MicrosoftCXXABI.cpp revision 7536dd5e6c99584481b7dab68b7e7d8df9c54054
1//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targetting the Microsoft Visual C++ ABI.
11// The class in this file generates structures that follow the Microsoft
12// Visual C++ ABI, which is actually not very well documented at all outside
13// of Microsoft.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGCXXABI.h"
18#include "CodeGenModule.h"
19#include "Mangle.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "CGVTables.h"
26
27using namespace clang;
28using namespace CodeGen;
29
30namespace {
31
32/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
33/// Microsoft Visual C++ ABI.
34class MicrosoftCXXNameMangler {
35  MangleContext &Context;
36  llvm::raw_svector_ostream Out;
37
38  ASTContext &getASTContext() const { return Context.getASTContext(); }
39
40public:
41  MicrosoftCXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res)
42  : Context(C), Out(Res) { }
43
44  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "?");
45  void mangleName(const NamedDecl *ND);
46  void mangleFunctionEncoding(const FunctionDecl *FD);
47  void mangleVariableEncoding(const VarDecl *VD);
48  void mangleNumber(int64_t Number);
49  void mangleType(QualType T);
50
51private:
52  void mangleUnqualifiedName(const NamedDecl *ND) {
53    mangleUnqualifiedName(ND, ND->getDeclName());
54  }
55  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
56  void mangleSourceName(const IdentifierInfo *II);
57  void manglePostfix(const DeclContext *DC, bool NoFunction=false);
58  void mangleOperatorName(OverloadedOperatorKind OO);
59  void mangleQualifiers(Qualifiers Quals, bool IsMember);
60
61  void mangleObjCMethodName(const ObjCMethodDecl *MD);
62
63  // Declare manglers for every type class.
64#define ABSTRACT_TYPE(CLASS, PARENT)
65#define NON_CANONICAL_TYPE(CLASS, PARENT)
66#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
67#include "clang/AST/TypeNodes.def"
68
69  void mangleType(const TagType*);
70  void mangleType(const FunctionType *T, const FunctionDecl *D,
71                  bool IsStructor, bool IsInstMethod);
72  void mangleType(const ArrayType *T, bool IsGlobal);
73  void mangleExtraDimensions(QualType T);
74  void mangleFunctionClass(const FunctionDecl *FD);
75  void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
76  void mangleThrowSpecification(const FunctionProtoType *T);
77
78};
79
80/// MicrosoftMangleContext - Overrides the default MangleContext for the
81/// Microsoft Visual C++ ABI.
82class MicrosoftMangleContext : public MangleContext {
83public:
84  MicrosoftMangleContext(ASTContext &Context,
85                         Diagnostic &Diags) : MangleContext(Context, Diags) { }
86  virtual bool shouldMangleDeclName(const NamedDecl *D);
87  virtual void mangleName(const NamedDecl *D, llvm::SmallVectorImpl<char> &);
88  virtual void mangleThunk(const CXXMethodDecl *MD,
89                           const ThunkInfo &Thunk,
90                           llvm::SmallVectorImpl<char> &);
91  virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
92                                  const ThisAdjustment &ThisAdjustment,
93                                  llvm::SmallVectorImpl<char> &);
94  virtual void mangleCXXVTable(const CXXRecordDecl *RD,
95                               llvm::SmallVectorImpl<char> &);
96  virtual void mangleCXXVTT(const CXXRecordDecl *RD,
97                            llvm::SmallVectorImpl<char> &);
98  virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
99                                   const CXXRecordDecl *Type,
100                                   llvm::SmallVectorImpl<char> &);
101  virtual void mangleCXXRTTI(QualType T, llvm::SmallVectorImpl<char> &);
102  virtual void mangleCXXRTTIName(QualType T, llvm::SmallVectorImpl<char> &);
103  virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
104                             llvm::SmallVectorImpl<char> &);
105  virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
106                             llvm::SmallVectorImpl<char> &);
107};
108
109class MicrosoftCXXABI : public CGCXXABI {
110  MicrosoftMangleContext MangleCtx;
111public:
112  MicrosoftCXXABI(CodeGenModule &CGM)
113    : CGCXXABI(CGM), MangleCtx(CGM.getContext(), CGM.getDiags()) {}
114
115  MicrosoftMangleContext &getMangleContext() {
116    return MangleCtx;
117  }
118
119  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
120                                 CXXCtorType Type,
121                                 CanQualType &ResTy,
122                                 llvm::SmallVectorImpl<CanQualType> &ArgTys) {
123    // 'this' is already in place
124    // TODO: 'for base' flag
125  }
126
127  void BuildDestructorSignature(const CXXDestructorDecl *Ctor,
128                                CXXDtorType Type,
129                                CanQualType &ResTy,
130                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
131    // 'this' is already in place
132    // TODO: 'for base' flag
133  }
134
135  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
136                                   QualType &ResTy,
137                                   FunctionArgList &Params) {
138    BuildThisParam(CGF, Params);
139    // TODO: 'for base' flag
140  }
141
142  void EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
143    EmitThisParam(CGF);
144    // TODO: 'for base' flag
145  }
146};
147
148}
149
150static bool isInCLinkageSpecification(const Decl *D) {
151  D = D->getCanonicalDecl();
152  for (const DeclContext *DC = D->getDeclContext();
153       !DC->isTranslationUnit(); DC = DC->getParent()) {
154    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
155      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
156  }
157
158  return false;
159}
160
161bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
162  // In C, functions with no attributes never need to be mangled. Fastpath them.
163  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
164    return false;
165
166  // Any decl can be declared with __asm("foo") on it, and this takes precedence
167  // over all other naming in the .o file.
168  if (D->hasAttr<AsmLabelAttr>())
169    return true;
170
171  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
172  // (always) as does passing a C++ member function and a function
173  // whose name is not a simple identifier.
174  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
175  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
176             !FD->getDeclName().isIdentifier()))
177    return true;
178
179  // Otherwise, no mangling is done outside C++ mode.
180  if (!getASTContext().getLangOptions().CPlusPlus)
181    return false;
182
183  // Variables at global scope with internal linkage are not mangled.
184  if (!FD) {
185    const DeclContext *DC = D->getDeclContext();
186    if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
187      return false;
188  }
189
190  // C functions and "main" are not mangled.
191  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
192    return false;
193
194  return true;
195}
196
197void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
198                                     llvm::StringRef Prefix) {
199  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
200  // Therefore it's really important that we don't decorate the
201  // name with leading underscores or leading/trailing at signs. So, emit a
202  // asm marker at the start so we get the name right.
203  Out << '\01';  // LLVM IR Marker for __asm("foo")
204
205  // Any decl can be declared with __asm("foo") on it, and this takes precedence
206  // over all other naming in the .o file.
207  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
208    // If we have an asm name, then we use it as the mangling.
209    Out << ALA->getLabel();
210    return;
211  }
212
213  // <mangled-name> ::= ? <name> <type-encoding>
214  Out << Prefix;
215  mangleName(D);
216  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
217    mangleFunctionEncoding(FD);
218  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
219    mangleVariableEncoding(VD);
220  // TODO: Fields? Can MSVC even mangle them?
221}
222
223void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
224  // <type-encoding> ::= <function-class> <function-type>
225
226  // Don't mangle in the type if this isn't a decl we should typically mangle.
227  if (!Context.shouldMangleDeclName(FD))
228    return;
229
230  // We should never ever see a FunctionNoProtoType at this point.
231  // We don't even know how to mangle their types anyway :).
232  const FunctionProtoType *FT = cast<FunctionProtoType>(FD->getType());
233
234  bool InStructor = false, InInstMethod = false;
235  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
236  if (MD) {
237    if (MD->isInstance())
238      InInstMethod = true;
239    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
240      InStructor = true;
241  }
242
243  // First, the function class.
244  mangleFunctionClass(FD);
245
246  mangleType(FT, FD, InStructor, InInstMethod);
247}
248
249void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
250  // <type-encoding> ::= <storage-class> <variable-type>
251  // <storage-class> ::= 0  # private static member
252  //                 ::= 1  # protected static member
253  //                 ::= 2  # public static member
254  //                 ::= 3  # global
255  //                 ::= 4  # static local
256
257  // The first character in the encoding (after the name) is the storage class.
258  if (VD->isStaticDataMember()) {
259    // If it's a static member, it also encodes the access level.
260    switch (VD->getAccess()) {
261      default:
262      case AS_private: Out << '0'; break;
263      case AS_protected: Out << '1'; break;
264      case AS_public: Out << '2'; break;
265    }
266  }
267  else if (!VD->isStaticLocal())
268    Out << '3';
269  else
270    Out << '4';
271  // Now mangle the type.
272  // <variable-type> ::= <type> <cvr-qualifiers>
273  //                 ::= <type> A # pointers, references, arrays
274  // Pointers and references are odd. The type of 'int * const foo;' gets
275  // mangled as 'QAHA' instead of 'PAHB', for example.
276  QualType Ty = VD->getType();
277  if (Ty->isPointerType() || Ty->isReferenceType()) {
278    mangleType(Ty);
279    Out << 'A';
280  } else if (Ty->isArrayType()) {
281    // Global arrays are funny, too.
282    mangleType(static_cast<ArrayType *>(Ty.getTypePtr()), true);
283    Out << 'A';
284  } else {
285    mangleType(Ty.getLocalUnqualifiedType());
286    mangleQualifiers(Ty.getLocalQualifiers(), false);
287  }
288}
289
290void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
291  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
292  const DeclContext *DC = ND->getDeclContext();
293
294  // Always start with the unqualified name.
295  mangleUnqualifiedName(ND);
296
297  // If this is an extern variable declared locally, the relevant DeclContext
298  // is that of the containing namespace, or the translation unit.
299  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
300    while (!DC->isNamespace() && !DC->isTranslationUnit())
301      DC = DC->getParent();
302
303  manglePostfix(DC);
304
305  // Terminate the whole name with an '@'.
306  Out << '@';
307}
308
309void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
310  // <number> ::= [?] <decimal digit> # <= 9
311  //          ::= [?] <hex digit>+ @ # > 9; A = 0, B = 1, etc...
312  if (Number < 0) {
313    Out << '?';
314    Number = -Number;
315  }
316  if (Number >= 1 && Number <= 10) {
317    Out << Number-1;
318  } else {
319    // We have to build up the encoding in reverse order, so it will come
320    // out right when we write it out.
321    char Encoding[16];
322    char *EndPtr = Encoding+sizeof(Encoding);
323    char *CurPtr = EndPtr;
324    while (Number) {
325      *--CurPtr = 'A' + (Number % 16);
326      Number /= 16;
327    }
328    Out.write(CurPtr, EndPtr-CurPtr);
329    Out << '@';
330  }
331}
332
333void
334MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
335                                               DeclarationName Name) {
336  //  <unqualified-name> ::= <operator-name>
337  //                     ::= <ctor-dtor-name>
338  //                     ::= <source-name>
339  switch (Name.getNameKind()) {
340    case DeclarationName::Identifier: {
341      if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
342        mangleSourceName(II);
343        break;
344      }
345
346      // Otherwise, an anonymous entity.  We must have a declaration.
347      assert(ND && "mangling empty name without declaration");
348
349      if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
350        if (NS->isAnonymousNamespace()) {
351          Out << "?A";
352          break;
353        }
354      }
355
356      // We must have an anonymous struct.
357      const TagDecl *TD = cast<TagDecl>(ND);
358      if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
359        assert(TD->getDeclContext() == D->getDeclContext() &&
360               "Typedef should not be in another decl context!");
361        assert(D->getDeclName().getAsIdentifierInfo() &&
362               "Typedef was not named!");
363        mangleSourceName(D->getDeclName().getAsIdentifierInfo());
364        break;
365      }
366
367      // When VC encounters an anonymous type with no tag and no typedef,
368      // it literally emits '<unnamed-tag>'.
369      Out << "<unnamed-tag>";
370      break;
371    }
372
373    case DeclarationName::ObjCZeroArgSelector:
374    case DeclarationName::ObjCOneArgSelector:
375    case DeclarationName::ObjCMultiArgSelector:
376      assert(false && "Can't mangle Objective-C selector names here!");
377      break;
378
379    case DeclarationName::CXXConstructorName:
380      assert(false && "Can't mangle constructors yet!");
381      break;
382
383    case DeclarationName::CXXDestructorName:
384      assert(false && "Can't mangle destructors yet!");
385      break;
386
387    case DeclarationName::CXXConversionFunctionName:
388      // <operator-name> ::= ?B # (cast)
389      // The target type is encoded as the return type.
390      Out << "?B";
391      break;
392
393    case DeclarationName::CXXOperatorName:
394      mangleOperatorName(Name.getCXXOverloadedOperator());
395      break;
396
397    case DeclarationName::CXXLiteralOperatorName:
398      // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
399      assert(false && "Don't know how to mangle literal operators yet!");
400      break;
401
402    case DeclarationName::CXXUsingDirective:
403      assert(false && "Can't mangle a using directive name!");
404      break;
405  }
406}
407
408void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
409                                            bool NoFunction) {
410  // <postfix> ::= <unqualified-name> [<postfix>]
411  //           ::= <template-postfix> <template-args> [<postfix>]
412  //           ::= <template-param>
413  //           ::= <substitution> [<postfix>]
414
415  if (!DC) return;
416
417  while (isa<LinkageSpecDecl>(DC))
418    DC = DC->getParent();
419
420  if (DC->isTranslationUnit())
421    return;
422
423  if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
424    llvm::SmallString<64> Name;
425    Context.mangleBlock(GlobalDecl(), BD, Name);
426    Out << Name << '@';
427    return manglePostfix(DC->getParent(), NoFunction);
428  }
429
430  if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
431    return;
432  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
433    mangleObjCMethodName(Method);
434  else {
435    mangleUnqualifiedName(cast<NamedDecl>(DC));
436    manglePostfix(DC->getParent(), NoFunction);
437  }
438}
439
440void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO) {
441  switch (OO) {
442  //                     ?0 # constructor
443  //                     ?1 # destructor
444  // <operator-name> ::= ?2 # new
445  case OO_New: Out << "?2"; break;
446  // <operator-name> ::= ?3 # delete
447  case OO_Delete: Out << "?3"; break;
448  // <operator-name> ::= ?4 # =
449  case OO_Equal: Out << "?4"; break;
450  // <operator-name> ::= ?5 # >>
451  case OO_GreaterGreater: Out << "?5"; break;
452  // <operator-name> ::= ?6 # <<
453  case OO_LessLess: Out << "?6"; break;
454  // <operator-name> ::= ?7 # !
455  case OO_Exclaim: Out << "?7"; break;
456  // <operator-name> ::= ?8 # ==
457  case OO_EqualEqual: Out << "?8"; break;
458  // <operator-name> ::= ?9 # !=
459  case OO_ExclaimEqual: Out << "?9"; break;
460  // <operator-name> ::= ?A # []
461  case OO_Subscript: Out << "?A"; break;
462  //                     ?B # conversion
463  // <operator-name> ::= ?C # ->
464  case OO_Arrow: Out << "?C"; break;
465  // <operator-name> ::= ?D # *
466  case OO_Star: Out << "?D"; break;
467  // <operator-name> ::= ?E # ++
468  case OO_PlusPlus: Out << "?E"; break;
469  // <operator-name> ::= ?F # --
470  case OO_MinusMinus: Out << "?F"; break;
471  // <operator-name> ::= ?G # -
472  case OO_Minus: Out << "?G"; break;
473  // <operator-name> ::= ?H # +
474  case OO_Plus: Out << "?H"; break;
475  // <operator-name> ::= ?I # &
476  case OO_Amp: Out << "?I"; break;
477  // <operator-name> ::= ?J # ->*
478  case OO_ArrowStar: Out << "?J"; break;
479  // <operator-name> ::= ?K # /
480  case OO_Slash: Out << "?K"; break;
481  // <operator-name> ::= ?L # %
482  case OO_Percent: Out << "?L"; break;
483  // <operator-name> ::= ?M # <
484  case OO_Less: Out << "?M"; break;
485  // <operator-name> ::= ?N # <=
486  case OO_LessEqual: Out << "?N"; break;
487  // <operator-name> ::= ?O # >
488  case OO_Greater: Out << "?O"; break;
489  // <operator-name> ::= ?P # >=
490  case OO_GreaterEqual: Out << "?P"; break;
491  // <operator-name> ::= ?Q # ,
492  case OO_Comma: Out << "?Q"; break;
493  // <operator-name> ::= ?R # ()
494  case OO_Call: Out << "?R"; break;
495  // <operator-name> ::= ?S # ~
496  case OO_Tilde: Out << "?S"; break;
497  // <operator-name> ::= ?T # ^
498  case OO_Caret: Out << "?T"; break;
499  // <operator-name> ::= ?U # |
500  case OO_Pipe: Out << "?U"; break;
501  // <operator-name> ::= ?V # &&
502  case OO_AmpAmp: Out << "?V"; break;
503  // <operator-name> ::= ?W # ||
504  case OO_PipePipe: Out << "?W"; break;
505  // <operator-name> ::= ?X # *=
506  case OO_StarEqual: Out << "?X"; break;
507  // <operator-name> ::= ?Y # +=
508  case OO_PlusEqual: Out << "?Y"; break;
509  // <operator-name> ::= ?Z # -=
510  case OO_MinusEqual: Out << "?Z"; break;
511  // <operator-name> ::= ?_0 # /=
512  case OO_SlashEqual: Out << "?_0"; break;
513  // <operator-name> ::= ?_1 # %=
514  case OO_PercentEqual: Out << "?_1"; break;
515  // <operator-name> ::= ?_2 # >>=
516  case OO_GreaterGreaterEqual: Out << "?_2"; break;
517  // <operator-name> ::= ?_3 # <<=
518  case OO_LessLessEqual: Out << "?_3"; break;
519  // <operator-name> ::= ?_4 # &=
520  case OO_AmpEqual: Out << "?_4"; break;
521  // <operator-name> ::= ?_5 # |=
522  case OO_PipeEqual: Out << "?_5"; break;
523  // <operator-name> ::= ?_6 # ^=
524  case OO_CaretEqual: Out << "?_6"; break;
525  //                     ?_7 # vftable
526  //                     ?_8 # vbtable
527  //                     ?_9 # vcall
528  //                     ?_A # typeof
529  //                     ?_B # local static guard
530  //                     ?_C # string
531  //                     ?_D # vbase destructor
532  //                     ?_E # vector deleting destructor
533  //                     ?_F # default constructor closure
534  //                     ?_G # scalar deleting destructor
535  //                     ?_H # vector constructor iterator
536  //                     ?_I # vector destructor iterator
537  //                     ?_J # vector vbase constructor iterator
538  //                     ?_K # virtual displacement map
539  //                     ?_L # eh vector constructor iterator
540  //                     ?_M # eh vector destructor iterator
541  //                     ?_N # eh vector vbase constructor iterator
542  //                     ?_O # copy constructor closure
543  //                     ?_P<name> # udt returning <name>
544  //                     ?_Q # <unknown>
545  //                     ?_R0 # RTTI Type Descriptor
546  //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
547  //                     ?_R2 # RTTI Base Class Array
548  //                     ?_R3 # RTTI Class Hierarchy Descriptor
549  //                     ?_R4 # RTTI Complete Object Locator
550  //                     ?_S # local vftable
551  //                     ?_T # local vftable constructor closure
552  // <operator-name> ::= ?_U # new[]
553  case OO_Array_New: Out << "?_U"; break;
554  // <operator-name> ::= ?_V # delete[]
555  case OO_Array_Delete: Out << "?_V"; break;
556
557  case OO_Conditional:
558    assert(false && "Don't know how to mangle ?:");
559    break;
560
561  case OO_None:
562  case NUM_OVERLOADED_OPERATORS:
563    assert(false && "Not an overloaded operator");
564    break;
565  }
566}
567
568void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
569  // <source name> ::= <identifier> @
570  Out << II->getName() << '@';
571}
572
573void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
574  llvm::SmallString<64> Buffer;
575  MiscNameMangler(Context, Buffer).mangleObjCMethodName(MD);
576  Out << Buffer;
577}
578
579void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
580                                               bool IsMember) {
581  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
582  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
583  // 'I' means __restrict (32/64-bit).
584  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
585  // keyword!
586  // <base-cvr-qualifiers> ::= A  # near
587  //                       ::= B  # near const
588  //                       ::= C  # near volatile
589  //                       ::= D  # near const volatile
590  //                       ::= E  # far (16-bit)
591  //                       ::= F  # far const (16-bit)
592  //                       ::= G  # far volatile (16-bit)
593  //                       ::= H  # far const volatile (16-bit)
594  //                       ::= I  # huge (16-bit)
595  //                       ::= J  # huge const (16-bit)
596  //                       ::= K  # huge volatile (16-bit)
597  //                       ::= L  # huge const volatile (16-bit)
598  //                       ::= M <basis> # based
599  //                       ::= N <basis> # based const
600  //                       ::= O <basis> # based volatile
601  //                       ::= P <basis> # based const volatile
602  //                       ::= Q  # near member
603  //                       ::= R  # near const member
604  //                       ::= S  # near volatile member
605  //                       ::= T  # near const volatile member
606  //                       ::= U  # far member (16-bit)
607  //                       ::= V  # far const member (16-bit)
608  //                       ::= W  # far volatile member (16-bit)
609  //                       ::= X  # far const volatile member (16-bit)
610  //                       ::= Y  # huge member (16-bit)
611  //                       ::= Z  # huge const member (16-bit)
612  //                       ::= 0  # huge volatile member (16-bit)
613  //                       ::= 1  # huge const volatile member (16-bit)
614  //                       ::= 2 <basis> # based member
615  //                       ::= 3 <basis> # based const member
616  //                       ::= 4 <basis> # based volatile member
617  //                       ::= 5 <basis> # based const volatile member
618  //                       ::= 6  # near function (pointers only)
619  //                       ::= 7  # far function (pointers only)
620  //                       ::= 8  # near method (pointers only)
621  //                       ::= 9  # far method (pointers only)
622  //                       ::= _A <basis> # based function (pointers only)
623  //                       ::= _B <basis> # based function (far?) (pointers only)
624  //                       ::= _C <basis> # based method (pointers only)
625  //                       ::= _D <basis> # based method (far?) (pointers only)
626  //                       ::= _E # block (Clang)
627  // <basis> ::= 0 # __based(void)
628  //         ::= 1 # __based(segment)?
629  //         ::= 2 <name> # __based(name)
630  //         ::= 3 # ?
631  //         ::= 4 # ?
632  //         ::= 5 # not really based
633  if (!IsMember) {
634    if (!Quals.hasVolatile()) {
635      if (!Quals.hasConst())
636        Out << 'A';
637      else
638        Out << 'B';
639    } else {
640      if (!Quals.hasConst())
641        Out << 'C';
642      else
643        Out << 'D';
644    }
645  } else {
646    if (!Quals.hasVolatile()) {
647      if (!Quals.hasConst())
648        Out << 'Q';
649      else
650        Out << 'R';
651    } else {
652      if (!Quals.hasConst())
653        Out << 'S';
654      else
655        Out << 'T';
656    }
657  }
658
659  // FIXME: For now, just drop all extension qualifiers on the floor.
660}
661
662void MicrosoftCXXNameMangler::mangleType(QualType T) {
663  // Only operate on the canonical type!
664  T = getASTContext().getCanonicalType(T);
665
666  Qualifiers Quals = T.getLocalQualifiers();
667  if (Quals) {
668    // We have to mangle these now, while we still have enough information.
669    // <pointer-cvr-qualifiers> ::= P  # pointer
670    //                          ::= Q  # const pointer
671    //                          ::= R  # volatile pointer
672    //                          ::= S  # const volatile pointer
673    if (T->isAnyPointerType() || T->isMemberPointerType() ||
674        T->isBlockPointerType()) {
675      if (!Quals.hasVolatile())
676        Out << 'Q';
677      else {
678        if (!Quals.hasConst())
679          Out << 'R';
680        else
681          Out << 'S';
682      }
683    } else
684      // Just emit qualifiers like normal.
685      // NB: When we mangle a pointer/reference type, and the pointee
686      // type has no qualifiers, the lack of qualifier gets mangled
687      // in there.
688      mangleQualifiers(Quals, false);
689  } else if (T->isAnyPointerType() || T->isMemberPointerType() ||
690             T->isBlockPointerType()) {
691    Out << 'P';
692  }
693  switch (T->getTypeClass()) {
694#define ABSTRACT_TYPE(CLASS, PARENT)
695#define NON_CANONICAL_TYPE(CLASS, PARENT) \
696case Type::CLASS: \
697llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
698return;
699#define TYPE(CLASS, PARENT) \
700case Type::CLASS: \
701mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
702break;
703#include "clang/AST/TypeNodes.def"
704  }
705}
706
707void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T) {
708  //  <type>         ::= <builtin-type>
709  //  <builtin-type> ::= X  # void
710  //                 ::= C  # signed char
711  //                 ::= D  # char
712  //                 ::= E  # unsigned char
713  //                 ::= F  # short
714  //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
715  //                 ::= H  # int
716  //                 ::= I  # unsigned int
717  //                 ::= J  # long
718  //                 ::= K  # unsigned long
719  //                     L  # <none>
720  //                 ::= M  # float
721  //                 ::= N  # double
722  //                 ::= O  # long double (__float80 is mangled differently)
723  //                 ::= _D # __int8 (yup, it's a distinct type in MSVC)
724  //                 ::= _E # unsigned __int8
725  //                 ::= _F # __int16
726  //                 ::= _G # unsigned __int16
727  //                 ::= _H # __int32
728  //                 ::= _I # unsigned __int32
729  //                 ::= _J # long long, __int64
730  //                 ::= _K # unsigned long long, __int64
731  //                 ::= _L # __int128
732  //                 ::= _M # unsigned __int128
733  //                 ::= _N # bool
734  //                     _O # <array in parameter>
735  //                 ::= _T # __float80 (Intel)
736  //                 ::= _W # wchar_t
737  //                 ::= _Z # __float80 (Digital Mars)
738  switch (T->getKind()) {
739  case BuiltinType::Void: Out << 'X'; break;
740  case BuiltinType::SChar: Out << 'C'; break;
741  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
742  case BuiltinType::UChar: Out << 'E'; break;
743  case BuiltinType::Short: Out << 'F'; break;
744  case BuiltinType::UShort: Out << 'G'; break;
745  case BuiltinType::Int: Out << 'H'; break;
746  case BuiltinType::UInt: Out << 'I'; break;
747  case BuiltinType::Long: Out << 'J'; break;
748  case BuiltinType::ULong: Out << 'K'; break;
749  case BuiltinType::Float: Out << 'M'; break;
750  case BuiltinType::Double: Out << 'N'; break;
751  // TODO: Determine size and mangle accordingly
752  case BuiltinType::LongDouble: Out << 'O'; break;
753  // TODO: __int8 and friends
754  case BuiltinType::LongLong: Out << "_J"; break;
755  case BuiltinType::ULongLong: Out << "_K"; break;
756  case BuiltinType::Int128: Out << "_L"; break;
757  case BuiltinType::UInt128: Out << "_M"; break;
758  case BuiltinType::Bool: Out << "_N"; break;
759  case BuiltinType::WChar: Out << "_W"; break;
760
761  case BuiltinType::Overload:
762  case BuiltinType::Dependent:
763    assert(false &&
764           "Overloaded and dependent types shouldn't get to name mangling");
765    break;
766  case BuiltinType::UndeducedAuto:
767    assert(0 && "Should not see undeduced auto here");
768    break;
769  case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
770  case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
771  case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
772
773  case BuiltinType::Char16:
774  case BuiltinType::Char32:
775  case BuiltinType::NullPtr:
776    assert(false && "Don't know how to mangle this type");
777    break;
778  }
779}
780
781// <type>          ::= <function-type>
782void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T) {
783  // Structors only appear in decls, so at this point we know it's not a
784  // structor type.
785  // I'll probably have mangleType(MemberPointerType) call the mangleType()
786  // method directly.
787  mangleType(T, NULL, false, false);
788}
789void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T) {
790  llvm_unreachable("Can't mangle K&R function prototypes");
791}
792
793void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
794                                         const FunctionDecl *D,
795                                         bool IsStructor,
796                                         bool IsInstMethod) {
797  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
798  //                     <return-type> <argument-list> <throw-spec>
799  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
800
801  // If this is a C++ instance method, mangle the CVR qualifiers for the
802  // this pointer.
803  if (IsInstMethod)
804    mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
805
806  mangleCallingConvention(T, IsInstMethod);
807
808  // <return-type> ::= <type>
809  //               ::= @ # structors (they have no declared return type)
810  if (IsStructor)
811    Out << '@';
812  else
813    mangleType(Proto->getResultType());
814
815  // <argument-list> ::= X # void
816  //                 ::= <type>+ @
817  //                 ::= <type>* Z # varargs
818  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
819    Out << 'X';
820  } else {
821    if (D) {
822      // If we got a decl, use the "types-as-written" to make sure arrays
823      // get mangled right.
824      for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
825           ParmEnd = D->param_end();
826           Parm != ParmEnd; ++Parm)
827        mangleType((*Parm)->getTypeSourceInfo()->getType());
828    } else {
829      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
830           ArgEnd = Proto->arg_type_end();
831           Arg != ArgEnd; ++Arg)
832        mangleType(*Arg);
833    }
834    // <builtin-type>      ::= Z  # ellipsis
835    if (Proto->isVariadic())
836      Out << 'Z';
837    else
838      Out << '@';
839  }
840
841  mangleThrowSpecification(Proto);
842}
843
844void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
845  // <function-class> ::= A # private: near
846  //                  ::= B # private: far
847  //                  ::= C # private: static near
848  //                  ::= D # private: static far
849  //                  ::= E # private: virtual near
850  //                  ::= F # private: virtual far
851  //                  ::= G # private: thunk near
852  //                  ::= H # private: thunk far
853  //                  ::= I # protected: near
854  //                  ::= J # protected: far
855  //                  ::= K # protected: static near
856  //                  ::= L # protected: static far
857  //                  ::= M # protected: virtual near
858  //                  ::= N # protected: virtual far
859  //                  ::= O # protected: thunk near
860  //                  ::= P # protected: thunk far
861  //                  ::= Q # public: near
862  //                  ::= R # public: far
863  //                  ::= S # public: static near
864  //                  ::= T # public: static far
865  //                  ::= U # public: virtual near
866  //                  ::= V # public: virtual far
867  //                  ::= W # public: thunk near
868  //                  ::= X # public: thunk far
869  //                  ::= Y # global near
870  //                  ::= Z # global far
871  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
872    switch (MD->getAccess()) {
873      default:
874      case AS_private:
875        if (MD->isStatic())
876          Out << 'C';
877        else if (MD->isVirtual())
878          Out << 'E';
879        else
880          Out << 'A';
881        break;
882      case AS_protected:
883        if (MD->isStatic())
884          Out << 'K';
885        else if (MD->isVirtual())
886          Out << 'M';
887        else
888          Out << 'I';
889        break;
890      case AS_public:
891        if (MD->isStatic())
892          Out << 'S';
893        else if (MD->isVirtual())
894          Out << 'U';
895        else
896          Out << 'Q';
897    }
898  } else
899    Out << 'Y';
900}
901void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
902                                                      bool IsInstMethod) {
903  // <calling-convention> ::= A # __cdecl
904  //                      ::= B # __export __cdecl
905  //                      ::= C # __pascal
906  //                      ::= D # __export __pascal
907  //                      ::= E # __thiscall
908  //                      ::= F # __export __thiscall
909  //                      ::= G # __stdcall
910  //                      ::= H # __export __stdcall
911  //                      ::= I # __fastcall
912  //                      ::= J # __export __fastcall
913  // The 'export' calling conventions are from a bygone era
914  // (*cough*Win16*cough*) when functions were declared for export with
915  // that keyword. (It didn't actually export them, it just made them so
916  // that they could be in a DLL and somebody from another module could call
917  // them.)
918  CallingConv CC = T->getCallConv();
919  if (CC == CC_Default)
920    CC = IsInstMethod ? getASTContext().getDefaultMethodCallConv() : CC_C;
921  switch (CC) {
922    case CC_Default:
923    case CC_C: Out << 'A'; break;
924    case CC_X86Pascal: Out << 'C'; break;
925    case CC_X86ThisCall: Out << 'E'; break;
926    case CC_X86StdCall: Out << 'G'; break;
927    case CC_X86FastCall: Out << 'I'; break;
928  }
929}
930void MicrosoftCXXNameMangler::mangleThrowSpecification(
931                                                const FunctionProtoType *FT) {
932  // <throw-spec> ::= Z # throw(...) (default)
933  //              ::= @ # throw() or __declspec/__attribute__((nothrow))
934  //              ::= <type>+
935  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
936  // all actually mangled as 'Z'. (They're ignored because their associated
937  // functionality isn't implemented, and probably never will be.)
938  Out << 'Z';
939}
940
941void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T) {
942  assert(false && "Don't know how to mangle UnresolvedUsingTypes yet!");
943}
944
945// <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
946// <union-type>  ::= T <name>
947// <struct-type> ::= U <name>
948// <class-type>  ::= V <name>
949// <enum-type>   ::= W <size> <name>
950void MicrosoftCXXNameMangler::mangleType(const EnumType *T) {
951  mangleType(static_cast<const TagType*>(T));
952}
953void MicrosoftCXXNameMangler::mangleType(const RecordType *T) {
954  mangleType(static_cast<const TagType*>(T));
955}
956void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
957  switch (T->getDecl()->getTagKind()) {
958    case TTK_Union:
959      Out << 'T';
960      break;
961    case TTK_Struct:
962      Out << 'U';
963      break;
964    case TTK_Class:
965      Out << 'V';
966      break;
967    case TTK_Enum:
968      Out << 'W';
969      Out << getASTContext().getTypeSizeInChars(
970                cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
971      break;
972  }
973  mangleName(T->getDecl());
974}
975
976// <type>       ::= <array-type>
977// <array-type> ::= P <cvr-qualifiers> [Y <dimension-count> <dimension>+]
978//                                                  <element-type> # as global
979//              ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
980//                                                  <element-type> # as param
981// It's supposed to be the other way around, but for some strange reason, it
982// isn't. Today this behavior is retained for the sole purpose of backwards
983// compatibility.
984void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
985  // This isn't a recursive mangling, so now we have to do it all in this
986  // one call.
987  if (IsGlobal)
988    Out << 'P';
989  else
990    Out << 'Q';
991  mangleExtraDimensions(T->getElementType());
992}
993void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T) {
994  mangleType(static_cast<const ArrayType *>(T), false);
995}
996void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T) {
997  mangleType(static_cast<const ArrayType *>(T), false);
998}
999void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1000  mangleType(static_cast<const ArrayType *>(T), false);
1001}
1002void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T) {
1003  mangleType(static_cast<const ArrayType *>(T), false);
1004}
1005void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
1006  llvm::SmallVector<llvm::APInt, 3> Dimensions;
1007  for (;;) {
1008    if (ElementTy->isConstantArrayType()) {
1009      const ConstantArrayType *CAT =
1010      static_cast<const ConstantArrayType *>(ElementTy.getTypePtr());
1011      Dimensions.push_back(CAT->getSize());
1012      ElementTy = CAT->getElementType();
1013    } else if (ElementTy->isVariableArrayType()) {
1014      assert(false && "Don't know how to mangle VLAs!");
1015    } else if (ElementTy->isDependentSizedArrayType()) {
1016      // The dependent expression has to be folded into a constant (TODO).
1017      assert(false && "Don't know how to mangle dependent-sized arrays!");
1018    } else if (ElementTy->isIncompleteArrayType()) continue;
1019    else break;
1020  }
1021  mangleQualifiers(ElementTy.getQualifiers(), false);
1022  // If there are any additional dimensions, mangle them now.
1023  if (Dimensions.size() > 0) {
1024    Out << 'Y';
1025    // <dimension-count> ::= <number> # number of extra dimensions
1026    mangleNumber(Dimensions.size());
1027    for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
1028      mangleNumber(Dimensions[Dim].getLimitedValue());
1029    }
1030  }
1031  mangleType(ElementTy.getLocalUnqualifiedType());
1032}
1033
1034// <type>                   ::= <pointer-to-member-type>
1035// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1036//                                                          <class name> <type>
1037void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T) {
1038  QualType PointeeType = T->getPointeeType();
1039  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1040    Out << '8';
1041    mangleName(cast<RecordType>(T->getClass())->getDecl());
1042    mangleType(FPT, NULL, false, true);
1043  } else {
1044    mangleQualifiers(PointeeType.getQualifiers(), true);
1045    mangleName(cast<RecordType>(T->getClass())->getDecl());
1046    mangleType(PointeeType.getLocalUnqualifiedType());
1047  }
1048}
1049
1050void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1051  assert(false && "Don't know how to mangle TemplateTypeParmTypes yet!");
1052}
1053
1054// <type> ::= <pointer-type>
1055// <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1056void MicrosoftCXXNameMangler::mangleType(const PointerType *T) {
1057  QualType PointeeTy = T->getPointeeType();
1058  if (PointeeTy->isArrayType()) {
1059    // Pointers to arrays are mangled like arrays.
1060    mangleExtraDimensions(T->getPointeeType());
1061  } else if (PointeeTy->isFunctionType()) {
1062    // Function pointers are special.
1063    Out << '6';
1064    mangleType(static_cast<const FunctionType *>(PointeeTy.getTypePtr()),
1065               NULL, false, false);
1066  } else {
1067    if (!PointeeTy.hasQualifiers())
1068      // Lack of qualifiers is mangled as 'A'.
1069      Out << 'A';
1070    mangleType(PointeeTy);
1071  }
1072}
1073void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1074  // Object pointers never have qualifiers.
1075  Out << 'A';
1076  mangleType(T->getPointeeType());
1077}
1078
1079// <type> ::= <reference-type>
1080// <reference-type> ::= A <cvr-qualifiers> <type>
1081void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T) {
1082  Out << 'A';
1083  QualType PointeeTy = T->getPointeeType();
1084  if (!PointeeTy.hasQualifiers())
1085    // Lack of qualifiers is mangled as 'A'.
1086    Out << 'A';
1087  mangleType(PointeeTy);
1088}
1089
1090void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T) {
1091  assert(false && "Don't know how to mangle RValueReferenceTypes yet!");
1092}
1093
1094void MicrosoftCXXNameMangler::mangleType(const ComplexType *T) {
1095  assert(false && "Don't know how to mangle ComplexTypes yet!");
1096}
1097
1098void MicrosoftCXXNameMangler::mangleType(const VectorType *T) {
1099  assert(false && "Don't know how to mangle VectorTypes yet!");
1100}
1101void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T) {
1102  assert(false && "Don't know how to mangle ExtVectorTypes yet!");
1103}
1104void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1105  assert(false && "Don't know how to mangle DependentSizedExtVectorTypes yet!");
1106}
1107
1108void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1109  // ObjC interfaces have structs underlying them.
1110  Out << 'U';
1111  mangleName(T->getDecl());
1112}
1113
1114void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T) {
1115  // We don't allow overloading by different protocol qualification,
1116  // so mangling them isn't necessary.
1117  mangleType(T->getBaseType());
1118}
1119
1120void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T) {
1121  Out << "_E";
1122  mangleType(T->getPointeeType());
1123}
1124
1125void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T) {
1126  assert(false && "Don't know how to mangle InjectedClassNameTypes yet!");
1127}
1128
1129void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1130  assert(false && "Don't know how to mangle TemplateSpecializationTypes yet!");
1131}
1132
1133void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T) {
1134  assert(false && "Don't know how to mangle DependentNameTypes yet!");
1135}
1136
1137void MicrosoftCXXNameMangler::mangleType(
1138                                 const DependentTemplateSpecializationType *T) {
1139  assert(false &&
1140         "Don't know how to mangle DependentTemplateSpecializationTypes yet!");
1141}
1142
1143void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T) {
1144  assert(false && "Don't know how to mangle PackExpansionTypes yet!");
1145}
1146
1147void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T) {
1148  assert(false && "Don't know how to mangle TypeOfTypes yet!");
1149}
1150
1151void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T) {
1152  assert(false && "Don't know how to mangle TypeOfExprTypes yet!");
1153}
1154
1155void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T) {
1156  assert(false && "Don't know how to mangle DecltypeTypes yet!");
1157}
1158
1159void MicrosoftMangleContext::mangleName(const NamedDecl *D,
1160                                        llvm::SmallVectorImpl<char> &Name) {
1161  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
1162         "Invalid mangleName() call, argument is not a variable or function!");
1163  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
1164         "Invalid mangleName() call on 'structor decl!");
1165
1166  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
1167                                 getASTContext().getSourceManager(),
1168                                 "Mangling declaration");
1169
1170  MicrosoftCXXNameMangler Mangler(*this, Name);
1171  return Mangler.mangle(D);
1172}
1173void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
1174                                         const ThunkInfo &Thunk,
1175                                         llvm::SmallVectorImpl<char> &) {
1176  assert(false && "Can't yet mangle thunks!");
1177}
1178void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
1179                                                CXXDtorType Type,
1180                                                const ThisAdjustment &,
1181                                                llvm::SmallVectorImpl<char> &) {
1182  assert(false && "Can't yet mangle destructor thunks!");
1183}
1184void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
1185                                             llvm::SmallVectorImpl<char> &) {
1186  assert(false && "Can't yet mangle virtual tables!");
1187}
1188void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
1189                                          llvm::SmallVectorImpl<char> &) {
1190  llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
1191}
1192void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
1193                                                 int64_t Offset,
1194                                                 const CXXRecordDecl *Type,
1195                                                 llvm::SmallVectorImpl<char> &) {
1196  llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
1197}
1198void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
1199                                           llvm::SmallVectorImpl<char> &) {
1200  assert(false && "Can't yet mangle RTTI!");
1201}
1202void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
1203                                               llvm::SmallVectorImpl<char> &) {
1204  assert(false && "Can't yet mangle RTTI names!");
1205}
1206void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
1207                                           CXXCtorType Type,
1208                                           llvm::SmallVectorImpl<char> &) {
1209  assert(false && "Can't yet mangle constructors!");
1210}
1211void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
1212                                           CXXDtorType Type,
1213                                           llvm::SmallVectorImpl<char> &) {
1214  assert(false && "Can't yet mangle destructors!");
1215}
1216
1217CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
1218  return new MicrosoftCXXABI(CGM);
1219}
1220
1221