ParseDeclCXX.cpp revision 7796eb5643244f3134834253ce5ea89107ac21c1
1//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the C++ Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Basic/OperatorKinds.h"
15#include "clang/Parse/Parser.h"
16#include "clang/Parse/ParseDiagnostic.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ParsedTemplate.h"
20#include "clang/Sema/PrettyDeclStackTrace.h"
21#include "llvm/ADT/SmallString.h"
22#include "RAIIObjectsForParser.h"
23using namespace clang;
24
25/// ParseNamespace - We know that the current token is a namespace keyword. This
26/// may either be a top level namespace or a block-level namespace alias. If
27/// there was an inline keyword, it has already been parsed.
28///
29///       namespace-definition: [C++ 7.3: basic.namespace]
30///         named-namespace-definition
31///         unnamed-namespace-definition
32///
33///       unnamed-namespace-definition:
34///         'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
35///
36///       named-namespace-definition:
37///         original-namespace-definition
38///         extension-namespace-definition
39///
40///       original-namespace-definition:
41///         'inline'[opt] 'namespace' identifier attributes[opt]
42///             '{' namespace-body '}'
43///
44///       extension-namespace-definition:
45///         'inline'[opt] 'namespace' original-namespace-name
46///             '{' namespace-body '}'
47///
48///       namespace-alias-definition:  [C++ 7.3.2: namespace.alias]
49///         'namespace' identifier '=' qualified-namespace-specifier ';'
50///
51Decl *Parser::ParseNamespace(unsigned Context,
52                             SourceLocation &DeclEnd,
53                             SourceLocation InlineLoc) {
54  assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
55  SourceLocation NamespaceLoc = ConsumeToken();  // eat the 'namespace'.
56  ObjCDeclContextSwitch ObjCDC(*this);
57
58  if (Tok.is(tok::code_completion)) {
59    Actions.CodeCompleteNamespaceDecl(getCurScope());
60    cutOffParsing();
61    return 0;
62  }
63
64  SourceLocation IdentLoc;
65  IdentifierInfo *Ident = 0;
66  std::vector<SourceLocation> ExtraIdentLoc;
67  std::vector<IdentifierInfo*> ExtraIdent;
68  std::vector<SourceLocation> ExtraNamespaceLoc;
69
70  Token attrTok;
71
72  if (Tok.is(tok::identifier)) {
73    Ident = Tok.getIdentifierInfo();
74    IdentLoc = ConsumeToken();  // eat the identifier.
75    while (Tok.is(tok::coloncolon) && NextToken().is(tok::identifier)) {
76      ExtraNamespaceLoc.push_back(ConsumeToken());
77      ExtraIdent.push_back(Tok.getIdentifierInfo());
78      ExtraIdentLoc.push_back(ConsumeToken());
79    }
80  }
81
82  // Read label attributes, if present.
83  ParsedAttributes attrs(AttrFactory);
84  if (Tok.is(tok::kw___attribute)) {
85    attrTok = Tok;
86    ParseGNUAttributes(attrs);
87  }
88
89  if (Tok.is(tok::equal)) {
90    if (!attrs.empty())
91      Diag(attrTok, diag::err_unexpected_namespace_attributes_alias);
92    if (InlineLoc.isValid())
93      Diag(InlineLoc, diag::err_inline_namespace_alias)
94          << FixItHint::CreateRemoval(InlineLoc);
95    return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
96  }
97
98
99  BalancedDelimiterTracker T(*this, tok::l_brace);
100  if (T.consumeOpen()) {
101    if (!ExtraIdent.empty()) {
102      Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
103          << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
104    }
105    Diag(Tok, Ident ? diag::err_expected_lbrace :
106         diag::err_expected_ident_lbrace);
107    return 0;
108  }
109
110  if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() ||
111      getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() ||
112      getCurScope()->getFnParent()) {
113    if (!ExtraIdent.empty()) {
114      Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
115          << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
116    }
117    Diag(T.getOpenLocation(), diag::err_namespace_nonnamespace_scope);
118    SkipUntil(tok::r_brace, false);
119    return 0;
120  }
121
122  if (!ExtraIdent.empty()) {
123    TentativeParsingAction TPA(*this);
124    SkipUntil(tok::r_brace, /*StopAtSemi*/false, /*DontConsume*/true);
125    Token rBraceToken = Tok;
126    TPA.Revert();
127
128    if (!rBraceToken.is(tok::r_brace)) {
129      Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
130          << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
131    } else {
132      std::string NamespaceFix;
133      for (std::vector<IdentifierInfo*>::iterator I = ExtraIdent.begin(),
134           E = ExtraIdent.end(); I != E; ++I) {
135        NamespaceFix += " { namespace ";
136        NamespaceFix += (*I)->getName();
137      }
138
139      std::string RBraces;
140      for (unsigned i = 0, e = ExtraIdent.size(); i != e; ++i)
141        RBraces +=  "} ";
142
143      Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
144          << FixItHint::CreateReplacement(SourceRange(ExtraNamespaceLoc.front(),
145                                                      ExtraIdentLoc.back()),
146                                          NamespaceFix)
147          << FixItHint::CreateInsertion(rBraceToken.getLocation(), RBraces);
148    }
149  }
150
151  // If we're still good, complain about inline namespaces in non-C++0x now.
152  if (InlineLoc.isValid())
153    Diag(InlineLoc, getLangOpts().CPlusPlus0x ?
154         diag::warn_cxx98_compat_inline_namespace : diag::ext_inline_namespace);
155
156  // Enter a scope for the namespace.
157  ParseScope NamespaceScope(this, Scope::DeclScope);
158
159  Decl *NamespcDecl =
160    Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, NamespaceLoc,
161                                   IdentLoc, Ident, T.getOpenLocation(),
162                                   attrs.getList());
163
164  PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc,
165                                      "parsing namespace");
166
167  // Parse the contents of the namespace.  This includes parsing recovery on
168  // any improperly nested namespaces.
169  ParseInnerNamespace(ExtraIdentLoc, ExtraIdent, ExtraNamespaceLoc, 0,
170                      InlineLoc, attrs, T);
171
172  // Leave the namespace scope.
173  NamespaceScope.Exit();
174
175  DeclEnd = T.getCloseLocation();
176  Actions.ActOnFinishNamespaceDef(NamespcDecl, DeclEnd);
177
178  return NamespcDecl;
179}
180
181/// ParseInnerNamespace - Parse the contents of a namespace.
182void Parser::ParseInnerNamespace(std::vector<SourceLocation>& IdentLoc,
183                                 std::vector<IdentifierInfo*>& Ident,
184                                 std::vector<SourceLocation>& NamespaceLoc,
185                                 unsigned int index, SourceLocation& InlineLoc,
186                                 ParsedAttributes& attrs,
187                                 BalancedDelimiterTracker &Tracker) {
188  if (index == Ident.size()) {
189    while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
190      ParsedAttributesWithRange attrs(AttrFactory);
191      MaybeParseCXX0XAttributes(attrs);
192      MaybeParseMicrosoftAttributes(attrs);
193      ParseExternalDeclaration(attrs);
194    }
195
196    // The caller is what called check -- we are simply calling
197    // the close for it.
198    Tracker.consumeClose();
199
200    return;
201  }
202
203  // Parse improperly nested namespaces.
204  ParseScope NamespaceScope(this, Scope::DeclScope);
205  Decl *NamespcDecl =
206    Actions.ActOnStartNamespaceDef(getCurScope(), SourceLocation(),
207                                   NamespaceLoc[index], IdentLoc[index],
208                                   Ident[index], Tracker.getOpenLocation(),
209                                   attrs.getList());
210
211  ParseInnerNamespace(IdentLoc, Ident, NamespaceLoc, ++index, InlineLoc,
212                      attrs, Tracker);
213
214  NamespaceScope.Exit();
215
216  Actions.ActOnFinishNamespaceDef(NamespcDecl, Tracker.getCloseLocation());
217}
218
219/// ParseNamespaceAlias - Parse the part after the '=' in a namespace
220/// alias definition.
221///
222Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
223                                  SourceLocation AliasLoc,
224                                  IdentifierInfo *Alias,
225                                  SourceLocation &DeclEnd) {
226  assert(Tok.is(tok::equal) && "Not equal token");
227
228  ConsumeToken(); // eat the '='.
229
230  if (Tok.is(tok::code_completion)) {
231    Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
232    cutOffParsing();
233    return 0;
234  }
235
236  CXXScopeSpec SS;
237  // Parse (optional) nested-name-specifier.
238  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
239
240  if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
241    Diag(Tok, diag::err_expected_namespace_name);
242    // Skip to end of the definition and eat the ';'.
243    SkipUntil(tok::semi);
244    return 0;
245  }
246
247  // Parse identifier.
248  IdentifierInfo *Ident = Tok.getIdentifierInfo();
249  SourceLocation IdentLoc = ConsumeToken();
250
251  // Eat the ';'.
252  DeclEnd = Tok.getLocation();
253  ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name,
254                   "", tok::semi);
255
256  return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias,
257                                        SS, IdentLoc, Ident);
258}
259
260/// ParseLinkage - We know that the current token is a string_literal
261/// and just before that, that extern was seen.
262///
263///       linkage-specification: [C++ 7.5p2: dcl.link]
264///         'extern' string-literal '{' declaration-seq[opt] '}'
265///         'extern' string-literal declaration
266///
267Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) {
268  assert(Tok.is(tok::string_literal) && "Not a string literal!");
269  SmallString<8> LangBuffer;
270  bool Invalid = false;
271  StringRef Lang = PP.getSpelling(Tok, LangBuffer, &Invalid);
272  if (Invalid)
273    return 0;
274
275  // FIXME: This is incorrect: linkage-specifiers are parsed in translation
276  // phase 7, so string-literal concatenation is supposed to occur.
277  //   extern "" "C" "" "+" "+" { } is legal.
278  if (Tok.hasUDSuffix())
279    Diag(Tok, diag::err_invalid_string_udl);
280  SourceLocation Loc = ConsumeStringToken();
281
282  ParseScope LinkageScope(this, Scope::DeclScope);
283  Decl *LinkageSpec
284    = Actions.ActOnStartLinkageSpecification(getCurScope(),
285                                             DS.getSourceRange().getBegin(),
286                                             Loc, Lang,
287                                      Tok.is(tok::l_brace) ? Tok.getLocation()
288                                                           : SourceLocation());
289
290  ParsedAttributesWithRange attrs(AttrFactory);
291  MaybeParseCXX0XAttributes(attrs);
292  MaybeParseMicrosoftAttributes(attrs);
293
294  if (Tok.isNot(tok::l_brace)) {
295    // Reset the source range in DS, as the leading "extern"
296    // does not really belong to the inner declaration ...
297    DS.SetRangeStart(SourceLocation());
298    DS.SetRangeEnd(SourceLocation());
299    // ... but anyway remember that such an "extern" was seen.
300    DS.setExternInLinkageSpec(true);
301    ParseExternalDeclaration(attrs, &DS);
302    return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
303                                                   SourceLocation());
304  }
305
306  DS.abort();
307
308  ProhibitAttributes(attrs);
309
310  BalancedDelimiterTracker T(*this, tok::l_brace);
311  T.consumeOpen();
312  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
313    ParsedAttributesWithRange attrs(AttrFactory);
314    MaybeParseCXX0XAttributes(attrs);
315    MaybeParseMicrosoftAttributes(attrs);
316    ParseExternalDeclaration(attrs);
317  }
318
319  T.consumeClose();
320  return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
321                                                 T.getCloseLocation());
322}
323
324/// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
325/// using-directive. Assumes that current token is 'using'.
326Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
327                                         const ParsedTemplateInfo &TemplateInfo,
328                                               SourceLocation &DeclEnd,
329                                             ParsedAttributesWithRange &attrs,
330                                               Decl **OwnedType) {
331  assert(Tok.is(tok::kw_using) && "Not using token");
332  ObjCDeclContextSwitch ObjCDC(*this);
333
334  // Eat 'using'.
335  SourceLocation UsingLoc = ConsumeToken();
336
337  if (Tok.is(tok::code_completion)) {
338    Actions.CodeCompleteUsing(getCurScope());
339    cutOffParsing();
340    return 0;
341  }
342
343  // 'using namespace' means this is a using-directive.
344  if (Tok.is(tok::kw_namespace)) {
345    // Template parameters are always an error here.
346    if (TemplateInfo.Kind) {
347      SourceRange R = TemplateInfo.getSourceRange();
348      Diag(UsingLoc, diag::err_templated_using_directive)
349        << R << FixItHint::CreateRemoval(R);
350    }
351
352    return ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs);
353  }
354
355  // Otherwise, it must be a using-declaration or an alias-declaration.
356
357  // Using declarations can't have attributes.
358  ProhibitAttributes(attrs);
359
360  return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd,
361                                    AS_none, OwnedType);
362}
363
364/// ParseUsingDirective - Parse C++ using-directive, assumes
365/// that current token is 'namespace' and 'using' was already parsed.
366///
367///       using-directive: [C++ 7.3.p4: namespace.udir]
368///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
369///                 namespace-name ;
370/// [GNU] using-directive:
371///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
372///                 namespace-name attributes[opt] ;
373///
374Decl *Parser::ParseUsingDirective(unsigned Context,
375                                  SourceLocation UsingLoc,
376                                  SourceLocation &DeclEnd,
377                                  ParsedAttributes &attrs) {
378  assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
379
380  // Eat 'namespace'.
381  SourceLocation NamespcLoc = ConsumeToken();
382
383  if (Tok.is(tok::code_completion)) {
384    Actions.CodeCompleteUsingDirective(getCurScope());
385    cutOffParsing();
386    return 0;
387  }
388
389  CXXScopeSpec SS;
390  // Parse (optional) nested-name-specifier.
391  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
392
393  IdentifierInfo *NamespcName = 0;
394  SourceLocation IdentLoc = SourceLocation();
395
396  // Parse namespace-name.
397  if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
398    Diag(Tok, diag::err_expected_namespace_name);
399    // If there was invalid namespace name, skip to end of decl, and eat ';'.
400    SkipUntil(tok::semi);
401    // FIXME: Are there cases, when we would like to call ActOnUsingDirective?
402    return 0;
403  }
404
405  // Parse identifier.
406  NamespcName = Tok.getIdentifierInfo();
407  IdentLoc = ConsumeToken();
408
409  // Parse (optional) attributes (most likely GNU strong-using extension).
410  bool GNUAttr = false;
411  if (Tok.is(tok::kw___attribute)) {
412    GNUAttr = true;
413    ParseGNUAttributes(attrs);
414  }
415
416  // Eat ';'.
417  DeclEnd = Tok.getLocation();
418  ExpectAndConsume(tok::semi,
419                   GNUAttr ? diag::err_expected_semi_after_attribute_list
420                           : diag::err_expected_semi_after_namespace_name,
421                   "", tok::semi);
422
423  return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
424                                     IdentLoc, NamespcName, attrs.getList());
425}
426
427/// ParseUsingDeclaration - Parse C++ using-declaration or alias-declaration.
428/// Assumes that 'using' was already seen.
429///
430///     using-declaration: [C++ 7.3.p3: namespace.udecl]
431///       'using' 'typename'[opt] ::[opt] nested-name-specifier
432///               unqualified-id
433///       'using' :: unqualified-id
434///
435///     alias-declaration: C++0x [decl.typedef]p2
436///       'using' identifier = type-id ;
437///
438Decl *Parser::ParseUsingDeclaration(unsigned Context,
439                                    const ParsedTemplateInfo &TemplateInfo,
440                                    SourceLocation UsingLoc,
441                                    SourceLocation &DeclEnd,
442                                    AccessSpecifier AS,
443                                    Decl **OwnedType) {
444  CXXScopeSpec SS;
445  SourceLocation TypenameLoc;
446  bool IsTypeName;
447
448  // Ignore optional 'typename'.
449  // FIXME: This is wrong; we should parse this as a typename-specifier.
450  if (Tok.is(tok::kw_typename)) {
451    TypenameLoc = Tok.getLocation();
452    ConsumeToken();
453    IsTypeName = true;
454  }
455  else
456    IsTypeName = false;
457
458  // Parse nested-name-specifier.
459  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
460
461  // Check nested-name specifier.
462  if (SS.isInvalid()) {
463    SkipUntil(tok::semi);
464    return 0;
465  }
466
467  // Parse the unqualified-id. We allow parsing of both constructor and
468  // destructor names and allow the action module to diagnose any semantic
469  // errors.
470  SourceLocation TemplateKWLoc;
471  UnqualifiedId Name;
472  if (ParseUnqualifiedId(SS,
473                         /*EnteringContext=*/false,
474                         /*AllowDestructorName=*/true,
475                         /*AllowConstructorName=*/true,
476                         ParsedType(),
477                         TemplateKWLoc,
478                         Name)) {
479    SkipUntil(tok::semi);
480    return 0;
481  }
482
483  ParsedAttributes attrs(AttrFactory);
484
485  // Maybe this is an alias-declaration.
486  bool IsAliasDecl = Tok.is(tok::equal);
487  TypeResult TypeAlias;
488  if (IsAliasDecl) {
489    // TODO: Attribute support. C++0x attributes may appear before the equals.
490    // Where can GNU attributes appear?
491    ConsumeToken();
492
493    Diag(Tok.getLocation(), getLangOpts().CPlusPlus0x ?
494         diag::warn_cxx98_compat_alias_declaration :
495         diag::ext_alias_declaration);
496
497    // Type alias templates cannot be specialized.
498    int SpecKind = -1;
499    if (TemplateInfo.Kind == ParsedTemplateInfo::Template &&
500        Name.getKind() == UnqualifiedId::IK_TemplateId)
501      SpecKind = 0;
502    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization)
503      SpecKind = 1;
504    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
505      SpecKind = 2;
506    if (SpecKind != -1) {
507      SourceRange Range;
508      if (SpecKind == 0)
509        Range = SourceRange(Name.TemplateId->LAngleLoc,
510                            Name.TemplateId->RAngleLoc);
511      else
512        Range = TemplateInfo.getSourceRange();
513      Diag(Range.getBegin(), diag::err_alias_declaration_specialization)
514        << SpecKind << Range;
515      SkipUntil(tok::semi);
516      return 0;
517    }
518
519    // Name must be an identifier.
520    if (Name.getKind() != UnqualifiedId::IK_Identifier) {
521      Diag(Name.StartLocation, diag::err_alias_declaration_not_identifier);
522      // No removal fixit: can't recover from this.
523      SkipUntil(tok::semi);
524      return 0;
525    } else if (IsTypeName)
526      Diag(TypenameLoc, diag::err_alias_declaration_not_identifier)
527        << FixItHint::CreateRemoval(SourceRange(TypenameLoc,
528                             SS.isNotEmpty() ? SS.getEndLoc() : TypenameLoc));
529    else if (SS.isNotEmpty())
530      Diag(SS.getBeginLoc(), diag::err_alias_declaration_not_identifier)
531        << FixItHint::CreateRemoval(SS.getRange());
532
533    TypeAlias = ParseTypeName(0, TemplateInfo.Kind ?
534                              Declarator::AliasTemplateContext :
535                              Declarator::AliasDeclContext, AS, OwnedType);
536  } else
537    // Parse (optional) attributes (most likely GNU strong-using extension).
538    MaybeParseGNUAttributes(attrs);
539
540  // Eat ';'.
541  DeclEnd = Tok.getLocation();
542  ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
543                   !attrs.empty() ? "attributes list" :
544                   IsAliasDecl ? "alias declaration" : "using declaration",
545                   tok::semi);
546
547  // Diagnose an attempt to declare a templated using-declaration.
548  // In C++0x, alias-declarations can be templates:
549  //   template <...> using id = type;
550  if (TemplateInfo.Kind && !IsAliasDecl) {
551    SourceRange R = TemplateInfo.getSourceRange();
552    Diag(UsingLoc, diag::err_templated_using_declaration)
553      << R << FixItHint::CreateRemoval(R);
554
555    // Unfortunately, we have to bail out instead of recovering by
556    // ignoring the parameters, just in case the nested name specifier
557    // depends on the parameters.
558    return 0;
559  }
560
561  // "typename" keyword is allowed for identifiers only,
562  // because it may be a type definition.
563  if (IsTypeName && Name.getKind() != UnqualifiedId::IK_Identifier) {
564    Diag(Name.getSourceRange().getBegin(), diag::err_typename_identifiers_only)
565      << FixItHint::CreateRemoval(SourceRange(TypenameLoc));
566    // Proceed parsing, but reset the IsTypeName flag.
567    IsTypeName = false;
568  }
569
570  if (IsAliasDecl) {
571    TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
572    MultiTemplateParamsArg TemplateParamsArg(Actions,
573      TemplateParams ? TemplateParams->data() : 0,
574      TemplateParams ? TemplateParams->size() : 0);
575    return Actions.ActOnAliasDeclaration(getCurScope(), AS, TemplateParamsArg,
576                                         UsingLoc, Name, TypeAlias);
577  }
578
579  return Actions.ActOnUsingDeclaration(getCurScope(), AS, true, UsingLoc, SS,
580                                       Name, attrs.getList(),
581                                       IsTypeName, TypenameLoc);
582}
583
584/// ParseStaticAssertDeclaration - Parse C++0x or C11 static_assert-declaration.
585///
586/// [C++0x] static_assert-declaration:
587///           static_assert ( constant-expression  ,  string-literal  ) ;
588///
589/// [C11]   static_assert-declaration:
590///           _Static_assert ( constant-expression  ,  string-literal  ) ;
591///
592Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
593  assert((Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) &&
594         "Not a static_assert declaration");
595
596  if (Tok.is(tok::kw__Static_assert) && !getLangOpts().C11)
597    Diag(Tok, diag::ext_c11_static_assert);
598  if (Tok.is(tok::kw_static_assert))
599    Diag(Tok, diag::warn_cxx98_compat_static_assert);
600
601  SourceLocation StaticAssertLoc = ConsumeToken();
602
603  BalancedDelimiterTracker T(*this, tok::l_paren);
604  if (T.consumeOpen()) {
605    Diag(Tok, diag::err_expected_lparen);
606    return 0;
607  }
608
609  ExprResult AssertExpr(ParseConstantExpression());
610  if (AssertExpr.isInvalid()) {
611    SkipUntil(tok::semi);
612    return 0;
613  }
614
615  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi))
616    return 0;
617
618  if (!isTokenStringLiteral()) {
619    Diag(Tok, diag::err_expected_string_literal);
620    SkipUntil(tok::semi);
621    return 0;
622  }
623
624  ExprResult AssertMessage(ParseStringLiteralExpression());
625  if (AssertMessage.isInvalid()) {
626    SkipUntil(tok::semi);
627    return 0;
628  }
629
630  T.consumeClose();
631
632  DeclEnd = Tok.getLocation();
633  ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
634
635  return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
636                                              AssertExpr.take(),
637                                              AssertMessage.take(),
638                                              T.getCloseLocation());
639}
640
641/// ParseDecltypeSpecifier - Parse a C++0x decltype specifier.
642///
643/// 'decltype' ( expression )
644///
645SourceLocation Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
646  assert((Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype))
647           && "Not a decltype specifier");
648
649
650  ExprResult Result;
651  SourceLocation StartLoc = Tok.getLocation();
652  SourceLocation EndLoc;
653
654  if (Tok.is(tok::annot_decltype)) {
655    Result = getExprAnnotation(Tok);
656    EndLoc = Tok.getAnnotationEndLoc();
657    ConsumeToken();
658    if (Result.isInvalid()) {
659      DS.SetTypeSpecError();
660      return EndLoc;
661    }
662  } else {
663    if (Tok.getIdentifierInfo()->isStr("decltype"))
664      Diag(Tok, diag::warn_cxx98_compat_decltype);
665
666    ConsumeToken();
667
668    BalancedDelimiterTracker T(*this, tok::l_paren);
669    if (T.expectAndConsume(diag::err_expected_lparen_after,
670                           "decltype", tok::r_paren)) {
671      DS.SetTypeSpecError();
672      return T.getOpenLocation() == Tok.getLocation() ?
673             StartLoc : T.getOpenLocation();
674    }
675
676    // Parse the expression
677
678    // C++0x [dcl.type.simple]p4:
679    //   The operand of the decltype specifier is an unevaluated operand.
680    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
681                                                 0, /*IsDecltype=*/true);
682    Result = ParseExpression();
683    if (Result.isInvalid()) {
684      SkipUntil(tok::r_paren);
685      DS.SetTypeSpecError();
686      return StartLoc;
687    }
688
689    // Match the ')'
690    T.consumeClose();
691    if (T.getCloseLocation().isInvalid()) {
692      DS.SetTypeSpecError();
693      // FIXME: this should return the location of the last token
694      //        that was consumed (by "consumeClose()")
695      return T.getCloseLocation();
696    }
697
698    Result = Actions.ActOnDecltypeExpression(Result.take());
699    if (Result.isInvalid()) {
700      DS.SetTypeSpecError();
701      return T.getCloseLocation();
702    }
703
704    EndLoc = T.getCloseLocation();
705  }
706
707  const char *PrevSpec = 0;
708  unsigned DiagID;
709  // Check for duplicate type specifiers (e.g. "int decltype(a)").
710  if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
711                         DiagID, Result.release())) {
712    Diag(StartLoc, DiagID) << PrevSpec;
713    DS.SetTypeSpecError();
714  }
715  return EndLoc;
716}
717
718void Parser::AnnotateExistingDecltypeSpecifier(const DeclSpec& DS,
719                                               SourceLocation StartLoc,
720                                               SourceLocation EndLoc) {
721  // make sure we have a token we can turn into an annotation token
722  if (PP.isBacktrackEnabled())
723    PP.RevertCachedTokens(1);
724  else
725    PP.EnterToken(Tok);
726
727  Tok.setKind(tok::annot_decltype);
728  setExprAnnotation(Tok, DS.getTypeSpecType() == TST_decltype ?
729                         DS.getRepAsExpr() : ExprResult());
730  Tok.setAnnotationEndLoc(EndLoc);
731  Tok.setLocation(StartLoc);
732  PP.AnnotateCachedTokens(Tok);
733}
734
735void Parser::ParseUnderlyingTypeSpecifier(DeclSpec &DS) {
736  assert(Tok.is(tok::kw___underlying_type) &&
737         "Not an underlying type specifier");
738
739  SourceLocation StartLoc = ConsumeToken();
740  BalancedDelimiterTracker T(*this, tok::l_paren);
741  if (T.expectAndConsume(diag::err_expected_lparen_after,
742                       "__underlying_type", tok::r_paren)) {
743    return;
744  }
745
746  TypeResult Result = ParseTypeName();
747  if (Result.isInvalid()) {
748    SkipUntil(tok::r_paren);
749    return;
750  }
751
752  // Match the ')'
753  T.consumeClose();
754  if (T.getCloseLocation().isInvalid())
755    return;
756
757  const char *PrevSpec = 0;
758  unsigned DiagID;
759  if (DS.SetTypeSpecType(DeclSpec::TST_underlyingType, StartLoc, PrevSpec,
760                         DiagID, Result.release()))
761    Diag(StartLoc, DiagID) << PrevSpec;
762}
763
764/// ParseBaseTypeSpecifier - Parse a C++ base-type-specifier which is either a
765/// class name or decltype-specifier. Note that we only check that the result
766/// names a type; semantic analysis will need to verify that the type names a
767/// class. The result is either a type or null, depending on whether a type
768/// name was found.
769///
770///       base-type-specifier: [C++ 10.1]
771///         class-or-decltype
772///       class-or-decltype: [C++ 10.1]
773///         nested-name-specifier[opt] class-name
774///         decltype-specifier
775///       class-name: [C++ 9.1]
776///         identifier
777///         simple-template-id
778///
779Parser::TypeResult Parser::ParseBaseTypeSpecifier(SourceLocation &BaseLoc,
780                                                  SourceLocation &EndLocation) {
781  // Ignore attempts to use typename
782  if (Tok.is(tok::kw_typename)) {
783    Diag(Tok, diag::err_expected_class_name_not_template)
784      << FixItHint::CreateRemoval(Tok.getLocation());
785    ConsumeToken();
786  }
787
788  // Parse optional nested-name-specifier
789  CXXScopeSpec SS;
790  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
791
792  BaseLoc = Tok.getLocation();
793
794  // Parse decltype-specifier
795  // tok == kw_decltype is just error recovery, it can only happen when SS
796  // isn't empty
797  if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
798    if (SS.isNotEmpty())
799      Diag(SS.getBeginLoc(), diag::err_unexpected_scope_on_base_decltype)
800        << FixItHint::CreateRemoval(SS.getRange());
801    // Fake up a Declarator to use with ActOnTypeName.
802    DeclSpec DS(AttrFactory);
803
804    EndLocation = ParseDecltypeSpecifier(DS);
805
806    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
807    return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
808  }
809
810  // Check whether we have a template-id that names a type.
811  if (Tok.is(tok::annot_template_id)) {
812    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
813    if (TemplateId->Kind == TNK_Type_template ||
814        TemplateId->Kind == TNK_Dependent_template_name) {
815      AnnotateTemplateIdTokenAsType();
816
817      assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
818      ParsedType Type = getTypeAnnotation(Tok);
819      EndLocation = Tok.getAnnotationEndLoc();
820      ConsumeToken();
821
822      if (Type)
823        return Type;
824      return true;
825    }
826
827    // Fall through to produce an error below.
828  }
829
830  if (Tok.isNot(tok::identifier)) {
831    Diag(Tok, diag::err_expected_class_name);
832    return true;
833  }
834
835  IdentifierInfo *Id = Tok.getIdentifierInfo();
836  SourceLocation IdLoc = ConsumeToken();
837
838  if (Tok.is(tok::less)) {
839    // It looks the user intended to write a template-id here, but the
840    // template-name was wrong. Try to fix that.
841    TemplateNameKind TNK = TNK_Type_template;
842    TemplateTy Template;
843    if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
844                                             &SS, Template, TNK)) {
845      Diag(IdLoc, diag::err_unknown_template_name)
846        << Id;
847    }
848
849    if (!Template)
850      return true;
851
852    // Form the template name
853    UnqualifiedId TemplateName;
854    TemplateName.setIdentifier(Id, IdLoc);
855
856    // Parse the full template-id, then turn it into a type.
857    if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
858                                TemplateName, true))
859      return true;
860    if (TNK == TNK_Dependent_template_name)
861      AnnotateTemplateIdTokenAsType();
862
863    // If we didn't end up with a typename token, there's nothing more we
864    // can do.
865    if (Tok.isNot(tok::annot_typename))
866      return true;
867
868    // Retrieve the type from the annotation token, consume that token, and
869    // return.
870    EndLocation = Tok.getAnnotationEndLoc();
871    ParsedType Type = getTypeAnnotation(Tok);
872    ConsumeToken();
873    return Type;
874  }
875
876  // We have an identifier; check whether it is actually a type.
877  ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, true,
878                                        false, ParsedType(),
879                                        /*IsCtorOrDtorName=*/false,
880                                        /*NonTrivialTypeSourceInfo=*/true);
881  if (!Type) {
882    Diag(IdLoc, diag::err_expected_class_name);
883    return true;
884  }
885
886  // Consume the identifier.
887  EndLocation = IdLoc;
888
889  // Fake up a Declarator to use with ActOnTypeName.
890  DeclSpec DS(AttrFactory);
891  DS.SetRangeStart(IdLoc);
892  DS.SetRangeEnd(EndLocation);
893  DS.getTypeSpecScope() = SS;
894
895  const char *PrevSpec = 0;
896  unsigned DiagID;
897  DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type);
898
899  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
900  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
901}
902
903/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
904/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
905/// until we reach the start of a definition or see a token that
906/// cannot start a definition.
907///
908///       class-specifier: [C++ class]
909///         class-head '{' member-specification[opt] '}'
910///         class-head '{' member-specification[opt] '}' attributes[opt]
911///       class-head:
912///         class-key identifier[opt] base-clause[opt]
913///         class-key nested-name-specifier identifier base-clause[opt]
914///         class-key nested-name-specifier[opt] simple-template-id
915///                          base-clause[opt]
916/// [GNU]   class-key attributes[opt] identifier[opt] base-clause[opt]
917/// [GNU]   class-key attributes[opt] nested-name-specifier
918///                          identifier base-clause[opt]
919/// [GNU]   class-key attributes[opt] nested-name-specifier[opt]
920///                          simple-template-id base-clause[opt]
921///       class-key:
922///         'class'
923///         'struct'
924///         'union'
925///
926///       elaborated-type-specifier: [C++ dcl.type.elab]
927///         class-key ::[opt] nested-name-specifier[opt] identifier
928///         class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
929///                          simple-template-id
930///
931///  Note that the C++ class-specifier and elaborated-type-specifier,
932///  together, subsume the C99 struct-or-union-specifier:
933///
934///       struct-or-union-specifier: [C99 6.7.2.1]
935///         struct-or-union identifier[opt] '{' struct-contents '}'
936///         struct-or-union identifier
937/// [GNU]   struct-or-union attributes[opt] identifier[opt] '{' struct-contents
938///                                                         '}' attributes[opt]
939/// [GNU]   struct-or-union attributes[opt] identifier
940///       struct-or-union:
941///         'struct'
942///         'union'
943void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
944                                 SourceLocation StartLoc, DeclSpec &DS,
945                                 const ParsedTemplateInfo &TemplateInfo,
946                                 AccessSpecifier AS,
947                                 bool EnteringContext, DeclSpecContext DSC) {
948  DeclSpec::TST TagType;
949  if (TagTokKind == tok::kw_struct)
950    TagType = DeclSpec::TST_struct;
951  else if (TagTokKind == tok::kw_class)
952    TagType = DeclSpec::TST_class;
953  else {
954    assert(TagTokKind == tok::kw_union && "Not a class specifier");
955    TagType = DeclSpec::TST_union;
956  }
957
958  if (Tok.is(tok::code_completion)) {
959    // Code completion for a struct, class, or union name.
960    Actions.CodeCompleteTag(getCurScope(), TagType);
961    return cutOffParsing();
962  }
963
964  // C++03 [temp.explicit] 14.7.2/8:
965  //   The usual access checking rules do not apply to names used to specify
966  //   explicit instantiations.
967  //
968  // As an extension we do not perform access checking on the names used to
969  // specify explicit specializations either. This is important to allow
970  // specializing traits classes for private types.
971  bool SuppressingAccessChecks = false;
972  if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
973      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization) {
974    Actions.ActOnStartSuppressingAccessChecks();
975    SuppressingAccessChecks = true;
976  }
977
978  ParsedAttributes attrs(AttrFactory);
979  // If attributes exist after tag, parse them.
980  if (Tok.is(tok::kw___attribute))
981    ParseGNUAttributes(attrs);
982
983  // If declspecs exist after tag, parse them.
984  while (Tok.is(tok::kw___declspec))
985    ParseMicrosoftDeclSpec(attrs);
986
987  // If C++0x attributes exist here, parse them.
988  // FIXME: Are we consistent with the ordering of parsing of different
989  // styles of attributes?
990  MaybeParseCXX0XAttributes(attrs);
991
992  if (TagType == DeclSpec::TST_struct &&
993      !Tok.is(tok::identifier) &&
994      Tok.getIdentifierInfo() &&
995      (Tok.is(tok::kw___is_arithmetic) ||
996       Tok.is(tok::kw___is_convertible) ||
997       Tok.is(tok::kw___is_empty) ||
998       Tok.is(tok::kw___is_floating_point) ||
999       Tok.is(tok::kw___is_function) ||
1000       Tok.is(tok::kw___is_fundamental) ||
1001       Tok.is(tok::kw___is_integral) ||
1002       Tok.is(tok::kw___is_member_function_pointer) ||
1003       Tok.is(tok::kw___is_member_pointer) ||
1004       Tok.is(tok::kw___is_pod) ||
1005       Tok.is(tok::kw___is_pointer) ||
1006       Tok.is(tok::kw___is_same) ||
1007       Tok.is(tok::kw___is_scalar) ||
1008       Tok.is(tok::kw___is_signed) ||
1009       Tok.is(tok::kw___is_unsigned) ||
1010       Tok.is(tok::kw___is_void))) {
1011    // GNU libstdc++ 4.2 and libc++ use certain intrinsic names as the
1012    // name of struct templates, but some are keywords in GCC >= 4.3
1013    // and Clang. Therefore, when we see the token sequence "struct
1014    // X", make X into a normal identifier rather than a keyword, to
1015    // allow libstdc++ 4.2 and libc++ to work properly.
1016    Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1017    Tok.setKind(tok::identifier);
1018  }
1019
1020  // Parse the (optional) nested-name-specifier.
1021  CXXScopeSpec &SS = DS.getTypeSpecScope();
1022  if (getLangOpts().CPlusPlus) {
1023    // "FOO : BAR" is not a potential typo for "FOO::BAR".
1024    ColonProtectionRAIIObject X(*this);
1025
1026    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext))
1027      DS.SetTypeSpecError();
1028    if (SS.isSet())
1029      if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
1030        Diag(Tok, diag::err_expected_ident);
1031  }
1032
1033  TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
1034
1035  // Parse the (optional) class name or simple-template-id.
1036  IdentifierInfo *Name = 0;
1037  SourceLocation NameLoc;
1038  TemplateIdAnnotation *TemplateId = 0;
1039  if (Tok.is(tok::identifier)) {
1040    Name = Tok.getIdentifierInfo();
1041    NameLoc = ConsumeToken();
1042
1043    if (Tok.is(tok::less) && getLangOpts().CPlusPlus) {
1044      // The name was supposed to refer to a template, but didn't.
1045      // Eat the template argument list and try to continue parsing this as
1046      // a class (or template thereof).
1047      TemplateArgList TemplateArgs;
1048      SourceLocation LAngleLoc, RAngleLoc;
1049      if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, SS,
1050                                           true, LAngleLoc,
1051                                           TemplateArgs, RAngleLoc)) {
1052        // We couldn't parse the template argument list at all, so don't
1053        // try to give any location information for the list.
1054        LAngleLoc = RAngleLoc = SourceLocation();
1055      }
1056
1057      Diag(NameLoc, diag::err_explicit_spec_non_template)
1058        << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
1059        << (TagType == DeclSpec::TST_class? 0
1060            : TagType == DeclSpec::TST_struct? 1
1061            : 2)
1062        << Name
1063        << SourceRange(LAngleLoc, RAngleLoc);
1064
1065      // Strip off the last template parameter list if it was empty, since
1066      // we've removed its template argument list.
1067      if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
1068        if (TemplateParams && TemplateParams->size() > 1) {
1069          TemplateParams->pop_back();
1070        } else {
1071          TemplateParams = 0;
1072          const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
1073            = ParsedTemplateInfo::NonTemplate;
1074        }
1075      } else if (TemplateInfo.Kind
1076                                == ParsedTemplateInfo::ExplicitInstantiation) {
1077        // Pretend this is just a forward declaration.
1078        TemplateParams = 0;
1079        const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
1080          = ParsedTemplateInfo::NonTemplate;
1081        const_cast<ParsedTemplateInfo&>(TemplateInfo).TemplateLoc
1082          = SourceLocation();
1083        const_cast<ParsedTemplateInfo&>(TemplateInfo).ExternLoc
1084          = SourceLocation();
1085      }
1086    }
1087  } else if (Tok.is(tok::annot_template_id)) {
1088    TemplateId = takeTemplateIdAnnotation(Tok);
1089    NameLoc = ConsumeToken();
1090
1091    if (TemplateId->Kind != TNK_Type_template &&
1092        TemplateId->Kind != TNK_Dependent_template_name) {
1093      // The template-name in the simple-template-id refers to
1094      // something other than a class template. Give an appropriate
1095      // error message and skip to the ';'.
1096      SourceRange Range(NameLoc);
1097      if (SS.isNotEmpty())
1098        Range.setBegin(SS.getBeginLoc());
1099
1100      Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
1101        << Name << static_cast<int>(TemplateId->Kind) << Range;
1102
1103      DS.SetTypeSpecError();
1104      SkipUntil(tok::semi, false, true);
1105      if (SuppressingAccessChecks)
1106        Actions.ActOnStopSuppressingAccessChecks();
1107
1108      return;
1109    }
1110  }
1111
1112  // As soon as we're finished parsing the class's template-id, turn access
1113  // checking back on.
1114  if (SuppressingAccessChecks)
1115    Actions.ActOnStopSuppressingAccessChecks();
1116
1117  // There are four options here.
1118  //  - If we are in a trailing return type, this is always just a reference,
1119  //    and we must not try to parse a definition. For instance,
1120  //      [] () -> struct S { };
1121  //    does not define a type.
1122  //  - If we have 'struct foo {...', 'struct foo :...',
1123  //    'struct foo final :' or 'struct foo final {', then this is a definition.
1124  //  - If we have 'struct foo;', then this is either a forward declaration
1125  //    or a friend declaration, which have to be treated differently.
1126  //  - Otherwise we have something like 'struct foo xyz', a reference.
1127  // However, in type-specifier-seq's, things look like declarations but are
1128  // just references, e.g.
1129  //   new struct s;
1130  // or
1131  //   &T::operator struct s;
1132  // For these, DSC is DSC_type_specifier.
1133  Sema::TagUseKind TUK;
1134  if (DSC == DSC_trailing)
1135    TUK = Sema::TUK_Reference;
1136  else if (Tok.is(tok::l_brace) ||
1137           (getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
1138           (isCXX0XFinalKeyword() &&
1139            NextToken().is(tok::l_brace) || NextToken().is(tok::colon))) {
1140    if (DS.isFriendSpecified()) {
1141      // C++ [class.friend]p2:
1142      //   A class shall not be defined in a friend declaration.
1143      Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
1144        << SourceRange(DS.getFriendSpecLoc());
1145
1146      // Skip everything up to the semicolon, so that this looks like a proper
1147      // friend class (or template thereof) declaration.
1148      SkipUntil(tok::semi, true, true);
1149      TUK = Sema::TUK_Friend;
1150    } else {
1151      // Okay, this is a class definition.
1152      TUK = Sema::TUK_Definition;
1153    }
1154  } else if (Tok.is(tok::semi) && DSC != DSC_type_specifier)
1155    TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
1156  else
1157    TUK = Sema::TUK_Reference;
1158
1159  if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
1160                               TUK != Sema::TUK_Definition)) {
1161    if (DS.getTypeSpecType() != DeclSpec::TST_error) {
1162      // We have a declaration or reference to an anonymous class.
1163      Diag(StartLoc, diag::err_anon_type_definition)
1164        << DeclSpec::getSpecifierName(TagType);
1165    }
1166
1167    SkipUntil(tok::comma, true);
1168    return;
1169  }
1170
1171  // Create the tag portion of the class or class template.
1172  DeclResult TagOrTempResult = true; // invalid
1173  TypeResult TypeResult = true; // invalid
1174
1175  bool Owned = false;
1176  if (TemplateId) {
1177    // Explicit specialization, class template partial specialization,
1178    // or explicit instantiation.
1179    ASTTemplateArgsPtr TemplateArgsPtr(Actions,
1180                                       TemplateId->getTemplateArgs(),
1181                                       TemplateId->NumArgs);
1182    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1183        TUK == Sema::TUK_Declaration) {
1184      // This is an explicit instantiation of a class template.
1185      TagOrTempResult
1186        = Actions.ActOnExplicitInstantiation(getCurScope(),
1187                                             TemplateInfo.ExternLoc,
1188                                             TemplateInfo.TemplateLoc,
1189                                             TagType,
1190                                             StartLoc,
1191                                             SS,
1192                                             TemplateId->Template,
1193                                             TemplateId->TemplateNameLoc,
1194                                             TemplateId->LAngleLoc,
1195                                             TemplateArgsPtr,
1196                                             TemplateId->RAngleLoc,
1197                                             attrs.getList());
1198
1199    // Friend template-ids are treated as references unless
1200    // they have template headers, in which case they're ill-formed
1201    // (FIXME: "template <class T> friend class A<T>::B<int>;").
1202    // We diagnose this error in ActOnClassTemplateSpecialization.
1203    } else if (TUK == Sema::TUK_Reference ||
1204               (TUK == Sema::TUK_Friend &&
1205                TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
1206      TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType, StartLoc,
1207                                                  TemplateId->SS,
1208                                                  TemplateId->TemplateKWLoc,
1209                                                  TemplateId->Template,
1210                                                  TemplateId->TemplateNameLoc,
1211                                                  TemplateId->LAngleLoc,
1212                                                  TemplateArgsPtr,
1213                                                  TemplateId->RAngleLoc);
1214    } else {
1215      // This is an explicit specialization or a class template
1216      // partial specialization.
1217      TemplateParameterLists FakedParamLists;
1218
1219      if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
1220        // This looks like an explicit instantiation, because we have
1221        // something like
1222        //
1223        //   template class Foo<X>
1224        //
1225        // but it actually has a definition. Most likely, this was
1226        // meant to be an explicit specialization, but the user forgot
1227        // the '<>' after 'template'.
1228        assert(TUK == Sema::TUK_Definition && "Expected a definition here");
1229
1230        SourceLocation LAngleLoc
1231          = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1232        Diag(TemplateId->TemplateNameLoc,
1233             diag::err_explicit_instantiation_with_definition)
1234          << SourceRange(TemplateInfo.TemplateLoc)
1235          << FixItHint::CreateInsertion(LAngleLoc, "<>");
1236
1237        // Create a fake template parameter list that contains only
1238        // "template<>", so that we treat this construct as a class
1239        // template specialization.
1240        FakedParamLists.push_back(
1241          Actions.ActOnTemplateParameterList(0, SourceLocation(),
1242                                             TemplateInfo.TemplateLoc,
1243                                             LAngleLoc,
1244                                             0, 0,
1245                                             LAngleLoc));
1246        TemplateParams = &FakedParamLists;
1247      }
1248
1249      // Build the class template specialization.
1250      TagOrTempResult
1251        = Actions.ActOnClassTemplateSpecialization(getCurScope(), TagType, TUK,
1252                       StartLoc, DS.getModulePrivateSpecLoc(), SS,
1253                       TemplateId->Template,
1254                       TemplateId->TemplateNameLoc,
1255                       TemplateId->LAngleLoc,
1256                       TemplateArgsPtr,
1257                       TemplateId->RAngleLoc,
1258                       attrs.getList(),
1259                       MultiTemplateParamsArg(Actions,
1260                                    TemplateParams? &(*TemplateParams)[0] : 0,
1261                                 TemplateParams? TemplateParams->size() : 0));
1262    }
1263  } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1264             TUK == Sema::TUK_Declaration) {
1265    // Explicit instantiation of a member of a class template
1266    // specialization, e.g.,
1267    //
1268    //   template struct Outer<int>::Inner;
1269    //
1270    TagOrTempResult
1271      = Actions.ActOnExplicitInstantiation(getCurScope(),
1272                                           TemplateInfo.ExternLoc,
1273                                           TemplateInfo.TemplateLoc,
1274                                           TagType, StartLoc, SS, Name,
1275                                           NameLoc, attrs.getList());
1276  } else if (TUK == Sema::TUK_Friend &&
1277             TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) {
1278    TagOrTempResult =
1279      Actions.ActOnTemplatedFriendTag(getCurScope(), DS.getFriendSpecLoc(),
1280                                      TagType, StartLoc, SS,
1281                                      Name, NameLoc, attrs.getList(),
1282                                      MultiTemplateParamsArg(Actions,
1283                                    TemplateParams? &(*TemplateParams)[0] : 0,
1284                                 TemplateParams? TemplateParams->size() : 0));
1285  } else {
1286    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1287        TUK == Sema::TUK_Definition) {
1288      // FIXME: Diagnose this particular error.
1289    }
1290
1291    bool IsDependent = false;
1292
1293    // Don't pass down template parameter lists if this is just a tag
1294    // reference.  For example, we don't need the template parameters here:
1295    //   template <class T> class A *makeA(T t);
1296    MultiTemplateParamsArg TParams;
1297    if (TUK != Sema::TUK_Reference && TemplateParams)
1298      TParams =
1299        MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size());
1300
1301    // Declaration or definition of a class type
1302    TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc,
1303                                       SS, Name, NameLoc, attrs.getList(), AS,
1304                                       DS.getModulePrivateSpecLoc(),
1305                                       TParams, Owned, IsDependent,
1306                                       SourceLocation(), false,
1307                                       clang::TypeResult());
1308
1309    // If ActOnTag said the type was dependent, try again with the
1310    // less common call.
1311    if (IsDependent) {
1312      assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend);
1313      TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
1314                                             SS, Name, StartLoc, NameLoc);
1315    }
1316  }
1317
1318  // If there is a body, parse it and inform the actions module.
1319  if (TUK == Sema::TUK_Definition) {
1320    assert(Tok.is(tok::l_brace) ||
1321           (getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
1322           isCXX0XFinalKeyword());
1323    if (getLangOpts().CPlusPlus)
1324      ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get());
1325    else
1326      ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
1327  }
1328
1329  const char *PrevSpec = 0;
1330  unsigned DiagID;
1331  bool Result;
1332  if (!TypeResult.isInvalid()) {
1333    Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
1334                                NameLoc.isValid() ? NameLoc : StartLoc,
1335                                PrevSpec, DiagID, TypeResult.get());
1336  } else if (!TagOrTempResult.isInvalid()) {
1337    Result = DS.SetTypeSpecType(TagType, StartLoc,
1338                                NameLoc.isValid() ? NameLoc : StartLoc,
1339                                PrevSpec, DiagID, TagOrTempResult.get(), Owned);
1340  } else {
1341    DS.SetTypeSpecError();
1342    return;
1343  }
1344
1345  if (Result)
1346    Diag(StartLoc, DiagID) << PrevSpec;
1347
1348  // At this point, we've successfully parsed a class-specifier in 'definition'
1349  // form (e.g. "struct foo { int x; }".  While we could just return here, we're
1350  // going to look at what comes after it to improve error recovery.  If an
1351  // impossible token occurs next, we assume that the programmer forgot a ; at
1352  // the end of the declaration and recover that way.
1353  //
1354  // This switch enumerates the valid "follow" set for definition.
1355  if (TUK == Sema::TUK_Definition) {
1356    bool ExpectedSemi = true;
1357    switch (Tok.getKind()) {
1358    default: break;
1359    case tok::semi:               // struct foo {...} ;
1360    case tok::star:               // struct foo {...} *         P;
1361    case tok::amp:                // struct foo {...} &         R = ...
1362    case tok::identifier:         // struct foo {...} V         ;
1363    case tok::r_paren:            //(struct foo {...} )         {4}
1364    case tok::annot_cxxscope:     // struct foo {...} a::       b;
1365    case tok::annot_typename:     // struct foo {...} a         ::b;
1366    case tok::annot_template_id:  // struct foo {...} a<int>    ::b;
1367    case tok::l_paren:            // struct foo {...} (         x);
1368    case tok::comma:              // __builtin_offsetof(struct foo{...} ,
1369      ExpectedSemi = false;
1370      break;
1371    // Type qualifiers
1372    case tok::kw_const:           // struct foo {...} const     x;
1373    case tok::kw_volatile:        // struct foo {...} volatile  x;
1374    case tok::kw_restrict:        // struct foo {...} restrict  x;
1375    case tok::kw_inline:          // struct foo {...} inline    foo() {};
1376    // Storage-class specifiers
1377    case tok::kw_static:          // struct foo {...} static    x;
1378    case tok::kw_extern:          // struct foo {...} extern    x;
1379    case tok::kw_typedef:         // struct foo {...} typedef   x;
1380    case tok::kw_register:        // struct foo {...} register  x;
1381    case tok::kw_auto:            // struct foo {...} auto      x;
1382    case tok::kw_mutable:         // struct foo {...} mutable   x;
1383    case tok::kw_constexpr:       // struct foo {...} constexpr x;
1384      // As shown above, type qualifiers and storage class specifiers absolutely
1385      // can occur after class specifiers according to the grammar.  However,
1386      // almost no one actually writes code like this.  If we see one of these,
1387      // it is much more likely that someone missed a semi colon and the
1388      // type/storage class specifier we're seeing is part of the *next*
1389      // intended declaration, as in:
1390      //
1391      //   struct foo { ... }
1392      //   typedef int X;
1393      //
1394      // We'd really like to emit a missing semicolon error instead of emitting
1395      // an error on the 'int' saying that you can't have two type specifiers in
1396      // the same declaration of X.  Because of this, we look ahead past this
1397      // token to see if it's a type specifier.  If so, we know the code is
1398      // otherwise invalid, so we can produce the expected semi error.
1399      if (!isKnownToBeTypeSpecifier(NextToken()))
1400        ExpectedSemi = false;
1401      break;
1402
1403    case tok::r_brace:  // struct bar { struct foo {...} }
1404      // Missing ';' at end of struct is accepted as an extension in C mode.
1405      if (!getLangOpts().CPlusPlus)
1406        ExpectedSemi = false;
1407      break;
1408    }
1409
1410    // C++ [temp]p3 In a template-declaration which defines a class, no
1411    // declarator is permitted.
1412    if (TemplateInfo.Kind)
1413      ExpectedSemi = true;
1414
1415    if (ExpectedSemi) {
1416      ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
1417                       TagType == DeclSpec::TST_class ? "class"
1418                       : TagType == DeclSpec::TST_struct? "struct" : "union");
1419      // Push this token back into the preprocessor and change our current token
1420      // to ';' so that the rest of the code recovers as though there were an
1421      // ';' after the definition.
1422      PP.EnterToken(Tok);
1423      Tok.setKind(tok::semi);
1424    }
1425  }
1426}
1427
1428/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
1429///
1430///       base-clause : [C++ class.derived]
1431///         ':' base-specifier-list
1432///       base-specifier-list:
1433///         base-specifier '...'[opt]
1434///         base-specifier-list ',' base-specifier '...'[opt]
1435void Parser::ParseBaseClause(Decl *ClassDecl) {
1436  assert(Tok.is(tok::colon) && "Not a base clause");
1437  ConsumeToken();
1438
1439  // Build up an array of parsed base specifiers.
1440  SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
1441
1442  while (true) {
1443    // Parse a base-specifier.
1444    BaseResult Result = ParseBaseSpecifier(ClassDecl);
1445    if (Result.isInvalid()) {
1446      // Skip the rest of this base specifier, up until the comma or
1447      // opening brace.
1448      SkipUntil(tok::comma, tok::l_brace, true, true);
1449    } else {
1450      // Add this to our array of base specifiers.
1451      BaseInfo.push_back(Result.get());
1452    }
1453
1454    // If the next token is a comma, consume it and keep reading
1455    // base-specifiers.
1456    if (Tok.isNot(tok::comma)) break;
1457
1458    // Consume the comma.
1459    ConsumeToken();
1460  }
1461
1462  // Attach the base specifiers
1463  Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
1464}
1465
1466/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
1467/// one entry in the base class list of a class specifier, for example:
1468///    class foo : public bar, virtual private baz {
1469/// 'public bar' and 'virtual private baz' are each base-specifiers.
1470///
1471///       base-specifier: [C++ class.derived]
1472///         ::[opt] nested-name-specifier[opt] class-name
1473///         'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
1474///                        base-type-specifier
1475///         access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
1476///                        base-type-specifier
1477Parser::BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
1478  bool IsVirtual = false;
1479  SourceLocation StartLoc = Tok.getLocation();
1480
1481  // Parse the 'virtual' keyword.
1482  if (Tok.is(tok::kw_virtual))  {
1483    ConsumeToken();
1484    IsVirtual = true;
1485  }
1486
1487  // Parse an (optional) access specifier.
1488  AccessSpecifier Access = getAccessSpecifierIfPresent();
1489  if (Access != AS_none)
1490    ConsumeToken();
1491
1492  // Parse the 'virtual' keyword (again!), in case it came after the
1493  // access specifier.
1494  if (Tok.is(tok::kw_virtual))  {
1495    SourceLocation VirtualLoc = ConsumeToken();
1496    if (IsVirtual) {
1497      // Complain about duplicate 'virtual'
1498      Diag(VirtualLoc, diag::err_dup_virtual)
1499        << FixItHint::CreateRemoval(VirtualLoc);
1500    }
1501
1502    IsVirtual = true;
1503  }
1504
1505  // Parse the class-name.
1506  SourceLocation EndLocation;
1507  SourceLocation BaseLoc;
1508  TypeResult BaseType = ParseBaseTypeSpecifier(BaseLoc, EndLocation);
1509  if (BaseType.isInvalid())
1510    return true;
1511
1512  // Parse the optional ellipsis (for a pack expansion). The ellipsis is
1513  // actually part of the base-specifier-list grammar productions, but we
1514  // parse it here for convenience.
1515  SourceLocation EllipsisLoc;
1516  if (Tok.is(tok::ellipsis))
1517    EllipsisLoc = ConsumeToken();
1518
1519  // Find the complete source range for the base-specifier.
1520  SourceRange Range(StartLoc, EndLocation);
1521
1522  // Notify semantic analysis that we have parsed a complete
1523  // base-specifier.
1524  return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access,
1525                                    BaseType.get(), BaseLoc, EllipsisLoc);
1526}
1527
1528/// getAccessSpecifierIfPresent - Determine whether the next token is
1529/// a C++ access-specifier.
1530///
1531///       access-specifier: [C++ class.derived]
1532///         'private'
1533///         'protected'
1534///         'public'
1535AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
1536  switch (Tok.getKind()) {
1537  default: return AS_none;
1538  case tok::kw_private: return AS_private;
1539  case tok::kw_protected: return AS_protected;
1540  case tok::kw_public: return AS_public;
1541  }
1542}
1543
1544void Parser::HandleMemberFunctionDefaultArgs(Declarator& DeclaratorInfo,
1545                                             Decl *ThisDecl) {
1546  // We just declared a member function. If this member function
1547  // has any default arguments, we'll need to parse them later.
1548  LateParsedMethodDeclaration *LateMethod = 0;
1549  DeclaratorChunk::FunctionTypeInfo &FTI
1550    = DeclaratorInfo.getFunctionTypeInfo();
1551  for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) {
1552    if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) {
1553      if (!LateMethod) {
1554        // Push this method onto the stack of late-parsed method
1555        // declarations.
1556        LateMethod = new LateParsedMethodDeclaration(this, ThisDecl);
1557        getCurrentClass().LateParsedDeclarations.push_back(LateMethod);
1558        LateMethod->TemplateScope = getCurScope()->isTemplateParamScope();
1559
1560        // Add all of the parameters prior to this one (they don't
1561        // have default arguments).
1562        LateMethod->DefaultArgs.reserve(FTI.NumArgs);
1563        for (unsigned I = 0; I < ParamIdx; ++I)
1564          LateMethod->DefaultArgs.push_back(
1565                             LateParsedDefaultArgument(FTI.ArgInfo[I].Param));
1566      }
1567
1568      // Add this parameter to the list of parameters (it or may
1569      // not have a default argument).
1570      LateMethod->DefaultArgs.push_back(
1571        LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param,
1572                                  FTI.ArgInfo[ParamIdx].DefaultArgTokens));
1573    }
1574  }
1575}
1576
1577/// isCXX0XVirtSpecifier - Determine whether the given token is a C++0x
1578/// virt-specifier.
1579///
1580///       virt-specifier:
1581///         override
1582///         final
1583VirtSpecifiers::Specifier Parser::isCXX0XVirtSpecifier(const Token &Tok) const {
1584  if (!getLangOpts().CPlusPlus)
1585    return VirtSpecifiers::VS_None;
1586
1587  if (Tok.is(tok::identifier)) {
1588    IdentifierInfo *II = Tok.getIdentifierInfo();
1589
1590    // Initialize the contextual keywords.
1591    if (!Ident_final) {
1592      Ident_final = &PP.getIdentifierTable().get("final");
1593      Ident_override = &PP.getIdentifierTable().get("override");
1594    }
1595
1596    if (II == Ident_override)
1597      return VirtSpecifiers::VS_Override;
1598
1599    if (II == Ident_final)
1600      return VirtSpecifiers::VS_Final;
1601  }
1602
1603  return VirtSpecifiers::VS_None;
1604}
1605
1606/// ParseOptionalCXX0XVirtSpecifierSeq - Parse a virt-specifier-seq.
1607///
1608///       virt-specifier-seq:
1609///         virt-specifier
1610///         virt-specifier-seq virt-specifier
1611void Parser::ParseOptionalCXX0XVirtSpecifierSeq(VirtSpecifiers &VS) {
1612  while (true) {
1613    VirtSpecifiers::Specifier Specifier = isCXX0XVirtSpecifier();
1614    if (Specifier == VirtSpecifiers::VS_None)
1615      return;
1616
1617    // C++ [class.mem]p8:
1618    //   A virt-specifier-seq shall contain at most one of each virt-specifier.
1619    const char *PrevSpec = 0;
1620    if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec))
1621      Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier)
1622        << PrevSpec
1623        << FixItHint::CreateRemoval(Tok.getLocation());
1624
1625    Diag(Tok.getLocation(), getLangOpts().CPlusPlus0x ?
1626         diag::warn_cxx98_compat_override_control_keyword :
1627         diag::ext_override_control_keyword)
1628      << VirtSpecifiers::getSpecifierName(Specifier);
1629    ConsumeToken();
1630  }
1631}
1632
1633/// isCXX0XFinalKeyword - Determine whether the next token is a C++0x
1634/// contextual 'final' keyword.
1635bool Parser::isCXX0XFinalKeyword() const {
1636  if (!getLangOpts().CPlusPlus)
1637    return false;
1638
1639  if (!Tok.is(tok::identifier))
1640    return false;
1641
1642  // Initialize the contextual keywords.
1643  if (!Ident_final) {
1644    Ident_final = &PP.getIdentifierTable().get("final");
1645    Ident_override = &PP.getIdentifierTable().get("override");
1646  }
1647
1648  return Tok.getIdentifierInfo() == Ident_final;
1649}
1650
1651/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
1652///
1653///       member-declaration:
1654///         decl-specifier-seq[opt] member-declarator-list[opt] ';'
1655///         function-definition ';'[opt]
1656///         ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
1657///         using-declaration                                            [TODO]
1658/// [C++0x] static_assert-declaration
1659///         template-declaration
1660/// [GNU]   '__extension__' member-declaration
1661///
1662///       member-declarator-list:
1663///         member-declarator
1664///         member-declarator-list ',' member-declarator
1665///
1666///       member-declarator:
1667///         declarator virt-specifier-seq[opt] pure-specifier[opt]
1668///         declarator constant-initializer[opt]
1669/// [C++11] declarator brace-or-equal-initializer[opt]
1670///         identifier[opt] ':' constant-expression
1671///
1672///       virt-specifier-seq:
1673///         virt-specifier
1674///         virt-specifier-seq virt-specifier
1675///
1676///       virt-specifier:
1677///         override
1678///         final
1679///
1680///       pure-specifier:
1681///         '= 0'
1682///
1683///       constant-initializer:
1684///         '=' constant-expression
1685///
1686void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
1687                                            AttributeList *AccessAttrs,
1688                                       const ParsedTemplateInfo &TemplateInfo,
1689                                       ParsingDeclRAIIObject *TemplateDiags) {
1690  if (Tok.is(tok::at)) {
1691    if (getLangOpts().ObjC1 && NextToken().isObjCAtKeyword(tok::objc_defs))
1692      Diag(Tok, diag::err_at_defs_cxx);
1693    else
1694      Diag(Tok, diag::err_at_in_class);
1695
1696    ConsumeToken();
1697    SkipUntil(tok::r_brace);
1698    return;
1699  }
1700
1701  // Access declarations.
1702  if (!TemplateInfo.Kind &&
1703      (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) &&
1704      !TryAnnotateCXXScopeToken() &&
1705      Tok.is(tok::annot_cxxscope)) {
1706    bool isAccessDecl = false;
1707    if (NextToken().is(tok::identifier))
1708      isAccessDecl = GetLookAheadToken(2).is(tok::semi);
1709    else
1710      isAccessDecl = NextToken().is(tok::kw_operator);
1711
1712    if (isAccessDecl) {
1713      // Collect the scope specifier token we annotated earlier.
1714      CXXScopeSpec SS;
1715      ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1716                                     /*EnteringContext=*/false);
1717
1718      // Try to parse an unqualified-id.
1719      SourceLocation TemplateKWLoc;
1720      UnqualifiedId Name;
1721      if (ParseUnqualifiedId(SS, false, true, true, ParsedType(),
1722                             TemplateKWLoc, Name)) {
1723        SkipUntil(tok::semi);
1724        return;
1725      }
1726
1727      // TODO: recover from mistakenly-qualified operator declarations.
1728      if (ExpectAndConsume(tok::semi,
1729                           diag::err_expected_semi_after,
1730                           "access declaration",
1731                           tok::semi))
1732        return;
1733
1734      Actions.ActOnUsingDeclaration(getCurScope(), AS,
1735                                    false, SourceLocation(),
1736                                    SS, Name,
1737                                    /* AttrList */ 0,
1738                                    /* IsTypeName */ false,
1739                                    SourceLocation());
1740      return;
1741    }
1742  }
1743
1744  // static_assert-declaration
1745  if (Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) {
1746    // FIXME: Check for templates
1747    SourceLocation DeclEnd;
1748    ParseStaticAssertDeclaration(DeclEnd);
1749    return;
1750  }
1751
1752  if (Tok.is(tok::kw_template)) {
1753    assert(!TemplateInfo.TemplateParams &&
1754           "Nested template improperly parsed?");
1755    SourceLocation DeclEnd;
1756    ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
1757                                         AS, AccessAttrs);
1758    return;
1759  }
1760
1761  // Handle:  member-declaration ::= '__extension__' member-declaration
1762  if (Tok.is(tok::kw___extension__)) {
1763    // __extension__ silences extension warnings in the subexpression.
1764    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1765    ConsumeToken();
1766    return ParseCXXClassMemberDeclaration(AS, AccessAttrs,
1767                                          TemplateInfo, TemplateDiags);
1768  }
1769
1770  // Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it
1771  // is a bitfield.
1772  ColonProtectionRAIIObject X(*this);
1773
1774  ParsedAttributesWithRange attrs(AttrFactory);
1775  // Optional C++0x attribute-specifier
1776  MaybeParseCXX0XAttributes(attrs);
1777  MaybeParseMicrosoftAttributes(attrs);
1778
1779  if (Tok.is(tok::kw_using)) {
1780    ProhibitAttributes(attrs);
1781
1782    // Eat 'using'.
1783    SourceLocation UsingLoc = ConsumeToken();
1784
1785    if (Tok.is(tok::kw_namespace)) {
1786      Diag(UsingLoc, diag::err_using_namespace_in_class);
1787      SkipUntil(tok::semi, true, true);
1788    } else {
1789      SourceLocation DeclEnd;
1790      // Otherwise, it must be a using-declaration or an alias-declaration.
1791      ParseUsingDeclaration(Declarator::MemberContext, TemplateInfo,
1792                            UsingLoc, DeclEnd, AS);
1793    }
1794    return;
1795  }
1796
1797  // Hold late-parsed attributes so we can attach a Decl to them later.
1798  LateParsedAttrList CommonLateParsedAttrs;
1799
1800  // decl-specifier-seq:
1801  // Parse the common declaration-specifiers piece.
1802  ParsingDeclSpec DS(*this, TemplateDiags);
1803  DS.takeAttributesFrom(attrs);
1804  ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class,
1805                             &CommonLateParsedAttrs);
1806
1807  MultiTemplateParamsArg TemplateParams(Actions,
1808      TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
1809      TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
1810
1811  if (Tok.is(tok::semi)) {
1812    ConsumeToken();
1813    Decl *TheDecl =
1814      Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS, TemplateParams);
1815    DS.complete(TheDecl);
1816    return;
1817  }
1818
1819  ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext);
1820  VirtSpecifiers VS;
1821
1822  // Hold late-parsed attributes so we can attach a Decl to them later.
1823  LateParsedAttrList LateParsedAttrs;
1824
1825  SourceLocation EqualLoc;
1826  bool HasInitializer = false;
1827  ExprResult Init;
1828  if (Tok.isNot(tok::colon)) {
1829    // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1830    ColonProtectionRAIIObject X(*this);
1831
1832    // Parse the first declarator.
1833    ParseDeclarator(DeclaratorInfo);
1834    // Error parsing the declarator?
1835    if (!DeclaratorInfo.hasName()) {
1836      // If so, skip until the semi-colon or a }.
1837      SkipUntil(tok::r_brace, true, true);
1838      if (Tok.is(tok::semi))
1839        ConsumeToken();
1840      return;
1841    }
1842
1843    ParseOptionalCXX0XVirtSpecifierSeq(VS);
1844
1845    // If attributes exist after the declarator, but before an '{', parse them.
1846    MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
1847
1848    // MSVC permits pure specifier on inline functions declared at class scope.
1849    // Hence check for =0 before checking for function definition.
1850    if (getLangOpts().MicrosoftExt && Tok.is(tok::equal) &&
1851        DeclaratorInfo.isFunctionDeclarator() &&
1852        NextToken().is(tok::numeric_constant)) {
1853      EqualLoc = ConsumeToken();
1854      Init = ParseInitializer();
1855      if (Init.isInvalid())
1856        SkipUntil(tok::comma, true, true);
1857      else
1858        HasInitializer = true;
1859    }
1860
1861    FunctionDefinitionKind DefinitionKind = FDK_Declaration;
1862    // function-definition:
1863    //
1864    // In C++11, a non-function declarator followed by an open brace is a
1865    // braced-init-list for an in-class member initialization, not an
1866    // erroneous function definition.
1867    if (Tok.is(tok::l_brace) && !getLangOpts().CPlusPlus0x) {
1868      DefinitionKind = FDK_Definition;
1869    } else if (DeclaratorInfo.isFunctionDeclarator()) {
1870      if (Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
1871        DefinitionKind = FDK_Definition;
1872      } else if (Tok.is(tok::equal)) {
1873        const Token &KW = NextToken();
1874        if (KW.is(tok::kw_default))
1875          DefinitionKind = FDK_Defaulted;
1876        else if (KW.is(tok::kw_delete))
1877          DefinitionKind = FDK_Deleted;
1878      }
1879    }
1880
1881    if (DefinitionKind) {
1882      if (!DeclaratorInfo.isFunctionDeclarator()) {
1883        Diag(DeclaratorInfo.getIdentifierLoc(), diag::err_func_def_no_params);
1884        ConsumeBrace();
1885        SkipUntil(tok::r_brace, /*StopAtSemi*/false);
1886
1887        // Consume the optional ';'
1888        if (Tok.is(tok::semi))
1889          ConsumeToken();
1890        return;
1891      }
1892
1893      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1894        Diag(DeclaratorInfo.getIdentifierLoc(),
1895             diag::err_function_declared_typedef);
1896        // This recovery skips the entire function body. It would be nice
1897        // to simply call ParseCXXInlineMethodDef() below, however Sema
1898        // assumes the declarator represents a function, not a typedef.
1899        ConsumeBrace();
1900        SkipUntil(tok::r_brace, /*StopAtSemi*/false);
1901
1902        // Consume the optional ';'
1903        if (Tok.is(tok::semi))
1904          ConsumeToken();
1905        return;
1906      }
1907
1908      Decl *FunDecl =
1909        ParseCXXInlineMethodDef(AS, AccessAttrs, DeclaratorInfo, TemplateInfo,
1910                                VS, DefinitionKind, Init);
1911
1912      for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
1913        CommonLateParsedAttrs[i]->addDecl(FunDecl);
1914      }
1915      for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
1916        LateParsedAttrs[i]->addDecl(FunDecl);
1917      }
1918      LateParsedAttrs.clear();
1919
1920      // Consume the ';' - it's optional unless we have a delete or default
1921      if (Tok.is(tok::semi)) {
1922        ConsumeToken();
1923      }
1924
1925      return;
1926    }
1927  }
1928
1929  // member-declarator-list:
1930  //   member-declarator
1931  //   member-declarator-list ',' member-declarator
1932
1933  SmallVector<Decl *, 8> DeclsInGroup;
1934  ExprResult BitfieldSize;
1935  bool ExpectSemi = true;
1936
1937  while (1) {
1938    // member-declarator:
1939    //   declarator pure-specifier[opt]
1940    //   declarator brace-or-equal-initializer[opt]
1941    //   identifier[opt] ':' constant-expression
1942    if (Tok.is(tok::colon)) {
1943      ConsumeToken();
1944      BitfieldSize = ParseConstantExpression();
1945      if (BitfieldSize.isInvalid())
1946        SkipUntil(tok::comma, true, true);
1947    }
1948
1949    // If a simple-asm-expr is present, parse it.
1950    if (Tok.is(tok::kw_asm)) {
1951      SourceLocation Loc;
1952      ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1953      if (AsmLabel.isInvalid())
1954        SkipUntil(tok::comma, true, true);
1955
1956      DeclaratorInfo.setAsmLabel(AsmLabel.release());
1957      DeclaratorInfo.SetRangeEnd(Loc);
1958    }
1959
1960    // If attributes exist after the declarator, parse them.
1961    MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
1962
1963    // FIXME: When g++ adds support for this, we'll need to check whether it
1964    // goes before or after the GNU attributes and __asm__.
1965    ParseOptionalCXX0XVirtSpecifierSeq(VS);
1966
1967    bool HasDeferredInitializer = false;
1968    if ((Tok.is(tok::equal) || Tok.is(tok::l_brace)) && !HasInitializer) {
1969      if (BitfieldSize.get()) {
1970        Diag(Tok, diag::err_bitfield_member_init);
1971        SkipUntil(tok::comma, true, true);
1972      } else {
1973        HasInitializer = true;
1974        HasDeferredInitializer = !DeclaratorInfo.isDeclarationOfFunction() &&
1975          DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1976            != DeclSpec::SCS_static &&
1977          DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1978            != DeclSpec::SCS_typedef;
1979      }
1980    }
1981
1982    // NOTE: If Sema is the Action module and declarator is an instance field,
1983    // this call will *not* return the created decl; It will return null.
1984    // See Sema::ActOnCXXMemberDeclarator for details.
1985
1986    Decl *ThisDecl = 0;
1987    if (DS.isFriendSpecified()) {
1988      // TODO: handle initializers, bitfields, 'delete'
1989      ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
1990                                                 move(TemplateParams));
1991    } else {
1992      ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
1993                                                  DeclaratorInfo,
1994                                                  move(TemplateParams),
1995                                                  BitfieldSize.release(),
1996                                                  VS, HasDeferredInitializer);
1997      if (AccessAttrs)
1998        Actions.ProcessDeclAttributeList(getCurScope(), ThisDecl, AccessAttrs,
1999                                         false, true);
2000    }
2001
2002    // Set the Decl for any late parsed attributes
2003    for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
2004      CommonLateParsedAttrs[i]->addDecl(ThisDecl);
2005    }
2006    for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
2007      LateParsedAttrs[i]->addDecl(ThisDecl);
2008    }
2009    LateParsedAttrs.clear();
2010
2011    // Handle the initializer.
2012    if (HasDeferredInitializer) {
2013      // The initializer was deferred; parse it and cache the tokens.
2014      Diag(Tok, getLangOpts().CPlusPlus0x ?
2015           diag::warn_cxx98_compat_nonstatic_member_init :
2016           diag::ext_nonstatic_member_init);
2017
2018      if (DeclaratorInfo.isArrayOfUnknownBound()) {
2019        // C++0x [dcl.array]p3: An array bound may also be omitted when the
2020        // declarator is followed by an initializer.
2021        //
2022        // A brace-or-equal-initializer for a member-declarator is not an
2023        // initializer in the grammar, so this is ill-formed.
2024        Diag(Tok, diag::err_incomplete_array_member_init);
2025        SkipUntil(tok::comma, true, true);
2026        if (ThisDecl)
2027          // Avoid later warnings about a class member of incomplete type.
2028          ThisDecl->setInvalidDecl();
2029      } else
2030        ParseCXXNonStaticMemberInitializer(ThisDecl);
2031    } else if (HasInitializer) {
2032      // Normal initializer.
2033      if (!Init.isUsable())
2034        Init = ParseCXXMemberInitializer(ThisDecl,
2035                 DeclaratorInfo.isDeclarationOfFunction(), EqualLoc);
2036
2037      if (Init.isInvalid())
2038        SkipUntil(tok::comma, true, true);
2039      else if (ThisDecl)
2040        Actions.AddInitializerToDecl(ThisDecl, Init.get(), EqualLoc.isInvalid(),
2041                                   DS.getTypeSpecType() == DeclSpec::TST_auto);
2042    } else if (ThisDecl && DS.getStorageClassSpec() == DeclSpec::SCS_static) {
2043      // No initializer.
2044      Actions.ActOnUninitializedDecl(ThisDecl,
2045                                   DS.getTypeSpecType() == DeclSpec::TST_auto);
2046    }
2047
2048    if (ThisDecl) {
2049      Actions.FinalizeDeclaration(ThisDecl);
2050      DeclsInGroup.push_back(ThisDecl);
2051    }
2052
2053    if (DeclaratorInfo.isFunctionDeclarator() &&
2054        DeclaratorInfo.getDeclSpec().getStorageClassSpec()
2055          != DeclSpec::SCS_typedef) {
2056      HandleMemberFunctionDefaultArgs(DeclaratorInfo, ThisDecl);
2057    }
2058
2059    DeclaratorInfo.complete(ThisDecl);
2060
2061    // If we don't have a comma, it is either the end of the list (a ';')
2062    // or an error, bail out.
2063    if (Tok.isNot(tok::comma))
2064      break;
2065
2066    // Consume the comma.
2067    SourceLocation CommaLoc = ConsumeToken();
2068
2069    if (Tok.isAtStartOfLine() &&
2070        !MightBeDeclarator(Declarator::MemberContext)) {
2071      // This comma was followed by a line-break and something which can't be
2072      // the start of a declarator. The comma was probably a typo for a
2073      // semicolon.
2074      Diag(CommaLoc, diag::err_expected_semi_declaration)
2075        << FixItHint::CreateReplacement(CommaLoc, ";");
2076      ExpectSemi = false;
2077      break;
2078    }
2079
2080    // Parse the next declarator.
2081    DeclaratorInfo.clear();
2082    VS.clear();
2083    BitfieldSize = true;
2084    Init = true;
2085    HasInitializer = false;
2086    DeclaratorInfo.setCommaLoc(CommaLoc);
2087
2088    // Attributes are only allowed on the second declarator.
2089    MaybeParseGNUAttributes(DeclaratorInfo);
2090
2091    if (Tok.isNot(tok::colon))
2092      ParseDeclarator(DeclaratorInfo);
2093  }
2094
2095  if (ExpectSemi &&
2096      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) {
2097    // Skip to end of block or statement.
2098    SkipUntil(tok::r_brace, true, true);
2099    // If we stopped at a ';', eat it.
2100    if (Tok.is(tok::semi)) ConsumeToken();
2101    return;
2102  }
2103
2104  Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(),
2105                                  DeclsInGroup.size());
2106}
2107
2108/// ParseCXXMemberInitializer - Parse the brace-or-equal-initializer or
2109/// pure-specifier. Also detect and reject any attempted defaulted/deleted
2110/// function definition. The location of the '=', if any, will be placed in
2111/// EqualLoc.
2112///
2113///   pure-specifier:
2114///     '= 0'
2115///
2116///   brace-or-equal-initializer:
2117///     '=' initializer-expression
2118///     braced-init-list
2119///
2120///   initializer-clause:
2121///     assignment-expression
2122///     braced-init-list
2123///
2124///   defaulted/deleted function-definition:
2125///     '=' 'default'
2126///     '=' 'delete'
2127///
2128/// Prior to C++0x, the assignment-expression in an initializer-clause must
2129/// be a constant-expression.
2130ExprResult Parser::ParseCXXMemberInitializer(Decl *D, bool IsFunction,
2131                                             SourceLocation &EqualLoc) {
2132  assert((Tok.is(tok::equal) || Tok.is(tok::l_brace))
2133         && "Data member initializer not starting with '=' or '{'");
2134
2135  EnterExpressionEvaluationContext Context(Actions,
2136                                           Sema::PotentiallyEvaluated,
2137                                           D);
2138  if (Tok.is(tok::equal)) {
2139    EqualLoc = ConsumeToken();
2140    if (Tok.is(tok::kw_delete)) {
2141      // In principle, an initializer of '= delete p;' is legal, but it will
2142      // never type-check. It's better to diagnose it as an ill-formed expression
2143      // than as an ill-formed deleted non-function member.
2144      // An initializer of '= delete p, foo' will never be parsed, because
2145      // a top-level comma always ends the initializer expression.
2146      const Token &Next = NextToken();
2147      if (IsFunction || Next.is(tok::semi) || Next.is(tok::comma) ||
2148           Next.is(tok::eof)) {
2149        if (IsFunction)
2150          Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2151            << 1 /* delete */;
2152        else
2153          Diag(ConsumeToken(), diag::err_deleted_non_function);
2154        return ExprResult();
2155      }
2156    } else if (Tok.is(tok::kw_default)) {
2157      if (IsFunction)
2158        Diag(Tok, diag::err_default_delete_in_multiple_declaration)
2159          << 0 /* default */;
2160      else
2161        Diag(ConsumeToken(), diag::err_default_special_members);
2162      return ExprResult();
2163    }
2164
2165  }
2166  return ParseInitializer();
2167}
2168
2169/// ParseCXXMemberSpecification - Parse the class definition.
2170///
2171///       member-specification:
2172///         member-declaration member-specification[opt]
2173///         access-specifier ':' member-specification[opt]
2174///
2175void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
2176                                         unsigned TagType, Decl *TagDecl) {
2177  assert((TagType == DeclSpec::TST_struct ||
2178         TagType == DeclSpec::TST_union  ||
2179         TagType == DeclSpec::TST_class) && "Invalid TagType!");
2180
2181  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2182                                      "parsing struct/union/class body");
2183
2184  // Determine whether this is a non-nested class. Note that local
2185  // classes are *not* considered to be nested classes.
2186  bool NonNestedClass = true;
2187  if (!ClassStack.empty()) {
2188    for (const Scope *S = getCurScope(); S; S = S->getParent()) {
2189      if (S->isClassScope()) {
2190        // We're inside a class scope, so this is a nested class.
2191        NonNestedClass = false;
2192        break;
2193      }
2194
2195      if ((S->getFlags() & Scope::FnScope)) {
2196        // If we're in a function or function template declared in the
2197        // body of a class, then this is a local class rather than a
2198        // nested class.
2199        const Scope *Parent = S->getParent();
2200        if (Parent->isTemplateParamScope())
2201          Parent = Parent->getParent();
2202        if (Parent->isClassScope())
2203          break;
2204      }
2205    }
2206  }
2207
2208  // Enter a scope for the class.
2209  ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
2210
2211  // Note that we are parsing a new (potentially-nested) class definition.
2212  ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass);
2213
2214  if (TagDecl)
2215    Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2216
2217  SourceLocation FinalLoc;
2218
2219  // Parse the optional 'final' keyword.
2220  if (getLangOpts().CPlusPlus && Tok.is(tok::identifier)) {
2221    assert(isCXX0XFinalKeyword() && "not a class definition");
2222    FinalLoc = ConsumeToken();
2223
2224    Diag(FinalLoc, getLangOpts().CPlusPlus0x ?
2225         diag::warn_cxx98_compat_override_control_keyword :
2226         diag::ext_override_control_keyword) << "final";
2227  }
2228
2229  if (Tok.is(tok::colon)) {
2230    ParseBaseClause(TagDecl);
2231
2232    if (!Tok.is(tok::l_brace)) {
2233      Diag(Tok, diag::err_expected_lbrace_after_base_specifiers);
2234
2235      if (TagDecl)
2236        Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
2237      return;
2238    }
2239  }
2240
2241  assert(Tok.is(tok::l_brace));
2242  BalancedDelimiterTracker T(*this, tok::l_brace);
2243  T.consumeOpen();
2244
2245  if (TagDecl)
2246    Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, FinalLoc,
2247                                            T.getOpenLocation());
2248
2249  // C++ 11p3: Members of a class defined with the keyword class are private
2250  // by default. Members of a class defined with the keywords struct or union
2251  // are public by default.
2252  AccessSpecifier CurAS;
2253  if (TagType == DeclSpec::TST_class)
2254    CurAS = AS_private;
2255  else
2256    CurAS = AS_public;
2257  ParsedAttributes AccessAttrs(AttrFactory);
2258
2259  if (TagDecl) {
2260    // While we still have something to read, read the member-declarations.
2261    while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2262      // Each iteration of this loop reads one member-declaration.
2263
2264      if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
2265          Tok.is(tok::kw___if_not_exists))) {
2266        ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
2267        continue;
2268      }
2269
2270      // Check for extraneous top-level semicolon.
2271      if (Tok.is(tok::semi)) {
2272        Diag(Tok, diag::ext_extra_struct_semi)
2273          << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2274          << FixItHint::CreateRemoval(Tok.getLocation());
2275        ConsumeToken();
2276        continue;
2277      }
2278
2279      if (Tok.is(tok::annot_pragma_vis)) {
2280        HandlePragmaVisibility();
2281        continue;
2282      }
2283
2284      if (Tok.is(tok::annot_pragma_pack)) {
2285        HandlePragmaPack();
2286        continue;
2287      }
2288
2289      AccessSpecifier AS = getAccessSpecifierIfPresent();
2290      if (AS != AS_none) {
2291        // Current token is a C++ access specifier.
2292        CurAS = AS;
2293        SourceLocation ASLoc = Tok.getLocation();
2294        unsigned TokLength = Tok.getLength();
2295        ConsumeToken();
2296        AccessAttrs.clear();
2297        MaybeParseGNUAttributes(AccessAttrs);
2298
2299        SourceLocation EndLoc;
2300        if (Tok.is(tok::colon)) {
2301          EndLoc = Tok.getLocation();
2302          ConsumeToken();
2303        } else if (Tok.is(tok::semi)) {
2304          EndLoc = Tok.getLocation();
2305          ConsumeToken();
2306          Diag(EndLoc, diag::err_expected_colon)
2307            << FixItHint::CreateReplacement(EndLoc, ":");
2308        } else {
2309          EndLoc = ASLoc.getLocWithOffset(TokLength);
2310          Diag(EndLoc, diag::err_expected_colon)
2311            << FixItHint::CreateInsertion(EndLoc, ":");
2312        }
2313
2314        if (Actions.ActOnAccessSpecifier(AS, ASLoc, EndLoc,
2315                                         AccessAttrs.getList())) {
2316          // found another attribute than only annotations
2317          AccessAttrs.clear();
2318        }
2319
2320        continue;
2321      }
2322
2323      // FIXME: Make sure we don't have a template here.
2324
2325      // Parse all the comma separated declarators.
2326      ParseCXXClassMemberDeclaration(CurAS, AccessAttrs.getList());
2327    }
2328
2329    T.consumeClose();
2330  } else {
2331    SkipUntil(tok::r_brace, false, false);
2332  }
2333
2334  // If attributes exist after class contents, parse them.
2335  ParsedAttributes attrs(AttrFactory);
2336  MaybeParseGNUAttributes(attrs);
2337
2338  if (TagDecl)
2339    Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl,
2340                                              T.getOpenLocation(),
2341                                              T.getCloseLocation(),
2342                                              attrs.getList());
2343
2344  // C++0x [class.mem]p2: Within the class member-specification, the class is
2345  // regarded as complete within function bodies, default arguments, exception-
2346  // specifications, and brace-or-equal-initializers for non-static data
2347  // members (including such things in nested classes).
2348  //
2349  // FIXME: Only function bodies and brace-or-equal-initializers are currently
2350  // handled. Fix the others!
2351  if (TagDecl && NonNestedClass) {
2352    // We are not inside a nested class. This class and its nested classes
2353    // are complete and we can parse the delayed portions of method
2354    // declarations and the lexed inline method definitions, along with any
2355    // delayed attributes.
2356    SourceLocation SavedPrevTokLocation = PrevTokLocation;
2357    ParseLexedAttributes(getCurrentClass());
2358    ParseLexedMethodDeclarations(getCurrentClass());
2359    ParseLexedMemberInitializers(getCurrentClass());
2360    ParseLexedMethodDefs(getCurrentClass());
2361    PrevTokLocation = SavedPrevTokLocation;
2362  }
2363
2364  if (TagDecl)
2365    Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2366                                     T.getCloseLocation());
2367
2368  // Leave the class scope.
2369  ParsingDef.Pop();
2370  ClassScope.Exit();
2371}
2372
2373/// ParseConstructorInitializer - Parse a C++ constructor initializer,
2374/// which explicitly initializes the members or base classes of a
2375/// class (C++ [class.base.init]). For example, the three initializers
2376/// after the ':' in the Derived constructor below:
2377///
2378/// @code
2379/// class Base { };
2380/// class Derived : Base {
2381///   int x;
2382///   float f;
2383/// public:
2384///   Derived(float f) : Base(), x(17), f(f) { }
2385/// };
2386/// @endcode
2387///
2388/// [C++]  ctor-initializer:
2389///          ':' mem-initializer-list
2390///
2391/// [C++]  mem-initializer-list:
2392///          mem-initializer ...[opt]
2393///          mem-initializer ...[opt] , mem-initializer-list
2394void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) {
2395  assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'");
2396
2397  // Poison the SEH identifiers so they are flagged as illegal in constructor initializers
2398  PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true);
2399  SourceLocation ColonLoc = ConsumeToken();
2400
2401  SmallVector<CXXCtorInitializer*, 4> MemInitializers;
2402  bool AnyErrors = false;
2403
2404  do {
2405    if (Tok.is(tok::code_completion)) {
2406      Actions.CodeCompleteConstructorInitializer(ConstructorDecl,
2407                                                 MemInitializers.data(),
2408                                                 MemInitializers.size());
2409      return cutOffParsing();
2410    } else {
2411      MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
2412      if (!MemInit.isInvalid())
2413        MemInitializers.push_back(MemInit.get());
2414      else
2415        AnyErrors = true;
2416    }
2417
2418    if (Tok.is(tok::comma))
2419      ConsumeToken();
2420    else if (Tok.is(tok::l_brace))
2421      break;
2422    // If the next token looks like a base or member initializer, assume that
2423    // we're just missing a comma.
2424    else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
2425      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2426      Diag(Loc, diag::err_ctor_init_missing_comma)
2427        << FixItHint::CreateInsertion(Loc, ", ");
2428    } else {
2429      // Skip over garbage, until we get to '{'.  Don't eat the '{'.
2430      Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
2431      SkipUntil(tok::l_brace, true, true);
2432      break;
2433    }
2434  } while (true);
2435
2436  Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc,
2437                               MemInitializers.data(), MemInitializers.size(),
2438                               AnyErrors);
2439}
2440
2441/// ParseMemInitializer - Parse a C++ member initializer, which is
2442/// part of a constructor initializer that explicitly initializes one
2443/// member or base class (C++ [class.base.init]). See
2444/// ParseConstructorInitializer for an example.
2445///
2446/// [C++] mem-initializer:
2447///         mem-initializer-id '(' expression-list[opt] ')'
2448/// [C++0x] mem-initializer-id braced-init-list
2449///
2450/// [C++] mem-initializer-id:
2451///         '::'[opt] nested-name-specifier[opt] class-name
2452///         identifier
2453Parser::MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) {
2454  // parse '::'[opt] nested-name-specifier[opt]
2455  CXXScopeSpec SS;
2456  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
2457  ParsedType TemplateTypeTy;
2458  if (Tok.is(tok::annot_template_id)) {
2459    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2460    if (TemplateId->Kind == TNK_Type_template ||
2461        TemplateId->Kind == TNK_Dependent_template_name) {
2462      AnnotateTemplateIdTokenAsType();
2463      assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
2464      TemplateTypeTy = getTypeAnnotation(Tok);
2465    }
2466  }
2467  // Uses of decltype will already have been converted to annot_decltype by
2468  // ParseOptionalCXXScopeSpecifier at this point.
2469  if (!TemplateTypeTy && Tok.isNot(tok::identifier)
2470      && Tok.isNot(tok::annot_decltype)) {
2471    Diag(Tok, diag::err_expected_member_or_base_name);
2472    return true;
2473  }
2474
2475  IdentifierInfo *II = 0;
2476  DeclSpec DS(AttrFactory);
2477  SourceLocation IdLoc = Tok.getLocation();
2478  if (Tok.is(tok::annot_decltype)) {
2479    // Get the decltype expression, if there is one.
2480    ParseDecltypeSpecifier(DS);
2481  } else {
2482    if (Tok.is(tok::identifier))
2483      // Get the identifier. This may be a member name or a class name,
2484      // but we'll let the semantic analysis determine which it is.
2485      II = Tok.getIdentifierInfo();
2486    ConsumeToken();
2487  }
2488
2489
2490  // Parse the '('.
2491  if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
2492    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2493
2494    ExprResult InitList = ParseBraceInitializer();
2495    if (InitList.isInvalid())
2496      return true;
2497
2498    SourceLocation EllipsisLoc;
2499    if (Tok.is(tok::ellipsis))
2500      EllipsisLoc = ConsumeToken();
2501
2502    return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
2503                                       TemplateTypeTy, DS, IdLoc,
2504                                       InitList.take(), EllipsisLoc);
2505  } else if(Tok.is(tok::l_paren)) {
2506    BalancedDelimiterTracker T(*this, tok::l_paren);
2507    T.consumeOpen();
2508
2509    // Parse the optional expression-list.
2510    ExprVector ArgExprs(Actions);
2511    CommaLocsTy CommaLocs;
2512    if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
2513      SkipUntil(tok::r_paren);
2514      return true;
2515    }
2516
2517    T.consumeClose();
2518
2519    SourceLocation EllipsisLoc;
2520    if (Tok.is(tok::ellipsis))
2521      EllipsisLoc = ConsumeToken();
2522
2523    return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
2524                                       TemplateTypeTy, DS, IdLoc,
2525                                       T.getOpenLocation(), ArgExprs.take(),
2526                                       ArgExprs.size(), T.getCloseLocation(),
2527                                       EllipsisLoc);
2528  }
2529
2530  Diag(Tok, getLangOpts().CPlusPlus0x ? diag::err_expected_lparen_or_lbrace
2531                                  : diag::err_expected_lparen);
2532  return true;
2533}
2534
2535/// \brief Parse a C++ exception-specification if present (C++0x [except.spec]).
2536///
2537///       exception-specification:
2538///         dynamic-exception-specification
2539///         noexcept-specification
2540///
2541///       noexcept-specification:
2542///         'noexcept'
2543///         'noexcept' '(' constant-expression ')'
2544ExceptionSpecificationType
2545Parser::MaybeParseExceptionSpecification(SourceRange &SpecificationRange,
2546                    SmallVectorImpl<ParsedType> &DynamicExceptions,
2547                    SmallVectorImpl<SourceRange> &DynamicExceptionRanges,
2548                    ExprResult &NoexceptExpr) {
2549  ExceptionSpecificationType Result = EST_None;
2550
2551  // See if there's a dynamic specification.
2552  if (Tok.is(tok::kw_throw)) {
2553    Result = ParseDynamicExceptionSpecification(SpecificationRange,
2554                                                DynamicExceptions,
2555                                                DynamicExceptionRanges);
2556    assert(DynamicExceptions.size() == DynamicExceptionRanges.size() &&
2557           "Produced different number of exception types and ranges.");
2558  }
2559
2560  // If there's no noexcept specification, we're done.
2561  if (Tok.isNot(tok::kw_noexcept))
2562    return Result;
2563
2564  Diag(Tok, diag::warn_cxx98_compat_noexcept_decl);
2565
2566  // If we already had a dynamic specification, parse the noexcept for,
2567  // recovery, but emit a diagnostic and don't store the results.
2568  SourceRange NoexceptRange;
2569  ExceptionSpecificationType NoexceptType = EST_None;
2570
2571  SourceLocation KeywordLoc = ConsumeToken();
2572  if (Tok.is(tok::l_paren)) {
2573    // There is an argument.
2574    BalancedDelimiterTracker T(*this, tok::l_paren);
2575    T.consumeOpen();
2576    NoexceptType = EST_ComputedNoexcept;
2577    NoexceptExpr = ParseConstantExpression();
2578    // The argument must be contextually convertible to bool. We use
2579    // ActOnBooleanCondition for this purpose.
2580    if (!NoexceptExpr.isInvalid())
2581      NoexceptExpr = Actions.ActOnBooleanCondition(getCurScope(), KeywordLoc,
2582                                                   NoexceptExpr.get());
2583    T.consumeClose();
2584    NoexceptRange = SourceRange(KeywordLoc, T.getCloseLocation());
2585  } else {
2586    // There is no argument.
2587    NoexceptType = EST_BasicNoexcept;
2588    NoexceptRange = SourceRange(KeywordLoc, KeywordLoc);
2589  }
2590
2591  if (Result == EST_None) {
2592    SpecificationRange = NoexceptRange;
2593    Result = NoexceptType;
2594
2595    // If there's a dynamic specification after a noexcept specification,
2596    // parse that and ignore the results.
2597    if (Tok.is(tok::kw_throw)) {
2598      Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
2599      ParseDynamicExceptionSpecification(NoexceptRange, DynamicExceptions,
2600                                         DynamicExceptionRanges);
2601    }
2602  } else {
2603    Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
2604  }
2605
2606  return Result;
2607}
2608
2609/// ParseDynamicExceptionSpecification - Parse a C++
2610/// dynamic-exception-specification (C++ [except.spec]).
2611///
2612///       dynamic-exception-specification:
2613///         'throw' '(' type-id-list [opt] ')'
2614/// [MS]    'throw' '(' '...' ')'
2615///
2616///       type-id-list:
2617///         type-id ... [opt]
2618///         type-id-list ',' type-id ... [opt]
2619///
2620ExceptionSpecificationType Parser::ParseDynamicExceptionSpecification(
2621                                  SourceRange &SpecificationRange,
2622                                  SmallVectorImpl<ParsedType> &Exceptions,
2623                                  SmallVectorImpl<SourceRange> &Ranges) {
2624  assert(Tok.is(tok::kw_throw) && "expected throw");
2625
2626  SpecificationRange.setBegin(ConsumeToken());
2627  BalancedDelimiterTracker T(*this, tok::l_paren);
2628  if (T.consumeOpen()) {
2629    Diag(Tok, diag::err_expected_lparen_after) << "throw";
2630    SpecificationRange.setEnd(SpecificationRange.getBegin());
2631    return EST_DynamicNone;
2632  }
2633
2634  // Parse throw(...), a Microsoft extension that means "this function
2635  // can throw anything".
2636  if (Tok.is(tok::ellipsis)) {
2637    SourceLocation EllipsisLoc = ConsumeToken();
2638    if (!getLangOpts().MicrosoftExt)
2639      Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
2640    T.consumeClose();
2641    SpecificationRange.setEnd(T.getCloseLocation());
2642    return EST_MSAny;
2643  }
2644
2645  // Parse the sequence of type-ids.
2646  SourceRange Range;
2647  while (Tok.isNot(tok::r_paren)) {
2648    TypeResult Res(ParseTypeName(&Range));
2649
2650    if (Tok.is(tok::ellipsis)) {
2651      // C++0x [temp.variadic]p5:
2652      //   - In a dynamic-exception-specification (15.4); the pattern is a
2653      //     type-id.
2654      SourceLocation Ellipsis = ConsumeToken();
2655      Range.setEnd(Ellipsis);
2656      if (!Res.isInvalid())
2657        Res = Actions.ActOnPackExpansion(Res.get(), Ellipsis);
2658    }
2659
2660    if (!Res.isInvalid()) {
2661      Exceptions.push_back(Res.get());
2662      Ranges.push_back(Range);
2663    }
2664
2665    if (Tok.is(tok::comma))
2666      ConsumeToken();
2667    else
2668      break;
2669  }
2670
2671  T.consumeClose();
2672  SpecificationRange.setEnd(T.getCloseLocation());
2673  return Exceptions.empty() ? EST_DynamicNone : EST_Dynamic;
2674}
2675
2676/// ParseTrailingReturnType - Parse a trailing return type on a new-style
2677/// function declaration.
2678TypeResult Parser::ParseTrailingReturnType(SourceRange &Range) {
2679  assert(Tok.is(tok::arrow) && "expected arrow");
2680
2681  ConsumeToken();
2682
2683  return ParseTypeName(&Range, Declarator::TrailingReturnContext);
2684}
2685
2686/// \brief We have just started parsing the definition of a new class,
2687/// so push that class onto our stack of classes that is currently
2688/// being parsed.
2689Sema::ParsingClassState
2690Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass) {
2691  assert((NonNestedClass || !ClassStack.empty()) &&
2692         "Nested class without outer class");
2693  ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass));
2694  return Actions.PushParsingClass();
2695}
2696
2697/// \brief Deallocate the given parsed class and all of its nested
2698/// classes.
2699void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
2700  for (unsigned I = 0, N = Class->LateParsedDeclarations.size(); I != N; ++I)
2701    delete Class->LateParsedDeclarations[I];
2702  delete Class;
2703}
2704
2705/// \brief Pop the top class of the stack of classes that are
2706/// currently being parsed.
2707///
2708/// This routine should be called when we have finished parsing the
2709/// definition of a class, but have not yet popped the Scope
2710/// associated with the class's definition.
2711///
2712/// \returns true if the class we've popped is a top-level class,
2713/// false otherwise.
2714void Parser::PopParsingClass(Sema::ParsingClassState state) {
2715  assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
2716
2717  Actions.PopParsingClass(state);
2718
2719  ParsingClass *Victim = ClassStack.top();
2720  ClassStack.pop();
2721  if (Victim->TopLevelClass) {
2722    // Deallocate all of the nested classes of this class,
2723    // recursively: we don't need to keep any of this information.
2724    DeallocateParsedClasses(Victim);
2725    return;
2726  }
2727  assert(!ClassStack.empty() && "Missing top-level class?");
2728
2729  if (Victim->LateParsedDeclarations.empty()) {
2730    // The victim is a nested class, but we will not need to perform
2731    // any processing after the definition of this class since it has
2732    // no members whose handling was delayed. Therefore, we can just
2733    // remove this nested class.
2734    DeallocateParsedClasses(Victim);
2735    return;
2736  }
2737
2738  // This nested class has some members that will need to be processed
2739  // after the top-level class is completely defined. Therefore, add
2740  // it to the list of nested classes within its parent.
2741  assert(getCurScope()->isClassScope() && "Nested class outside of class scope?");
2742  ClassStack.top()->LateParsedDeclarations.push_back(new LateParsedClass(this, Victim));
2743  Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope();
2744}
2745
2746/// ParseCXX0XAttributeSpecifier - Parse a C++0x attribute-specifier. Currently
2747/// only parses standard attributes.
2748///
2749/// [C++0x] attribute-specifier:
2750///         '[' '[' attribute-list ']' ']'
2751///         alignment-specifier
2752///
2753/// [C++0x] attribute-list:
2754///         attribute[opt]
2755///         attribute-list ',' attribute[opt]
2756///
2757/// [C++0x] attribute:
2758///         attribute-token attribute-argument-clause[opt]
2759///
2760/// [C++0x] attribute-token:
2761///         identifier
2762///         attribute-scoped-token
2763///
2764/// [C++0x] attribute-scoped-token:
2765///         attribute-namespace '::' identifier
2766///
2767/// [C++0x] attribute-namespace:
2768///         identifier
2769///
2770/// [C++0x] attribute-argument-clause:
2771///         '(' balanced-token-seq ')'
2772///
2773/// [C++0x] balanced-token-seq:
2774///         balanced-token
2775///         balanced-token-seq balanced-token
2776///
2777/// [C++0x] balanced-token:
2778///         '(' balanced-token-seq ')'
2779///         '[' balanced-token-seq ']'
2780///         '{' balanced-token-seq '}'
2781///         any token but '(', ')', '[', ']', '{', or '}'
2782void Parser::ParseCXX0XAttributeSpecifier(ParsedAttributes &attrs,
2783                                          SourceLocation *endLoc) {
2784  if (Tok.is(tok::kw_alignas)) {
2785    Diag(Tok.getLocation(), diag::warn_cxx98_compat_alignas);
2786    ParseAlignmentSpecifier(attrs, endLoc);
2787    return;
2788  }
2789
2790  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)
2791      && "Not a C++0x attribute list");
2792
2793  Diag(Tok.getLocation(), diag::warn_cxx98_compat_attribute);
2794
2795  ConsumeBracket();
2796  ConsumeBracket();
2797
2798  if (Tok.is(tok::comma)) {
2799    Diag(Tok.getLocation(), diag::err_expected_ident);
2800    ConsumeToken();
2801  }
2802
2803  while (Tok.is(tok::identifier) || Tok.is(tok::comma)) {
2804    // attribute not present
2805    if (Tok.is(tok::comma)) {
2806      ConsumeToken();
2807      continue;
2808    }
2809
2810    IdentifierInfo *ScopeName = 0, *AttrName = Tok.getIdentifierInfo();
2811    SourceLocation ScopeLoc, AttrLoc = ConsumeToken();
2812
2813    // scoped attribute
2814    if (Tok.is(tok::coloncolon)) {
2815      ConsumeToken();
2816
2817      if (!Tok.is(tok::identifier)) {
2818        Diag(Tok.getLocation(), diag::err_expected_ident);
2819        SkipUntil(tok::r_square, tok::comma, true, true);
2820        continue;
2821      }
2822
2823      ScopeName = AttrName;
2824      ScopeLoc = AttrLoc;
2825
2826      AttrName = Tok.getIdentifierInfo();
2827      AttrLoc = ConsumeToken();
2828    }
2829
2830    bool AttrParsed = false;
2831    // No scoped names are supported; ideally we could put all non-standard
2832    // attributes into namespaces.
2833    if (!ScopeName) {
2834      switch(AttributeList::getKind(AttrName))
2835      {
2836      // No arguments
2837      case AttributeList::AT_carries_dependency:
2838      case AttributeList::AT_noreturn: {
2839        if (Tok.is(tok::l_paren)) {
2840          Diag(Tok.getLocation(), diag::err_cxx0x_attribute_forbids_arguments)
2841            << AttrName->getName();
2842          break;
2843        }
2844
2845        attrs.addNew(AttrName, AttrLoc, 0, AttrLoc, 0,
2846                     SourceLocation(), 0, 0, false, true);
2847        AttrParsed = true;
2848        break;
2849      }
2850
2851      // Silence warnings
2852      default: break;
2853      }
2854    }
2855
2856    // Skip the entire parameter clause, if any
2857    if (!AttrParsed && Tok.is(tok::l_paren)) {
2858      ConsumeParen();
2859      // SkipUntil maintains the balancedness of tokens.
2860      SkipUntil(tok::r_paren, false);
2861    }
2862  }
2863
2864  if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2865    SkipUntil(tok::r_square, false);
2866  if (endLoc)
2867    *endLoc = Tok.getLocation();
2868  if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2869    SkipUntil(tok::r_square, false);
2870}
2871
2872/// ParseCXX0XAttributes - Parse a C++0x attribute-specifier-seq.
2873///
2874/// attribute-specifier-seq:
2875///       attribute-specifier-seq[opt] attribute-specifier
2876void Parser::ParseCXX0XAttributes(ParsedAttributesWithRange &attrs,
2877                                  SourceLocation *endLoc) {
2878  SourceLocation StartLoc = Tok.getLocation(), Loc;
2879  if (!endLoc)
2880    endLoc = &Loc;
2881
2882  do {
2883    ParseCXX0XAttributeSpecifier(attrs, endLoc);
2884  } while (isCXX0XAttributeSpecifier());
2885
2886  attrs.Range = SourceRange(StartLoc, *endLoc);
2887}
2888
2889/// ParseMicrosoftAttributes - Parse a Microsoft attribute [Attr]
2890///
2891/// [MS] ms-attribute:
2892///             '[' token-seq ']'
2893///
2894/// [MS] ms-attribute-seq:
2895///             ms-attribute[opt]
2896///             ms-attribute ms-attribute-seq
2897void Parser::ParseMicrosoftAttributes(ParsedAttributes &attrs,
2898                                      SourceLocation *endLoc) {
2899  assert(Tok.is(tok::l_square) && "Not a Microsoft attribute list");
2900
2901  while (Tok.is(tok::l_square)) {
2902    ConsumeBracket();
2903    SkipUntil(tok::r_square, true, true);
2904    if (endLoc) *endLoc = Tok.getLocation();
2905    ExpectAndConsume(tok::r_square, diag::err_expected_rsquare);
2906  }
2907}
2908
2909void Parser::ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType,
2910                                                    AccessSpecifier& CurAS) {
2911  IfExistsCondition Result;
2912  if (ParseMicrosoftIfExistsCondition(Result))
2913    return;
2914
2915  BalancedDelimiterTracker Braces(*this, tok::l_brace);
2916  if (Braces.consumeOpen()) {
2917    Diag(Tok, diag::err_expected_lbrace);
2918    return;
2919  }
2920
2921  switch (Result.Behavior) {
2922  case IEB_Parse:
2923    // Parse the declarations below.
2924    break;
2925
2926  case IEB_Dependent:
2927    Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
2928      << Result.IsIfExists;
2929    // Fall through to skip.
2930
2931  case IEB_Skip:
2932    Braces.skipToEnd();
2933    return;
2934  }
2935
2936  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2937    // __if_exists, __if_not_exists can nest.
2938    if ((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) {
2939      ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
2940      continue;
2941    }
2942
2943    // Check for extraneous top-level semicolon.
2944    if (Tok.is(tok::semi)) {
2945      Diag(Tok, diag::ext_extra_struct_semi)
2946        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2947        << FixItHint::CreateRemoval(Tok.getLocation());
2948      ConsumeToken();
2949      continue;
2950    }
2951
2952    AccessSpecifier AS = getAccessSpecifierIfPresent();
2953    if (AS != AS_none) {
2954      // Current token is a C++ access specifier.
2955      CurAS = AS;
2956      SourceLocation ASLoc = Tok.getLocation();
2957      ConsumeToken();
2958      if (Tok.is(tok::colon))
2959        Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation());
2960      else
2961        Diag(Tok, diag::err_expected_colon);
2962      ConsumeToken();
2963      continue;
2964    }
2965
2966    // Parse all the comma separated declarators.
2967    ParseCXXClassMemberDeclaration(CurAS, 0);
2968  }
2969
2970  Braces.consumeClose();
2971}
2972