as the "address".
244    return EmitLValue(E->getSubExpr()).getAddress();
245  }
246  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
247  Value *VisitUnaryPlus(const UnaryOperator *E) {
248    // This differs from gcc, though, most likely due to a bug in gcc.
249    TestAndClearIgnoreResultAssign();
250    return Visit(E->getSubExpr());
251  }
252  Value *VisitUnaryMinus    (const UnaryOperator *E);
253  Value *VisitUnaryNot      (const UnaryOperator *E);
254  Value *VisitUnaryLNot     (const UnaryOperator *E);
255  Value *VisitUnaryReal     (const UnaryOperator *E);
256  Value *VisitUnaryImag     (const UnaryOperator *E);
257  Value *VisitUnaryExtension(const UnaryOperator *E) {
258    return Visit(E->getSubExpr());
259  }
260
261  // C++
262  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
263    return Visit(DAE->getExpr());
264  }
265  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
266    return CGF.LoadCXXThis();
267  }
268
269  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
270    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
271  }
272  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
273    return CGF.EmitCXXNewExpr(E);
274  }
275  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
276    CGF.EmitCXXDeleteExpr(E);
277    return 0;
278  }
279  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
280    return llvm::ConstantInt::get(Builder.getInt1Ty(),
281                                  E->EvaluateTrait(CGF.getContext()));
282  }
283
284  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
285    // C++ [expr.pseudo]p1:
286    //   The result shall only be used as the operand for the function call
287    //   operator (), and the result of such a call has type void. The only
288    //   effect is the evaluation of the postfix-expression before the dot or
289    //   arrow.
290    CGF.EmitScalarExpr(E->getBase());
291    return 0;
292  }
293
294  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
295    return EmitNullValue(E->getType());
296  }
297
298  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
299    CGF.EmitCXXThrowExpr(E);
300    return 0;
301  }
302
303  // Binary Operators.
304  Value *EmitMul(const BinOpInfo &Ops) {
305    if (Ops.Ty->hasSignedIntegerRepresentation()) {
306      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
307      case LangOptions::SOB_Undefined:
308        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
309      case LangOptions::SOB_Defined:
310        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
311      case LangOptions::SOB_Trapping:
312        return EmitOverflowCheckedBinOp(Ops);
313      }
314    }
315
316    if (Ops.LHS->getType()->isFPOrFPVectorTy())
317      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
318    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
319  }
320  /// Create a binary op that checks for overflow.
321  /// Currently only supports +, - and *.
322  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
323  Value *EmitDiv(const BinOpInfo &Ops);
324  Value *EmitRem(const BinOpInfo &Ops);
325  Value *EmitAdd(const BinOpInfo &Ops);
326  Value *EmitSub(const BinOpInfo &Ops);
327  Value *EmitShl(const BinOpInfo &Ops);
328  Value *EmitShr(const BinOpInfo &Ops);
329  Value *EmitAnd(const BinOpInfo &Ops) {
330    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
331  }
332  Value *EmitXor(const BinOpInfo &Ops) {
333    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
334  }
335  Value *EmitOr (const BinOpInfo &Ops) {
336    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
337  }
338
339  BinOpInfo EmitBinOps(const BinaryOperator *E);
340  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
341                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
342                                  Value *&Result);
343
344  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
345                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
346
347  // Binary operators and binary compound assignment operators.
348#define HANDLEBINOP(OP) \
349  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
350    return Emit ## OP(EmitBinOps(E));                                      \
351  }                                                                        \
352  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
353    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
354  }
355  HANDLEBINOP(Mul)
356  HANDLEBINOP(Div)
357  HANDLEBINOP(Rem)
358  HANDLEBINOP(Add)
359  HANDLEBINOP(Sub)
360  HANDLEBINOP(Shl)
361  HANDLEBINOP(Shr)
362  HANDLEBINOP(And)
363  HANDLEBINOP(Xor)
364  HANDLEBINOP(Or)
365#undef HANDLEBINOP
366
367  // Comparisons.
368  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
369                     unsigned SICmpOpc, unsigned FCmpOpc);
370#define VISITCOMP(CODE, UI, SI, FP) \
371    Value *VisitBin##CODE(const BinaryOperator *E) { \
372      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
373                         llvm::FCmpInst::FP); }
374  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
375  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
376  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
377  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
378  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
379  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
380#undef VISITCOMP
381
382  Value *VisitBinAssign     (const BinaryOperator *E);
383
384  Value *VisitBinLAnd       (const BinaryOperator *E);
385  Value *VisitBinLOr        (const BinaryOperator *E);
386  Value *VisitBinComma      (const BinaryOperator *E);
387
388  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
389  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
390
391  // Other Operators.
392  Value *VisitBlockExpr(const BlockExpr *BE);
393  Value *VisitConditionalOperator(const ConditionalOperator *CO);
394  Value *VisitChooseExpr(ChooseExpr *CE);
395  Value *VisitVAArgExpr(VAArgExpr *VE);
396  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
397    return CGF.EmitObjCStringLiteral(E);
398  }
399};
400}  // end anonymous namespace.
401
402//===----------------------------------------------------------------------===//
403//                                Utilities
404//===----------------------------------------------------------------------===//
405
406/// EmitConversionToBool - Convert the specified expression value to a
407/// boolean (i1) truth value.  This is equivalent to "Val != 0".
408Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
409  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
410
411  if (SrcType->isRealFloatingType()) {
412    // Compare against 0.0 for fp scalars.
413    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
414    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
415  }
416
417  if (SrcType->isMemberPointerType()) {
418    // Compare against -1.
419    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
420    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
421  }
422
423  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
424         "Unknown scalar type to convert");
425
426  // Because of the type rules of C, we often end up computing a logical value,
427  // then zero extending it to int, then wanting it as a logical value again.
428  // Optimize this common case.
429  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
430    if (ZI->getOperand(0)->getType() ==
431        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
432      Value *Result = ZI->getOperand(0);
433      // If there aren't any more uses, zap the instruction to save space.
434      // Note that there can be more uses, for example if this
435      // is the result of an assignment.
436      if (ZI->use_empty())
437        ZI->eraseFromParent();
438      return Result;
439    }
440  }
441
442  // Compare against an integer or pointer null.
443  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
444  return Builder.CreateICmpNE(Src, Zero, "tobool");
445}
446
447/// EmitScalarConversion - Emit a conversion from the specified type to the
448/// specified destination type, both of which are LLVM scalar types.
449Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
450                                               QualType DstType) {
451  SrcType = CGF.getContext().getCanonicalType(SrcType);
452  DstType = CGF.getContext().getCanonicalType(DstType);
453  if (SrcType == DstType) return Src;
454
455  if (DstType->isVoidType()) return 0;
456
457  // Handle conversions to bool first, they are special: comparisons against 0.
458  if (DstType->isBooleanType())
459    return EmitConversionToBool(Src, SrcType);
460
461  const llvm::Type *DstTy = ConvertType(DstType);
462
463  // Ignore conversions like int -> uint.
464  if (Src->getType() == DstTy)
465    return Src;
466
467  // Handle pointer conversions next: pointers can only be converted to/from
468  // other pointers and integers. Check for pointer types in terms of LLVM, as
469  // some native types (like Obj-C id) may map to a pointer type.
470  if (isa<llvm::PointerType>(DstTy)) {
471    // The source value may be an integer, or a pointer.
472    if (isa<llvm::PointerType>(Src->getType()))
473      return Builder.CreateBitCast(Src, DstTy, "conv");
474
475    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
476    // First, convert to the correct width so that we control the kind of
477    // extension.
478    const llvm::Type *MiddleTy = CGF.IntPtrTy;
479    bool InputSigned = SrcType->isSignedIntegerType();
480    llvm::Value* IntResult =
481        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
482    // Then, cast to pointer.
483    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
484  }
485
486  if (isa<llvm::PointerType>(Src->getType())) {
487    // Must be an ptr to int cast.
488    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
489    return Builder.CreatePtrToInt(Src, DstTy, "conv");
490  }
491
492  // A scalar can be splatted to an extended vector of the same element type
493  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
494    // Cast the scalar to element type
495    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
496    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
497
498    // Insert the element in element zero of an undef vector
499    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
500    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
501    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
502
503    // Splat the element across to all elements
504    llvm::SmallVector<llvm::Constant*, 16> Args;
505    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
506    for (unsigned i = 0; i < NumElements; i++)
507      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
508
509    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
510    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
511    return Yay;
512  }
513
514  // Allow bitcast from vector to integer/fp of the same size.
515  if (isa<llvm::VectorType>(Src->getType()) ||
516      isa<llvm::VectorType>(DstTy))
517    return Builder.CreateBitCast(Src, DstTy, "conv");
518
519  // Finally, we have the arithmetic types: real int/float.
520  if (isa<llvm::IntegerType>(Src->getType())) {
521    bool InputSigned = SrcType->isSignedIntegerType();
522    if (isa<llvm::IntegerType>(DstTy))
523      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
524    else if (InputSigned)
525      return Builder.CreateSIToFP(Src, DstTy, "conv");
526    else
527      return Builder.CreateUIToFP(Src, DstTy, "conv");
528  }
529
530  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
531  if (isa<llvm::IntegerType>(DstTy)) {
532    if (DstType->isSignedIntegerType())
533      return Builder.CreateFPToSI(Src, DstTy, "conv");
534    else
535      return Builder.CreateFPToUI(Src, DstTy, "conv");
536  }
537
538  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
539  if (DstTy->getTypeID() < Src->getType()->getTypeID())
540    return Builder.CreateFPTrunc(Src, DstTy, "conv");
541  else
542    return Builder.CreateFPExt(Src, DstTy, "conv");
543}
544
545/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
546/// type to the specified destination type, where the destination type is an
547/// LLVM scalar type.
548Value *ScalarExprEmitter::
549EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
550                              QualType SrcTy, QualType DstTy) {
551  // Get the source element type.
552  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
553
554  // Handle conversions to bool first, they are special: comparisons against 0.
555  if (DstTy->isBooleanType()) {
556    //  Complex != 0  -> (Real != 0) | (Imag != 0)
557    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
558    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
559    return Builder.CreateOr(Src.first, Src.second, "tobool");
560  }
561
562  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
563  // the imaginary part of the complex value is discarded and the value of the
564  // real part is converted according to the conversion rules for the
565  // corresponding real type.
566  return EmitScalarConversion(Src.first, SrcTy, DstTy);
567}
568
569Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
570  const llvm::Type *LTy = ConvertType(Ty);
571
572  if (!Ty->isMemberDataPointerType())
573    return llvm::Constant::getNullValue(LTy);
574
575  // Itanium C++ ABI 2.3:
576  //   A NULL pointer is represented as -1.
577  return llvm::ConstantInt::get(LTy, -1ULL, /*isSigned=*/true);
578}
579
580//===----------------------------------------------------------------------===//
581//                            Visitor Methods
582//===----------------------------------------------------------------------===//
583
584Value *ScalarExprEmitter::VisitExpr(Expr *E) {
585  CGF.ErrorUnsupported(E, "scalar expression");
586  if (E->getType()->isVoidType())
587    return 0;
588  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
589}
590
591Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
592  // Vector Mask Case
593  if (E->getNumSubExprs() == 2 ||
594      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
595    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
596    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
597    Value *Mask;
598
599    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
600    unsigned LHSElts = LTy->getNumElements();
601
602    if (E->getNumSubExprs() == 3) {
603      Mask = CGF.EmitScalarExpr(E->getExpr(2));
604
605      // Shuffle LHS & RHS into one input vector.
606      llvm::SmallVector<llvm::Constant*, 32> concat;
607      for (unsigned i = 0; i != LHSElts; ++i) {
608        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
609        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
610      }
611
612      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
613      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
614      LHSElts *= 2;
615    } else {
616      Mask = RHS;
617    }
618
619    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
620    llvm::Constant* EltMask;
621
622    // Treat vec3 like vec4.
623    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
624      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
625                                       (1 << llvm::Log2_32(LHSElts+2))-1);
626    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
627      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
628                                       (1 << llvm::Log2_32(LHSElts+1))-1);
629    else
630      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
631                                       (1 << llvm::Log2_32(LHSElts))-1);
632
633    // Mask off the high bits of each shuffle index.
634    llvm::SmallVector<llvm::Constant *, 32> MaskV;
635    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
636      MaskV.push_back(EltMask);
637
638    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
639    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
640
641    // newv = undef
642    // mask = mask & maskbits
643    // for each elt
644    //   n = extract mask i
645    //   x = extract val n
646    //   newv = insert newv, x, i
647    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
648                                                        MTy->getNumElements());
649    Value* NewV = llvm::UndefValue::get(RTy);
650    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
651      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
652      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
653      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
654
655      // Handle vec3 special since the index will be off by one for the RHS.
656      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
657        Value *cmpIndx, *newIndx;
658        cmpIndx = Builder.CreateICmpUGT(Indx,
659                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
660                                        "cmp_shuf_idx");
661        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
662                                    "shuf_idx_adj");
663        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
664      }
665      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
666      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
667    }
668    return NewV;
669  }
670
671  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
672  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
673
674  // Handle vec3 special since the index will be off by one for the RHS.
675  llvm::SmallVector<llvm::Constant*, 32> indices;
676  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
677    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
678    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
679    if (VTy->getNumElements() == 3) {
680      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
681        uint64_t cVal = CI->getZExtValue();
682        if (cVal > 3) {
683          C = llvm::ConstantInt::get(C->getType(), cVal-1);
684        }
685      }
686    }
687    indices.push_back(C);
688  }
689
690  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
691  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
692}
693Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
694  Expr::EvalResult Result;
695  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
696    if (E->isArrow())
697      CGF.EmitScalarExpr(E->getBase());
698    else
699      EmitLValue(E->getBase());
700    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
701  }
702  return EmitLoadOfLValue(E);
703}
704
705Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
706  TestAndClearIgnoreResultAssign();
707
708  // Emit subscript expressions in rvalue context's.  For most cases, this just
709  // loads the lvalue formed by the subscript expr.  However, we have to be
710  // careful, because the base of a vector subscript is occasionally an rvalue,
711  // so we can't get it as an lvalue.
712  if (!E->getBase()->getType()->isVectorType())
713    return EmitLoadOfLValue(E);
714
715  // Handle the vector case.  The base must be a vector, the index must be an
716  // integer value.
717  Value *Base = Visit(E->getBase());
718  Value *Idx  = Visit(E->getIdx());
719  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
720  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
721  return Builder.CreateExtractElement(Base, Idx, "vecext");
722}
723
724static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
725                                  unsigned Off, const llvm::Type *I32Ty) {
726  int MV = SVI->getMaskValue(Idx);
727  if (MV == -1)
728    return llvm::UndefValue::get(I32Ty);
729  return llvm::ConstantInt::get(I32Ty, Off+MV);
730}
731
732Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
733  bool Ignore = TestAndClearIgnoreResultAssign();
734  (void)Ignore;
735  assert (Ignore == false && "init list ignored");
736  unsigned NumInitElements = E->getNumInits();
737
738  if (E->hadArrayRangeDesignator())
739    CGF.ErrorUnsupported(E, "GNU array range designator extension");
740
741  const llvm::VectorType *VType =
742    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
743
744  // We have a scalar in braces. Just use the first element.
745  if (!VType)
746    return Visit(E->getInit(0));
747
748  unsigned ResElts = VType->getNumElements();
749
750  // Loop over initializers collecting the Value for each, and remembering
751  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
752  // us to fold the shuffle for the swizzle into the shuffle for the vector
753  // initializer, since LLVM optimizers generally do not want to touch
754  // shuffles.
755  unsigned CurIdx = 0;
756  bool VIsUndefShuffle = false;
757  llvm::Value *V = llvm::UndefValue::get(VType);
758  for (unsigned i = 0; i != NumInitElements; ++i) {
759    Expr *IE = E->getInit(i);
760    Value *Init = Visit(IE);
761    llvm::SmallVector<llvm::Constant*, 16> Args;
762
763    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
764
765    // Handle scalar elements.  If the scalar initializer is actually one
766    // element of a different vector of the same width, use shuffle instead of
767    // extract+insert.
768    if (!VVT) {
769      if (isa<ExtVectorElementExpr>(IE)) {
770        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
771
772        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
773          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
774          Value *LHS = 0, *RHS = 0;
775          if (CurIdx == 0) {
776            // insert into undef -> shuffle (src, undef)
777            Args.push_back(C);
778            for (unsigned j = 1; j != ResElts; ++j)
779              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
780
781            LHS = EI->getVectorOperand();
782            RHS = V;
783            VIsUndefShuffle = true;
784          } else if (VIsUndefShuffle) {
785            // insert into undefshuffle && size match -> shuffle (v, src)
786            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
787            for (unsigned j = 0; j != CurIdx; ++j)
788              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
789            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
790                                                  ResElts + C->getZExtValue()));
791            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
792              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
793
794            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
795            RHS = EI->getVectorOperand();
796            VIsUndefShuffle = false;
797          }
798          if (!Args.empty()) {
799            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
800            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
801            ++CurIdx;
802            continue;
803          }
804        }
805      }
806      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
807      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
808      VIsUndefShuffle = false;
809      ++CurIdx;
810      continue;
811    }
812
813    unsigned InitElts = VVT->getNumElements();
814
815    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
816    // input is the same width as the vector being constructed, generate an
817    // optimized shuffle of the swizzle input into the result.
818    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
819    if (isa<ExtVectorElementExpr>(IE)) {
820      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
821      Value *SVOp = SVI->getOperand(0);
822      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
823
824      if (OpTy->getNumElements() == ResElts) {
825        for (unsigned j = 0; j != CurIdx; ++j) {
826          // If the current vector initializer is a shuffle with undef, merge
827          // this shuffle directly into it.
828          if (VIsUndefShuffle) {
829            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
830                                      CGF.Int32Ty));
831          } else {
832            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
833          }
834        }
835        for (unsigned j = 0, je = InitElts; j != je; ++j)
836          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
837        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
838          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
839
840        if (VIsUndefShuffle)
841          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
842
843        Init = SVOp;
844      }
845    }
846
847    // Extend init to result vector length, and then shuffle its contribution
848    // to the vector initializer into V.
849    if (Args.empty()) {
850      for (unsigned j = 0; j != InitElts; ++j)
851        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
852      for (unsigned j = InitElts; j != ResElts; ++j)
853        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
854      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
855      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
856                                         Mask, "vext");
857
858      Args.clear();
859      for (unsigned j = 0; j != CurIdx; ++j)
860        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
861      for (unsigned j = 0; j != InitElts; ++j)
862        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
863      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
864        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
865    }
866
867    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
868    // merging subsequent shuffles into this one.
869    if (CurIdx == 0)
870      std::swap(V, Init);
871    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
872    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
873    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
874    CurIdx += InitElts;
875  }
876
877  // FIXME: evaluate codegen vs. shuffling against constant null vector.
878  // Emit remaining default initializers.
879  const llvm::Type *EltTy = VType->getElementType();
880
881  // Emit remaining default initializers
882  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
883    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
884    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
885    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
886  }
887  return V;
888}
889
890static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
891  const Expr *E = CE->getSubExpr();
892
893  if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
894    return false;
895
896  if (isa<CXXThisExpr>(E)) {
897    // We always assume that 'this' is never null.
898    return false;
899  }
900
901  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
902    // And that glvalue casts are never null.
903    if (ICE->getCategory() != ImplicitCastExpr::RValue)
904      return false;
905  }
906
907  return true;
908}
909
910// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
911// have to handle a more broad range of conversions than explicit casts, as they
912// handle things like function to ptr-to-function decay etc.
913Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
914  Expr *E = CE->getSubExpr();
915  QualType DestTy = CE->getType();
916  CastExpr::CastKind Kind = CE->getCastKind();
917
918  if (!DestTy->isVoidType())
919    TestAndClearIgnoreResultAssign();
920
921  // Since almost all cast kinds apply to scalars, this switch doesn't have
922  // a default case, so the compiler will warn on a missing case.  The cases
923  // are in the same order as in the CastKind enum.
924  switch (Kind) {
925  case CastExpr::CK_Unknown:
926    // FIXME: All casts should have a known kind!
927    //assert(0 && "Unknown cast kind!");
928    break;
929
930  case CastExpr::CK_LValueBitCast:
931  case CastExpr::CK_ObjCObjectLValueCast: {
932    Value *V = EmitLValue(E).getAddress();
933    V = Builder.CreateBitCast(V,
934                          ConvertType(CGF.getContext().getPointerType(DestTy)));
935    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
936  }
937
938  case CastExpr::CK_AnyPointerToObjCPointerCast:
939  case CastExpr::CK_AnyPointerToBlockPointerCast:
940  case CastExpr::CK_BitCast: {
941    Value *Src = Visit(const_cast<Expr*>(E));
942    return Builder.CreateBitCast(Src, ConvertType(DestTy));
943  }
944  case CastExpr::CK_NoOp:
945  case CastExpr::CK_UserDefinedConversion:
946    return Visit(const_cast<Expr*>(E));
947
948  case CastExpr::CK_BaseToDerived: {
949    const CXXRecordDecl *DerivedClassDecl =
950      DestTy->getCXXRecordDeclForPointerType();
951
952    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
953                                        CE->path_begin(), CE->path_end(),
954                                        ShouldNullCheckClassCastValue(CE));
955  }
956  case CastExpr::CK_UncheckedDerivedToBase:
957  case CastExpr::CK_DerivedToBase: {
958    const RecordType *DerivedClassTy =
959      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
960    CXXRecordDecl *DerivedClassDecl =
961      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
962
963    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
964                                     CE->path_begin(), CE->path_end(),
965                                     ShouldNullCheckClassCastValue(CE));
966  }
967  case CastExpr::CK_Dynamic: {
968    Value *V = Visit(const_cast<Expr*>(E));
969    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
970    return CGF.EmitDynamicCast(V, DCE);
971  }
972  case CastExpr::CK_ToUnion:
973    assert(0 && "Should be unreachable!");
974    break;
975
976  case CastExpr::CK_ArrayToPointerDecay: {
977    assert(E->getType()->isArrayType() &&
978           "Array to pointer decay must have array source type!");
979
980    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
981
982    // Note that VLA pointers are always decayed, so we don't need to do
983    // anything here.
984    if (!E->getType()->isVariableArrayType()) {
985      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
986      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
987                                 ->getElementType()) &&
988             "Expected pointer to array");
989      V = Builder.CreateStructGEP(V, 0, "arraydecay");
990    }
991
992    return V;
993  }
994  case CastExpr::CK_FunctionToPointerDecay:
995    return EmitLValue(E).getAddress();
996
997  case CastExpr::CK_NullToMemberPointer:
998    // If the subexpression's type is the C++0x nullptr_t, emit the
999    // subexpression, which may have side effects.
1000    if (E->getType()->isNullPtrType())
1001      (void) Visit(E);
1002
1003    if (CE->getType()->isMemberFunctionPointerType())
1004      return CGF.CGM.getCXXABI().EmitNullMemberFunctionPointer(
1005                                   CE->getType()->getAs<MemberPointerType>());
1006
1007    return CGF.CGM.EmitNullConstant(DestTy);
1008
1009  case CastExpr::CK_BaseToDerivedMemberPointer:
1010  case CastExpr::CK_DerivedToBaseMemberPointer: {
1011    Value *Src = Visit(E);
1012
1013    // Note that the AST doesn't distinguish between checked and
1014    // unchecked member pointer conversions, so we always have to
1015    // implement checked conversions here.  This is inefficient when
1016    // actual control flow may be required in order to perform the
1017    // check, which it is for data member pointers (but not member
1018    // function pointers on Itanium and ARM).
1019
1020    if (CE->getType()->isMemberFunctionPointerType())
1021      return CGF.CGM.getCXXABI().EmitMemberFunctionPointerConversion(CGF, CE,
1022                                                                     Src);
1023
1024    // See if we need to adjust the pointer.
1025    const CXXRecordDecl *BaseDecl =
1026      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
1027                          getClass()->getAs<RecordType>()->getDecl());
1028    const CXXRecordDecl *DerivedDecl =
1029      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
1030                          getClass()->getAs<RecordType>()->getDecl());
1031    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
1032      std::swap(DerivedDecl, BaseDecl);
1033
1034    if (llvm::Constant *Adj =
1035          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
1036                                               CE->path_begin(),
1037                                               CE->path_end())) {
1038      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
1039        Src = Builder.CreateNSWSub(Src, Adj, "adj");
1040      else
1041        Src = Builder.CreateNSWAdd(Src, Adj, "adj");
1042    }
1043
1044    return Src;
1045  }
1046
1047  case CastExpr::CK_ConstructorConversion:
1048    assert(0 && "Should be unreachable!");
1049    break;
1050
1051  case CastExpr::CK_IntegralToPointer: {
1052    Value *Src = Visit(const_cast<Expr*>(E));
1053
1054    // First, convert to the correct width so that we control the kind of
1055    // extension.
1056    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1057    bool InputSigned = E->getType()->isSignedIntegerType();
1058    llvm::Value* IntResult =
1059      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1060
1061    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1062  }
1063  case CastExpr::CK_PointerToIntegral: {
1064    Value *Src = Visit(const_cast<Expr*>(E));
1065    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1066  }
1067  case CastExpr::CK_ToVoid: {
1068    if (E->Classify(CGF.getContext()).isGLValue())
1069      CGF.EmitLValue(E);
1070    else
1071      CGF.EmitAnyExpr(E, 0, false, true);
1072    return 0;
1073  }
1074  case CastExpr::CK_VectorSplat: {
1075    const llvm::Type *DstTy = ConvertType(DestTy);
1076    Value *Elt = Visit(const_cast<Expr*>(E));
1077
1078    // Insert the element in element zero of an undef vector
1079    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1080    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1081    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1082
1083    // Splat the element across to all elements
1084    llvm::SmallVector<llvm::Constant*, 16> Args;
1085    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1086    for (unsigned i = 0; i < NumElements; i++)
1087      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
1088
1089    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1090    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1091    return Yay;
1092  }
1093  case CastExpr::CK_IntegralCast:
1094  case CastExpr::CK_IntegralToFloating:
1095  case CastExpr::CK_FloatingToIntegral:
1096  case CastExpr::CK_FloatingCast:
1097    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1098
1099  case CastExpr::CK_MemberPointerToBoolean:
1100    return CGF.EvaluateExprAsBool(E);
1101  }
1102
1103  // Handle cases where the source is an non-complex type.
1104
1105  if (!CGF.hasAggregateLLVMType(E->getType())) {
1106    Value *Src = Visit(const_cast<Expr*>(E));
1107
1108    // Use EmitScalarConversion to perform the conversion.
1109    return EmitScalarConversion(Src, E->getType(), DestTy);
1110  }
1111
1112  if (E->getType()->isAnyComplexType()) {
1113    // Handle cases where the source is a complex type.
1114    bool IgnoreImag = true;
1115    bool IgnoreImagAssign = true;
1116    bool IgnoreReal = IgnoreResultAssign;
1117    bool IgnoreRealAssign = IgnoreResultAssign;
1118    if (DestTy->isBooleanType())
1119      IgnoreImagAssign = IgnoreImag = false;
1120    else if (DestTy->isVoidType()) {
1121      IgnoreReal = IgnoreImag = false;
1122      IgnoreRealAssign = IgnoreImagAssign = true;
1123    }
1124    CodeGenFunction::ComplexPairTy V
1125      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1126                            IgnoreImagAssign);
1127    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1128  }
1129
1130  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1131  // evaluate the result and return.
1132  CGF.EmitAggExpr(E, 0, false, true);
1133  return 0;
1134}
1135
1136Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1137  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1138                              !E->getType()->isVoidType()).getScalarVal();
1139}
1140
1141Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1142  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1143  if (E->getType().isObjCGCWeak())
1144    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1145  return Builder.CreateLoad(V, "tmp");
1146}
1147
1148//===----------------------------------------------------------------------===//
1149//                             Unary Operators
1150//===----------------------------------------------------------------------===//
1151
1152llvm::Value *ScalarExprEmitter::
1153EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1154                        bool isInc, bool isPre) {
1155
1156  QualType ValTy = E->getSubExpr()->getType();
1157  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1158
1159  int AmountVal = isInc ? 1 : -1;
1160
1161  if (ValTy->isPointerType() &&
1162      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1163    // The amount of the addition/subtraction needs to account for the VLA size
1164    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1165  }
1166
1167  llvm::Value *NextVal;
1168  if (const llvm::PointerType *PT =
1169      dyn_cast<llvm::PointerType>(InVal->getType())) {
1170    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1171    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1172      QualType PTEE = ValTy->getPointeeType();
1173      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1174        // Handle interface types, which are not represented with a concrete
1175        // type.
1176        int size = CGF.getContext().getTypeSize(OIT) / 8;
1177        if (!isInc)
1178          size = -size;
1179        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1180        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1181        InVal = Builder.CreateBitCast(InVal, i8Ty);
1182        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1183        llvm::Value *lhs = LV.getAddress();
1184        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1185        LV = CGF.MakeAddrLValue(lhs, ValTy);
1186      } else
1187        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1188    } else {
1189      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1190      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1191      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1192      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1193    }
1194  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1195    // Bool++ is an interesting case, due to promotion rules, we get:
1196    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1197    // Bool = ((int)Bool+1) != 0
1198    // An interesting aspect of this is that increment is always true.
1199    // Decrement does not have this property.
1200    NextVal = llvm::ConstantInt::getTrue(VMContext);
1201  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1202    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1203
1204    if (!ValTy->isSignedIntegerType())
1205      // Unsigned integer inc is always two's complement.
1206      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1207    else {
1208      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1209      case LangOptions::SOB_Undefined:
1210        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1211        break;
1212      case LangOptions::SOB_Defined:
1213        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1214        break;
1215      case LangOptions::SOB_Trapping:
1216        BinOpInfo BinOp;
1217        BinOp.LHS = InVal;
1218        BinOp.RHS = NextVal;
1219        BinOp.Ty = E->getType();
1220        BinOp.Opcode = BinaryOperator::Add;
1221        BinOp.E = E;
1222        NextVal = EmitOverflowCheckedBinOp(BinOp);
1223        break;
1224      }
1225    }
1226  } else {
1227    // Add the inc/dec to the real part.
1228    if (InVal->getType()->isFloatTy())
1229      NextVal =
1230      llvm::ConstantFP::get(VMContext,
1231                            llvm::APFloat(static_cast<float>(AmountVal)));
1232    else if (InVal->getType()->isDoubleTy())
1233      NextVal =
1234      llvm::ConstantFP::get(VMContext,
1235                            llvm::APFloat(static_cast<double>(AmountVal)));
1236    else {
1237      llvm::APFloat F(static_cast<float>(AmountVal));
1238      bool ignored;
1239      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1240                &ignored);
1241      NextVal = llvm::ConstantFP::get(VMContext, F);
1242    }
1243    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1244  }
1245
1246  // Store the updated result through the lvalue.
1247  if (LV.isBitField())
1248    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1249  else
1250    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1251
1252  // If this is a postinc, return the value read from memory, otherwise use the
1253  // updated value.
1254  return isPre ? NextVal : InVal;
1255}
1256
1257
1258
1259Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1260  TestAndClearIgnoreResultAssign();
1261  // Emit unary minus with EmitSub so we handle overflow cases etc.
1262  BinOpInfo BinOp;
1263  BinOp.RHS = Visit(E->getSubExpr());
1264
1265  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1266    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1267  else
1268    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1269  BinOp.Ty = E->getType();
1270  BinOp.Opcode = BinaryOperator::Sub;
1271  BinOp.E = E;
1272  return EmitSub(BinOp);
1273}
1274
1275Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1276  TestAndClearIgnoreResultAssign();
1277  Value *Op = Visit(E->getSubExpr());
1278  return Builder.CreateNot(Op, "neg");
1279}
1280
1281Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1282  // Compare operand to zero.
1283  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1284
1285  // Invert value.
1286  // TODO: Could dynamically modify easy computations here.  For example, if
1287  // the operand is an icmp ne, turn into icmp eq.
1288  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1289
1290  // ZExt result to the expr type.
1291  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1292}
1293
1294Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1295  // Try folding the offsetof to a constant.
1296  Expr::EvalResult EvalResult;
1297  if (E->Evaluate(EvalResult, CGF.getContext()))
1298    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1299
1300  // Loop over the components of the offsetof to compute the value.
1301  unsigned n = E->getNumComponents();
1302  const llvm::Type* ResultType = ConvertType(E->getType());
1303  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1304  QualType CurrentType = E->getTypeSourceInfo()->getType();
1305  for (unsigned i = 0; i != n; ++i) {
1306    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1307    llvm::Value *Offset = 0;
1308    switch (ON.getKind()) {
1309    case OffsetOfExpr::OffsetOfNode::Array: {
1310      // Compute the index
1311      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1312      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1313      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1314      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1315
1316      // Save the element type
1317      CurrentType =
1318          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1319
1320      // Compute the element size
1321      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1322          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1323
1324      // Multiply out to compute the result
1325      Offset = Builder.CreateMul(Idx, ElemSize);
1326      break;
1327    }
1328
1329    case OffsetOfExpr::OffsetOfNode::Field: {
1330      FieldDecl *MemberDecl = ON.getField();
1331      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1332      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1333
1334      // Compute the index of the field in its parent.
1335      unsigned i = 0;
1336      // FIXME: It would be nice if we didn't have to loop here!
1337      for (RecordDecl::field_iterator Field = RD->field_begin(),
1338                                      FieldEnd = RD->field_end();
1339           Field != FieldEnd; (void)++Field, ++i) {
1340        if (*Field == MemberDecl)
1341          break;
1342      }
1343      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1344
1345      // Compute the offset to the field
1346      int64_t OffsetInt = RL.getFieldOffset(i) /
1347                          CGF.getContext().getCharWidth();
1348      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1349
1350      // Save the element type.
1351      CurrentType = MemberDecl->getType();
1352      break;
1353    }
1354
1355    case OffsetOfExpr::OffsetOfNode::Identifier:
1356      llvm_unreachable("dependent __builtin_offsetof");
1357
1358    case OffsetOfExpr::OffsetOfNode::Base: {
1359      if (ON.getBase()->isVirtual()) {
1360        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1361        continue;
1362      }
1363
1364      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1365      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1366
1367      // Save the element type.
1368      CurrentType = ON.getBase()->getType();
1369
1370      // Compute the offset to the base.
1371      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1372      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1373      int64_t OffsetInt = RL.getBaseClassOffset(BaseRD) /
1374                          CGF.getContext().getCharWidth();
1375      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1376      break;
1377    }
1378    }
1379    Result = Builder.CreateAdd(Result, Offset);
1380  }
1381  return Result;
1382}
1383
1384/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1385/// argument of the sizeof expression as an integer.
1386Value *
1387ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1388  QualType TypeToSize = E->getTypeOfArgument();
1389  if (E->isSizeOf()) {
1390    if (const VariableArrayType *VAT =
1391          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1392      if (E->isArgumentType()) {
1393        // sizeof(type) - make sure to emit the VLA size.
1394        CGF.EmitVLASize(TypeToSize);
1395      } else {
1396        // C99 6.5.3.4p2: If the argument is an expression of type
1397        // VLA, it is evaluated.
1398        CGF.EmitAnyExpr(E->getArgumentExpr());
1399      }
1400
1401      return CGF.GetVLASize(VAT);
1402    }
1403  }
1404
1405  // If this isn't sizeof(vla), the result must be constant; use the constant
1406  // folding logic so we don't have to duplicate it here.
1407  Expr::EvalResult Result;
1408  E->Evaluate(Result, CGF.getContext());
1409  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1410}
1411
1412Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1413  Expr *Op = E->getSubExpr();
1414  if (Op->getType()->isAnyComplexType())
1415    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1416  return Visit(Op);
1417}
1418Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1419  Expr *Op = E->getSubExpr();
1420  if (Op->getType()->isAnyComplexType())
1421    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1422
1423  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1424  // effects are evaluated, but not the actual value.
1425  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1426    CGF.EmitLValue(Op);
1427  else
1428    CGF.EmitScalarExpr(Op, true);
1429  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1430}
1431
1432//===----------------------------------------------------------------------===//
1433//                           Binary Operators
1434//===----------------------------------------------------------------------===//
1435
1436BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1437  TestAndClearIgnoreResultAssign();
1438  BinOpInfo Result;
1439  Result.LHS = Visit(E->getLHS());
1440  Result.RHS = Visit(E->getRHS());
1441  Result.Ty  = E->getType();
1442  Result.Opcode = E->getOpcode();
1443  Result.E = E;
1444  return Result;
1445}
1446
1447LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1448                                              const CompoundAssignOperator *E,
1449                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1450                                                   Value *&Result) {
1451  QualType LHSTy = E->getLHS()->getType();
1452  BinOpInfo OpInfo;
1453
1454  if (E->getComputationResultType()->isAnyComplexType()) {
1455    // This needs to go through the complex expression emitter, but it's a tad
1456    // complicated to do that... I'm leaving it out for now.  (Note that we do
1457    // actually need the imaginary part of the RHS for multiplication and
1458    // division.)
1459    CGF.ErrorUnsupported(E, "complex compound assignment");
1460    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1461    return LValue();
1462  }
1463
1464  // Emit the RHS first.  __block variables need to have the rhs evaluated
1465  // first, plus this should improve codegen a little.
1466  OpInfo.RHS = Visit(E->getRHS());
1467  OpInfo.Ty = E->getComputationResultType();
1468  OpInfo.Opcode = E->getOpcode();
1469  OpInfo.E = E;
1470  // Load/convert the LHS.
1471  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1472  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1473  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1474                                    E->getComputationLHSType());
1475
1476  // Expand the binary operator.
1477  Result = (this->*Func)(OpInfo);
1478
1479  // Convert the result back to the LHS type.
1480  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1481
1482  // Store the result value into the LHS lvalue. Bit-fields are handled
1483  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1484  // 'An assignment expression has the value of the left operand after the
1485  // assignment...'.
1486  if (LHSLV.isBitField())
1487    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1488                                       &Result);
1489  else
1490    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1491
1492  return LHSLV;
1493}
1494
1495Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1496                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1497  bool Ignore = TestAndClearIgnoreResultAssign();
1498  Value *RHS;
1499  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1500
1501  // If the result is clearly ignored, return now.
1502  if (Ignore)
1503    return 0;
1504
1505  // Objective-C property assignment never reloads the value following a store.
1506  if (LHS.isPropertyRef() || LHS.isKVCRef())
1507    return RHS;
1508
1509  // If the lvalue is non-volatile, return the computed value of the assignment.
1510  if (!LHS.isVolatileQualified())
1511    return RHS;
1512
1513  // Otherwise, reload the value.
1514  return EmitLoadOfLValue(LHS, E->getType());
1515}
1516
1517
1518Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1519  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1520    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1521  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1522    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1523  else
1524    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1525}
1526
1527Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1528  // Rem in C can't be a floating point type: C99 6.5.5p2.
1529  if (Ops.Ty->isUnsignedIntegerType())
1530    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1531  else
1532    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1533}
1534
1535Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1536  unsigned IID;
1537  unsigned OpID = 0;
1538
1539  switch (Ops.Opcode) {
1540  case BinaryOperator::Add:
1541  case BinaryOperator::AddAssign:
1542    OpID = 1;
1543    IID = llvm::Intrinsic::sadd_with_overflow;
1544    break;
1545  case BinaryOperator::Sub:
1546  case BinaryOperator::SubAssign:
1547    OpID = 2;
1548    IID = llvm::Intrinsic::ssub_with_overflow;
1549    break;
1550  case BinaryOperator::Mul:
1551  case BinaryOperator::MulAssign:
1552    OpID = 3;
1553    IID = llvm::Intrinsic::smul_with_overflow;
1554    break;
1555  default:
1556    assert(false && "Unsupported operation for overflow detection");
1557    IID = 0;
1558  }
1559  OpID <<= 1;
1560  OpID |= 1;
1561
1562  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1563
1564  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1565
1566  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1567  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1568  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1569
1570  // Branch in case of overflow.
1571  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1572  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1573
1574  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1575
1576  // Handle overflow with llvm.trap.
1577  // TODO: it would be better to generate one of these blocks per function.
1578  Builder.SetInsertPoint(overflowBB);
1579  llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
1580  Builder.CreateCall(Trap);
1581  Builder.CreateUnreachable();
1582
1583  // Continue on.
1584  Builder.SetInsertPoint(continueBB);
1585  return result;
1586}
1587
1588Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1589  if (!Ops.Ty->isAnyPointerType()) {
1590    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1591      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1592      case LangOptions::SOB_Undefined:
1593        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1594      case LangOptions::SOB_Defined:
1595        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1596      case LangOptions::SOB_Trapping:
1597        return EmitOverflowCheckedBinOp(Ops);
1598      }
1599    }
1600
1601    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1602      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1603
1604    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1605  }
1606
1607  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1608  // use this path.
1609  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1610
1611  if (Ops.Ty->isPointerType() &&
1612      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1613    // The amount of the addition needs to account for the VLA size
1614    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1615  }
1616
1617  Value *Ptr, *Idx;
1618  Expr *IdxExp;
1619  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1620  const ObjCObjectPointerType *OPT =
1621    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1622  if (PT || OPT) {
1623    Ptr = Ops.LHS;
1624    Idx = Ops.RHS;
1625    IdxExp = BinOp->getRHS();
1626  } else {  // int + pointer
1627    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1628    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1629    assert((PT || OPT) && "Invalid add expr");
1630    Ptr = Ops.RHS;
1631    Idx = Ops.LHS;
1632    IdxExp = BinOp->getLHS();
1633  }
1634
1635  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1636  if (Width < CGF.LLVMPointerWidth) {
1637    // Zero or sign extend the pointer value based on whether the index is
1638    // signed or not.
1639    const llvm::Type *IdxType = CGF.IntPtrTy;
1640    if (IdxExp->getType()->isSignedIntegerType())
1641      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1642    else
1643      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1644  }
1645  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1646  // Handle interface types, which are not represented with a concrete type.
1647  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1648    llvm::Value *InterfaceSize =
1649      llvm::ConstantInt::get(Idx->getType(),
1650          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1651    Idx = Builder.CreateMul(Idx, InterfaceSize);
1652    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1653    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1654    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1655    return Builder.CreateBitCast(Res, Ptr->getType());
1656  }
1657
1658  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1659  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1660  // future proof.
1661  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1662    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1663    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1664    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1665    return Builder.CreateBitCast(Res, Ptr->getType());
1666  }
1667
1668  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1669}
1670
1671Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1672  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1673    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1674      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1675      case LangOptions::SOB_Undefined:
1676        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1677      case LangOptions::SOB_Defined:
1678        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1679      case LangOptions::SOB_Trapping:
1680        return EmitOverflowCheckedBinOp(Ops);
1681      }
1682    }
1683
1684    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1685      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1686
1687    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1688  }
1689
1690  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1691  // use this path.
1692  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1693
1694  if (BinOp->getLHS()->getType()->isPointerType() &&
1695      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1696    // The amount of the addition needs to account for the VLA size for
1697    // ptr-int
1698    // The amount of the division needs to account for the VLA size for
1699    // ptr-ptr.
1700    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1701  }
1702
1703  const QualType LHSType = BinOp->getLHS()->getType();
1704  const QualType LHSElementType = LHSType->getPointeeType();
1705  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1706    // pointer - int
1707    Value *Idx = Ops.RHS;
1708    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1709    if (Width < CGF.LLVMPointerWidth) {
1710      // Zero or sign extend the pointer value based on whether the index is
1711      // signed or not.
1712      const llvm::Type *IdxType = CGF.IntPtrTy;
1713      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1714        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1715      else
1716        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1717    }
1718    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1719
1720    // Handle interface types, which are not represented with a concrete type.
1721    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1722      llvm::Value *InterfaceSize =
1723        llvm::ConstantInt::get(Idx->getType(),
1724                               CGF.getContext().
1725                                 getTypeSizeInChars(OIT).getQuantity());
1726      Idx = Builder.CreateMul(Idx, InterfaceSize);
1727      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1728      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1729      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1730      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1731    }
1732
1733    // Explicitly handle GNU void* and function pointer arithmetic
1734    // extensions. The GNU void* casts amount to no-ops since our void* type is
1735    // i8*, but this is future proof.
1736    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1737      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1738      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1739      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1740      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1741    }
1742
1743    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1744  } else {
1745    // pointer - pointer
1746    Value *LHS = Ops.LHS;
1747    Value *RHS = Ops.RHS;
1748
1749    CharUnits ElementSize;
1750
1751    // Handle GCC extension for pointer arithmetic on void* and function pointer
1752    // types.
1753    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1754      ElementSize = CharUnits::One();
1755    } else {
1756      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1757    }
1758
1759    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1760    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1761    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1762    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1763
1764    // Optimize out the shift for element size of 1.
1765    if (ElementSize.isOne())
1766      return BytesBetween;
1767
1768    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1769    // pointer difference in C is only defined in the case where both operands
1770    // are pointing to elements of an array.
1771    Value *BytesPerElt =
1772        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1773    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1774  }
1775}
1776
1777Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1778  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1779  // RHS to the same size as the LHS.
1780  Value *RHS = Ops.RHS;
1781  if (Ops.LHS->getType() != RHS->getType())
1782    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1783
1784  if (CGF.CatchUndefined
1785      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1786    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1787    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1788    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1789                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1790                             Cont, CGF.getTrapBB());
1791    CGF.EmitBlock(Cont);
1792  }
1793
1794  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1795}
1796
1797Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1798  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1799  // RHS to the same size as the LHS.
1800  Value *RHS = Ops.RHS;
1801  if (Ops.LHS->getType() != RHS->getType())
1802    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1803
1804  if (CGF.CatchUndefined
1805      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1806    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1807    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1808    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1809                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1810                             Cont, CGF.getTrapBB());
1811    CGF.EmitBlock(Cont);
1812  }
1813
1814  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1815    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1816  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1817}
1818
1819Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1820                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1821  TestAndClearIgnoreResultAssign();
1822  Value *Result;
1823  QualType LHSTy = E->getLHS()->getType();
1824  if (LHSTy->isMemberFunctionPointerType()) {
1825    assert(E->getOpcode() == BinaryOperator::EQ ||
1826           E->getOpcode() == BinaryOperator::NE);
1827    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
1828    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
1829    Result = CGF.CGM.getCXXABI().EmitMemberFunctionPointerComparison(
1830                         CGF, LHS, RHS, LHSTy->getAs<MemberPointerType>(),
1831                                    E->getOpcode() == BinaryOperator::NE);
1832  } else if (!LHSTy->isAnyComplexType()) {
1833    Value *LHS = Visit(E->getLHS());
1834    Value *RHS = Visit(E->getRHS());
1835
1836    if (LHS->getType()->isFPOrFPVectorTy()) {
1837      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1838                                  LHS, RHS, "cmp");
1839    } else if (LHSTy->hasSignedIntegerRepresentation()) {
1840      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1841                                  LHS, RHS, "cmp");
1842    } else {
1843      // Unsigned integers and pointers.
1844      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1845                                  LHS, RHS, "cmp");
1846    }
1847
1848    // If this is a vector comparison, sign extend the result to the appropriate
1849    // vector integer type and return it (don't convert to bool).
1850    if (LHSTy->isVectorType())
1851      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1852
1853  } else {
1854    // Complex Comparison: can only be an equality comparison.
1855    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1856    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1857
1858    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1859
1860    Value *ResultR, *ResultI;
1861    if (CETy->isRealFloatingType()) {
1862      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1863                                   LHS.first, RHS.first, "cmp.r");
1864      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1865                                   LHS.second, RHS.second, "cmp.i");
1866    } else {
1867      // Complex comparisons can only be equality comparisons.  As such, signed
1868      // and unsigned opcodes are the same.
1869      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1870                                   LHS.first, RHS.first, "cmp.r");
1871      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1872                                   LHS.second, RHS.second, "cmp.i");
1873    }
1874
1875    if (E->getOpcode() == BinaryOperator::EQ) {
1876      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1877    } else {
1878      assert(E->getOpcode() == BinaryOperator::NE &&
1879             "Complex comparison other than == or != ?");
1880      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1881    }
1882  }
1883
1884  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1885}
1886
1887Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1888  bool Ignore = TestAndClearIgnoreResultAssign();
1889
1890  // __block variables need to have the rhs evaluated first, plus this should
1891  // improve codegen just a little.
1892  Value *RHS = Visit(E->getRHS());
1893  LValue LHS = EmitCheckedLValue(E->getLHS());
1894
1895  // Store the value into the LHS.  Bit-fields are handled specially
1896  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1897  // 'An assignment expression has the value of the left operand after
1898  // the assignment...'.
1899  if (LHS.isBitField())
1900    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1901                                       &RHS);
1902  else
1903    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1904
1905  // If the result is clearly ignored, return now.
1906  if (Ignore)
1907    return 0;
1908
1909  // Objective-C property assignment never reloads the value following a store.
1910  if (LHS.isPropertyRef() || LHS.isKVCRef())
1911    return RHS;
1912
1913  // If the lvalue is non-volatile, return the computed value of the assignment.
1914  if (!LHS.isVolatileQualified())
1915    return RHS;
1916
1917  // Otherwise, reload the value.
1918  return EmitLoadOfLValue(LHS, E->getType());
1919}
1920
1921Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1922  const llvm::Type *ResTy = ConvertType(E->getType());
1923
1924  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1925  // If we have 1 && X, just emit X without inserting the control flow.
1926  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1927    if (Cond == 1) { // If we have 1 && X, just emit X.
1928      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1929      // ZExt result to int or bool.
1930      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1931    }
1932
1933    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1934    if (!CGF.ContainsLabel(E->getRHS()))
1935      return llvm::Constant::getNullValue(ResTy);
1936  }
1937
1938  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1939  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1940
1941  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1942  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1943
1944  // Any edges into the ContBlock are now from an (indeterminate number of)
1945  // edges from this first condition.  All of these values will be false.  Start
1946  // setting up the PHI node in the Cont Block for this.
1947  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1948                                            "", ContBlock);
1949  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1950  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1951       PI != PE; ++PI)
1952    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1953
1954  CGF.BeginConditionalBranch();
1955  CGF.EmitBlock(RHSBlock);
1956  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1957  CGF.EndConditionalBranch();
1958
1959  // Reaquire the RHS block, as there may be subblocks inserted.
1960  RHSBlock = Builder.GetInsertBlock();
1961
1962  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1963  // into the phi node for the edge with the value of RHSCond.
1964  CGF.EmitBlock(ContBlock);
1965  PN->addIncoming(RHSCond, RHSBlock);
1966
1967  // ZExt result to int.
1968  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1969}
1970
1971Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1972  const llvm::Type *ResTy = ConvertType(E->getType());
1973
1974  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1975  // If we have 0 || X, just emit X without inserting the control flow.
1976  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1977    if (Cond == -1) { // If we have 0 || X, just emit X.
1978      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1979      // ZExt result to int or bool.
1980      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1981    }
1982
1983    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1984    if (!CGF.ContainsLabel(E->getRHS()))
1985      return llvm::ConstantInt::get(ResTy, 1);
1986  }
1987
1988  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1989  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1990
1991  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1992  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1993
1994  // Any edges into the ContBlock are now from an (indeterminate number of)
1995  // edges from this first condition.  All of these values will be true.  Start
1996  // setting up the PHI node in the Cont Block for this.
1997  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1998                                            "", ContBlock);
1999  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2000  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2001       PI != PE; ++PI)
2002    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2003
2004  CGF.BeginConditionalBranch();
2005
2006  // Emit the RHS condition as a bool value.
2007  CGF.EmitBlock(RHSBlock);
2008  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2009
2010  CGF.EndConditionalBranch();
2011
2012  // Reaquire the RHS block, as there may be subblocks inserted.
2013  RHSBlock = Builder.GetInsertBlock();
2014
2015  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2016  // into the phi node for the edge with the value of RHSCond.
2017  CGF.EmitBlock(ContBlock);
2018  PN->addIncoming(RHSCond, RHSBlock);
2019
2020  // ZExt result to int.
2021  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2022}
2023
2024Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2025  CGF.EmitStmt(E->getLHS());
2026  CGF.EnsureInsertPoint();
2027  return Visit(E->getRHS());
2028}
2029
2030//===----------------------------------------------------------------------===//
2031//                             Other Operators
2032//===----------------------------------------------------------------------===//
2033
2034/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2035/// expression is cheap enough and side-effect-free enough to evaluate
2036/// unconditionally instead of conditionally.  This is used to convert control
2037/// flow into selects in some cases.
2038static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2039                                                   CodeGenFunction &CGF) {
2040  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2041    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2042
2043  // TODO: Allow anything we can constant fold to an integer or fp constant.
2044  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2045      isa<FloatingLiteral>(E))
2046    return true;
2047
2048  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2049  // X and Y are local variables.
2050  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2051    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2052      if (VD->hasLocalStorage() && !(CGF.getContext()
2053                                     .getCanonicalType(VD->getType())
2054                                     .isVolatileQualified()))
2055        return true;
2056
2057  return false;
2058}
2059
2060
2061Value *ScalarExprEmitter::
2062VisitConditionalOperator(const ConditionalOperator *E) {
2063  TestAndClearIgnoreResultAssign();
2064  // If the condition constant folds and can be elided, try to avoid emitting
2065  // the condition and the dead arm.
2066  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2067    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2068    if (Cond == -1)
2069      std::swap(Live, Dead);
2070
2071    // If the dead side doesn't have labels we need, and if the Live side isn't
2072    // the gnu missing ?: extension (which we could handle, but don't bother
2073    // to), just emit the Live part.
2074    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2075        Live)                                   // Live part isn't missing.
2076      return Visit(Live);
2077  }
2078
2079
2080  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2081  // select instead of as control flow.  We can only do this if it is cheap and
2082  // safe to evaluate the LHS and RHS unconditionally.
2083  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2084                                                            CGF) &&
2085      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2086    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2087    llvm::Value *LHS = Visit(E->getLHS());
2088    llvm::Value *RHS = Visit(E->getRHS());
2089    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2090  }
2091
2092
2093  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2094  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2095  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2096  Value *CondVal = 0;
2097
2098  // If we don't have the GNU missing condition extension, emit a branch on bool
2099  // the normal way.
2100  if (E->getLHS()) {
2101    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2102    // the branch on bool.
2103    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2104  } else {
2105    // Otherwise, for the ?: extension, evaluate the conditional and then
2106    // convert it to bool the hard way.  We do this explicitly because we need
2107    // the unconverted value for the missing middle value of the ?:.
2108    CondVal = CGF.EmitScalarExpr(E->getCond());
2109
2110    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2111    // if there are no extra uses (an optimization).  Inhibit this by making an
2112    // extra dead use, because we're going to add a use of CondVal later.  We
2113    // don't use the builder for this, because we don't want it to get optimized
2114    // away.  This leaves dead code, but the ?: extension isn't common.
2115    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2116                          Builder.GetInsertBlock());
2117
2118    Value *CondBoolVal =
2119      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2120                               CGF.getContext().BoolTy);
2121    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2122  }
2123
2124  CGF.BeginConditionalBranch();
2125  CGF.EmitBlock(LHSBlock);
2126
2127  // Handle the GNU extension for missing LHS.
2128  Value *LHS;
2129  if (E->getLHS())
2130    LHS = Visit(E->getLHS());
2131  else    // Perform promotions, to handle cases like "short ?: int"
2132    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
2133
2134  CGF.EndConditionalBranch();
2135  LHSBlock = Builder.GetInsertBlock();
2136  CGF.EmitBranch(ContBlock);
2137
2138  CGF.BeginConditionalBranch();
2139  CGF.EmitBlock(RHSBlock);
2140
2141  Value *RHS = Visit(E->getRHS());
2142  CGF.EndConditionalBranch();
2143  RHSBlock = Builder.GetInsertBlock();
2144  CGF.EmitBranch(ContBlock);
2145
2146  CGF.EmitBlock(ContBlock);
2147
2148  // If the LHS or RHS is a throw expression, it will be legitimately null.
2149  if (!LHS)
2150    return RHS;
2151  if (!RHS)
2152    return LHS;
2153
2154  // Create a PHI node for the real part.
2155  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2156  PN->reserveOperandSpace(2);
2157  PN->addIncoming(LHS, LHSBlock);
2158  PN->addIncoming(RHS, RHSBlock);
2159  return PN;
2160}
2161
2162Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2163  return Visit(E->getChosenSubExpr(CGF.getContext()));
2164}
2165
2166Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2167  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2168  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2169
2170  // If EmitVAArg fails, we fall back to the LLVM instruction.
2171  if (!ArgPtr)
2172    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2173
2174  // FIXME Volatility.
2175  return Builder.CreateLoad(ArgPtr);
2176}
2177
2178Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2179  return CGF.BuildBlockLiteralTmp(BE);
2180}
2181
2182//===----------------------------------------------------------------------===//
2183//                         Entry Point into this File
2184//===----------------------------------------------------------------------===//
2185
2186/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2187/// type, ignoring the result.
2188Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2189  assert(E && !hasAggregateLLVMType(E->getType()) &&
2190         "Invalid scalar expression to emit");
2191
2192  return ScalarExprEmitter(*this, IgnoreResultAssign)
2193    .Visit(const_cast<Expr*>(E));
2194}
2195
2196/// EmitScalarConversion - Emit a conversion from the specified type to the
2197/// specified destination type, both of which are LLVM scalar types.
2198Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2199                                             QualType DstTy) {
2200  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2201         "Invalid scalar expression to emit");
2202  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2203}
2204
2205/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2206/// type to the specified destination type, where the destination type is an
2207/// LLVM scalar type.
2208Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2209                                                      QualType SrcTy,
2210                                                      QualType DstTy) {
2211  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2212         "Invalid complex -> scalar conversion");
2213  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2214                                                                DstTy);
2215}
2216
2217
2218llvm::Value *CodeGenFunction::
2219EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2220                        bool isInc, bool isPre) {
2221  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2222}
2223
2224LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2225  llvm::Value *V;
2226  // object->isa or (*object).isa
2227  // Generate code as for: *(Class*)object
2228  // build Class* type
2229  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2230
2231  Expr *BaseExpr = E->getBase();
2232  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2233    V = CreateTempAlloca(ClassPtrTy, "resval");
2234    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2235    Builder.CreateStore(Src, V);
2236    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2237      MakeAddrLValue(V, E->getType()), E->getType());
2238  } else {
2239    if (E->isArrow())
2240      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2241    else
2242      V = EmitLValue(BaseExpr).getAddress();
2243  }
2244
2245  // build Class* type
2246  ClassPtrTy = ClassPtrTy->getPointerTo();
2247  V = Builder.CreateBitCast(V, ClassPtrTy);
2248  return MakeAddrLValue(V, E->getType());
2249}
2250
2251
2252LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2253                                            const CompoundAssignOperator *E) {
2254  ScalarExprEmitter Scalar(*this);
2255  Value *Result = 0;
2256  switch (E->getOpcode()) {
2257#define COMPOUND_OP(Op)                                                       \
2258    case BinaryOperator::Op##Assign:                                          \
2259      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2260                                             Result)
2261  COMPOUND_OP(Mul);
2262  COMPOUND_OP(Div);
2263  COMPOUND_OP(Rem);
2264  COMPOUND_OP(Add);
2265  COMPOUND_OP(Sub);
2266  COMPOUND_OP(Shl);
2267  COMPOUND_OP(Shr);
2268  COMPOUND_OP(And);
2269  COMPOUND_OP(Xor);
2270  COMPOUND_OP(Or);
2271#undef COMPOUND_OP
2272
2273  case BinaryOperator::PtrMemD:
2274  case BinaryOperator::PtrMemI:
2275  case BinaryOperator::Mul:
2276  case BinaryOperator::Div:
2277  case BinaryOperator::Rem:
2278  case BinaryOperator::Add:
2279  case BinaryOperator::Sub:
2280  case BinaryOperator::Shl:
2281  case BinaryOperator::Shr:
2282  case BinaryOperator::LT:
2283  case BinaryOperator::GT:
2284  case BinaryOperator::LE:
2285  case BinaryOperator::GE:
2286  case BinaryOperator::EQ:
2287  case BinaryOperator::NE:
2288  case BinaryOperator::And:
2289  case BinaryOperator::Xor:
2290  case BinaryOperator::Or:
2291  case BinaryOperator::LAnd:
2292  case BinaryOperator::LOr:
2293  case BinaryOperator::Assign:
2294  case BinaryOperator::Comma:
2295    assert(false && "Not valid compound assignment operators");
2296    break;
2297  }
2298
2299  llvm_unreachable("Unhandled compound assignment operator");
2300}
2301