CGExprScalar.cpp revision f51dc64f90851f636302dbaaf3f52c0524cdac36
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Target/TargetData.h"
30#include <cstdarg>
31
32using namespace clang;
33using namespace CodeGen;
34using llvm::Value;
35
36//===----------------------------------------------------------------------===//
37//                         Scalar Expression Emitter
38//===----------------------------------------------------------------------===//
39
40struct BinOpInfo {
41  Value *LHS;
42  Value *RHS;
43  QualType Ty;  // Computation Type.
44  const BinaryOperator *E;
45};
46
47namespace {
48class VISIBILITY_HIDDEN ScalarExprEmitter
49  : public StmtVisitor<ScalarExprEmitter, Value*> {
50  CodeGenFunction &CGF;
51  CGBuilderTy &Builder;
52  bool IgnoreResultAssign;
53  llvm::LLVMContext &VMContext;
54public:
55
56  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
57    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
58      VMContext(cgf.getLLVMContext()) {
59  }
60
61  //===--------------------------------------------------------------------===//
62  //                               Utilities
63  //===--------------------------------------------------------------------===//
64
65  bool TestAndClearIgnoreResultAssign() {
66    bool I = IgnoreResultAssign;
67    IgnoreResultAssign = false;
68    return I;
69  }
70
71  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
72  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
73
74  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76  }
77
78  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79  /// value l-value, this method emits the address of the l-value, then loads
80  /// and returns the result.
81  Value *EmitLoadOfLValue(const Expr *E) {
82    return EmitLoadOfLValue(EmitLValue(E), E->getType());
83  }
84
85  /// EmitConversionToBool - Convert the specified expression value to a
86  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88
89  /// EmitScalarConversion - Emit a conversion from the specified type to the
90  /// specified destination type, both of which are LLVM scalar types.
91  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92
93  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94  /// complex type to the specified destination type, where the destination type
95  /// is an LLVM scalar type.
96  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                       QualType SrcTy, QualType DstTy);
98
99  //===--------------------------------------------------------------------===//
100  //                            Visitor Methods
101  //===--------------------------------------------------------------------===//
102
103  Value *VisitStmt(Stmt *S) {
104    S->dump(CGF.getContext().getSourceManager());
105    assert(0 && "Stmt can't have complex result type!");
106    return 0;
107  }
108  Value *VisitExpr(Expr *S);
109  Value *VisitPointerToDataMemberBinaryExpr(const BinaryOperator *BExpr);
110
111  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
112
113  // Leaves.
114  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
115    return llvm::ConstantInt::get(VMContext, E->getValue());
116  }
117  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
118    return llvm::ConstantFP::get(VMContext, E->getValue());
119  }
120  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
121    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
122  }
123  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
124    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
125  }
126  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
127    return llvm::Constant::getNullValue(ConvertType(E->getType()));
128  }
129  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
130    return llvm::Constant::getNullValue(ConvertType(E->getType()));
131  }
132  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
133    return llvm::ConstantInt::get(ConvertType(E->getType()),
134                                  CGF.getContext().typesAreCompatible(
135                                    E->getArgType1(), E->getArgType2()));
136  }
137  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
138  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
139    llvm::Value *V =
140      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
141                             CGF.GetIDForAddrOfLabel(E->getLabel()));
142
143    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
144  }
145
146  // l-values.
147  Value *VisitDeclRefExpr(DeclRefExpr *E) {
148    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
149      return llvm::ConstantInt::get(VMContext, EC->getInitVal());
150    return EmitLoadOfLValue(E);
151  }
152  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
153    return CGF.EmitObjCSelectorExpr(E);
154  }
155  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
156    return CGF.EmitObjCProtocolExpr(E);
157  }
158  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
159    return EmitLoadOfLValue(E);
160  }
161  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
162    return EmitLoadOfLValue(E);
163  }
164  Value *VisitObjCImplicitSetterGetterRefExpr(
165                        ObjCImplicitSetterGetterRefExpr *E) {
166    return EmitLoadOfLValue(E);
167  }
168  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
169    return CGF.EmitObjCMessageExpr(E).getScalarVal();
170  }
171
172  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
173  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
174  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
175  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
176  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
177    return EmitLoadOfLValue(E);
178  }
179  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
180  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
181     return EmitLValue(E).getAddress();
182  }
183
184  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
185
186  Value *VisitInitListExpr(InitListExpr *E);
187
188  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
189    return llvm::Constant::getNullValue(ConvertType(E->getType()));
190  }
191  Value *VisitCastExpr(const CastExpr *E) {
192    // Make sure to evaluate VLA bounds now so that we have them for later.
193    if (E->getType()->isVariablyModifiedType())
194      CGF.EmitVLASize(E->getType());
195
196    return EmitCastExpr(E);
197  }
198  Value *EmitCastExpr(const CastExpr *E);
199
200  Value *VisitCallExpr(const CallExpr *E) {
201    if (E->getCallReturnType()->isReferenceType())
202      return EmitLoadOfLValue(E);
203
204    return CGF.EmitCallExpr(E).getScalarVal();
205  }
206
207  Value *VisitStmtExpr(const StmtExpr *E);
208
209  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
210
211  // Unary Operators.
212  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
213  Value *VisitUnaryPostDec(const UnaryOperator *E) {
214    return VisitPrePostIncDec(E, false, false);
215  }
216  Value *VisitUnaryPostInc(const UnaryOperator *E) {
217    return VisitPrePostIncDec(E, true, false);
218  }
219  Value *VisitUnaryPreDec(const UnaryOperator *E) {
220    return VisitPrePostIncDec(E, false, true);
221  }
222  Value *VisitUnaryPreInc(const UnaryOperator *E) {
223    return VisitPrePostIncDec(E, true, true);
224  }
225  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
226    return EmitLValue(E->getSubExpr()).getAddress();
227  }
228  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
229  Value *VisitUnaryPlus(const UnaryOperator *E) {
230    // This differs from gcc, though, most likely due to a bug in gcc.
231    TestAndClearIgnoreResultAssign();
232    return Visit(E->getSubExpr());
233  }
234  Value *VisitUnaryMinus    (const UnaryOperator *E);
235  Value *VisitUnaryNot      (const UnaryOperator *E);
236  Value *VisitUnaryLNot     (const UnaryOperator *E);
237  Value *VisitUnaryReal     (const UnaryOperator *E);
238  Value *VisitUnaryImag     (const UnaryOperator *E);
239  Value *VisitUnaryExtension(const UnaryOperator *E) {
240    return Visit(E->getSubExpr());
241  }
242  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
243
244  // C++
245  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
246    return Visit(DAE->getExpr());
247  }
248  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
249    return CGF.LoadCXXThis();
250  }
251
252  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
253    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
254  }
255  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
256    return CGF.EmitCXXNewExpr(E);
257  }
258  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
259    CGF.EmitCXXDeleteExpr(E);
260    return 0;
261  }
262
263  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
264    // C++ [expr.pseudo]p1:
265    //   The result shall only be used as the operand for the function call
266    //   operator (), and the result of such a call has type void. The only
267    //   effect is the evaluation of the postfix-expression before the dot or
268    //   arrow.
269    CGF.EmitScalarExpr(E->getBase());
270    return 0;
271  }
272
273  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
274    return llvm::Constant::getNullValue(ConvertType(E->getType()));
275  }
276
277  // Binary Operators.
278  Value *EmitMul(const BinOpInfo &Ops) {
279    if (CGF.getContext().getLangOptions().OverflowChecking
280        && Ops.Ty->isSignedIntegerType())
281      return EmitOverflowCheckedBinOp(Ops);
282    if (Ops.LHS->getType()->isFPOrFPVector())
283      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
284    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
285  }
286  /// Create a binary op that checks for overflow.
287  /// Currently only supports +, - and *.
288  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
289  Value *EmitDiv(const BinOpInfo &Ops);
290  Value *EmitRem(const BinOpInfo &Ops);
291  Value *EmitAdd(const BinOpInfo &Ops);
292  Value *EmitSub(const BinOpInfo &Ops);
293  Value *EmitShl(const BinOpInfo &Ops);
294  Value *EmitShr(const BinOpInfo &Ops);
295  Value *EmitAnd(const BinOpInfo &Ops) {
296    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
297  }
298  Value *EmitXor(const BinOpInfo &Ops) {
299    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
300  }
301  Value *EmitOr (const BinOpInfo &Ops) {
302    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
303  }
304
305  BinOpInfo EmitBinOps(const BinaryOperator *E);
306  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
307                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
308
309  // Binary operators and binary compound assignment operators.
310#define HANDLEBINOP(OP) \
311  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
312    return Emit ## OP(EmitBinOps(E));                                      \
313  }                                                                        \
314  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
315    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
316  }
317  HANDLEBINOP(Mul);
318  HANDLEBINOP(Div);
319  HANDLEBINOP(Rem);
320  HANDLEBINOP(Add);
321  HANDLEBINOP(Sub);
322  HANDLEBINOP(Shl);
323  HANDLEBINOP(Shr);
324  HANDLEBINOP(And);
325  HANDLEBINOP(Xor);
326  HANDLEBINOP(Or);
327#undef HANDLEBINOP
328
329  // Comparisons.
330  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
331                     unsigned SICmpOpc, unsigned FCmpOpc);
332#define VISITCOMP(CODE, UI, SI, FP) \
333    Value *VisitBin##CODE(const BinaryOperator *E) { \
334      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
335                         llvm::FCmpInst::FP); }
336  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
337  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
338  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
339  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
340  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
341  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
342#undef VISITCOMP
343
344  Value *VisitBinAssign     (const BinaryOperator *E);
345
346  Value *VisitBinLAnd       (const BinaryOperator *E);
347  Value *VisitBinLOr        (const BinaryOperator *E);
348  Value *VisitBinComma      (const BinaryOperator *E);
349
350  // Other Operators.
351  Value *VisitBlockExpr(const BlockExpr *BE);
352  Value *VisitConditionalOperator(const ConditionalOperator *CO);
353  Value *VisitChooseExpr(ChooseExpr *CE);
354  Value *VisitVAArgExpr(VAArgExpr *VE);
355  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
356    return CGF.EmitObjCStringLiteral(E);
357  }
358};
359}  // end anonymous namespace.
360
361//===----------------------------------------------------------------------===//
362//                                Utilities
363//===----------------------------------------------------------------------===//
364
365/// EmitConversionToBool - Convert the specified expression value to a
366/// boolean (i1) truth value.  This is equivalent to "Val != 0".
367Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
368  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
369
370  if (SrcType->isRealFloatingType()) {
371    // Compare against 0.0 for fp scalars.
372    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
373    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
374  }
375
376  if (SrcType->isMemberPointerType()) {
377    // FIXME: This is ABI specific.
378
379    // Compare against -1.
380    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
381    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
382  }
383
384  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
385         "Unknown scalar type to convert");
386
387  // Because of the type rules of C, we often end up computing a logical value,
388  // then zero extending it to int, then wanting it as a logical value again.
389  // Optimize this common case.
390  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
391    if (ZI->getOperand(0)->getType() ==
392        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
393      Value *Result = ZI->getOperand(0);
394      // If there aren't any more uses, zap the instruction to save space.
395      // Note that there can be more uses, for example if this
396      // is the result of an assignment.
397      if (ZI->use_empty())
398        ZI->eraseFromParent();
399      return Result;
400    }
401  }
402
403  // Compare against an integer or pointer null.
404  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
405  return Builder.CreateICmpNE(Src, Zero, "tobool");
406}
407
408/// EmitScalarConversion - Emit a conversion from the specified type to the
409/// specified destination type, both of which are LLVM scalar types.
410Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
411                                               QualType DstType) {
412  SrcType = CGF.getContext().getCanonicalType(SrcType);
413  DstType = CGF.getContext().getCanonicalType(DstType);
414  if (SrcType == DstType) return Src;
415
416  if (DstType->isVoidType()) return 0;
417
418  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
419
420  // Handle conversions to bool first, they are special: comparisons against 0.
421  if (DstType->isBooleanType())
422    return EmitConversionToBool(Src, SrcType);
423
424  const llvm::Type *DstTy = ConvertType(DstType);
425
426  // Ignore conversions like int -> uint.
427  if (Src->getType() == DstTy)
428    return Src;
429
430  // Handle pointer conversions next: pointers can only be converted to/from
431  // other pointers and integers. Check for pointer types in terms of LLVM, as
432  // some native types (like Obj-C id) may map to a pointer type.
433  if (isa<llvm::PointerType>(DstTy)) {
434    // The source value may be an integer, or a pointer.
435    if (isa<llvm::PointerType>(Src->getType()))
436      return Builder.CreateBitCast(Src, DstTy, "conv");
437
438    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
439    // First, convert to the correct width so that we control the kind of
440    // extension.
441    const llvm::Type *MiddleTy =
442          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
443    bool InputSigned = SrcType->isSignedIntegerType();
444    llvm::Value* IntResult =
445        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
446    // Then, cast to pointer.
447    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
448  }
449
450  if (isa<llvm::PointerType>(Src->getType())) {
451    // Must be an ptr to int cast.
452    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
453    return Builder.CreatePtrToInt(Src, DstTy, "conv");
454  }
455
456  // A scalar can be splatted to an extended vector of the same element type
457  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
458    // Cast the scalar to element type
459    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
460    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
461
462    // Insert the element in element zero of an undef vector
463    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
464    llvm::Value *Idx =
465        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
466    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
467
468    // Splat the element across to all elements
469    llvm::SmallVector<llvm::Constant*, 16> Args;
470    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
471    for (unsigned i = 0; i < NumElements; i++)
472      Args.push_back(llvm::ConstantInt::get(
473                                        llvm::Type::getInt32Ty(VMContext), 0));
474
475    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
476    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
477    return Yay;
478  }
479
480  // Allow bitcast from vector to integer/fp of the same size.
481  if (isa<llvm::VectorType>(Src->getType()) ||
482      isa<llvm::VectorType>(DstTy))
483    return Builder.CreateBitCast(Src, DstTy, "conv");
484
485  // Finally, we have the arithmetic types: real int/float.
486  if (isa<llvm::IntegerType>(Src->getType())) {
487    bool InputSigned = SrcType->isSignedIntegerType();
488    if (isa<llvm::IntegerType>(DstTy))
489      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
490    else if (InputSigned)
491      return Builder.CreateSIToFP(Src, DstTy, "conv");
492    else
493      return Builder.CreateUIToFP(Src, DstTy, "conv");
494  }
495
496  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
497  if (isa<llvm::IntegerType>(DstTy)) {
498    if (DstType->isSignedIntegerType())
499      return Builder.CreateFPToSI(Src, DstTy, "conv");
500    else
501      return Builder.CreateFPToUI(Src, DstTy, "conv");
502  }
503
504  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
505  if (DstTy->getTypeID() < Src->getType()->getTypeID())
506    return Builder.CreateFPTrunc(Src, DstTy, "conv");
507  else
508    return Builder.CreateFPExt(Src, DstTy, "conv");
509}
510
511/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
512/// type to the specified destination type, where the destination type is an
513/// LLVM scalar type.
514Value *ScalarExprEmitter::
515EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
516                              QualType SrcTy, QualType DstTy) {
517  // Get the source element type.
518  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
519
520  // Handle conversions to bool first, they are special: comparisons against 0.
521  if (DstTy->isBooleanType()) {
522    //  Complex != 0  -> (Real != 0) | (Imag != 0)
523    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
524    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
525    return Builder.CreateOr(Src.first, Src.second, "tobool");
526  }
527
528  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
529  // the imaginary part of the complex value is discarded and the value of the
530  // real part is converted according to the conversion rules for the
531  // corresponding real type.
532  return EmitScalarConversion(Src.first, SrcTy, DstTy);
533}
534
535
536//===----------------------------------------------------------------------===//
537//                            Visitor Methods
538//===----------------------------------------------------------------------===//
539
540Value *ScalarExprEmitter::VisitExpr(Expr *E) {
541  if (const BinaryOperator *BExpr = dyn_cast<BinaryOperator>(E))
542    if (BExpr->getOpcode() == BinaryOperator::PtrMemD)
543      return VisitPointerToDataMemberBinaryExpr(BExpr);
544
545  CGF.ErrorUnsupported(E, "scalar expression");
546  if (E->getType()->isVoidType())
547    return 0;
548  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
549}
550
551Value *ScalarExprEmitter::VisitPointerToDataMemberBinaryExpr(
552                                                    const BinaryOperator *E) {
553  Value *BaseV = EmitLValue(E->getLHS()).getAddress();
554  const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
555  BaseV = Builder.CreateBitCast(BaseV, i8Ty);
556  Value *OffsetV = EmitLoadOfLValue(E->getRHS());
557  const llvm::Type* ResultType = ConvertType(
558                                        CGF.getContext().getPointerDiffType());
559  OffsetV = Builder.CreateBitCast(OffsetV, ResultType);
560  Value *AddV = Builder.CreateInBoundsGEP(BaseV, OffsetV, "add.ptr");
561  QualType Ty = E->getRHS()->getType();
562  const MemberPointerType *MemPtrType = Ty->getAs<MemberPointerType>();
563  Ty = MemPtrType->getPointeeType();
564  const llvm::Type* PType =
565  ConvertType(CGF.getContext().getPointerType(Ty));
566  AddV = Builder.CreateBitCast(AddV, PType);
567  LValue LV = LValue::MakeAddr(AddV, CGF.MakeQualifiers(Ty));
568  Value *InVal = CGF.EmitLoadOfLValue(LV, Ty).getScalarVal();
569  return InVal;
570}
571
572Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
573  llvm::SmallVector<llvm::Constant*, 32> indices;
574  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
575    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
576  }
577  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
578  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
579  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
580  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
581}
582
583Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
584  TestAndClearIgnoreResultAssign();
585
586  // Emit subscript expressions in rvalue context's.  For most cases, this just
587  // loads the lvalue formed by the subscript expr.  However, we have to be
588  // careful, because the base of a vector subscript is occasionally an rvalue,
589  // so we can't get it as an lvalue.
590  if (!E->getBase()->getType()->isVectorType())
591    return EmitLoadOfLValue(E);
592
593  // Handle the vector case.  The base must be a vector, the index must be an
594  // integer value.
595  Value *Base = Visit(E->getBase());
596  Value *Idx  = Visit(E->getIdx());
597  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
598  Idx = Builder.CreateIntCast(Idx,
599                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
600                              IdxSigned,
601                              "vecidxcast");
602  return Builder.CreateExtractElement(Base, Idx, "vecext");
603}
604
605static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
606                                  unsigned Off, const llvm::Type *I32Ty) {
607  int MV = SVI->getMaskValue(Idx);
608  if (MV == -1)
609    return llvm::UndefValue::get(I32Ty);
610  return llvm::ConstantInt::get(I32Ty, Off+MV);
611}
612
613Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
614  bool Ignore = TestAndClearIgnoreResultAssign();
615  (void)Ignore;
616  assert (Ignore == false && "init list ignored");
617  unsigned NumInitElements = E->getNumInits();
618
619  if (E->hadArrayRangeDesignator())
620    CGF.ErrorUnsupported(E, "GNU array range designator extension");
621
622  const llvm::VectorType *VType =
623    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
624
625  // We have a scalar in braces. Just use the first element.
626  if (!VType)
627    return Visit(E->getInit(0));
628
629  unsigned ResElts = VType->getNumElements();
630  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
631
632  // Loop over initializers collecting the Value for each, and remembering
633  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
634  // us to fold the shuffle for the swizzle into the shuffle for the vector
635  // initializer, since LLVM optimizers generally do not want to touch
636  // shuffles.
637  unsigned CurIdx = 0;
638  bool VIsUndefShuffle = false;
639  llvm::Value *V = llvm::UndefValue::get(VType);
640  for (unsigned i = 0; i != NumInitElements; ++i) {
641    Expr *IE = E->getInit(i);
642    Value *Init = Visit(IE);
643    llvm::SmallVector<llvm::Constant*, 16> Args;
644
645    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
646
647    // Handle scalar elements.  If the scalar initializer is actually one
648    // element of a different vector of the same width, use shuffle instead of
649    // extract+insert.
650    if (!VVT) {
651      if (isa<ExtVectorElementExpr>(IE)) {
652        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
653
654        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
655          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
656          Value *LHS = 0, *RHS = 0;
657          if (CurIdx == 0) {
658            // insert into undef -> shuffle (src, undef)
659            Args.push_back(C);
660            for (unsigned j = 1; j != ResElts; ++j)
661              Args.push_back(llvm::UndefValue::get(I32Ty));
662
663            LHS = EI->getVectorOperand();
664            RHS = V;
665            VIsUndefShuffle = true;
666          } else if (VIsUndefShuffle) {
667            // insert into undefshuffle && size match -> shuffle (v, src)
668            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
669            for (unsigned j = 0; j != CurIdx; ++j)
670              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
671            Args.push_back(llvm::ConstantInt::get(I32Ty,
672                                                  ResElts + C->getZExtValue()));
673            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
674              Args.push_back(llvm::UndefValue::get(I32Ty));
675
676            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
677            RHS = EI->getVectorOperand();
678            VIsUndefShuffle = false;
679          }
680          if (!Args.empty()) {
681            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
682            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
683            ++CurIdx;
684            continue;
685          }
686        }
687      }
688      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
689      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
690      VIsUndefShuffle = false;
691      ++CurIdx;
692      continue;
693    }
694
695    unsigned InitElts = VVT->getNumElements();
696
697    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
698    // input is the same width as the vector being constructed, generate an
699    // optimized shuffle of the swizzle input into the result.
700    if (isa<ExtVectorElementExpr>(IE)) {
701      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
702      Value *SVOp = SVI->getOperand(0);
703      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
704
705      if (OpTy->getNumElements() == ResElts) {
706        unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
707
708        for (unsigned j = 0; j != CurIdx; ++j) {
709          // If the current vector initializer is a shuffle with undef, merge
710          // this shuffle directly into it.
711          if (VIsUndefShuffle) {
712            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
713                                      I32Ty));
714          } else {
715            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
716          }
717        }
718        for (unsigned j = 0, je = InitElts; j != je; ++j)
719          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
720        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
721          Args.push_back(llvm::UndefValue::get(I32Ty));
722
723        if (VIsUndefShuffle)
724          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
725
726        Init = SVOp;
727      }
728    }
729
730    // Extend init to result vector length, and then shuffle its contribution
731    // to the vector initializer into V.
732    if (Args.empty()) {
733      for (unsigned j = 0; j != InitElts; ++j)
734        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
735      for (unsigned j = InitElts; j != ResElts; ++j)
736        Args.push_back(llvm::UndefValue::get(I32Ty));
737      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
738      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
739                                         Mask, "vecext");
740
741      Args.clear();
742      for (unsigned j = 0; j != CurIdx; ++j)
743        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
744      for (unsigned j = 0; j != InitElts; ++j)
745        Args.push_back(llvm::ConstantInt::get(I32Ty, j+ResElts));
746      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
747        Args.push_back(llvm::UndefValue::get(I32Ty));
748    }
749
750    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
751    // merging subsequent shuffles into this one.
752    if (CurIdx == 0)
753      std::swap(V, Init);
754    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
755    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
756    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
757    CurIdx += InitElts;
758  }
759
760  // FIXME: evaluate codegen vs. shuffling against constant null vector.
761  // Emit remaining default initializers.
762  const llvm::Type *EltTy = VType->getElementType();
763
764  // Emit remaining default initializers
765  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
766    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
767    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
768    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
769  }
770  return V;
771}
772
773// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
774// have to handle a more broad range of conversions than explicit casts, as they
775// handle things like function to ptr-to-function decay etc.
776Value *ScalarExprEmitter::EmitCastExpr(const CastExpr *CE) {
777  const Expr *E = CE->getSubExpr();
778  QualType DestTy = CE->getType();
779  CastExpr::CastKind Kind = CE->getCastKind();
780
781  if (!DestTy->isVoidType())
782    TestAndClearIgnoreResultAssign();
783
784  switch (Kind) {
785  default:
786    // FIXME: Assert here.
787    // assert(0 && "Unhandled cast kind!");
788    break;
789  case CastExpr::CK_Unknown:
790    // FIXME: We should really assert here - Unknown casts should never get
791    // as far as to codegen.
792    break;
793  case CastExpr::CK_BitCast: {
794    Value *Src = Visit(const_cast<Expr*>(E));
795    return Builder.CreateBitCast(Src, ConvertType(DestTy));
796  }
797  case CastExpr::CK_ArrayToPointerDecay: {
798    assert(E->getType()->isArrayType() &&
799           "Array to pointer decay must have array source type!");
800
801    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
802
803    // Note that VLA pointers are always decayed, so we don't need to do
804    // anything here.
805    if (!E->getType()->isVariableArrayType()) {
806      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
807      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
808                                 ->getElementType()) &&
809             "Expected pointer to array");
810      V = Builder.CreateStructGEP(V, 0, "arraydecay");
811    }
812
813    // The resultant pointer type can be implicitly casted to other pointer
814    // types as well (e.g. void*) and can be implicitly converted to integer.
815    const llvm::Type *DestLTy = ConvertType(DestTy);
816    if (V->getType() != DestLTy) {
817      if (isa<llvm::PointerType>(DestLTy))
818        V = Builder.CreateBitCast(V, DestLTy, "ptrconv");
819      else {
820        assert(isa<llvm::IntegerType>(DestLTy) && "Unknown array decay");
821        V = Builder.CreatePtrToInt(V, DestLTy, "ptrconv");
822      }
823    }
824    return V;
825  }
826  case CastExpr::CK_NullToMemberPointer:
827    return CGF.CGM.EmitNullConstant(DestTy);
828
829  case CastExpr::CK_DerivedToBase: {
830    const RecordType *DerivedClassTy =
831      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
832    CXXRecordDecl *DerivedClassDecl =
833      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
834
835    const RecordType *BaseClassTy =
836      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
837    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
838
839    Value *Src = Visit(const_cast<Expr*>(E));
840
841    bool NullCheckValue = true;
842
843    if (isa<CXXThisExpr>(E)) {
844      // We always assume that 'this' is never null.
845      NullCheckValue = false;
846    } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
847      // And that lvalue casts are never null.
848      if (ICE->isLvalueCast())
849        NullCheckValue = false;
850    }
851    return CGF.GetAddressCXXOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
852                                        NullCheckValue);
853  }
854
855  case CastExpr::CK_IntegralToPointer: {
856    Value *Src = Visit(const_cast<Expr*>(E));
857
858    // First, convert to the correct width so that we control the kind of
859    // extension.
860    const llvm::Type *MiddleTy =
861      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
862    bool InputSigned = E->getType()->isSignedIntegerType();
863    llvm::Value* IntResult =
864      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
865
866    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
867  }
868
869  case CastExpr::CK_PointerToIntegral: {
870    Value *Src = Visit(const_cast<Expr*>(E));
871    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
872  }
873
874  }
875
876  // Handle cases where the source is an non-complex type.
877
878  if (!CGF.hasAggregateLLVMType(E->getType())) {
879    Value *Src = Visit(const_cast<Expr*>(E));
880
881    // Use EmitScalarConversion to perform the conversion.
882    return EmitScalarConversion(Src, E->getType(), DestTy);
883  }
884
885  if (E->getType()->isAnyComplexType()) {
886    // Handle cases where the source is a complex type.
887    bool IgnoreImag = true;
888    bool IgnoreImagAssign = true;
889    bool IgnoreReal = IgnoreResultAssign;
890    bool IgnoreRealAssign = IgnoreResultAssign;
891    if (DestTy->isBooleanType())
892      IgnoreImagAssign = IgnoreImag = false;
893    else if (DestTy->isVoidType()) {
894      IgnoreReal = IgnoreImag = false;
895      IgnoreRealAssign = IgnoreImagAssign = true;
896    }
897    CodeGenFunction::ComplexPairTy V
898      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
899                            IgnoreImagAssign);
900    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
901  }
902
903  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
904  // evaluate the result and return.
905  CGF.EmitAggExpr(E, 0, false, true);
906  return 0;
907}
908
909Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
910  return CGF.EmitCompoundStmt(*E->getSubStmt(),
911                              !E->getType()->isVoidType()).getScalarVal();
912}
913
914Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
915  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
916  if (E->getType().isObjCGCWeak())
917    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
918  return Builder.CreateLoad(V, false, "tmp");
919}
920
921//===----------------------------------------------------------------------===//
922//                             Unary Operators
923//===----------------------------------------------------------------------===//
924
925Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
926                                             bool isInc, bool isPre) {
927  LValue LV = EmitLValue(E->getSubExpr());
928  QualType ValTy = E->getSubExpr()->getType();
929  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
930
931  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
932
933  int AmountVal = isInc ? 1 : -1;
934
935  if (ValTy->isPointerType() &&
936      ValTy->getAs<PointerType>()->isVariableArrayType()) {
937    // The amount of the addition/subtraction needs to account for the VLA size
938    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
939  }
940
941  Value *NextVal;
942  if (const llvm::PointerType *PT =
943         dyn_cast<llvm::PointerType>(InVal->getType())) {
944    llvm::Constant *Inc =
945      llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
946    if (!isa<llvm::FunctionType>(PT->getElementType())) {
947      QualType PTEE = ValTy->getPointeeType();
948      if (const ObjCInterfaceType *OIT =
949          dyn_cast<ObjCInterfaceType>(PTEE)) {
950        // Handle interface types, which are not represented with a concrete type.
951        int size = CGF.getContext().getTypeSize(OIT) / 8;
952        if (!isInc)
953          size = -size;
954        Inc = llvm::ConstantInt::get(Inc->getType(), size);
955        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
956        InVal = Builder.CreateBitCast(InVal, i8Ty);
957        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
958        llvm::Value *lhs = LV.getAddress();
959        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
960        LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
961      } else
962        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
963    } else {
964      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
965      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
966      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
967      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
968    }
969  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
970    // Bool++ is an interesting case, due to promotion rules, we get:
971    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
972    // Bool = ((int)Bool+1) != 0
973    // An interesting aspect of this is that increment is always true.
974    // Decrement does not have this property.
975    NextVal = llvm::ConstantInt::getTrue(VMContext);
976  } else if (isa<llvm::IntegerType>(InVal->getType())) {
977    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
978
979    // Signed integer overflow is undefined behavior.
980    if (ValTy->isSignedIntegerType())
981      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
982    else
983      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
984  } else {
985    // Add the inc/dec to the real part.
986    if (InVal->getType()->isFloatTy())
987      NextVal =
988        llvm::ConstantFP::get(VMContext,
989                              llvm::APFloat(static_cast<float>(AmountVal)));
990    else if (InVal->getType()->isDoubleTy())
991      NextVal =
992        llvm::ConstantFP::get(VMContext,
993                              llvm::APFloat(static_cast<double>(AmountVal)));
994    else {
995      llvm::APFloat F(static_cast<float>(AmountVal));
996      bool ignored;
997      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
998                &ignored);
999      NextVal = llvm::ConstantFP::get(VMContext, F);
1000    }
1001    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1002  }
1003
1004  // Store the updated result through the lvalue.
1005  if (LV.isBitfield())
1006    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
1007                                       &NextVal);
1008  else
1009    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1010
1011  // If this is a postinc, return the value read from memory, otherwise use the
1012  // updated value.
1013  return isPre ? NextVal : InVal;
1014}
1015
1016
1017Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1018  TestAndClearIgnoreResultAssign();
1019  Value *Op = Visit(E->getSubExpr());
1020  if (Op->getType()->isFPOrFPVector())
1021    return Builder.CreateFNeg(Op, "neg");
1022  return Builder.CreateNeg(Op, "neg");
1023}
1024
1025Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1026  TestAndClearIgnoreResultAssign();
1027  Value *Op = Visit(E->getSubExpr());
1028  return Builder.CreateNot(Op, "neg");
1029}
1030
1031Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1032  // Compare operand to zero.
1033  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1034
1035  // Invert value.
1036  // TODO: Could dynamically modify easy computations here.  For example, if
1037  // the operand is an icmp ne, turn into icmp eq.
1038  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1039
1040  // ZExt result to the expr type.
1041  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1042}
1043
1044/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1045/// argument of the sizeof expression as an integer.
1046Value *
1047ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1048  QualType TypeToSize = E->getTypeOfArgument();
1049  if (E->isSizeOf()) {
1050    if (const VariableArrayType *VAT =
1051          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1052      if (E->isArgumentType()) {
1053        // sizeof(type) - make sure to emit the VLA size.
1054        CGF.EmitVLASize(TypeToSize);
1055      } else {
1056        // C99 6.5.3.4p2: If the argument is an expression of type
1057        // VLA, it is evaluated.
1058        CGF.EmitAnyExpr(E->getArgumentExpr());
1059      }
1060
1061      return CGF.GetVLASize(VAT);
1062    }
1063  }
1064
1065  // If this isn't sizeof(vla), the result must be constant; use the constant
1066  // folding logic so we don't have to duplicate it here.
1067  Expr::EvalResult Result;
1068  E->Evaluate(Result, CGF.getContext());
1069  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1070}
1071
1072Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1073  Expr *Op = E->getSubExpr();
1074  if (Op->getType()->isAnyComplexType())
1075    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1076  return Visit(Op);
1077}
1078Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1079  Expr *Op = E->getSubExpr();
1080  if (Op->getType()->isAnyComplexType())
1081    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1082
1083  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1084  // effects are evaluated, but not the actual value.
1085  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1086    CGF.EmitLValue(Op);
1087  else
1088    CGF.EmitScalarExpr(Op, true);
1089  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1090}
1091
1092Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1093  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1094  const llvm::Type* ResultType = ConvertType(E->getType());
1095  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1096}
1097
1098//===----------------------------------------------------------------------===//
1099//                           Binary Operators
1100//===----------------------------------------------------------------------===//
1101
1102BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1103  TestAndClearIgnoreResultAssign();
1104  BinOpInfo Result;
1105  Result.LHS = Visit(E->getLHS());
1106  Result.RHS = Visit(E->getRHS());
1107  Result.Ty  = E->getType();
1108  Result.E = E;
1109  return Result;
1110}
1111
1112Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1113                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1114  bool Ignore = TestAndClearIgnoreResultAssign();
1115  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
1116
1117  BinOpInfo OpInfo;
1118
1119  if (E->getComputationResultType()->isAnyComplexType()) {
1120    // This needs to go through the complex expression emitter, but it's a tad
1121    // complicated to do that... I'm leaving it out for now.  (Note that we do
1122    // actually need the imaginary part of the RHS for multiplication and
1123    // division.)
1124    CGF.ErrorUnsupported(E, "complex compound assignment");
1125    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1126  }
1127
1128  // Emit the RHS first.  __block variables need to have the rhs evaluated
1129  // first, plus this should improve codegen a little.
1130  OpInfo.RHS = Visit(E->getRHS());
1131  OpInfo.Ty = E->getComputationResultType();
1132  OpInfo.E = E;
1133  // Load/convert the LHS.
1134  LValue LHSLV = EmitLValue(E->getLHS());
1135  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1136  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1137                                    E->getComputationLHSType());
1138
1139  // Expand the binary operator.
1140  Value *Result = (this->*Func)(OpInfo);
1141
1142  // Convert the result back to the LHS type.
1143  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1144
1145  // Store the result value into the LHS lvalue. Bit-fields are handled
1146  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1147  // 'An assignment expression has the value of the left operand after the
1148  // assignment...'.
1149  if (LHSLV.isBitfield()) {
1150    if (!LHSLV.isVolatileQualified()) {
1151      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1152                                         &Result);
1153      return Result;
1154    } else
1155      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1156  } else
1157    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1158  if (Ignore)
1159    return 0;
1160  return EmitLoadOfLValue(LHSLV, E->getType());
1161}
1162
1163
1164Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1165  if (Ops.LHS->getType()->isFPOrFPVector())
1166    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1167  else if (Ops.Ty->isUnsignedIntegerType())
1168    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1169  else
1170    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1171}
1172
1173Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1174  // Rem in C can't be a floating point type: C99 6.5.5p2.
1175  if (Ops.Ty->isUnsignedIntegerType())
1176    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1177  else
1178    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1179}
1180
1181Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1182  unsigned IID;
1183  unsigned OpID = 0;
1184
1185  switch (Ops.E->getOpcode()) {
1186  case BinaryOperator::Add:
1187  case BinaryOperator::AddAssign:
1188    OpID = 1;
1189    IID = llvm::Intrinsic::sadd_with_overflow;
1190    break;
1191  case BinaryOperator::Sub:
1192  case BinaryOperator::SubAssign:
1193    OpID = 2;
1194    IID = llvm::Intrinsic::ssub_with_overflow;
1195    break;
1196  case BinaryOperator::Mul:
1197  case BinaryOperator::MulAssign:
1198    OpID = 3;
1199    IID = llvm::Intrinsic::smul_with_overflow;
1200    break;
1201  default:
1202    assert(false && "Unsupported operation for overflow detection");
1203    IID = 0;
1204  }
1205  OpID <<= 1;
1206  OpID |= 1;
1207
1208  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1209
1210  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1211
1212  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1213  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1214  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1215
1216  // Branch in case of overflow.
1217  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1218  llvm::BasicBlock *overflowBB =
1219    CGF.createBasicBlock("overflow", CGF.CurFn);
1220  llvm::BasicBlock *continueBB =
1221    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1222
1223  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1224
1225  // Handle overflow
1226
1227  Builder.SetInsertPoint(overflowBB);
1228
1229  // Handler is:
1230  // long long *__overflow_handler)(long long a, long long b, char op,
1231  // char width)
1232  std::vector<const llvm::Type*> handerArgTypes;
1233  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1234  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1235  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1236  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1237  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1238      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1239  llvm::Value *handlerFunction =
1240    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1241        llvm::PointerType::getUnqual(handlerTy));
1242  handlerFunction = Builder.CreateLoad(handlerFunction);
1243
1244  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1245      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1246      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1247      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1248      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1249        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1250
1251  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1252
1253  Builder.CreateBr(continueBB);
1254
1255  // Set up the continuation
1256  Builder.SetInsertPoint(continueBB);
1257  // Get the correct result
1258  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1259  phi->reserveOperandSpace(2);
1260  phi->addIncoming(result, initialBB);
1261  phi->addIncoming(handlerResult, overflowBB);
1262
1263  return phi;
1264}
1265
1266Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1267  if (!Ops.Ty->isAnyPointerType()) {
1268    if (CGF.getContext().getLangOptions().OverflowChecking &&
1269        Ops.Ty->isSignedIntegerType())
1270      return EmitOverflowCheckedBinOp(Ops);
1271
1272    if (Ops.LHS->getType()->isFPOrFPVector())
1273      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1274
1275    // Signed integer overflow is undefined behavior.
1276    if (Ops.Ty->isSignedIntegerType())
1277      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1278
1279    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1280  }
1281
1282  if (Ops.Ty->isPointerType() &&
1283      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1284    // The amount of the addition needs to account for the VLA size
1285    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1286  }
1287  Value *Ptr, *Idx;
1288  Expr *IdxExp;
1289  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1290  const ObjCObjectPointerType *OPT =
1291    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1292  if (PT || OPT) {
1293    Ptr = Ops.LHS;
1294    Idx = Ops.RHS;
1295    IdxExp = Ops.E->getRHS();
1296  } else {  // int + pointer
1297    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1298    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1299    assert((PT || OPT) && "Invalid add expr");
1300    Ptr = Ops.RHS;
1301    Idx = Ops.LHS;
1302    IdxExp = Ops.E->getLHS();
1303  }
1304
1305  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1306  if (Width < CGF.LLVMPointerWidth) {
1307    // Zero or sign extend the pointer value based on whether the index is
1308    // signed or not.
1309    const llvm::Type *IdxType =
1310        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1311    if (IdxExp->getType()->isSignedIntegerType())
1312      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1313    else
1314      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1315  }
1316  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1317  // Handle interface types, which are not represented with a concrete type.
1318  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1319    llvm::Value *InterfaceSize =
1320      llvm::ConstantInt::get(Idx->getType(),
1321                             CGF.getContext().getTypeSize(OIT) / 8);
1322    Idx = Builder.CreateMul(Idx, InterfaceSize);
1323    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1324    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1325    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1326    return Builder.CreateBitCast(Res, Ptr->getType());
1327  }
1328
1329  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1330  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1331  // future proof.
1332  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1333    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1334    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1335    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1336    return Builder.CreateBitCast(Res, Ptr->getType());
1337  }
1338
1339  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1340}
1341
1342Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1343  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1344    if (CGF.getContext().getLangOptions().OverflowChecking
1345        && Ops.Ty->isSignedIntegerType())
1346      return EmitOverflowCheckedBinOp(Ops);
1347
1348    if (Ops.LHS->getType()->isFPOrFPVector())
1349      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1350    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1351  }
1352
1353  if (Ops.E->getLHS()->getType()->isPointerType() &&
1354      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1355    // The amount of the addition needs to account for the VLA size for
1356    // ptr-int
1357    // The amount of the division needs to account for the VLA size for
1358    // ptr-ptr.
1359    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1360  }
1361
1362  const QualType LHSType = Ops.E->getLHS()->getType();
1363  const QualType LHSElementType = LHSType->getPointeeType();
1364  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1365    // pointer - int
1366    Value *Idx = Ops.RHS;
1367    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1368    if (Width < CGF.LLVMPointerWidth) {
1369      // Zero or sign extend the pointer value based on whether the index is
1370      // signed or not.
1371      const llvm::Type *IdxType =
1372          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1373      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1374        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1375      else
1376        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1377    }
1378    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1379
1380    // Handle interface types, which are not represented with a concrete type.
1381    if (const ObjCInterfaceType *OIT =
1382        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1383      llvm::Value *InterfaceSize =
1384        llvm::ConstantInt::get(Idx->getType(),
1385                               CGF.getContext().getTypeSize(OIT) / 8);
1386      Idx = Builder.CreateMul(Idx, InterfaceSize);
1387      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1388      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1389      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1390      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1391    }
1392
1393    // Explicitly handle GNU void* and function pointer arithmetic
1394    // extensions. The GNU void* casts amount to no-ops since our void* type is
1395    // i8*, but this is future proof.
1396    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1397      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1398      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1399      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1400      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1401    }
1402
1403    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1404  } else {
1405    // pointer - pointer
1406    Value *LHS = Ops.LHS;
1407    Value *RHS = Ops.RHS;
1408
1409    uint64_t ElementSize;
1410
1411    // Handle GCC extension for pointer arithmetic on void* and function pointer
1412    // types.
1413    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1414      ElementSize = 1;
1415    } else {
1416      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1417    }
1418
1419    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1420    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1421    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1422    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1423
1424    // Optimize out the shift for element size of 1.
1425    if (ElementSize == 1)
1426      return BytesBetween;
1427
1428    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1429    // pointer difference in C is only defined in the case where both operands
1430    // are pointing to elements of an array.
1431    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1432    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1433  }
1434}
1435
1436Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1437  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1438  // RHS to the same size as the LHS.
1439  Value *RHS = Ops.RHS;
1440  if (Ops.LHS->getType() != RHS->getType())
1441    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1442
1443  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1444}
1445
1446Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1447  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1448  // RHS to the same size as the LHS.
1449  Value *RHS = Ops.RHS;
1450  if (Ops.LHS->getType() != RHS->getType())
1451    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1452
1453  if (Ops.Ty->isUnsignedIntegerType())
1454    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1455  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1456}
1457
1458Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1459                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1460  TestAndClearIgnoreResultAssign();
1461  Value *Result;
1462  QualType LHSTy = E->getLHS()->getType();
1463  if (!LHSTy->isAnyComplexType()) {
1464    Value *LHS = Visit(E->getLHS());
1465    Value *RHS = Visit(E->getRHS());
1466
1467    if (LHS->getType()->isFPOrFPVector()) {
1468      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1469                                  LHS, RHS, "cmp");
1470    } else if (LHSTy->isSignedIntegerType()) {
1471      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1472                                  LHS, RHS, "cmp");
1473    } else {
1474      // Unsigned integers and pointers.
1475      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1476                                  LHS, RHS, "cmp");
1477    }
1478
1479    // If this is a vector comparison, sign extend the result to the appropriate
1480    // vector integer type and return it (don't convert to bool).
1481    if (LHSTy->isVectorType())
1482      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1483
1484  } else {
1485    // Complex Comparison: can only be an equality comparison.
1486    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1487    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1488
1489    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1490
1491    Value *ResultR, *ResultI;
1492    if (CETy->isRealFloatingType()) {
1493      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1494                                   LHS.first, RHS.first, "cmp.r");
1495      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1496                                   LHS.second, RHS.second, "cmp.i");
1497    } else {
1498      // Complex comparisons can only be equality comparisons.  As such, signed
1499      // and unsigned opcodes are the same.
1500      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1501                                   LHS.first, RHS.first, "cmp.r");
1502      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1503                                   LHS.second, RHS.second, "cmp.i");
1504    }
1505
1506    if (E->getOpcode() == BinaryOperator::EQ) {
1507      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1508    } else {
1509      assert(E->getOpcode() == BinaryOperator::NE &&
1510             "Complex comparison other than == or != ?");
1511      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1512    }
1513  }
1514
1515  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1516}
1517
1518Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1519  bool Ignore = TestAndClearIgnoreResultAssign();
1520
1521  // __block variables need to have the rhs evaluated first, plus this should
1522  // improve codegen just a little.
1523  Value *RHS = Visit(E->getRHS());
1524  LValue LHS = EmitLValue(E->getLHS());
1525
1526  // Store the value into the LHS.  Bit-fields are handled specially
1527  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1528  // 'An assignment expression has the value of the left operand after
1529  // the assignment...'.
1530  if (LHS.isBitfield()) {
1531    if (!LHS.isVolatileQualified()) {
1532      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1533                                         &RHS);
1534      return RHS;
1535    } else
1536      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1537  } else
1538    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1539  if (Ignore)
1540    return 0;
1541  return EmitLoadOfLValue(LHS, E->getType());
1542}
1543
1544Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1545  const llvm::Type *ResTy = ConvertType(E->getType());
1546
1547  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1548  // If we have 1 && X, just emit X without inserting the control flow.
1549  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1550    if (Cond == 1) { // If we have 1 && X, just emit X.
1551      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1552      // ZExt result to int or bool.
1553      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1554    }
1555
1556    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1557    if (!CGF.ContainsLabel(E->getRHS()))
1558      return llvm::Constant::getNullValue(ResTy);
1559  }
1560
1561  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1562  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1563
1564  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1565  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1566
1567  // Any edges into the ContBlock are now from an (indeterminate number of)
1568  // edges from this first condition.  All of these values will be false.  Start
1569  // setting up the PHI node in the Cont Block for this.
1570  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1571                                            "", ContBlock);
1572  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1573  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1574       PI != PE; ++PI)
1575    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1576
1577  CGF.PushConditionalTempDestruction();
1578  CGF.EmitBlock(RHSBlock);
1579  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1580  CGF.PopConditionalTempDestruction();
1581
1582  // Reaquire the RHS block, as there may be subblocks inserted.
1583  RHSBlock = Builder.GetInsertBlock();
1584
1585  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1586  // into the phi node for the edge with the value of RHSCond.
1587  CGF.EmitBlock(ContBlock);
1588  PN->addIncoming(RHSCond, RHSBlock);
1589
1590  // ZExt result to int.
1591  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1592}
1593
1594Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1595  const llvm::Type *ResTy = ConvertType(E->getType());
1596
1597  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1598  // If we have 0 || X, just emit X without inserting the control flow.
1599  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1600    if (Cond == -1) { // If we have 0 || X, just emit X.
1601      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1602      // ZExt result to int or bool.
1603      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1604    }
1605
1606    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1607    if (!CGF.ContainsLabel(E->getRHS()))
1608      return llvm::ConstantInt::get(ResTy, 1);
1609  }
1610
1611  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1612  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1613
1614  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1615  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1616
1617  // Any edges into the ContBlock are now from an (indeterminate number of)
1618  // edges from this first condition.  All of these values will be true.  Start
1619  // setting up the PHI node in the Cont Block for this.
1620  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1621                                            "", ContBlock);
1622  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1623  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1624       PI != PE; ++PI)
1625    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1626
1627  CGF.PushConditionalTempDestruction();
1628
1629  // Emit the RHS condition as a bool value.
1630  CGF.EmitBlock(RHSBlock);
1631  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1632
1633  CGF.PopConditionalTempDestruction();
1634
1635  // Reaquire the RHS block, as there may be subblocks inserted.
1636  RHSBlock = Builder.GetInsertBlock();
1637
1638  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1639  // into the phi node for the edge with the value of RHSCond.
1640  CGF.EmitBlock(ContBlock);
1641  PN->addIncoming(RHSCond, RHSBlock);
1642
1643  // ZExt result to int.
1644  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1645}
1646
1647Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1648  CGF.EmitStmt(E->getLHS());
1649  CGF.EnsureInsertPoint();
1650  return Visit(E->getRHS());
1651}
1652
1653//===----------------------------------------------------------------------===//
1654//                             Other Operators
1655//===----------------------------------------------------------------------===//
1656
1657/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1658/// expression is cheap enough and side-effect-free enough to evaluate
1659/// unconditionally instead of conditionally.  This is used to convert control
1660/// flow into selects in some cases.
1661static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1662  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1663    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1664
1665  // TODO: Allow anything we can constant fold to an integer or fp constant.
1666  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1667      isa<FloatingLiteral>(E))
1668    return true;
1669
1670  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1671  // X and Y are local variables.
1672  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1673    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1674      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1675        return true;
1676
1677  return false;
1678}
1679
1680
1681Value *ScalarExprEmitter::
1682VisitConditionalOperator(const ConditionalOperator *E) {
1683  TestAndClearIgnoreResultAssign();
1684  // If the condition constant folds and can be elided, try to avoid emitting
1685  // the condition and the dead arm.
1686  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1687    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1688    if (Cond == -1)
1689      std::swap(Live, Dead);
1690
1691    // If the dead side doesn't have labels we need, and if the Live side isn't
1692    // the gnu missing ?: extension (which we could handle, but don't bother
1693    // to), just emit the Live part.
1694    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1695        Live)                                   // Live part isn't missing.
1696      return Visit(Live);
1697  }
1698
1699
1700  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1701  // select instead of as control flow.  We can only do this if it is cheap and
1702  // safe to evaluate the LHS and RHS unconditionally.
1703  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1704      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1705    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1706    llvm::Value *LHS = Visit(E->getLHS());
1707    llvm::Value *RHS = Visit(E->getRHS());
1708    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1709  }
1710
1711
1712  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1713  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1714  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1715  Value *CondVal = 0;
1716
1717  // If we don't have the GNU missing condition extension, emit a branch on bool
1718  // the normal way.
1719  if (E->getLHS()) {
1720    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1721    // the branch on bool.
1722    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1723  } else {
1724    // Otherwise, for the ?: extension, evaluate the conditional and then
1725    // convert it to bool the hard way.  We do this explicitly because we need
1726    // the unconverted value for the missing middle value of the ?:.
1727    CondVal = CGF.EmitScalarExpr(E->getCond());
1728
1729    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1730    // if there are no extra uses (an optimization).  Inhibit this by making an
1731    // extra dead use, because we're going to add a use of CondVal later.  We
1732    // don't use the builder for this, because we don't want it to get optimized
1733    // away.  This leaves dead code, but the ?: extension isn't common.
1734    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1735                          Builder.GetInsertBlock());
1736
1737    Value *CondBoolVal =
1738      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1739                               CGF.getContext().BoolTy);
1740    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1741  }
1742
1743  CGF.PushConditionalTempDestruction();
1744  CGF.EmitBlock(LHSBlock);
1745
1746  // Handle the GNU extension for missing LHS.
1747  Value *LHS;
1748  if (E->getLHS())
1749    LHS = Visit(E->getLHS());
1750  else    // Perform promotions, to handle cases like "short ?: int"
1751    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1752
1753  CGF.PopConditionalTempDestruction();
1754  LHSBlock = Builder.GetInsertBlock();
1755  CGF.EmitBranch(ContBlock);
1756
1757  CGF.PushConditionalTempDestruction();
1758  CGF.EmitBlock(RHSBlock);
1759
1760  Value *RHS = Visit(E->getRHS());
1761  CGF.PopConditionalTempDestruction();
1762  RHSBlock = Builder.GetInsertBlock();
1763  CGF.EmitBranch(ContBlock);
1764
1765  CGF.EmitBlock(ContBlock);
1766
1767  if (!LHS || !RHS) {
1768    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1769    return 0;
1770  }
1771
1772  // Create a PHI node for the real part.
1773  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1774  PN->reserveOperandSpace(2);
1775  PN->addIncoming(LHS, LHSBlock);
1776  PN->addIncoming(RHS, RHSBlock);
1777  return PN;
1778}
1779
1780Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1781  return Visit(E->getChosenSubExpr(CGF.getContext()));
1782}
1783
1784Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1785  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1786  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1787
1788  // If EmitVAArg fails, we fall back to the LLVM instruction.
1789  if (!ArgPtr)
1790    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1791
1792  // FIXME Volatility.
1793  return Builder.CreateLoad(ArgPtr);
1794}
1795
1796Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1797  return CGF.BuildBlockLiteralTmp(BE);
1798}
1799
1800//===----------------------------------------------------------------------===//
1801//                         Entry Point into this File
1802//===----------------------------------------------------------------------===//
1803
1804/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1805/// type, ignoring the result.
1806Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1807  assert(E && !hasAggregateLLVMType(E->getType()) &&
1808         "Invalid scalar expression to emit");
1809
1810  return ScalarExprEmitter(*this, IgnoreResultAssign)
1811    .Visit(const_cast<Expr*>(E));
1812}
1813
1814/// EmitScalarConversion - Emit a conversion from the specified type to the
1815/// specified destination type, both of which are LLVM scalar types.
1816Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1817                                             QualType DstTy) {
1818  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1819         "Invalid scalar expression to emit");
1820  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1821}
1822
1823/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1824/// type to the specified destination type, where the destination type is an
1825/// LLVM scalar type.
1826Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1827                                                      QualType SrcTy,
1828                                                      QualType DstTy) {
1829  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1830         "Invalid complex -> scalar conversion");
1831  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1832                                                                DstTy);
1833}
1834
1835Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1836  assert(V1->getType() == V2->getType() &&
1837         "Vector operands must be of the same type");
1838  unsigned NumElements =
1839    cast<llvm::VectorType>(V1->getType())->getNumElements();
1840
1841  va_list va;
1842  va_start(va, V2);
1843
1844  llvm::SmallVector<llvm::Constant*, 16> Args;
1845  for (unsigned i = 0; i < NumElements; i++) {
1846    int n = va_arg(va, int);
1847    assert(n >= 0 && n < (int)NumElements * 2 &&
1848           "Vector shuffle index out of bounds!");
1849    Args.push_back(llvm::ConstantInt::get(
1850                                         llvm::Type::getInt32Ty(VMContext), n));
1851  }
1852
1853  const char *Name = va_arg(va, const char *);
1854  va_end(va);
1855
1856  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1857
1858  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1859}
1860
1861llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1862                                         unsigned NumVals, bool isSplat) {
1863  llvm::Value *Vec
1864    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1865
1866  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1867    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1868    llvm::Value *Idx = llvm::ConstantInt::get(
1869                                          llvm::Type::getInt32Ty(VMContext), i);
1870    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1871  }
1872
1873  return Vec;
1874}
1875