ParseDeclCXX.cpp revision 1d20927fd0a08c26ef0e86e26f42073fd582ff77
1//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the C++ Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Basic/OperatorKinds.h"
15#include "clang/Parse/Parser.h"
16#include "clang/Parse/ParseDiagnostic.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ParsedTemplate.h"
20#include "clang/Sema/PrettyDeclStackTrace.h"
21#include "RAIIObjectsForParser.h"
22using namespace clang;
23
24/// ParseNamespace - We know that the current token is a namespace keyword. This
25/// may either be a top level namespace or a block-level namespace alias. If
26/// there was an inline keyword, it has already been parsed.
27///
28///       namespace-definition: [C++ 7.3: basic.namespace]
29///         named-namespace-definition
30///         unnamed-namespace-definition
31///
32///       unnamed-namespace-definition:
33///         'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
34///
35///       named-namespace-definition:
36///         original-namespace-definition
37///         extension-namespace-definition
38///
39///       original-namespace-definition:
40///         'inline'[opt] 'namespace' identifier attributes[opt]
41///             '{' namespace-body '}'
42///
43///       extension-namespace-definition:
44///         'inline'[opt] 'namespace' original-namespace-name
45///             '{' namespace-body '}'
46///
47///       namespace-alias-definition:  [C++ 7.3.2: namespace.alias]
48///         'namespace' identifier '=' qualified-namespace-specifier ';'
49///
50Decl *Parser::ParseNamespace(unsigned Context,
51                             SourceLocation &DeclEnd,
52                             SourceLocation InlineLoc) {
53  assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
54  SourceLocation NamespaceLoc = ConsumeToken();  // eat the 'namespace'.
55
56  if (Tok.is(tok::code_completion)) {
57    Actions.CodeCompleteNamespaceDecl(getCurScope());
58    ConsumeCodeCompletionToken();
59  }
60
61  SourceLocation IdentLoc;
62  IdentifierInfo *Ident = 0;
63
64  Token attrTok;
65
66  if (Tok.is(tok::identifier)) {
67    Ident = Tok.getIdentifierInfo();
68    IdentLoc = ConsumeToken();  // eat the identifier.
69  }
70
71  // Read label attributes, if present.
72  ParsedAttributes attrs(AttrFactory);
73  if (Tok.is(tok::kw___attribute)) {
74    attrTok = Tok;
75    ParseGNUAttributes(attrs);
76  }
77
78  if (Tok.is(tok::equal)) {
79    if (!attrs.empty())
80      Diag(attrTok, diag::err_unexpected_namespace_attributes_alias);
81    if (InlineLoc.isValid())
82      Diag(InlineLoc, diag::err_inline_namespace_alias)
83          << FixItHint::CreateRemoval(InlineLoc);
84
85    return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
86  }
87
88  if (Tok.isNot(tok::l_brace)) {
89    Diag(Tok, Ident ? diag::err_expected_lbrace :
90         diag::err_expected_ident_lbrace);
91    return 0;
92  }
93
94  SourceLocation LBrace = ConsumeBrace();
95
96  if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() ||
97      getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() ||
98      getCurScope()->getFnParent()) {
99    Diag(LBrace, diag::err_namespace_nonnamespace_scope);
100    SkipUntil(tok::r_brace, false);
101    return 0;
102  }
103
104  // If we're still good, complain about inline namespaces in non-C++0x now.
105  if (!getLang().CPlusPlus0x && InlineLoc.isValid())
106    Diag(InlineLoc, diag::ext_inline_namespace);
107
108  // Enter a scope for the namespace.
109  ParseScope NamespaceScope(this, Scope::DeclScope);
110
111  Decl *NamespcDecl =
112    Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, NamespaceLoc,
113                                   IdentLoc, Ident, LBrace, attrs.getList());
114
115  PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc,
116                                      "parsing namespace");
117
118  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
119    ParsedAttributesWithRange attrs(AttrFactory);
120    MaybeParseCXX0XAttributes(attrs);
121    MaybeParseMicrosoftAttributes(attrs);
122    ParseExternalDeclaration(attrs);
123  }
124
125  // Leave the namespace scope.
126  NamespaceScope.Exit();
127
128  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBrace);
129  Actions.ActOnFinishNamespaceDef(NamespcDecl, RBraceLoc);
130
131  DeclEnd = RBraceLoc;
132  return NamespcDecl;
133}
134
135/// ParseNamespaceAlias - Parse the part after the '=' in a namespace
136/// alias definition.
137///
138Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
139                                  SourceLocation AliasLoc,
140                                  IdentifierInfo *Alias,
141                                  SourceLocation &DeclEnd) {
142  assert(Tok.is(tok::equal) && "Not equal token");
143
144  ConsumeToken(); // eat the '='.
145
146  if (Tok.is(tok::code_completion)) {
147    Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
148    ConsumeCodeCompletionToken();
149  }
150
151  CXXScopeSpec SS;
152  // Parse (optional) nested-name-specifier.
153  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
154
155  if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
156    Diag(Tok, diag::err_expected_namespace_name);
157    // Skip to end of the definition and eat the ';'.
158    SkipUntil(tok::semi);
159    return 0;
160  }
161
162  // Parse identifier.
163  IdentifierInfo *Ident = Tok.getIdentifierInfo();
164  SourceLocation IdentLoc = ConsumeToken();
165
166  // Eat the ';'.
167  DeclEnd = Tok.getLocation();
168  ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name,
169                   "", tok::semi);
170
171  return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias,
172                                        SS, IdentLoc, Ident);
173}
174
175/// ParseLinkage - We know that the current token is a string_literal
176/// and just before that, that extern was seen.
177///
178///       linkage-specification: [C++ 7.5p2: dcl.link]
179///         'extern' string-literal '{' declaration-seq[opt] '}'
180///         'extern' string-literal declaration
181///
182Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) {
183  assert(Tok.is(tok::string_literal) && "Not a string literal!");
184  llvm::SmallString<8> LangBuffer;
185  bool Invalid = false;
186  llvm::StringRef Lang = PP.getSpelling(Tok, LangBuffer, &Invalid);
187  if (Invalid)
188    return 0;
189
190  SourceLocation Loc = ConsumeStringToken();
191
192  ParseScope LinkageScope(this, Scope::DeclScope);
193  Decl *LinkageSpec
194    = Actions.ActOnStartLinkageSpecification(getCurScope(),
195                                             DS.getSourceRange().getBegin(),
196                                             Loc, Lang,
197                                      Tok.is(tok::l_brace) ? Tok.getLocation()
198                                                           : SourceLocation());
199
200  ParsedAttributesWithRange attrs(AttrFactory);
201  MaybeParseCXX0XAttributes(attrs);
202  MaybeParseMicrosoftAttributes(attrs);
203
204  if (Tok.isNot(tok::l_brace)) {
205    DS.setExternInLinkageSpec(true);
206    ParseExternalDeclaration(attrs, &DS);
207    return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
208                                                   SourceLocation());
209  }
210
211  DS.abort();
212
213  ProhibitAttributes(attrs);
214
215  SourceLocation LBrace = ConsumeBrace();
216  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
217    ParsedAttributesWithRange attrs(AttrFactory);
218    MaybeParseCXX0XAttributes(attrs);
219    MaybeParseMicrosoftAttributes(attrs);
220    ParseExternalDeclaration(attrs);
221  }
222
223  SourceLocation RBrace = MatchRHSPunctuation(tok::r_brace, LBrace);
224  return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
225                                                 RBrace);
226}
227
228/// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
229/// using-directive. Assumes that current token is 'using'.
230Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
231                                         const ParsedTemplateInfo &TemplateInfo,
232                                               SourceLocation &DeclEnd,
233                                             ParsedAttributesWithRange &attrs) {
234  assert(Tok.is(tok::kw_using) && "Not using token");
235
236  // Eat 'using'.
237  SourceLocation UsingLoc = ConsumeToken();
238
239  if (Tok.is(tok::code_completion)) {
240    Actions.CodeCompleteUsing(getCurScope());
241    ConsumeCodeCompletionToken();
242  }
243
244  // 'using namespace' means this is a using-directive.
245  if (Tok.is(tok::kw_namespace)) {
246    // Template parameters are always an error here.
247    if (TemplateInfo.Kind) {
248      SourceRange R = TemplateInfo.getSourceRange();
249      Diag(UsingLoc, diag::err_templated_using_directive)
250        << R << FixItHint::CreateRemoval(R);
251    }
252
253    return ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs);
254  }
255
256  // Otherwise, it must be a using-declaration.
257
258  // Using declarations can't have attributes.
259  ProhibitAttributes(attrs);
260
261  return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd);
262}
263
264/// ParseUsingDirective - Parse C++ using-directive, assumes
265/// that current token is 'namespace' and 'using' was already parsed.
266///
267///       using-directive: [C++ 7.3.p4: namespace.udir]
268///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
269///                 namespace-name ;
270/// [GNU] using-directive:
271///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
272///                 namespace-name attributes[opt] ;
273///
274Decl *Parser::ParseUsingDirective(unsigned Context,
275                                  SourceLocation UsingLoc,
276                                  SourceLocation &DeclEnd,
277                                  ParsedAttributes &attrs) {
278  assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
279
280  // Eat 'namespace'.
281  SourceLocation NamespcLoc = ConsumeToken();
282
283  if (Tok.is(tok::code_completion)) {
284    Actions.CodeCompleteUsingDirective(getCurScope());
285    ConsumeCodeCompletionToken();
286  }
287
288  CXXScopeSpec SS;
289  // Parse (optional) nested-name-specifier.
290  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
291
292  IdentifierInfo *NamespcName = 0;
293  SourceLocation IdentLoc = SourceLocation();
294
295  // Parse namespace-name.
296  if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
297    Diag(Tok, diag::err_expected_namespace_name);
298    // If there was invalid namespace name, skip to end of decl, and eat ';'.
299    SkipUntil(tok::semi);
300    // FIXME: Are there cases, when we would like to call ActOnUsingDirective?
301    return 0;
302  }
303
304  // Parse identifier.
305  NamespcName = Tok.getIdentifierInfo();
306  IdentLoc = ConsumeToken();
307
308  // Parse (optional) attributes (most likely GNU strong-using extension).
309  bool GNUAttr = false;
310  if (Tok.is(tok::kw___attribute)) {
311    GNUAttr = true;
312    ParseGNUAttributes(attrs);
313  }
314
315  // Eat ';'.
316  DeclEnd = Tok.getLocation();
317  ExpectAndConsume(tok::semi,
318                   GNUAttr ? diag::err_expected_semi_after_attribute_list
319                           : diag::err_expected_semi_after_namespace_name,
320                   "", tok::semi);
321
322  return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
323                                     IdentLoc, NamespcName, attrs.getList());
324}
325
326/// ParseUsingDeclaration - Parse C++ using-declaration. Assumes that
327/// 'using' was already seen.
328///
329///     using-declaration: [C++ 7.3.p3: namespace.udecl]
330///       'using' 'typename'[opt] ::[opt] nested-name-specifier
331///               unqualified-id
332///       'using' :: unqualified-id
333///
334Decl *Parser::ParseUsingDeclaration(unsigned Context,
335                                    const ParsedTemplateInfo &TemplateInfo,
336                                    SourceLocation UsingLoc,
337                                    SourceLocation &DeclEnd,
338                                    AccessSpecifier AS) {
339  CXXScopeSpec SS;
340  SourceLocation TypenameLoc;
341  bool IsTypeName;
342
343  // TODO: in C++0x, if we have template parameters this must be a
344  // template alias:
345  //   template <...> using id = type;
346
347  // Ignore optional 'typename'.
348  // FIXME: This is wrong; we should parse this as a typename-specifier.
349  if (Tok.is(tok::kw_typename)) {
350    TypenameLoc = Tok.getLocation();
351    ConsumeToken();
352    IsTypeName = true;
353  }
354  else
355    IsTypeName = false;
356
357  // Parse nested-name-specifier.
358  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
359
360  // Check nested-name specifier.
361  if (SS.isInvalid()) {
362    SkipUntil(tok::semi);
363    return 0;
364  }
365
366  // Parse the unqualified-id. We allow parsing of both constructor and
367  // destructor names and allow the action module to diagnose any semantic
368  // errors.
369  UnqualifiedId Name;
370  if (ParseUnqualifiedId(SS,
371                         /*EnteringContext=*/false,
372                         /*AllowDestructorName=*/true,
373                         /*AllowConstructorName=*/true,
374                         ParsedType(),
375                         Name)) {
376    SkipUntil(tok::semi);
377    return 0;
378  }
379
380  // Parse (optional) attributes (most likely GNU strong-using extension).
381  ParsedAttributes attrs(AttrFactory);
382  MaybeParseGNUAttributes(attrs);
383
384  // Eat ';'.
385  DeclEnd = Tok.getLocation();
386  ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
387                   !attrs.empty() ? "attributes list" : "using declaration",
388                   tok::semi);
389
390  // Diagnose an attempt to declare a templated using-declaration.
391  if (TemplateInfo.Kind) {
392    SourceRange R = TemplateInfo.getSourceRange();
393    Diag(UsingLoc, diag::err_templated_using_declaration)
394      << R << FixItHint::CreateRemoval(R);
395
396    // Unfortunately, we have to bail out instead of recovering by
397    // ignoring the parameters, just in case the nested name specifier
398    // depends on the parameters.
399    return 0;
400  }
401
402  return Actions.ActOnUsingDeclaration(getCurScope(), AS, true, UsingLoc, SS,
403                                       Name, attrs.getList(),
404                                       IsTypeName, TypenameLoc);
405}
406
407/// ParseStaticAssertDeclaration - Parse C++0x static_assert-declaratoion.
408///
409///      static_assert-declaration:
410///        static_assert ( constant-expression  ,  string-literal  ) ;
411///
412Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
413  assert(Tok.is(tok::kw_static_assert) && "Not a static_assert declaration");
414  SourceLocation StaticAssertLoc = ConsumeToken();
415
416  if (Tok.isNot(tok::l_paren)) {
417    Diag(Tok, diag::err_expected_lparen);
418    return 0;
419  }
420
421  SourceLocation LParenLoc = ConsumeParen();
422
423  ExprResult AssertExpr(ParseConstantExpression());
424  if (AssertExpr.isInvalid()) {
425    SkipUntil(tok::semi);
426    return 0;
427  }
428
429  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi))
430    return 0;
431
432  if (Tok.isNot(tok::string_literal)) {
433    Diag(Tok, diag::err_expected_string_literal);
434    SkipUntil(tok::semi);
435    return 0;
436  }
437
438  ExprResult AssertMessage(ParseStringLiteralExpression());
439  if (AssertMessage.isInvalid())
440    return 0;
441
442  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
443
444  DeclEnd = Tok.getLocation();
445  ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
446
447  return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
448                                              AssertExpr.take(),
449                                              AssertMessage.take(),
450                                              RParenLoc);
451}
452
453/// ParseDecltypeSpecifier - Parse a C++0x decltype specifier.
454///
455/// 'decltype' ( expression )
456///
457void Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
458  assert(Tok.is(tok::kw_decltype) && "Not a decltype specifier");
459
460  SourceLocation StartLoc = ConsumeToken();
461  SourceLocation LParenLoc = Tok.getLocation();
462
463  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
464                       "decltype")) {
465    SkipUntil(tok::r_paren);
466    return;
467  }
468
469  // Parse the expression
470
471  // C++0x [dcl.type.simple]p4:
472  //   The operand of the decltype specifier is an unevaluated operand.
473  EnterExpressionEvaluationContext Unevaluated(Actions,
474                                               Sema::Unevaluated);
475  ExprResult Result = ParseExpression();
476  if (Result.isInvalid()) {
477    SkipUntil(tok::r_paren);
478    return;
479  }
480
481  // Match the ')'
482  SourceLocation RParenLoc;
483  if (Tok.is(tok::r_paren))
484    RParenLoc = ConsumeParen();
485  else
486    MatchRHSPunctuation(tok::r_paren, LParenLoc);
487
488  if (RParenLoc.isInvalid())
489    return;
490
491  const char *PrevSpec = 0;
492  unsigned DiagID;
493  // Check for duplicate type specifiers (e.g. "int decltype(a)").
494  if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
495                         DiagID, Result.release()))
496    Diag(StartLoc, DiagID) << PrevSpec;
497}
498
499/// ParseClassName - Parse a C++ class-name, which names a class. Note
500/// that we only check that the result names a type; semantic analysis
501/// will need to verify that the type names a class. The result is
502/// either a type or NULL, depending on whether a type name was
503/// found.
504///
505///       class-name: [C++ 9.1]
506///         identifier
507///         simple-template-id
508///
509Parser::TypeResult Parser::ParseClassName(SourceLocation &EndLocation,
510                                          CXXScopeSpec &SS) {
511  // Check whether we have a template-id that names a type.
512  if (Tok.is(tok::annot_template_id)) {
513    TemplateIdAnnotation *TemplateId
514      = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
515    if (TemplateId->Kind == TNK_Type_template ||
516        TemplateId->Kind == TNK_Dependent_template_name) {
517      AnnotateTemplateIdTokenAsType();
518
519      assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
520      ParsedType Type = getTypeAnnotation(Tok);
521      EndLocation = Tok.getAnnotationEndLoc();
522      ConsumeToken();
523
524      if (Type)
525        return Type;
526      return true;
527    }
528
529    // Fall through to produce an error below.
530  }
531
532  if (Tok.isNot(tok::identifier)) {
533    Diag(Tok, diag::err_expected_class_name);
534    return true;
535  }
536
537  IdentifierInfo *Id = Tok.getIdentifierInfo();
538  SourceLocation IdLoc = ConsumeToken();
539
540  if (Tok.is(tok::less)) {
541    // It looks the user intended to write a template-id here, but the
542    // template-name was wrong. Try to fix that.
543    TemplateNameKind TNK = TNK_Type_template;
544    TemplateTy Template;
545    if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
546                                             &SS, Template, TNK)) {
547      Diag(IdLoc, diag::err_unknown_template_name)
548        << Id;
549    }
550
551    if (!Template)
552      return true;
553
554    // Form the template name
555    UnqualifiedId TemplateName;
556    TemplateName.setIdentifier(Id, IdLoc);
557
558    // Parse the full template-id, then turn it into a type.
559    if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
560                                SourceLocation(), true))
561      return true;
562    if (TNK == TNK_Dependent_template_name)
563      AnnotateTemplateIdTokenAsType();
564
565    // If we didn't end up with a typename token, there's nothing more we
566    // can do.
567    if (Tok.isNot(tok::annot_typename))
568      return true;
569
570    // Retrieve the type from the annotation token, consume that token, and
571    // return.
572    EndLocation = Tok.getAnnotationEndLoc();
573    ParsedType Type = getTypeAnnotation(Tok);
574    ConsumeToken();
575    return Type;
576  }
577
578  // We have an identifier; check whether it is actually a type.
579  ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, true,
580                                        false, ParsedType(),
581                                        /*NonTrivialTypeSourceInfo=*/true);
582  if (!Type) {
583    Diag(IdLoc, diag::err_expected_class_name);
584    return true;
585  }
586
587  // Consume the identifier.
588  EndLocation = IdLoc;
589
590  // Fake up a Declarator to use with ActOnTypeName.
591  DeclSpec DS(AttrFactory);
592  DS.SetRangeStart(IdLoc);
593  DS.SetRangeEnd(EndLocation);
594  DS.getTypeSpecScope() = SS;
595
596  const char *PrevSpec = 0;
597  unsigned DiagID;
598  DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type);
599
600  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
601  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
602}
603
604/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
605/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
606/// until we reach the start of a definition or see a token that
607/// cannot start a definition. If SuppressDeclarations is true, we do know.
608///
609///       class-specifier: [C++ class]
610///         class-head '{' member-specification[opt] '}'
611///         class-head '{' member-specification[opt] '}' attributes[opt]
612///       class-head:
613///         class-key identifier[opt] base-clause[opt]
614///         class-key nested-name-specifier identifier base-clause[opt]
615///         class-key nested-name-specifier[opt] simple-template-id
616///                          base-clause[opt]
617/// [GNU]   class-key attributes[opt] identifier[opt] base-clause[opt]
618/// [GNU]   class-key attributes[opt] nested-name-specifier
619///                          identifier base-clause[opt]
620/// [GNU]   class-key attributes[opt] nested-name-specifier[opt]
621///                          simple-template-id base-clause[opt]
622///       class-key:
623///         'class'
624///         'struct'
625///         'union'
626///
627///       elaborated-type-specifier: [C++ dcl.type.elab]
628///         class-key ::[opt] nested-name-specifier[opt] identifier
629///         class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
630///                          simple-template-id
631///
632///  Note that the C++ class-specifier and elaborated-type-specifier,
633///  together, subsume the C99 struct-or-union-specifier:
634///
635///       struct-or-union-specifier: [C99 6.7.2.1]
636///         struct-or-union identifier[opt] '{' struct-contents '}'
637///         struct-or-union identifier
638/// [GNU]   struct-or-union attributes[opt] identifier[opt] '{' struct-contents
639///                                                         '}' attributes[opt]
640/// [GNU]   struct-or-union attributes[opt] identifier
641///       struct-or-union:
642///         'struct'
643///         'union'
644void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
645                                 SourceLocation StartLoc, DeclSpec &DS,
646                                 const ParsedTemplateInfo &TemplateInfo,
647                                 AccessSpecifier AS, bool SuppressDeclarations){
648  DeclSpec::TST TagType;
649  if (TagTokKind == tok::kw_struct)
650    TagType = DeclSpec::TST_struct;
651  else if (TagTokKind == tok::kw_class)
652    TagType = DeclSpec::TST_class;
653  else {
654    assert(TagTokKind == tok::kw_union && "Not a class specifier");
655    TagType = DeclSpec::TST_union;
656  }
657
658  if (Tok.is(tok::code_completion)) {
659    // Code completion for a struct, class, or union name.
660    Actions.CodeCompleteTag(getCurScope(), TagType);
661    ConsumeCodeCompletionToken();
662  }
663
664  // C++03 [temp.explicit] 14.7.2/8:
665  //   The usual access checking rules do not apply to names used to specify
666  //   explicit instantiations.
667  //
668  // As an extension we do not perform access checking on the names used to
669  // specify explicit specializations either. This is important to allow
670  // specializing traits classes for private types.
671  bool SuppressingAccessChecks = false;
672  if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
673      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization) {
674    Actions.ActOnStartSuppressingAccessChecks();
675    SuppressingAccessChecks = true;
676  }
677
678  ParsedAttributes attrs(AttrFactory);
679  // If attributes exist after tag, parse them.
680  if (Tok.is(tok::kw___attribute))
681    ParseGNUAttributes(attrs);
682
683  // If declspecs exist after tag, parse them.
684  while (Tok.is(tok::kw___declspec))
685    ParseMicrosoftDeclSpec(attrs);
686
687  // If C++0x attributes exist here, parse them.
688  // FIXME: Are we consistent with the ordering of parsing of different
689  // styles of attributes?
690  MaybeParseCXX0XAttributes(attrs);
691
692  if (TagType == DeclSpec::TST_struct && Tok.is(tok::kw___is_pod)) {
693    // GNU libstdc++ 4.2 uses __is_pod as the name of a struct template, but
694    // __is_pod is a keyword in GCC >= 4.3. Therefore, when we see the
695    // token sequence "struct __is_pod", make __is_pod into a normal
696    // identifier rather than a keyword, to allow libstdc++ 4.2 to work
697    // properly.
698    Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
699    Tok.setKind(tok::identifier);
700  }
701
702  if (TagType == DeclSpec::TST_struct && Tok.is(tok::kw___is_empty)) {
703    // GNU libstdc++ 4.2 uses __is_empty as the name of a struct template, but
704    // __is_empty is a keyword in GCC >= 4.3. Therefore, when we see the
705    // token sequence "struct __is_empty", make __is_empty into a normal
706    // identifier rather than a keyword, to allow libstdc++ 4.2 to work
707    // properly.
708    Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
709    Tok.setKind(tok::identifier);
710  }
711
712  // Parse the (optional) nested-name-specifier.
713  CXXScopeSpec &SS = DS.getTypeSpecScope();
714  if (getLang().CPlusPlus) {
715    // "FOO : BAR" is not a potential typo for "FOO::BAR".
716    ColonProtectionRAIIObject X(*this);
717
718    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true))
719      DS.SetTypeSpecError();
720    if (SS.isSet())
721      if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
722        Diag(Tok, diag::err_expected_ident);
723  }
724
725  TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
726
727  // Parse the (optional) class name or simple-template-id.
728  IdentifierInfo *Name = 0;
729  SourceLocation NameLoc;
730  TemplateIdAnnotation *TemplateId = 0;
731  if (Tok.is(tok::identifier)) {
732    Name = Tok.getIdentifierInfo();
733    NameLoc = ConsumeToken();
734
735    if (Tok.is(tok::less) && getLang().CPlusPlus) {
736      // The name was supposed to refer to a template, but didn't.
737      // Eat the template argument list and try to continue parsing this as
738      // a class (or template thereof).
739      TemplateArgList TemplateArgs;
740      SourceLocation LAngleLoc, RAngleLoc;
741      if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, SS,
742                                           true, LAngleLoc,
743                                           TemplateArgs, RAngleLoc)) {
744        // We couldn't parse the template argument list at all, so don't
745        // try to give any location information for the list.
746        LAngleLoc = RAngleLoc = SourceLocation();
747      }
748
749      Diag(NameLoc, diag::err_explicit_spec_non_template)
750        << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
751        << (TagType == DeclSpec::TST_class? 0
752            : TagType == DeclSpec::TST_struct? 1
753            : 2)
754        << Name
755        << SourceRange(LAngleLoc, RAngleLoc);
756
757      // Strip off the last template parameter list if it was empty, since
758      // we've removed its template argument list.
759      if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
760        if (TemplateParams && TemplateParams->size() > 1) {
761          TemplateParams->pop_back();
762        } else {
763          TemplateParams = 0;
764          const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
765            = ParsedTemplateInfo::NonTemplate;
766        }
767      } else if (TemplateInfo.Kind
768                                == ParsedTemplateInfo::ExplicitInstantiation) {
769        // Pretend this is just a forward declaration.
770        TemplateParams = 0;
771        const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
772          = ParsedTemplateInfo::NonTemplate;
773        const_cast<ParsedTemplateInfo&>(TemplateInfo).TemplateLoc
774          = SourceLocation();
775        const_cast<ParsedTemplateInfo&>(TemplateInfo).ExternLoc
776          = SourceLocation();
777      }
778    }
779  } else if (Tok.is(tok::annot_template_id)) {
780    TemplateId = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
781    NameLoc = ConsumeToken();
782
783    if (TemplateId->Kind != TNK_Type_template &&
784        TemplateId->Kind != TNK_Dependent_template_name) {
785      // The template-name in the simple-template-id refers to
786      // something other than a class template. Give an appropriate
787      // error message and skip to the ';'.
788      SourceRange Range(NameLoc);
789      if (SS.isNotEmpty())
790        Range.setBegin(SS.getBeginLoc());
791
792      Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
793        << Name << static_cast<int>(TemplateId->Kind) << Range;
794
795      DS.SetTypeSpecError();
796      SkipUntil(tok::semi, false, true);
797      TemplateId->Destroy();
798      if (SuppressingAccessChecks)
799        Actions.ActOnStopSuppressingAccessChecks();
800
801      return;
802    }
803  }
804
805  // As soon as we're finished parsing the class's template-id, turn access
806  // checking back on.
807  if (SuppressingAccessChecks)
808    Actions.ActOnStopSuppressingAccessChecks();
809
810  // There are four options here.  If we have 'struct foo;', then this
811  // is either a forward declaration or a friend declaration, which
812  // have to be treated differently.  If we have 'struct foo {...',
813  // 'struct foo :...' or 'struct foo final[opt]' then this is a
814  // definition. Otherwise we have something like 'struct foo xyz', a reference.
815  // However, in some contexts, things look like declarations but are just
816  // references, e.g.
817  // new struct s;
818  // or
819  // &T::operator struct s;
820  // For these, SuppressDeclarations is true.
821  Sema::TagUseKind TUK;
822  if (SuppressDeclarations)
823    TUK = Sema::TUK_Reference;
824  else if (Tok.is(tok::l_brace) ||
825           (getLang().CPlusPlus && Tok.is(tok::colon)) ||
826           isCXX0XFinalKeyword()) {
827    if (DS.isFriendSpecified()) {
828      // C++ [class.friend]p2:
829      //   A class shall not be defined in a friend declaration.
830      Diag(Tok.getLocation(), diag::err_friend_decl_defines_class)
831        << SourceRange(DS.getFriendSpecLoc());
832
833      // Skip everything up to the semicolon, so that this looks like a proper
834      // friend class (or template thereof) declaration.
835      SkipUntil(tok::semi, true, true);
836      TUK = Sema::TUK_Friend;
837    } else {
838      // Okay, this is a class definition.
839      TUK = Sema::TUK_Definition;
840    }
841  } else if (Tok.is(tok::semi))
842    TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
843  else
844    TUK = Sema::TUK_Reference;
845
846  if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
847                               TUK != Sema::TUK_Definition)) {
848    if (DS.getTypeSpecType() != DeclSpec::TST_error) {
849      // We have a declaration or reference to an anonymous class.
850      Diag(StartLoc, diag::err_anon_type_definition)
851        << DeclSpec::getSpecifierName(TagType);
852    }
853
854    SkipUntil(tok::comma, true);
855
856    if (TemplateId)
857      TemplateId->Destroy();
858    return;
859  }
860
861  // Create the tag portion of the class or class template.
862  DeclResult TagOrTempResult = true; // invalid
863  TypeResult TypeResult = true; // invalid
864
865  bool Owned = false;
866  if (TemplateId) {
867    // Explicit specialization, class template partial specialization,
868    // or explicit instantiation.
869    ASTTemplateArgsPtr TemplateArgsPtr(Actions,
870                                       TemplateId->getTemplateArgs(),
871                                       TemplateId->NumArgs);
872    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
873        TUK == Sema::TUK_Declaration) {
874      // This is an explicit instantiation of a class template.
875      TagOrTempResult
876        = Actions.ActOnExplicitInstantiation(getCurScope(),
877                                             TemplateInfo.ExternLoc,
878                                             TemplateInfo.TemplateLoc,
879                                             TagType,
880                                             StartLoc,
881                                             SS,
882                                             TemplateId->Template,
883                                             TemplateId->TemplateNameLoc,
884                                             TemplateId->LAngleLoc,
885                                             TemplateArgsPtr,
886                                             TemplateId->RAngleLoc,
887                                             attrs.getList());
888
889    // Friend template-ids are treated as references unless
890    // they have template headers, in which case they're ill-formed
891    // (FIXME: "template <class T> friend class A<T>::B<int>;").
892    // We diagnose this error in ActOnClassTemplateSpecialization.
893    } else if (TUK == Sema::TUK_Reference ||
894               (TUK == Sema::TUK_Friend &&
895                TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
896      TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType,
897                                                  StartLoc,
898                                                  TemplateId->SS,
899                                                  TemplateId->Template,
900                                                  TemplateId->TemplateNameLoc,
901                                                  TemplateId->LAngleLoc,
902                                                  TemplateArgsPtr,
903                                                  TemplateId->RAngleLoc);
904    } else {
905      // This is an explicit specialization or a class template
906      // partial specialization.
907      TemplateParameterLists FakedParamLists;
908
909      if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
910        // This looks like an explicit instantiation, because we have
911        // something like
912        //
913        //   template class Foo<X>
914        //
915        // but it actually has a definition. Most likely, this was
916        // meant to be an explicit specialization, but the user forgot
917        // the '<>' after 'template'.
918        assert(TUK == Sema::TUK_Definition && "Expected a definition here");
919
920        SourceLocation LAngleLoc
921          = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
922        Diag(TemplateId->TemplateNameLoc,
923             diag::err_explicit_instantiation_with_definition)
924          << SourceRange(TemplateInfo.TemplateLoc)
925          << FixItHint::CreateInsertion(LAngleLoc, "<>");
926
927        // Create a fake template parameter list that contains only
928        // "template<>", so that we treat this construct as a class
929        // template specialization.
930        FakedParamLists.push_back(
931          Actions.ActOnTemplateParameterList(0, SourceLocation(),
932                                             TemplateInfo.TemplateLoc,
933                                             LAngleLoc,
934                                             0, 0,
935                                             LAngleLoc));
936        TemplateParams = &FakedParamLists;
937      }
938
939      // Build the class template specialization.
940      TagOrTempResult
941        = Actions.ActOnClassTemplateSpecialization(getCurScope(), TagType, TUK,
942                       StartLoc, SS,
943                       TemplateId->Template,
944                       TemplateId->TemplateNameLoc,
945                       TemplateId->LAngleLoc,
946                       TemplateArgsPtr,
947                       TemplateId->RAngleLoc,
948                       attrs.getList(),
949                       MultiTemplateParamsArg(Actions,
950                                    TemplateParams? &(*TemplateParams)[0] : 0,
951                                 TemplateParams? TemplateParams->size() : 0));
952    }
953    TemplateId->Destroy();
954  } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
955             TUK == Sema::TUK_Declaration) {
956    // Explicit instantiation of a member of a class template
957    // specialization, e.g.,
958    //
959    //   template struct Outer<int>::Inner;
960    //
961    TagOrTempResult
962      = Actions.ActOnExplicitInstantiation(getCurScope(),
963                                           TemplateInfo.ExternLoc,
964                                           TemplateInfo.TemplateLoc,
965                                           TagType, StartLoc, SS, Name,
966                                           NameLoc, attrs.getList());
967  } else if (TUK == Sema::TUK_Friend &&
968             TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) {
969    TagOrTempResult =
970      Actions.ActOnTemplatedFriendTag(getCurScope(), DS.getFriendSpecLoc(),
971                                      TagType, StartLoc, SS,
972                                      Name, NameLoc, attrs.getList(),
973                                      MultiTemplateParamsArg(Actions,
974                                    TemplateParams? &(*TemplateParams)[0] : 0,
975                                 TemplateParams? TemplateParams->size() : 0));
976  } else {
977    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
978        TUK == Sema::TUK_Definition) {
979      // FIXME: Diagnose this particular error.
980    }
981
982    bool IsDependent = false;
983
984    // Don't pass down template parameter lists if this is just a tag
985    // reference.  For example, we don't need the template parameters here:
986    //   template <class T> class A *makeA(T t);
987    MultiTemplateParamsArg TParams;
988    if (TUK != Sema::TUK_Reference && TemplateParams)
989      TParams =
990        MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size());
991
992    // Declaration or definition of a class type
993    TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc,
994                                       SS, Name, NameLoc, attrs.getList(), AS,
995                                       TParams, Owned, IsDependent, false,
996                                       false, clang::TypeResult());
997
998    // If ActOnTag said the type was dependent, try again with the
999    // less common call.
1000    if (IsDependent) {
1001      assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend);
1002      TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
1003                                             SS, Name, StartLoc, NameLoc);
1004    }
1005  }
1006
1007  // If there is a body, parse it and inform the actions module.
1008  if (TUK == Sema::TUK_Definition) {
1009    assert(Tok.is(tok::l_brace) ||
1010           (getLang().CPlusPlus && Tok.is(tok::colon)) ||
1011           isCXX0XFinalKeyword());
1012    if (getLang().CPlusPlus)
1013      ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get());
1014    else
1015      ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
1016  }
1017
1018  const char *PrevSpec = 0;
1019  unsigned DiagID;
1020  bool Result;
1021  if (!TypeResult.isInvalid()) {
1022    Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
1023                                NameLoc.isValid() ? NameLoc : StartLoc,
1024                                PrevSpec, DiagID, TypeResult.get());
1025  } else if (!TagOrTempResult.isInvalid()) {
1026    Result = DS.SetTypeSpecType(TagType, StartLoc,
1027                                NameLoc.isValid() ? NameLoc : StartLoc,
1028                                PrevSpec, DiagID, TagOrTempResult.get(), Owned);
1029  } else {
1030    DS.SetTypeSpecError();
1031    return;
1032  }
1033
1034  if (Result)
1035    Diag(StartLoc, DiagID) << PrevSpec;
1036
1037  // At this point, we've successfully parsed a class-specifier in 'definition'
1038  // form (e.g. "struct foo { int x; }".  While we could just return here, we're
1039  // going to look at what comes after it to improve error recovery.  If an
1040  // impossible token occurs next, we assume that the programmer forgot a ; at
1041  // the end of the declaration and recover that way.
1042  //
1043  // This switch enumerates the valid "follow" set for definition.
1044  if (TUK == Sema::TUK_Definition) {
1045    bool ExpectedSemi = true;
1046    switch (Tok.getKind()) {
1047    default: break;
1048    case tok::semi:               // struct foo {...} ;
1049    case tok::star:               // struct foo {...} *         P;
1050    case tok::amp:                // struct foo {...} &         R = ...
1051    case tok::identifier:         // struct foo {...} V         ;
1052    case tok::r_paren:            //(struct foo {...} )         {4}
1053    case tok::annot_cxxscope:     // struct foo {...} a::       b;
1054    case tok::annot_typename:     // struct foo {...} a         ::b;
1055    case tok::annot_template_id:  // struct foo {...} a<int>    ::b;
1056    case tok::l_paren:            // struct foo {...} (         x);
1057    case tok::comma:              // __builtin_offsetof(struct foo{...} ,
1058      ExpectedSemi = false;
1059      break;
1060    // Type qualifiers
1061    case tok::kw_const:           // struct foo {...} const     x;
1062    case tok::kw_volatile:        // struct foo {...} volatile  x;
1063    case tok::kw_restrict:        // struct foo {...} restrict  x;
1064    case tok::kw_inline:          // struct foo {...} inline    foo() {};
1065    // Storage-class specifiers
1066    case tok::kw_static:          // struct foo {...} static    x;
1067    case tok::kw_extern:          // struct foo {...} extern    x;
1068    case tok::kw_typedef:         // struct foo {...} typedef   x;
1069    case tok::kw_register:        // struct foo {...} register  x;
1070    case tok::kw_auto:            // struct foo {...} auto      x;
1071    case tok::kw_mutable:         // struct foo {...} mutable      x;
1072      // As shown above, type qualifiers and storage class specifiers absolutely
1073      // can occur after class specifiers according to the grammar.  However,
1074      // almost noone actually writes code like this.  If we see one of these,
1075      // it is much more likely that someone missed a semi colon and the
1076      // type/storage class specifier we're seeing is part of the *next*
1077      // intended declaration, as in:
1078      //
1079      //   struct foo { ... }
1080      //   typedef int X;
1081      //
1082      // We'd really like to emit a missing semicolon error instead of emitting
1083      // an error on the 'int' saying that you can't have two type specifiers in
1084      // the same declaration of X.  Because of this, we look ahead past this
1085      // token to see if it's a type specifier.  If so, we know the code is
1086      // otherwise invalid, so we can produce the expected semi error.
1087      if (!isKnownToBeTypeSpecifier(NextToken()))
1088        ExpectedSemi = false;
1089      break;
1090
1091    case tok::r_brace:  // struct bar { struct foo {...} }
1092      // Missing ';' at end of struct is accepted as an extension in C mode.
1093      if (!getLang().CPlusPlus)
1094        ExpectedSemi = false;
1095      break;
1096    }
1097
1098    if (ExpectedSemi) {
1099      ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
1100                       TagType == DeclSpec::TST_class ? "class"
1101                       : TagType == DeclSpec::TST_struct? "struct" : "union");
1102      // Push this token back into the preprocessor and change our current token
1103      // to ';' so that the rest of the code recovers as though there were an
1104      // ';' after the definition.
1105      PP.EnterToken(Tok);
1106      Tok.setKind(tok::semi);
1107    }
1108  }
1109}
1110
1111/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
1112///
1113///       base-clause : [C++ class.derived]
1114///         ':' base-specifier-list
1115///       base-specifier-list:
1116///         base-specifier '...'[opt]
1117///         base-specifier-list ',' base-specifier '...'[opt]
1118void Parser::ParseBaseClause(Decl *ClassDecl) {
1119  assert(Tok.is(tok::colon) && "Not a base clause");
1120  ConsumeToken();
1121
1122  // Build up an array of parsed base specifiers.
1123  llvm::SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
1124
1125  while (true) {
1126    // Parse a base-specifier.
1127    BaseResult Result = ParseBaseSpecifier(ClassDecl);
1128    if (Result.isInvalid()) {
1129      // Skip the rest of this base specifier, up until the comma or
1130      // opening brace.
1131      SkipUntil(tok::comma, tok::l_brace, true, true);
1132    } else {
1133      // Add this to our array of base specifiers.
1134      BaseInfo.push_back(Result.get());
1135    }
1136
1137    // If the next token is a comma, consume it and keep reading
1138    // base-specifiers.
1139    if (Tok.isNot(tok::comma)) break;
1140
1141    // Consume the comma.
1142    ConsumeToken();
1143  }
1144
1145  // Attach the base specifiers
1146  Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
1147}
1148
1149/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
1150/// one entry in the base class list of a class specifier, for example:
1151///    class foo : public bar, virtual private baz {
1152/// 'public bar' and 'virtual private baz' are each base-specifiers.
1153///
1154///       base-specifier: [C++ class.derived]
1155///         ::[opt] nested-name-specifier[opt] class-name
1156///         'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
1157///                        class-name
1158///         access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
1159///                        class-name
1160Parser::BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
1161  bool IsVirtual = false;
1162  SourceLocation StartLoc = Tok.getLocation();
1163
1164  // Parse the 'virtual' keyword.
1165  if (Tok.is(tok::kw_virtual))  {
1166    ConsumeToken();
1167    IsVirtual = true;
1168  }
1169
1170  // Parse an (optional) access specifier.
1171  AccessSpecifier Access = getAccessSpecifierIfPresent();
1172  if (Access != AS_none)
1173    ConsumeToken();
1174
1175  // Parse the 'virtual' keyword (again!), in case it came after the
1176  // access specifier.
1177  if (Tok.is(tok::kw_virtual))  {
1178    SourceLocation VirtualLoc = ConsumeToken();
1179    if (IsVirtual) {
1180      // Complain about duplicate 'virtual'
1181      Diag(VirtualLoc, diag::err_dup_virtual)
1182        << FixItHint::CreateRemoval(VirtualLoc);
1183    }
1184
1185    IsVirtual = true;
1186  }
1187
1188  // Parse optional '::' and optional nested-name-specifier.
1189  CXXScopeSpec SS;
1190  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
1191
1192  // The location of the base class itself.
1193  SourceLocation BaseLoc = Tok.getLocation();
1194
1195  // Parse the class-name.
1196  SourceLocation EndLocation;
1197  TypeResult BaseType = ParseClassName(EndLocation, SS);
1198  if (BaseType.isInvalid())
1199    return true;
1200
1201  // Parse the optional ellipsis (for a pack expansion). The ellipsis is
1202  // actually part of the base-specifier-list grammar productions, but we
1203  // parse it here for convenience.
1204  SourceLocation EllipsisLoc;
1205  if (Tok.is(tok::ellipsis))
1206    EllipsisLoc = ConsumeToken();
1207
1208  // Find the complete source range for the base-specifier.
1209  SourceRange Range(StartLoc, EndLocation);
1210
1211  // Notify semantic analysis that we have parsed a complete
1212  // base-specifier.
1213  return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access,
1214                                    BaseType.get(), BaseLoc, EllipsisLoc);
1215}
1216
1217/// getAccessSpecifierIfPresent - Determine whether the next token is
1218/// a C++ access-specifier.
1219///
1220///       access-specifier: [C++ class.derived]
1221///         'private'
1222///         'protected'
1223///         'public'
1224AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
1225  switch (Tok.getKind()) {
1226  default: return AS_none;
1227  case tok::kw_private: return AS_private;
1228  case tok::kw_protected: return AS_protected;
1229  case tok::kw_public: return AS_public;
1230  }
1231}
1232
1233void Parser::HandleMemberFunctionDefaultArgs(Declarator& DeclaratorInfo,
1234                                             Decl *ThisDecl) {
1235  // We just declared a member function. If this member function
1236  // has any default arguments, we'll need to parse them later.
1237  LateParsedMethodDeclaration *LateMethod = 0;
1238  DeclaratorChunk::FunctionTypeInfo &FTI
1239    = DeclaratorInfo.getFunctionTypeInfo();
1240  for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) {
1241    if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) {
1242      if (!LateMethod) {
1243        // Push this method onto the stack of late-parsed method
1244        // declarations.
1245        LateMethod = new LateParsedMethodDeclaration(this, ThisDecl);
1246        getCurrentClass().LateParsedDeclarations.push_back(LateMethod);
1247        LateMethod->TemplateScope = getCurScope()->isTemplateParamScope();
1248
1249        // Add all of the parameters prior to this one (they don't
1250        // have default arguments).
1251        LateMethod->DefaultArgs.reserve(FTI.NumArgs);
1252        for (unsigned I = 0; I < ParamIdx; ++I)
1253          LateMethod->DefaultArgs.push_back(
1254                             LateParsedDefaultArgument(FTI.ArgInfo[I].Param));
1255      }
1256
1257      // Add this parameter to the list of parameters (it or may
1258      // not have a default argument).
1259      LateMethod->DefaultArgs.push_back(
1260        LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param,
1261                                  FTI.ArgInfo[ParamIdx].DefaultArgTokens));
1262    }
1263  }
1264}
1265
1266/// isCXX0XVirtSpecifier - Determine whether the next token is a C++0x
1267/// virt-specifier.
1268///
1269///       virt-specifier:
1270///         override
1271///         final
1272VirtSpecifiers::Specifier Parser::isCXX0XVirtSpecifier() const {
1273  if (!getLang().CPlusPlus)
1274    return VirtSpecifiers::VS_None;
1275
1276  if (Tok.is(tok::identifier)) {
1277    IdentifierInfo *II = Tok.getIdentifierInfo();
1278
1279    // Initialize the contextual keywords.
1280    if (!Ident_final) {
1281      Ident_final = &PP.getIdentifierTable().get("final");
1282      Ident_override = &PP.getIdentifierTable().get("override");
1283    }
1284
1285    if (II == Ident_override)
1286      return VirtSpecifiers::VS_Override;
1287
1288    if (II == Ident_final)
1289      return VirtSpecifiers::VS_Final;
1290  }
1291
1292  return VirtSpecifiers::VS_None;
1293}
1294
1295/// ParseOptionalCXX0XVirtSpecifierSeq - Parse a virt-specifier-seq.
1296///
1297///       virt-specifier-seq:
1298///         virt-specifier
1299///         virt-specifier-seq virt-specifier
1300void Parser::ParseOptionalCXX0XVirtSpecifierSeq(VirtSpecifiers &VS) {
1301  while (true) {
1302    VirtSpecifiers::Specifier Specifier = isCXX0XVirtSpecifier();
1303    if (Specifier == VirtSpecifiers::VS_None)
1304      return;
1305
1306    // C++ [class.mem]p8:
1307    //   A virt-specifier-seq shall contain at most one of each virt-specifier.
1308    const char *PrevSpec = 0;
1309    if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec))
1310      Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier)
1311        << PrevSpec
1312        << FixItHint::CreateRemoval(Tok.getLocation());
1313
1314    if (!getLang().CPlusPlus0x)
1315      Diag(Tok.getLocation(), diag::ext_override_control_keyword)
1316        << VirtSpecifiers::getSpecifierName(Specifier);
1317    ConsumeToken();
1318  }
1319}
1320
1321/// isCXX0XFinalKeyword - Determine whether the next token is a C++0x
1322/// contextual 'final' keyword.
1323bool Parser::isCXX0XFinalKeyword() const {
1324  if (!getLang().CPlusPlus)
1325    return false;
1326
1327  if (!Tok.is(tok::identifier))
1328    return false;
1329
1330  // Initialize the contextual keywords.
1331  if (!Ident_final) {
1332    Ident_final = &PP.getIdentifierTable().get("final");
1333    Ident_override = &PP.getIdentifierTable().get("override");
1334  }
1335
1336  return Tok.getIdentifierInfo() == Ident_final;
1337}
1338
1339/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
1340///
1341///       member-declaration:
1342///         decl-specifier-seq[opt] member-declarator-list[opt] ';'
1343///         function-definition ';'[opt]
1344///         ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
1345///         using-declaration                                            [TODO]
1346/// [C++0x] static_assert-declaration
1347///         template-declaration
1348/// [GNU]   '__extension__' member-declaration
1349///
1350///       member-declarator-list:
1351///         member-declarator
1352///         member-declarator-list ',' member-declarator
1353///
1354///       member-declarator:
1355///         declarator virt-specifier-seq[opt] pure-specifier[opt]
1356///         declarator constant-initializer[opt]
1357///         identifier[opt] ':' constant-expression
1358///
1359///       virt-specifier-seq:
1360///         virt-specifier
1361///         virt-specifier-seq virt-specifier
1362///
1363///       virt-specifier:
1364///         override
1365///         final
1366///         new
1367///
1368///       pure-specifier:
1369///         '= 0'
1370///
1371///       constant-initializer:
1372///         '=' constant-expression
1373///
1374void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
1375                                       const ParsedTemplateInfo &TemplateInfo,
1376                                       ParsingDeclRAIIObject *TemplateDiags) {
1377  // Access declarations.
1378  if (!TemplateInfo.Kind &&
1379      (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) &&
1380      !TryAnnotateCXXScopeToken() &&
1381      Tok.is(tok::annot_cxxscope)) {
1382    bool isAccessDecl = false;
1383    if (NextToken().is(tok::identifier))
1384      isAccessDecl = GetLookAheadToken(2).is(tok::semi);
1385    else
1386      isAccessDecl = NextToken().is(tok::kw_operator);
1387
1388    if (isAccessDecl) {
1389      // Collect the scope specifier token we annotated earlier.
1390      CXXScopeSpec SS;
1391      ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
1392
1393      // Try to parse an unqualified-id.
1394      UnqualifiedId Name;
1395      if (ParseUnqualifiedId(SS, false, true, true, ParsedType(), Name)) {
1396        SkipUntil(tok::semi);
1397        return;
1398      }
1399
1400      // TODO: recover from mistakenly-qualified operator declarations.
1401      if (ExpectAndConsume(tok::semi,
1402                           diag::err_expected_semi_after,
1403                           "access declaration",
1404                           tok::semi))
1405        return;
1406
1407      Actions.ActOnUsingDeclaration(getCurScope(), AS,
1408                                    false, SourceLocation(),
1409                                    SS, Name,
1410                                    /* AttrList */ 0,
1411                                    /* IsTypeName */ false,
1412                                    SourceLocation());
1413      return;
1414    }
1415  }
1416
1417  // static_assert-declaration
1418  if (Tok.is(tok::kw_static_assert)) {
1419    // FIXME: Check for templates
1420    SourceLocation DeclEnd;
1421    ParseStaticAssertDeclaration(DeclEnd);
1422    return;
1423  }
1424
1425  if (Tok.is(tok::kw_template)) {
1426    assert(!TemplateInfo.TemplateParams &&
1427           "Nested template improperly parsed?");
1428    SourceLocation DeclEnd;
1429    ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
1430                                         AS);
1431    return;
1432  }
1433
1434  // Handle:  member-declaration ::= '__extension__' member-declaration
1435  if (Tok.is(tok::kw___extension__)) {
1436    // __extension__ silences extension warnings in the subexpression.
1437    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1438    ConsumeToken();
1439    return ParseCXXClassMemberDeclaration(AS, TemplateInfo, TemplateDiags);
1440  }
1441
1442  // Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it
1443  // is a bitfield.
1444  ColonProtectionRAIIObject X(*this);
1445
1446  ParsedAttributesWithRange attrs(AttrFactory);
1447  // Optional C++0x attribute-specifier
1448  MaybeParseCXX0XAttributes(attrs);
1449  MaybeParseMicrosoftAttributes(attrs);
1450
1451  if (Tok.is(tok::kw_using)) {
1452    // FIXME: Check for template aliases
1453
1454    ProhibitAttributes(attrs);
1455
1456    // Eat 'using'.
1457    SourceLocation UsingLoc = ConsumeToken();
1458
1459    if (Tok.is(tok::kw_namespace)) {
1460      Diag(UsingLoc, diag::err_using_namespace_in_class);
1461      SkipUntil(tok::semi, true, true);
1462    } else {
1463      SourceLocation DeclEnd;
1464      // Otherwise, it must be using-declaration.
1465      ParseUsingDeclaration(Declarator::MemberContext, TemplateInfo,
1466                            UsingLoc, DeclEnd, AS);
1467    }
1468    return;
1469  }
1470
1471  // decl-specifier-seq:
1472  // Parse the common declaration-specifiers piece.
1473  ParsingDeclSpec DS(*this, TemplateDiags);
1474  DS.takeAttributesFrom(attrs);
1475  ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class);
1476
1477  MultiTemplateParamsArg TemplateParams(Actions,
1478      TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
1479      TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
1480
1481  if (Tok.is(tok::semi)) {
1482    ConsumeToken();
1483    Decl *TheDecl =
1484      Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS);
1485    DS.complete(TheDecl);
1486    return;
1487  }
1488
1489  ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext);
1490  VirtSpecifiers VS;
1491
1492  if (Tok.isNot(tok::colon)) {
1493    // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1494    ColonProtectionRAIIObject X(*this);
1495
1496    // Parse the first declarator.
1497    ParseDeclarator(DeclaratorInfo);
1498    // Error parsing the declarator?
1499    if (!DeclaratorInfo.hasName()) {
1500      // If so, skip until the semi-colon or a }.
1501      SkipUntil(tok::r_brace, true);
1502      if (Tok.is(tok::semi))
1503        ConsumeToken();
1504      return;
1505    }
1506
1507    ParseOptionalCXX0XVirtSpecifierSeq(VS);
1508
1509    // If attributes exist after the declarator, but before an '{', parse them.
1510    MaybeParseGNUAttributes(DeclaratorInfo);
1511
1512    // function-definition:
1513    if (Tok.is(tok::l_brace)
1514        || (DeclaratorInfo.isFunctionDeclarator() &&
1515            (Tok.is(tok::colon) || Tok.is(tok::kw_try)))) {
1516      if (!DeclaratorInfo.isFunctionDeclarator()) {
1517        Diag(Tok, diag::err_func_def_no_params);
1518        ConsumeBrace();
1519        SkipUntil(tok::r_brace, true);
1520
1521        // Consume the optional ';'
1522        if (Tok.is(tok::semi))
1523          ConsumeToken();
1524        return;
1525      }
1526
1527      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1528        Diag(Tok, diag::err_function_declared_typedef);
1529        // This recovery skips the entire function body. It would be nice
1530        // to simply call ParseCXXInlineMethodDef() below, however Sema
1531        // assumes the declarator represents a function, not a typedef.
1532        ConsumeBrace();
1533        SkipUntil(tok::r_brace, true);
1534
1535        // Consume the optional ';'
1536        if (Tok.is(tok::semi))
1537          ConsumeToken();
1538        return;
1539      }
1540
1541      ParseCXXInlineMethodDef(AS, DeclaratorInfo, TemplateInfo, VS);
1542      // Consume the optional ';'
1543      if (Tok.is(tok::semi))
1544        ConsumeToken();
1545
1546      return;
1547    }
1548  }
1549
1550  // member-declarator-list:
1551  //   member-declarator
1552  //   member-declarator-list ',' member-declarator
1553
1554  llvm::SmallVector<Decl *, 8> DeclsInGroup;
1555  ExprResult BitfieldSize;
1556  ExprResult Init;
1557  bool Deleted = false;
1558
1559  while (1) {
1560    // member-declarator:
1561    //   declarator pure-specifier[opt]
1562    //   declarator constant-initializer[opt]
1563    //   identifier[opt] ':' constant-expression
1564    if (Tok.is(tok::colon)) {
1565      ConsumeToken();
1566      BitfieldSize = ParseConstantExpression();
1567      if (BitfieldSize.isInvalid())
1568        SkipUntil(tok::comma, true, true);
1569    }
1570
1571    ParseOptionalCXX0XVirtSpecifierSeq(VS);
1572
1573    // pure-specifier:
1574    //   '= 0'
1575    //
1576    // constant-initializer:
1577    //   '=' constant-expression
1578    //
1579    // defaulted/deleted function-definition:
1580    //   '=' 'default'                          [TODO]
1581    //   '=' 'delete'
1582    if (Tok.is(tok::equal)) {
1583      ConsumeToken();
1584      if (Tok.is(tok::kw_delete)) {
1585        if (!getLang().CPlusPlus0x)
1586          Diag(Tok, diag::warn_deleted_function_accepted_as_extension);
1587        ConsumeToken();
1588        Deleted = true;
1589      } else {
1590        Init = ParseInitializer();
1591        if (Init.isInvalid())
1592          SkipUntil(tok::comma, true, true);
1593      }
1594    }
1595
1596    // If a simple-asm-expr is present, parse it.
1597    if (Tok.is(tok::kw_asm)) {
1598      SourceLocation Loc;
1599      ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1600      if (AsmLabel.isInvalid())
1601        SkipUntil(tok::comma, true, true);
1602
1603      DeclaratorInfo.setAsmLabel(AsmLabel.release());
1604      DeclaratorInfo.SetRangeEnd(Loc);
1605    }
1606
1607    // If attributes exist after the declarator, parse them.
1608    MaybeParseGNUAttributes(DeclaratorInfo);
1609
1610    // NOTE: If Sema is the Action module and declarator is an instance field,
1611    // this call will *not* return the created decl; It will return null.
1612    // See Sema::ActOnCXXMemberDeclarator for details.
1613
1614    Decl *ThisDecl = 0;
1615    if (DS.isFriendSpecified()) {
1616      // TODO: handle initializers, bitfields, 'delete'
1617      ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
1618                                                 /*IsDefinition*/ false,
1619                                                 move(TemplateParams));
1620    } else {
1621      ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
1622                                                  DeclaratorInfo,
1623                                                  move(TemplateParams),
1624                                                  BitfieldSize.release(),
1625                                                  VS, Init.release(),
1626                                                  /*IsDefinition*/Deleted,
1627                                                  Deleted);
1628    }
1629    if (ThisDecl)
1630      DeclsInGroup.push_back(ThisDecl);
1631
1632    if (DeclaratorInfo.isFunctionDeclarator() &&
1633        DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1634          != DeclSpec::SCS_typedef) {
1635      HandleMemberFunctionDefaultArgs(DeclaratorInfo, ThisDecl);
1636    }
1637
1638    DeclaratorInfo.complete(ThisDecl);
1639
1640    // If we don't have a comma, it is either the end of the list (a ';')
1641    // or an error, bail out.
1642    if (Tok.isNot(tok::comma))
1643      break;
1644
1645    // Consume the comma.
1646    ConsumeToken();
1647
1648    // Parse the next declarator.
1649    DeclaratorInfo.clear();
1650    VS.clear();
1651    BitfieldSize = 0;
1652    Init = 0;
1653    Deleted = false;
1654
1655    // Attributes are only allowed on the second declarator.
1656    MaybeParseGNUAttributes(DeclaratorInfo);
1657
1658    if (Tok.isNot(tok::colon))
1659      ParseDeclarator(DeclaratorInfo);
1660  }
1661
1662  if (ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) {
1663    // Skip to end of block or statement.
1664    SkipUntil(tok::r_brace, true, true);
1665    // If we stopped at a ';', eat it.
1666    if (Tok.is(tok::semi)) ConsumeToken();
1667    return;
1668  }
1669
1670  Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(),
1671                                  DeclsInGroup.size());
1672}
1673
1674/// ParseCXXMemberSpecification - Parse the class definition.
1675///
1676///       member-specification:
1677///         member-declaration member-specification[opt]
1678///         access-specifier ':' member-specification[opt]
1679///
1680void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
1681                                         unsigned TagType, Decl *TagDecl) {
1682  assert((TagType == DeclSpec::TST_struct ||
1683         TagType == DeclSpec::TST_union  ||
1684         TagType == DeclSpec::TST_class) && "Invalid TagType!");
1685
1686  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
1687                                      "parsing struct/union/class body");
1688
1689  // Determine whether this is a non-nested class. Note that local
1690  // classes are *not* considered to be nested classes.
1691  bool NonNestedClass = true;
1692  if (!ClassStack.empty()) {
1693    for (const Scope *S = getCurScope(); S; S = S->getParent()) {
1694      if (S->isClassScope()) {
1695        // We're inside a class scope, so this is a nested class.
1696        NonNestedClass = false;
1697        break;
1698      }
1699
1700      if ((S->getFlags() & Scope::FnScope)) {
1701        // If we're in a function or function template declared in the
1702        // body of a class, then this is a local class rather than a
1703        // nested class.
1704        const Scope *Parent = S->getParent();
1705        if (Parent->isTemplateParamScope())
1706          Parent = Parent->getParent();
1707        if (Parent->isClassScope())
1708          break;
1709      }
1710    }
1711  }
1712
1713  // Enter a scope for the class.
1714  ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
1715
1716  // Note that we are parsing a new (potentially-nested) class definition.
1717  ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass);
1718
1719  if (TagDecl)
1720    Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
1721
1722  SourceLocation FinalLoc;
1723
1724  // Parse the optional 'final' keyword.
1725  if (getLang().CPlusPlus && Tok.is(tok::identifier)) {
1726    IdentifierInfo *II = Tok.getIdentifierInfo();
1727
1728    // Initialize the contextual keywords.
1729    if (!Ident_final) {
1730      Ident_final = &PP.getIdentifierTable().get("final");
1731      Ident_override = &PP.getIdentifierTable().get("override");
1732    }
1733
1734    if (II == Ident_final)
1735      FinalLoc = ConsumeToken();
1736
1737    if (!getLang().CPlusPlus0x)
1738      Diag(FinalLoc, diag::ext_override_control_keyword) << "final";
1739  }
1740
1741  if (Tok.is(tok::colon)) {
1742    ParseBaseClause(TagDecl);
1743
1744    if (!Tok.is(tok::l_brace)) {
1745      Diag(Tok, diag::err_expected_lbrace_after_base_specifiers);
1746
1747      if (TagDecl)
1748        Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
1749      return;
1750    }
1751  }
1752
1753  assert(Tok.is(tok::l_brace));
1754
1755  SourceLocation LBraceLoc = ConsumeBrace();
1756
1757  if (TagDecl)
1758    Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, FinalLoc,
1759                                            LBraceLoc);
1760
1761  // C++ 11p3: Members of a class defined with the keyword class are private
1762  // by default. Members of a class defined with the keywords struct or union
1763  // are public by default.
1764  AccessSpecifier CurAS;
1765  if (TagType == DeclSpec::TST_class)
1766    CurAS = AS_private;
1767  else
1768    CurAS = AS_public;
1769
1770  SourceLocation RBraceLoc;
1771  if (TagDecl) {
1772    // While we still have something to read, read the member-declarations.
1773    while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1774      // Each iteration of this loop reads one member-declaration.
1775
1776      // Check for extraneous top-level semicolon.
1777      if (Tok.is(tok::semi)) {
1778        Diag(Tok, diag::ext_extra_struct_semi)
1779          << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
1780          << FixItHint::CreateRemoval(Tok.getLocation());
1781        ConsumeToken();
1782        continue;
1783      }
1784
1785      AccessSpecifier AS = getAccessSpecifierIfPresent();
1786      if (AS != AS_none) {
1787        // Current token is a C++ access specifier.
1788        CurAS = AS;
1789        SourceLocation ASLoc = Tok.getLocation();
1790        ConsumeToken();
1791        if (Tok.is(tok::colon))
1792          Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation());
1793        else
1794          Diag(Tok, diag::err_expected_colon);
1795        ConsumeToken();
1796        continue;
1797      }
1798
1799      // FIXME: Make sure we don't have a template here.
1800
1801      // Parse all the comma separated declarators.
1802      ParseCXXClassMemberDeclaration(CurAS);
1803    }
1804
1805    RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1806  } else {
1807    SkipUntil(tok::r_brace, false, false);
1808  }
1809
1810  // If attributes exist after class contents, parse them.
1811  ParsedAttributes attrs(AttrFactory);
1812  MaybeParseGNUAttributes(attrs);
1813
1814  if (TagDecl)
1815    Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl,
1816                                              LBraceLoc, RBraceLoc,
1817                                              attrs.getList());
1818
1819  // C++ 9.2p2: Within the class member-specification, the class is regarded as
1820  // complete within function bodies, default arguments,
1821  // exception-specifications, and constructor ctor-initializers (including
1822  // such things in nested classes).
1823  //
1824  // FIXME: Only function bodies and constructor ctor-initializers are
1825  // parsed correctly, fix the rest.
1826  if (TagDecl && NonNestedClass) {
1827    // We are not inside a nested class. This class and its nested classes
1828    // are complete and we can parse the delayed portions of method
1829    // declarations and the lexed inline method definitions.
1830    SourceLocation SavedPrevTokLocation = PrevTokLocation;
1831    ParseLexedMethodDeclarations(getCurrentClass());
1832    ParseLexedMethodDefs(getCurrentClass());
1833    PrevTokLocation = SavedPrevTokLocation;
1834  }
1835
1836  if (TagDecl)
1837    Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
1838
1839  // Leave the class scope.
1840  ParsingDef.Pop();
1841  ClassScope.Exit();
1842}
1843
1844/// ParseConstructorInitializer - Parse a C++ constructor initializer,
1845/// which explicitly initializes the members or base classes of a
1846/// class (C++ [class.base.init]). For example, the three initializers
1847/// after the ':' in the Derived constructor below:
1848///
1849/// @code
1850/// class Base { };
1851/// class Derived : Base {
1852///   int x;
1853///   float f;
1854/// public:
1855///   Derived(float f) : Base(), x(17), f(f) { }
1856/// };
1857/// @endcode
1858///
1859/// [C++]  ctor-initializer:
1860///          ':' mem-initializer-list
1861///
1862/// [C++]  mem-initializer-list:
1863///          mem-initializer ...[opt]
1864///          mem-initializer ...[opt] , mem-initializer-list
1865void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) {
1866  assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'");
1867
1868  SourceLocation ColonLoc = ConsumeToken();
1869
1870  llvm::SmallVector<CXXCtorInitializer*, 4> MemInitializers;
1871  bool AnyErrors = false;
1872
1873  do {
1874    if (Tok.is(tok::code_completion)) {
1875      Actions.CodeCompleteConstructorInitializer(ConstructorDecl,
1876                                                 MemInitializers.data(),
1877                                                 MemInitializers.size());
1878      ConsumeCodeCompletionToken();
1879    } else {
1880      MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
1881      if (!MemInit.isInvalid())
1882        MemInitializers.push_back(MemInit.get());
1883      else
1884        AnyErrors = true;
1885    }
1886
1887    if (Tok.is(tok::comma))
1888      ConsumeToken();
1889    else if (Tok.is(tok::l_brace))
1890      break;
1891    // If the next token looks like a base or member initializer, assume that
1892    // we're just missing a comma.
1893    else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
1894      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
1895      Diag(Loc, diag::err_ctor_init_missing_comma)
1896        << FixItHint::CreateInsertion(Loc, ", ");
1897    } else {
1898      // Skip over garbage, until we get to '{'.  Don't eat the '{'.
1899      Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
1900      SkipUntil(tok::l_brace, true, true);
1901      break;
1902    }
1903  } while (true);
1904
1905  Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc,
1906                               MemInitializers.data(), MemInitializers.size(),
1907                               AnyErrors);
1908}
1909
1910/// ParseMemInitializer - Parse a C++ member initializer, which is
1911/// part of a constructor initializer that explicitly initializes one
1912/// member or base class (C++ [class.base.init]). See
1913/// ParseConstructorInitializer for an example.
1914///
1915/// [C++] mem-initializer:
1916///         mem-initializer-id '(' expression-list[opt] ')'
1917///
1918/// [C++] mem-initializer-id:
1919///         '::'[opt] nested-name-specifier[opt] class-name
1920///         identifier
1921Parser::MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) {
1922  // parse '::'[opt] nested-name-specifier[opt]
1923  CXXScopeSpec SS;
1924  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
1925  ParsedType TemplateTypeTy;
1926  if (Tok.is(tok::annot_template_id)) {
1927    TemplateIdAnnotation *TemplateId
1928      = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1929    if (TemplateId->Kind == TNK_Type_template ||
1930        TemplateId->Kind == TNK_Dependent_template_name) {
1931      AnnotateTemplateIdTokenAsType();
1932      assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
1933      TemplateTypeTy = getTypeAnnotation(Tok);
1934    }
1935  }
1936  if (!TemplateTypeTy && Tok.isNot(tok::identifier)) {
1937    Diag(Tok, diag::err_expected_member_or_base_name);
1938    return true;
1939  }
1940
1941  // Get the identifier. This may be a member name or a class name,
1942  // but we'll let the semantic analysis determine which it is.
1943  IdentifierInfo *II = Tok.is(tok::identifier) ? Tok.getIdentifierInfo() : 0;
1944  SourceLocation IdLoc = ConsumeToken();
1945
1946  // Parse the '('.
1947  if (Tok.isNot(tok::l_paren)) {
1948    Diag(Tok, diag::err_expected_lparen);
1949    return true;
1950  }
1951  SourceLocation LParenLoc = ConsumeParen();
1952
1953  // Parse the optional expression-list.
1954  ExprVector ArgExprs(Actions);
1955  CommaLocsTy CommaLocs;
1956  if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
1957    SkipUntil(tok::r_paren);
1958    return true;
1959  }
1960
1961  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
1962
1963  SourceLocation EllipsisLoc;
1964  if (Tok.is(tok::ellipsis))
1965    EllipsisLoc = ConsumeToken();
1966
1967  return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
1968                                     TemplateTypeTy, IdLoc,
1969                                     LParenLoc, ArgExprs.take(),
1970                                     ArgExprs.size(), RParenLoc,
1971                                     EllipsisLoc);
1972}
1973
1974/// \brief Parse a C++ exception-specification if present (C++0x [except.spec]).
1975///
1976///       exception-specification:
1977///         dynamic-exception-specification
1978///         noexcept-specification
1979///
1980///       noexcept-specification:
1981///         'noexcept'
1982///         'noexcept' '(' constant-expression ')'
1983ExceptionSpecificationType
1984Parser::MaybeParseExceptionSpecification(SourceRange &SpecificationRange,
1985                    llvm::SmallVectorImpl<ParsedType> &DynamicExceptions,
1986                    llvm::SmallVectorImpl<SourceRange> &DynamicExceptionRanges,
1987                    ExprResult &NoexceptExpr) {
1988  ExceptionSpecificationType Result = EST_None;
1989
1990  // See if there's a dynamic specification.
1991  if (Tok.is(tok::kw_throw)) {
1992    Result = ParseDynamicExceptionSpecification(SpecificationRange,
1993                                                DynamicExceptions,
1994                                                DynamicExceptionRanges);
1995    assert(DynamicExceptions.size() == DynamicExceptionRanges.size() &&
1996           "Produced different number of exception types and ranges.");
1997  }
1998
1999  // If there's no noexcept specification, we're done.
2000  if (Tok.isNot(tok::kw_noexcept))
2001    return Result;
2002
2003  // If we already had a dynamic specification, parse the noexcept for,
2004  // recovery, but emit a diagnostic and don't store the results.
2005  SourceRange NoexceptRange;
2006  ExceptionSpecificationType NoexceptType = EST_None;
2007
2008  SourceLocation KeywordLoc = ConsumeToken();
2009  if (Tok.is(tok::l_paren)) {
2010    // There is an argument.
2011    SourceLocation LParenLoc = ConsumeParen();
2012    NoexceptType = EST_ComputedNoexcept;
2013    NoexceptExpr = ParseConstantExpression();
2014    // The argument must be contextually convertible to bool. We use
2015    // ActOnBooleanCondition for this purpose.
2016    if (!NoexceptExpr.isInvalid())
2017      NoexceptExpr = Actions.ActOnBooleanCondition(getCurScope(), KeywordLoc,
2018                                                   NoexceptExpr.get());
2019    SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2020    NoexceptRange = SourceRange(KeywordLoc, RParenLoc);
2021  } else {
2022    // There is no argument.
2023    NoexceptType = EST_BasicNoexcept;
2024    NoexceptRange = SourceRange(KeywordLoc, KeywordLoc);
2025  }
2026
2027  if (Result == EST_None) {
2028    SpecificationRange = NoexceptRange;
2029    Result = NoexceptType;
2030
2031    // If there's a dynamic specification after a noexcept specification,
2032    // parse that and ignore the results.
2033    if (Tok.is(tok::kw_throw)) {
2034      Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
2035      ParseDynamicExceptionSpecification(NoexceptRange, DynamicExceptions,
2036                                         DynamicExceptionRanges);
2037    }
2038  } else {
2039    Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
2040  }
2041
2042  return Result;
2043}
2044
2045/// ParseDynamicExceptionSpecification - Parse a C++
2046/// dynamic-exception-specification (C++ [except.spec]).
2047///
2048///       dynamic-exception-specification:
2049///         'throw' '(' type-id-list [opt] ')'
2050/// [MS]    'throw' '(' '...' ')'
2051///
2052///       type-id-list:
2053///         type-id ... [opt]
2054///         type-id-list ',' type-id ... [opt]
2055///
2056ExceptionSpecificationType Parser::ParseDynamicExceptionSpecification(
2057                                  SourceRange &SpecificationRange,
2058                                  llvm::SmallVectorImpl<ParsedType> &Exceptions,
2059                                  llvm::SmallVectorImpl<SourceRange> &Ranges) {
2060  assert(Tok.is(tok::kw_throw) && "expected throw");
2061
2062  SpecificationRange.setBegin(ConsumeToken());
2063
2064  if (!Tok.is(tok::l_paren)) {
2065    Diag(Tok, diag::err_expected_lparen_after) << "throw";
2066    SpecificationRange.setEnd(SpecificationRange.getBegin());
2067    return EST_DynamicNone;
2068  }
2069  SourceLocation LParenLoc = ConsumeParen();
2070
2071  // Parse throw(...), a Microsoft extension that means "this function
2072  // can throw anything".
2073  if (Tok.is(tok::ellipsis)) {
2074    SourceLocation EllipsisLoc = ConsumeToken();
2075    if (!getLang().Microsoft)
2076      Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
2077    SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2078    SpecificationRange.setEnd(RParenLoc);
2079    return EST_MSAny;
2080  }
2081
2082  // Parse the sequence of type-ids.
2083  SourceRange Range;
2084  while (Tok.isNot(tok::r_paren)) {
2085    TypeResult Res(ParseTypeName(&Range));
2086
2087    if (Tok.is(tok::ellipsis)) {
2088      // C++0x [temp.variadic]p5:
2089      //   - In a dynamic-exception-specification (15.4); the pattern is a
2090      //     type-id.
2091      SourceLocation Ellipsis = ConsumeToken();
2092      Range.setEnd(Ellipsis);
2093      if (!Res.isInvalid())
2094        Res = Actions.ActOnPackExpansion(Res.get(), Ellipsis);
2095    }
2096
2097    if (!Res.isInvalid()) {
2098      Exceptions.push_back(Res.get());
2099      Ranges.push_back(Range);
2100    }
2101
2102    if (Tok.is(tok::comma))
2103      ConsumeToken();
2104    else
2105      break;
2106  }
2107
2108  SpecificationRange.setEnd(MatchRHSPunctuation(tok::r_paren, LParenLoc));
2109  return Exceptions.empty() ? EST_DynamicNone : EST_Dynamic;
2110}
2111
2112/// ParseTrailingReturnType - Parse a trailing return type on a new-style
2113/// function declaration.
2114TypeResult Parser::ParseTrailingReturnType() {
2115  assert(Tok.is(tok::arrow) && "expected arrow");
2116
2117  ConsumeToken();
2118
2119  // FIXME: Need to suppress declarations when parsing this typename.
2120  // Otherwise in this function definition:
2121  //
2122  //   auto f() -> struct X {}
2123  //
2124  // struct X is parsed as class definition because of the trailing
2125  // brace.
2126
2127  SourceRange Range;
2128  return ParseTypeName(&Range);
2129}
2130
2131/// \brief We have just started parsing the definition of a new class,
2132/// so push that class onto our stack of classes that is currently
2133/// being parsed.
2134Sema::ParsingClassState
2135Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass) {
2136  assert((NonNestedClass || !ClassStack.empty()) &&
2137         "Nested class without outer class");
2138  ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass));
2139  return Actions.PushParsingClass();
2140}
2141
2142/// \brief Deallocate the given parsed class and all of its nested
2143/// classes.
2144void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
2145  for (unsigned I = 0, N = Class->LateParsedDeclarations.size(); I != N; ++I)
2146    delete Class->LateParsedDeclarations[I];
2147  delete Class;
2148}
2149
2150/// \brief Pop the top class of the stack of classes that are
2151/// currently being parsed.
2152///
2153/// This routine should be called when we have finished parsing the
2154/// definition of a class, but have not yet popped the Scope
2155/// associated with the class's definition.
2156///
2157/// \returns true if the class we've popped is a top-level class,
2158/// false otherwise.
2159void Parser::PopParsingClass(Sema::ParsingClassState state) {
2160  assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
2161
2162  Actions.PopParsingClass(state);
2163
2164  ParsingClass *Victim = ClassStack.top();
2165  ClassStack.pop();
2166  if (Victim->TopLevelClass) {
2167    // Deallocate all of the nested classes of this class,
2168    // recursively: we don't need to keep any of this information.
2169    DeallocateParsedClasses(Victim);
2170    return;
2171  }
2172  assert(!ClassStack.empty() && "Missing top-level class?");
2173
2174  if (Victim->LateParsedDeclarations.empty()) {
2175    // The victim is a nested class, but we will not need to perform
2176    // any processing after the definition of this class since it has
2177    // no members whose handling was delayed. Therefore, we can just
2178    // remove this nested class.
2179    DeallocateParsedClasses(Victim);
2180    return;
2181  }
2182
2183  // This nested class has some members that will need to be processed
2184  // after the top-level class is completely defined. Therefore, add
2185  // it to the list of nested classes within its parent.
2186  assert(getCurScope()->isClassScope() && "Nested class outside of class scope?");
2187  ClassStack.top()->LateParsedDeclarations.push_back(new LateParsedClass(this, Victim));
2188  Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope();
2189}
2190
2191/// ParseCXX0XAttributes - Parse a C++0x attribute-specifier. Currently only
2192/// parses standard attributes.
2193///
2194/// [C++0x] attribute-specifier:
2195///         '[' '[' attribute-list ']' ']'
2196///
2197/// [C++0x] attribute-list:
2198///         attribute[opt]
2199///         attribute-list ',' attribute[opt]
2200///
2201/// [C++0x] attribute:
2202///         attribute-token attribute-argument-clause[opt]
2203///
2204/// [C++0x] attribute-token:
2205///         identifier
2206///         attribute-scoped-token
2207///
2208/// [C++0x] attribute-scoped-token:
2209///         attribute-namespace '::' identifier
2210///
2211/// [C++0x] attribute-namespace:
2212///         identifier
2213///
2214/// [C++0x] attribute-argument-clause:
2215///         '(' balanced-token-seq ')'
2216///
2217/// [C++0x] balanced-token-seq:
2218///         balanced-token
2219///         balanced-token-seq balanced-token
2220///
2221/// [C++0x] balanced-token:
2222///         '(' balanced-token-seq ')'
2223///         '[' balanced-token-seq ']'
2224///         '{' balanced-token-seq '}'
2225///         any token but '(', ')', '[', ']', '{', or '}'
2226void Parser::ParseCXX0XAttributes(ParsedAttributesWithRange &attrs,
2227                                  SourceLocation *endLoc) {
2228  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)
2229      && "Not a C++0x attribute list");
2230
2231  SourceLocation StartLoc = Tok.getLocation(), Loc;
2232
2233  ConsumeBracket();
2234  ConsumeBracket();
2235
2236  if (Tok.is(tok::comma)) {
2237    Diag(Tok.getLocation(), diag::err_expected_ident);
2238    ConsumeToken();
2239  }
2240
2241  while (Tok.is(tok::identifier) || Tok.is(tok::comma)) {
2242    // attribute not present
2243    if (Tok.is(tok::comma)) {
2244      ConsumeToken();
2245      continue;
2246    }
2247
2248    IdentifierInfo *ScopeName = 0, *AttrName = Tok.getIdentifierInfo();
2249    SourceLocation ScopeLoc, AttrLoc = ConsumeToken();
2250
2251    // scoped attribute
2252    if (Tok.is(tok::coloncolon)) {
2253      ConsumeToken();
2254
2255      if (!Tok.is(tok::identifier)) {
2256        Diag(Tok.getLocation(), diag::err_expected_ident);
2257        SkipUntil(tok::r_square, tok::comma, true, true);
2258        continue;
2259      }
2260
2261      ScopeName = AttrName;
2262      ScopeLoc = AttrLoc;
2263
2264      AttrName = Tok.getIdentifierInfo();
2265      AttrLoc = ConsumeToken();
2266    }
2267
2268    bool AttrParsed = false;
2269    // No scoped names are supported; ideally we could put all non-standard
2270    // attributes into namespaces.
2271    if (!ScopeName) {
2272      switch(AttributeList::getKind(AttrName))
2273      {
2274      // No arguments
2275      case AttributeList::AT_carries_dependency:
2276      case AttributeList::AT_noreturn: {
2277        if (Tok.is(tok::l_paren)) {
2278          Diag(Tok.getLocation(), diag::err_cxx0x_attribute_forbids_arguments)
2279            << AttrName->getName();
2280          break;
2281        }
2282
2283        attrs.addNew(AttrName, AttrLoc, 0, AttrLoc, 0,
2284                     SourceLocation(), 0, 0, false, true);
2285        AttrParsed = true;
2286        break;
2287      }
2288
2289      // One argument; must be a type-id or assignment-expression
2290      case AttributeList::AT_aligned: {
2291        if (Tok.isNot(tok::l_paren)) {
2292          Diag(Tok.getLocation(), diag::err_cxx0x_attribute_requires_arguments)
2293            << AttrName->getName();
2294          break;
2295        }
2296        SourceLocation ParamLoc = ConsumeParen();
2297
2298        ExprResult ArgExpr = ParseCXX0XAlignArgument(ParamLoc);
2299
2300        MatchRHSPunctuation(tok::r_paren, ParamLoc);
2301
2302        ExprVector ArgExprs(Actions);
2303        ArgExprs.push_back(ArgExpr.release());
2304        attrs.addNew(AttrName, AttrLoc, 0, AttrLoc,
2305                     0, ParamLoc, ArgExprs.take(), 1,
2306                     false, true);
2307
2308        AttrParsed = true;
2309        break;
2310      }
2311
2312      // Silence warnings
2313      default: break;
2314      }
2315    }
2316
2317    // Skip the entire parameter clause, if any
2318    if (!AttrParsed && Tok.is(tok::l_paren)) {
2319      ConsumeParen();
2320      // SkipUntil maintains the balancedness of tokens.
2321      SkipUntil(tok::r_paren, false);
2322    }
2323  }
2324
2325  if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2326    SkipUntil(tok::r_square, false);
2327  Loc = Tok.getLocation();
2328  if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2329    SkipUntil(tok::r_square, false);
2330
2331  attrs.Range = SourceRange(StartLoc, Loc);
2332}
2333
2334/// ParseCXX0XAlignArgument - Parse the argument to C++0x's [[align]]
2335/// attribute.
2336///
2337/// FIXME: Simply returns an alignof() expression if the argument is a
2338/// type. Ideally, the type should be propagated directly into Sema.
2339///
2340/// [C++0x] 'align' '(' type-id ')'
2341/// [C++0x] 'align' '(' assignment-expression ')'
2342ExprResult Parser::ParseCXX0XAlignArgument(SourceLocation Start) {
2343  if (isTypeIdInParens()) {
2344    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2345    SourceLocation TypeLoc = Tok.getLocation();
2346    ParsedType Ty = ParseTypeName().get();
2347    SourceRange TypeRange(Start, Tok.getLocation());
2348    return Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2349                                                Ty.getAsOpaquePtr(), TypeRange);
2350  } else
2351    return ParseConstantExpression();
2352}
2353
2354/// ParseMicrosoftAttributes - Parse a Microsoft attribute [Attr]
2355///
2356/// [MS] ms-attribute:
2357///             '[' token-seq ']'
2358///
2359/// [MS] ms-attribute-seq:
2360///             ms-attribute[opt]
2361///             ms-attribute ms-attribute-seq
2362void Parser::ParseMicrosoftAttributes(ParsedAttributes &attrs,
2363                                      SourceLocation *endLoc) {
2364  assert(Tok.is(tok::l_square) && "Not a Microsoft attribute list");
2365
2366  while (Tok.is(tok::l_square)) {
2367    ConsumeBracket();
2368    SkipUntil(tok::r_square, true, true);
2369    if (endLoc) *endLoc = Tok.getLocation();
2370    ExpectAndConsume(tok::r_square, diag::err_expected_rsquare);
2371  }
2372}
2373