SemaChecking.cpp revision 31f8e32788adb299acad455363eb7fd244642c82
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/Analysis/Analyses/PrintfFormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Lex/LiteralSupport.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/STLExtras.h"
31#include <limits>
32#include <queue>
33using namespace clang;
34
35/// getLocationOfStringLiteralByte - Return a source location that points to the
36/// specified byte of the specified string literal.
37///
38/// Strings are amazingly complex.  They can be formed from multiple tokens and
39/// can have escape sequences in them in addition to the usual trigraph and
40/// escaped newline business.  This routine handles this complexity.
41///
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  assert(!SL->isWide() && "This doesn't work for wide strings yet");
45
46  // Loop over all of the tokens in this string until we find the one that
47  // contains the byte we're looking for.
48  unsigned TokNo = 0;
49  while (1) {
50    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
51    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
52
53    // Get the spelling of the string so that we can get the data that makes up
54    // the string literal, not the identifier for the macro it is potentially
55    // expanded through.
56    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
57
58    // Re-lex the token to get its length and original spelling.
59    std::pair<FileID, unsigned> LocInfo =
60      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
61    std::pair<const char *,const char *> Buffer =
62      SourceMgr.getBufferData(LocInfo.first);
63    const char *StrData = Buffer.first+LocInfo.second;
64
65    // Create a langops struct and enable trigraphs.  This is sufficient for
66    // relexing tokens.
67    LangOptions LangOpts;
68    LangOpts.Trigraphs = true;
69
70    // Create a lexer starting at the beginning of this token.
71    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
72                   Buffer.second);
73    Token TheTok;
74    TheLexer.LexFromRawLexer(TheTok);
75
76    // Use the StringLiteralParser to compute the length of the string in bytes.
77    StringLiteralParser SLP(&TheTok, 1, PP);
78    unsigned TokNumBytes = SLP.GetStringLength();
79
80    // If the byte is in this token, return the location of the byte.
81    if (ByteNo < TokNumBytes ||
82        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
83      unsigned Offset =
84        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
85
86      // Now that we know the offset of the token in the spelling, use the
87      // preprocessor to get the offset in the original source.
88      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
89    }
90
91    // Move to the next string token.
92    ++TokNo;
93    ByteNo -= TokNumBytes;
94  }
95}
96
97/// CheckablePrintfAttr - does a function call have a "printf" attribute
98/// and arguments that merit checking?
99bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
100  if (Format->getType() == "printf") return true;
101  if (Format->getType() == "printf0") {
102    // printf0 allows null "format" string; if so don't check format/args
103    unsigned format_idx = Format->getFormatIdx() - 1;
104    // Does the index refer to the implicit object argument?
105    if (isa<CXXMemberCallExpr>(TheCall)) {
106      if (format_idx == 0)
107        return false;
108      --format_idx;
109    }
110    if (format_idx < TheCall->getNumArgs()) {
111      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
112      if (!Format->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
113        return true;
114    }
115  }
116  return false;
117}
118
119Action::OwningExprResult
120Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
121  OwningExprResult TheCallResult(Owned(TheCall));
122
123  switch (BuiltinID) {
124  case Builtin::BI__builtin___CFStringMakeConstantString:
125    assert(TheCall->getNumArgs() == 1 &&
126           "Wrong # arguments to builtin CFStringMakeConstantString");
127    if (CheckObjCString(TheCall->getArg(0)))
128      return ExprError();
129    break;
130  case Builtin::BI__builtin_stdarg_start:
131  case Builtin::BI__builtin_va_start:
132    if (SemaBuiltinVAStart(TheCall))
133      return ExprError();
134    break;
135  case Builtin::BI__builtin_isgreater:
136  case Builtin::BI__builtin_isgreaterequal:
137  case Builtin::BI__builtin_isless:
138  case Builtin::BI__builtin_islessequal:
139  case Builtin::BI__builtin_islessgreater:
140  case Builtin::BI__builtin_isunordered:
141    if (SemaBuiltinUnorderedCompare(TheCall))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_isfinite:
145  case Builtin::BI__builtin_isinf:
146  case Builtin::BI__builtin_isinf_sign:
147  case Builtin::BI__builtin_isnan:
148  case Builtin::BI__builtin_isnormal:
149    if (SemaBuiltinUnaryFP(TheCall))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_return_address:
153  case Builtin::BI__builtin_frame_address:
154    if (SemaBuiltinStackAddress(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_eh_return_data_regno:
158    if (SemaBuiltinEHReturnDataRegNo(TheCall))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_shufflevector:
162    return SemaBuiltinShuffleVector(TheCall);
163    // TheCall will be freed by the smart pointer here, but that's fine, since
164    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
165  case Builtin::BI__builtin_prefetch:
166    if (SemaBuiltinPrefetch(TheCall))
167      return ExprError();
168    break;
169  case Builtin::BI__builtin_object_size:
170    if (SemaBuiltinObjectSize(TheCall))
171      return ExprError();
172    break;
173  case Builtin::BI__builtin_longjmp:
174    if (SemaBuiltinLongjmp(TheCall))
175      return ExprError();
176    break;
177  case Builtin::BI__sync_fetch_and_add:
178  case Builtin::BI__sync_fetch_and_sub:
179  case Builtin::BI__sync_fetch_and_or:
180  case Builtin::BI__sync_fetch_and_and:
181  case Builtin::BI__sync_fetch_and_xor:
182  case Builtin::BI__sync_fetch_and_nand:
183  case Builtin::BI__sync_add_and_fetch:
184  case Builtin::BI__sync_sub_and_fetch:
185  case Builtin::BI__sync_and_and_fetch:
186  case Builtin::BI__sync_or_and_fetch:
187  case Builtin::BI__sync_xor_and_fetch:
188  case Builtin::BI__sync_nand_and_fetch:
189  case Builtin::BI__sync_val_compare_and_swap:
190  case Builtin::BI__sync_bool_compare_and_swap:
191  case Builtin::BI__sync_lock_test_and_set:
192  case Builtin::BI__sync_lock_release:
193    if (SemaBuiltinAtomicOverloaded(TheCall))
194      return ExprError();
195    break;
196  }
197
198  return move(TheCallResult);
199}
200
201/// CheckFunctionCall - Check a direct function call for various correctness
202/// and safety properties not strictly enforced by the C type system.
203bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
204  // Get the IdentifierInfo* for the called function.
205  IdentifierInfo *FnInfo = FDecl->getIdentifier();
206
207  // None of the checks below are needed for functions that don't have
208  // simple names (e.g., C++ conversion functions).
209  if (!FnInfo)
210    return false;
211
212  // FIXME: This mechanism should be abstracted to be less fragile and
213  // more efficient. For example, just map function ids to custom
214  // handlers.
215
216  // Printf checking.
217  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
218    if (CheckablePrintfAttr(Format, TheCall)) {
219      bool HasVAListArg = Format->getFirstArg() == 0;
220      if (!HasVAListArg) {
221        if (const FunctionProtoType *Proto
222            = FDecl->getType()->getAs<FunctionProtoType>())
223          HasVAListArg = !Proto->isVariadic();
224      }
225      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
226                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
227    }
228  }
229
230  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
231       NonNull = NonNull->getNext<NonNullAttr>())
232    CheckNonNullArguments(NonNull, TheCall);
233
234  return false;
235}
236
237bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
238  // Printf checking.
239  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
240  if (!Format)
241    return false;
242
243  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
244  if (!V)
245    return false;
246
247  QualType Ty = V->getType();
248  if (!Ty->isBlockPointerType())
249    return false;
250
251  if (!CheckablePrintfAttr(Format, TheCall))
252    return false;
253
254  bool HasVAListArg = Format->getFirstArg() == 0;
255  if (!HasVAListArg) {
256    const FunctionType *FT =
257      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
258    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
259      HasVAListArg = !Proto->isVariadic();
260  }
261  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
262                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
263
264  return false;
265}
266
267/// SemaBuiltinAtomicOverloaded - We have a call to a function like
268/// __sync_fetch_and_add, which is an overloaded function based on the pointer
269/// type of its first argument.  The main ActOnCallExpr routines have already
270/// promoted the types of arguments because all of these calls are prototyped as
271/// void(...).
272///
273/// This function goes through and does final semantic checking for these
274/// builtins,
275bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
276  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
277  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
278
279  // Ensure that we have at least one argument to do type inference from.
280  if (TheCall->getNumArgs() < 1)
281    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
282              << 0 << TheCall->getCallee()->getSourceRange();
283
284  // Inspect the first argument of the atomic builtin.  This should always be
285  // a pointer type, whose element is an integral scalar or pointer type.
286  // Because it is a pointer type, we don't have to worry about any implicit
287  // casts here.
288  Expr *FirstArg = TheCall->getArg(0);
289  if (!FirstArg->getType()->isPointerType())
290    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
291             << FirstArg->getType() << FirstArg->getSourceRange();
292
293  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
294  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
295      !ValType->isBlockPointerType())
296    return Diag(DRE->getLocStart(),
297                diag::err_atomic_builtin_must_be_pointer_intptr)
298             << FirstArg->getType() << FirstArg->getSourceRange();
299
300  // We need to figure out which concrete builtin this maps onto.  For example,
301  // __sync_fetch_and_add with a 2 byte object turns into
302  // __sync_fetch_and_add_2.
303#define BUILTIN_ROW(x) \
304  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
305    Builtin::BI##x##_8, Builtin::BI##x##_16 }
306
307  static const unsigned BuiltinIndices[][5] = {
308    BUILTIN_ROW(__sync_fetch_and_add),
309    BUILTIN_ROW(__sync_fetch_and_sub),
310    BUILTIN_ROW(__sync_fetch_and_or),
311    BUILTIN_ROW(__sync_fetch_and_and),
312    BUILTIN_ROW(__sync_fetch_and_xor),
313    BUILTIN_ROW(__sync_fetch_and_nand),
314
315    BUILTIN_ROW(__sync_add_and_fetch),
316    BUILTIN_ROW(__sync_sub_and_fetch),
317    BUILTIN_ROW(__sync_and_and_fetch),
318    BUILTIN_ROW(__sync_or_and_fetch),
319    BUILTIN_ROW(__sync_xor_and_fetch),
320    BUILTIN_ROW(__sync_nand_and_fetch),
321
322    BUILTIN_ROW(__sync_val_compare_and_swap),
323    BUILTIN_ROW(__sync_bool_compare_and_swap),
324    BUILTIN_ROW(__sync_lock_test_and_set),
325    BUILTIN_ROW(__sync_lock_release)
326  };
327#undef BUILTIN_ROW
328
329  // Determine the index of the size.
330  unsigned SizeIndex;
331  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
332  case 1: SizeIndex = 0; break;
333  case 2: SizeIndex = 1; break;
334  case 4: SizeIndex = 2; break;
335  case 8: SizeIndex = 3; break;
336  case 16: SizeIndex = 4; break;
337  default:
338    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
339             << FirstArg->getType() << FirstArg->getSourceRange();
340  }
341
342  // Each of these builtins has one pointer argument, followed by some number of
343  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
344  // that we ignore.  Find out which row of BuiltinIndices to read from as well
345  // as the number of fixed args.
346  unsigned BuiltinID = FDecl->getBuiltinID();
347  unsigned BuiltinIndex, NumFixed = 1;
348  switch (BuiltinID) {
349  default: assert(0 && "Unknown overloaded atomic builtin!");
350  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
351  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
352  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
353  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
354  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
355  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
356
357  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
358  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
359  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
360  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
361  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
362  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
363
364  case Builtin::BI__sync_val_compare_and_swap:
365    BuiltinIndex = 12;
366    NumFixed = 2;
367    break;
368  case Builtin::BI__sync_bool_compare_and_swap:
369    BuiltinIndex = 13;
370    NumFixed = 2;
371    break;
372  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
373  case Builtin::BI__sync_lock_release:
374    BuiltinIndex = 15;
375    NumFixed = 0;
376    break;
377  }
378
379  // Now that we know how many fixed arguments we expect, first check that we
380  // have at least that many.
381  if (TheCall->getNumArgs() < 1+NumFixed)
382    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
383            << 0 << TheCall->getCallee()->getSourceRange();
384
385
386  // Get the decl for the concrete builtin from this, we can tell what the
387  // concrete integer type we should convert to is.
388  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
389  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
390  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
391  FunctionDecl *NewBuiltinDecl =
392    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
393                                           TUScope, false, DRE->getLocStart()));
394  const FunctionProtoType *BuiltinFT =
395    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
396  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
397
398  // If the first type needs to be converted (e.g. void** -> int*), do it now.
399  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
400    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
401    TheCall->setArg(0, FirstArg);
402  }
403
404  // Next, walk the valid ones promoting to the right type.
405  for (unsigned i = 0; i != NumFixed; ++i) {
406    Expr *Arg = TheCall->getArg(i+1);
407
408    // If the argument is an implicit cast, then there was a promotion due to
409    // "...", just remove it now.
410    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
411      Arg = ICE->getSubExpr();
412      ICE->setSubExpr(0);
413      ICE->Destroy(Context);
414      TheCall->setArg(i+1, Arg);
415    }
416
417    // GCC does an implicit conversion to the pointer or integer ValType.  This
418    // can fail in some cases (1i -> int**), check for this error case now.
419    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
420    CXXMethodDecl *ConversionDecl = 0;
421    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
422                       ConversionDecl))
423      return true;
424
425    // Okay, we have something that *can* be converted to the right type.  Check
426    // to see if there is a potentially weird extension going on here.  This can
427    // happen when you do an atomic operation on something like an char* and
428    // pass in 42.  The 42 gets converted to char.  This is even more strange
429    // for things like 45.123 -> char, etc.
430    // FIXME: Do this check.
431    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
432    TheCall->setArg(i+1, Arg);
433  }
434
435  // Switch the DeclRefExpr to refer to the new decl.
436  DRE->setDecl(NewBuiltinDecl);
437  DRE->setType(NewBuiltinDecl->getType());
438
439  // Set the callee in the CallExpr.
440  // FIXME: This leaks the original parens and implicit casts.
441  Expr *PromotedCall = DRE;
442  UsualUnaryConversions(PromotedCall);
443  TheCall->setCallee(PromotedCall);
444
445
446  // Change the result type of the call to match the result type of the decl.
447  TheCall->setType(NewBuiltinDecl->getResultType());
448  return false;
449}
450
451
452/// CheckObjCString - Checks that the argument to the builtin
453/// CFString constructor is correct
454/// FIXME: GCC currently emits the following warning:
455/// "warning: input conversion stopped due to an input byte that does not
456///           belong to the input codeset UTF-8"
457/// Note: It might also make sense to do the UTF-16 conversion here (would
458/// simplify the backend).
459bool Sema::CheckObjCString(Expr *Arg) {
460  Arg = Arg->IgnoreParenCasts();
461  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
462
463  if (!Literal || Literal->isWide()) {
464    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
465      << Arg->getSourceRange();
466    return true;
467  }
468
469  const char *Data = Literal->getStrData();
470  unsigned Length = Literal->getByteLength();
471
472  for (unsigned i = 0; i < Length; ++i) {
473    if (!Data[i]) {
474      Diag(getLocationOfStringLiteralByte(Literal, i),
475           diag::warn_cfstring_literal_contains_nul_character)
476        << Arg->getSourceRange();
477      break;
478    }
479  }
480
481  return false;
482}
483
484/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
485/// Emit an error and return true on failure, return false on success.
486bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
487  Expr *Fn = TheCall->getCallee();
488  if (TheCall->getNumArgs() > 2) {
489    Diag(TheCall->getArg(2)->getLocStart(),
490         diag::err_typecheck_call_too_many_args)
491      << 0 /*function call*/ << Fn->getSourceRange()
492      << SourceRange(TheCall->getArg(2)->getLocStart(),
493                     (*(TheCall->arg_end()-1))->getLocEnd());
494    return true;
495  }
496
497  if (TheCall->getNumArgs() < 2) {
498    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
499      << 0 /*function call*/;
500  }
501
502  // Determine whether the current function is variadic or not.
503  bool isVariadic;
504  if (CurBlock)
505    isVariadic = CurBlock->isVariadic;
506  else if (getCurFunctionDecl()) {
507    if (FunctionProtoType* FTP =
508            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
509      isVariadic = FTP->isVariadic();
510    else
511      isVariadic = false;
512  } else {
513    isVariadic = getCurMethodDecl()->isVariadic();
514  }
515
516  if (!isVariadic) {
517    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
518    return true;
519  }
520
521  // Verify that the second argument to the builtin is the last argument of the
522  // current function or method.
523  bool SecondArgIsLastNamedArgument = false;
524  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
525
526  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
527    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
528      // FIXME: This isn't correct for methods (results in bogus warning).
529      // Get the last formal in the current function.
530      const ParmVarDecl *LastArg;
531      if (CurBlock)
532        LastArg = *(CurBlock->TheDecl->param_end()-1);
533      else if (FunctionDecl *FD = getCurFunctionDecl())
534        LastArg = *(FD->param_end()-1);
535      else
536        LastArg = *(getCurMethodDecl()->param_end()-1);
537      SecondArgIsLastNamedArgument = PV == LastArg;
538    }
539  }
540
541  if (!SecondArgIsLastNamedArgument)
542    Diag(TheCall->getArg(1)->getLocStart(),
543         diag::warn_second_parameter_of_va_start_not_last_named_argument);
544  return false;
545}
546
547/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
548/// friends.  This is declared to take (...), so we have to check everything.
549bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
550  if (TheCall->getNumArgs() < 2)
551    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
552      << 0 /*function call*/;
553  if (TheCall->getNumArgs() > 2)
554    return Diag(TheCall->getArg(2)->getLocStart(),
555                diag::err_typecheck_call_too_many_args)
556      << 0 /*function call*/
557      << SourceRange(TheCall->getArg(2)->getLocStart(),
558                     (*(TheCall->arg_end()-1))->getLocEnd());
559
560  Expr *OrigArg0 = TheCall->getArg(0);
561  Expr *OrigArg1 = TheCall->getArg(1);
562
563  // Do standard promotions between the two arguments, returning their common
564  // type.
565  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
566
567  // Make sure any conversions are pushed back into the call; this is
568  // type safe since unordered compare builtins are declared as "_Bool
569  // foo(...)".
570  TheCall->setArg(0, OrigArg0);
571  TheCall->setArg(1, OrigArg1);
572
573  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
574    return false;
575
576  // If the common type isn't a real floating type, then the arguments were
577  // invalid for this operation.
578  if (!Res->isRealFloatingType())
579    return Diag(OrigArg0->getLocStart(),
580                diag::err_typecheck_call_invalid_ordered_compare)
581      << OrigArg0->getType() << OrigArg1->getType()
582      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
583
584  return false;
585}
586
587/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isnan and
588/// friends.  This is declared to take (...), so we have to check everything.
589bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
590  if (TheCall->getNumArgs() < 1)
591    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
592      << 0 /*function call*/;
593  if (TheCall->getNumArgs() > 1)
594    return Diag(TheCall->getArg(1)->getLocStart(),
595                diag::err_typecheck_call_too_many_args)
596      << 0 /*function call*/
597      << SourceRange(TheCall->getArg(1)->getLocStart(),
598                     (*(TheCall->arg_end()-1))->getLocEnd());
599
600  Expr *OrigArg = TheCall->getArg(0);
601
602  if (OrigArg->isTypeDependent())
603    return false;
604
605  // This operation requires a floating-point number
606  if (!OrigArg->getType()->isRealFloatingType())
607    return Diag(OrigArg->getLocStart(),
608                diag::err_typecheck_call_invalid_unary_fp)
609      << OrigArg->getType() << OrigArg->getSourceRange();
610
611  return false;
612}
613
614bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
615  // The signature for these builtins is exact; the only thing we need
616  // to check is that the argument is a constant.
617  SourceLocation Loc;
618  if (!TheCall->getArg(0)->isTypeDependent() &&
619      !TheCall->getArg(0)->isValueDependent() &&
620      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
621    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
622
623  return false;
624}
625
626/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
627// This is declared to take (...), so we have to check everything.
628Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
629  if (TheCall->getNumArgs() < 3)
630    return ExprError(Diag(TheCall->getLocEnd(),
631                          diag::err_typecheck_call_too_few_args)
632      << 0 /*function call*/ << TheCall->getSourceRange());
633
634  unsigned numElements = std::numeric_limits<unsigned>::max();
635  if (!TheCall->getArg(0)->isTypeDependent() &&
636      !TheCall->getArg(1)->isTypeDependent()) {
637    QualType FAType = TheCall->getArg(0)->getType();
638    QualType SAType = TheCall->getArg(1)->getType();
639
640    if (!FAType->isVectorType() || !SAType->isVectorType()) {
641      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
642        << SourceRange(TheCall->getArg(0)->getLocStart(),
643                       TheCall->getArg(1)->getLocEnd());
644      return ExprError();
645    }
646
647    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
648      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
649        << SourceRange(TheCall->getArg(0)->getLocStart(),
650                       TheCall->getArg(1)->getLocEnd());
651      return ExprError();
652    }
653
654    numElements = FAType->getAs<VectorType>()->getNumElements();
655    if (TheCall->getNumArgs() != numElements+2) {
656      if (TheCall->getNumArgs() < numElements+2)
657        return ExprError(Diag(TheCall->getLocEnd(),
658                              diag::err_typecheck_call_too_few_args)
659                 << 0 /*function call*/ << TheCall->getSourceRange());
660      return ExprError(Diag(TheCall->getLocEnd(),
661                            diag::err_typecheck_call_too_many_args)
662                 << 0 /*function call*/ << TheCall->getSourceRange());
663    }
664  }
665
666  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
667    if (TheCall->getArg(i)->isTypeDependent() ||
668        TheCall->getArg(i)->isValueDependent())
669      continue;
670
671    llvm::APSInt Result(32);
672    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
673      return ExprError(Diag(TheCall->getLocStart(),
674                  diag::err_shufflevector_nonconstant_argument)
675                << TheCall->getArg(i)->getSourceRange());
676
677    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
678      return ExprError(Diag(TheCall->getLocStart(),
679                  diag::err_shufflevector_argument_too_large)
680               << TheCall->getArg(i)->getSourceRange());
681  }
682
683  llvm::SmallVector<Expr*, 32> exprs;
684
685  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
686    exprs.push_back(TheCall->getArg(i));
687    TheCall->setArg(i, 0);
688  }
689
690  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
691                                            exprs.size(), exprs[0]->getType(),
692                                            TheCall->getCallee()->getLocStart(),
693                                            TheCall->getRParenLoc()));
694}
695
696/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
697// This is declared to take (const void*, ...) and can take two
698// optional constant int args.
699bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
700  unsigned NumArgs = TheCall->getNumArgs();
701
702  if (NumArgs > 3)
703    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
704             << 0 /*function call*/ << TheCall->getSourceRange();
705
706  // Argument 0 is checked for us and the remaining arguments must be
707  // constant integers.
708  for (unsigned i = 1; i != NumArgs; ++i) {
709    Expr *Arg = TheCall->getArg(i);
710    if (Arg->isTypeDependent())
711      continue;
712
713    if (!Arg->getType()->isIntegralType())
714      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
715              << Arg->getSourceRange();
716
717    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
718    TheCall->setArg(i, Arg);
719
720    if (Arg->isValueDependent())
721      continue;
722
723    llvm::APSInt Result;
724    if (!Arg->isIntegerConstantExpr(Result, Context))
725      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
726        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
727
728    // FIXME: gcc issues a warning and rewrites these to 0. These
729    // seems especially odd for the third argument since the default
730    // is 3.
731    if (i == 1) {
732      if (Result.getLimitedValue() > 1)
733        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
734             << "0" << "1" << Arg->getSourceRange();
735    } else {
736      if (Result.getLimitedValue() > 3)
737        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
738            << "0" << "3" << Arg->getSourceRange();
739    }
740  }
741
742  return false;
743}
744
745/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
746/// operand must be an integer constant.
747bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
748  llvm::APSInt Result;
749  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
750    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
751      << TheCall->getArg(0)->getSourceRange();
752
753  return false;
754}
755
756
757/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
758/// int type). This simply type checks that type is one of the defined
759/// constants (0-3).
760// For compatability check 0-3, llvm only handles 0 and 2.
761bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
762  Expr *Arg = TheCall->getArg(1);
763  if (Arg->isTypeDependent())
764    return false;
765
766  QualType ArgType = Arg->getType();
767  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
768  llvm::APSInt Result(32);
769  if (!BT || BT->getKind() != BuiltinType::Int)
770    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
771             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
772
773  if (Arg->isValueDependent())
774    return false;
775
776  if (!Arg->isIntegerConstantExpr(Result, Context)) {
777    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
778             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
779  }
780
781  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
782    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
783             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
784  }
785
786  return false;
787}
788
789/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
790/// This checks that val is a constant 1.
791bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
792  Expr *Arg = TheCall->getArg(1);
793  if (Arg->isTypeDependent() || Arg->isValueDependent())
794    return false;
795
796  llvm::APSInt Result(32);
797  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
798    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
799             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
800
801  return false;
802}
803
804// Handle i > 1 ? "x" : "y", recursivelly
805bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
806                                  bool HasVAListArg,
807                                  unsigned format_idx, unsigned firstDataArg) {
808  if (E->isTypeDependent() || E->isValueDependent())
809    return false;
810
811  switch (E->getStmtClass()) {
812  case Stmt::ConditionalOperatorClass: {
813    const ConditionalOperator *C = cast<ConditionalOperator>(E);
814    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
815                                  HasVAListArg, format_idx, firstDataArg)
816        && SemaCheckStringLiteral(C->getRHS(), TheCall,
817                                  HasVAListArg, format_idx, firstDataArg);
818  }
819
820  case Stmt::ImplicitCastExprClass: {
821    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
822    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
823                                  format_idx, firstDataArg);
824  }
825
826  case Stmt::ParenExprClass: {
827    const ParenExpr *Expr = cast<ParenExpr>(E);
828    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
829                                  format_idx, firstDataArg);
830  }
831
832  case Stmt::DeclRefExprClass: {
833    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
834
835    // As an exception, do not flag errors for variables binding to
836    // const string literals.
837    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
838      bool isConstant = false;
839      QualType T = DR->getType();
840
841      if (const ArrayType *AT = Context.getAsArrayType(T)) {
842        isConstant = AT->getElementType().isConstant(Context);
843      } else if (const PointerType *PT = T->getAs<PointerType>()) {
844        isConstant = T.isConstant(Context) &&
845                     PT->getPointeeType().isConstant(Context);
846      }
847
848      if (isConstant) {
849        const VarDecl *Def = 0;
850        if (const Expr *Init = VD->getDefinition(Def))
851          return SemaCheckStringLiteral(Init, TheCall,
852                                        HasVAListArg, format_idx, firstDataArg);
853      }
854
855      // For vprintf* functions (i.e., HasVAListArg==true), we add a
856      // special check to see if the format string is a function parameter
857      // of the function calling the printf function.  If the function
858      // has an attribute indicating it is a printf-like function, then we
859      // should suppress warnings concerning non-literals being used in a call
860      // to a vprintf function.  For example:
861      //
862      // void
863      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
864      //      va_list ap;
865      //      va_start(ap, fmt);
866      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
867      //      ...
868      //
869      //
870      //  FIXME: We don't have full attribute support yet, so just check to see
871      //    if the argument is a DeclRefExpr that references a parameter.  We'll
872      //    add proper support for checking the attribute later.
873      if (HasVAListArg)
874        if (isa<ParmVarDecl>(VD))
875          return true;
876    }
877
878    return false;
879  }
880
881  case Stmt::CallExprClass: {
882    const CallExpr *CE = cast<CallExpr>(E);
883    if (const ImplicitCastExpr *ICE
884          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
885      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
886        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
887          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
888            unsigned ArgIndex = FA->getFormatIdx();
889            const Expr *Arg = CE->getArg(ArgIndex - 1);
890
891            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
892                                          format_idx, firstDataArg);
893          }
894        }
895      }
896    }
897
898    return false;
899  }
900  case Stmt::ObjCStringLiteralClass:
901  case Stmt::StringLiteralClass: {
902    const StringLiteral *StrE = NULL;
903
904    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
905      StrE = ObjCFExpr->getString();
906    else
907      StrE = cast<StringLiteral>(E);
908
909    if (StrE) {
910      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
911                        firstDataArg);
912      return true;
913    }
914
915    return false;
916  }
917
918  default:
919    return false;
920  }
921}
922
923void
924Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
925                            const CallExpr *TheCall) {
926  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
927       i != e; ++i) {
928    const Expr *ArgExpr = TheCall->getArg(*i);
929    if (ArgExpr->isNullPointerConstant(Context,
930                                       Expr::NPC_ValueDependentIsNotNull))
931      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
932        << ArgExpr->getSourceRange();
933  }
934}
935
936/// CheckPrintfArguments - Check calls to printf (and similar functions) for
937/// correct use of format strings.
938///
939///  HasVAListArg - A predicate indicating whether the printf-like
940///    function is passed an explicit va_arg argument (e.g., vprintf)
941///
942///  format_idx - The index into Args for the format string.
943///
944/// Improper format strings to functions in the printf family can be
945/// the source of bizarre bugs and very serious security holes.  A
946/// good source of information is available in the following paper
947/// (which includes additional references):
948///
949///  FormatGuard: Automatic Protection From printf Format String
950///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
951///
952/// Functionality implemented:
953///
954///  We can statically check the following properties for string
955///  literal format strings for non v.*printf functions (where the
956///  arguments are passed directly):
957//
958///  (1) Are the number of format conversions equal to the number of
959///      data arguments?
960///
961///  (2) Does each format conversion correctly match the type of the
962///      corresponding data argument?  (TODO)
963///
964/// Moreover, for all printf functions we can:
965///
966///  (3) Check for a missing format string (when not caught by type checking).
967///
968///  (4) Check for no-operation flags; e.g. using "#" with format
969///      conversion 'c'  (TODO)
970///
971///  (5) Check the use of '%n', a major source of security holes.
972///
973///  (6) Check for malformed format conversions that don't specify anything.
974///
975///  (7) Check for empty format strings.  e.g: printf("");
976///
977///  (8) Check that the format string is a wide literal.
978///
979/// All of these checks can be done by parsing the format string.
980///
981/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
982void
983Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
984                           unsigned format_idx, unsigned firstDataArg) {
985  const Expr *Fn = TheCall->getCallee();
986
987  // The way the format attribute works in GCC, the implicit this argument
988  // of member functions is counted. However, it doesn't appear in our own
989  // lists, so decrement format_idx in that case.
990  if (isa<CXXMemberCallExpr>(TheCall)) {
991    // Catch a format attribute mistakenly referring to the object argument.
992    if (format_idx == 0)
993      return;
994    --format_idx;
995    if(firstDataArg != 0)
996      --firstDataArg;
997  }
998
999  // CHECK: printf-like function is called with no format string.
1000  if (format_idx >= TheCall->getNumArgs()) {
1001    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
1002      << Fn->getSourceRange();
1003    return;
1004  }
1005
1006  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1007
1008  // CHECK: format string is not a string literal.
1009  //
1010  // Dynamically generated format strings are difficult to
1011  // automatically vet at compile time.  Requiring that format strings
1012  // are string literals: (1) permits the checking of format strings by
1013  // the compiler and thereby (2) can practically remove the source of
1014  // many format string exploits.
1015
1016  // Format string can be either ObjC string (e.g. @"%d") or
1017  // C string (e.g. "%d")
1018  // ObjC string uses the same format specifiers as C string, so we can use
1019  // the same format string checking logic for both ObjC and C strings.
1020  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1021                             firstDataArg))
1022    return;  // Literal format string found, check done!
1023
1024  // If there are no arguments specified, warn with -Wformat-security, otherwise
1025  // warn only with -Wformat-nonliteral.
1026  if (TheCall->getNumArgs() == format_idx+1)
1027    Diag(TheCall->getArg(format_idx)->getLocStart(),
1028         diag::warn_printf_nonliteral_noargs)
1029      << OrigFormatExpr->getSourceRange();
1030  else
1031    Diag(TheCall->getArg(format_idx)->getLocStart(),
1032         diag::warn_printf_nonliteral)
1033           << OrigFormatExpr->getSourceRange();
1034}
1035
1036namespace {
1037class CheckPrintfHandler : public FormatStringHandler {
1038  Sema &S;
1039  const StringLiteral *FExpr;
1040  const Expr *OrigFormatExpr;
1041  unsigned NumConversions;
1042  const unsigned NumDataArgs;
1043  const bool IsObjCLiteral;
1044  const char *Beg; // Start of format string.
1045  const bool HasVAListArg;
1046  const CallExpr *TheCall;
1047  unsigned FormatIdx;
1048public:
1049  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1050                     const Expr *origFormatExpr,
1051                     unsigned numDataArgs, bool isObjCLiteral,
1052                     const char *beg, bool hasVAListArg,
1053                     const CallExpr *theCall, unsigned formatIdx)
1054    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1055      NumConversions(0), NumDataArgs(numDataArgs),
1056      IsObjCLiteral(isObjCLiteral), Beg(beg),
1057      HasVAListArg(hasVAListArg),
1058      TheCall(theCall), FormatIdx(formatIdx) {}
1059
1060  void DoneProcessing();
1061
1062  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1063                                       unsigned specifierLen);
1064
1065  void HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1066                                        const char *startSpecifier,
1067                                        unsigned specifierLen);
1068
1069  void HandleNullChar(const char *nullCharacter);
1070
1071  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1072                             const char *startSpecifier,
1073                             unsigned specifierLen);
1074private:
1075  SourceRange getFormatStringRange();
1076  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1077									  unsigned specifierLen);
1078  SourceLocation getLocationOfByte(const char *x);
1079
1080  bool HandleAmount(const analyze_printf::OptionalAmount &Amt,
1081                    unsigned MissingArgDiag, unsigned BadTypeDiag,
1082					const char *startSpecifier, unsigned specifierLen);
1083
1084  const Expr *getDataArg(unsigned i) const;
1085};
1086}
1087
1088SourceRange CheckPrintfHandler::getFormatStringRange() {
1089  return OrigFormatExpr->getSourceRange();
1090}
1091
1092SourceRange CheckPrintfHandler::
1093getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1094  return SourceRange(getLocationOfByte(startSpecifier),
1095					 getLocationOfByte(startSpecifier+specifierLen-1));
1096}
1097
1098SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1099  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1100}
1101
1102void CheckPrintfHandler::
1103HandleIncompleteFormatSpecifier(const char *startSpecifier,
1104                                unsigned specifierLen) {
1105  SourceLocation Loc = getLocationOfByte(startSpecifier);
1106  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1107    << getFormatSpecifierRange(startSpecifier, specifierLen);
1108}
1109
1110void CheckPrintfHandler::
1111HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1112                                 const char *startSpecifier,
1113                                 unsigned specifierLen) {
1114
1115  ++NumConversions;
1116  const analyze_printf::ConversionSpecifier &CS =
1117    FS.getConversionSpecifier();
1118  SourceLocation Loc = getLocationOfByte(CS.getStart());
1119  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1120      << llvm::StringRef(CS.getStart(), CS.getLength())
1121      << getFormatSpecifierRange(startSpecifier, specifierLen);
1122}
1123
1124void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1125  // The presence of a null character is likely an error.
1126  S.Diag(getLocationOfByte(nullCharacter),
1127         diag::warn_printf_format_string_contains_null_char)
1128    << getFormatStringRange();
1129}
1130
1131const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1132  return TheCall->getArg(FormatIdx + i);
1133}
1134
1135bool
1136CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1137                                 unsigned MissingArgDiag,
1138                                 unsigned BadTypeDiag,
1139								 const char *startSpecifier,
1140								 unsigned specifierLen) {
1141
1142  if (Amt.hasDataArgument()) {
1143    ++NumConversions;
1144    if (!HasVAListArg) {
1145      if (NumConversions > NumDataArgs) {
1146        S.Diag(getLocationOfByte(Amt.getStart()), MissingArgDiag)
1147          << getFormatSpecifierRange(startSpecifier, specifierLen);
1148        // Don't do any more checking.  We will just emit
1149        // spurious errors.
1150        return false;
1151      }
1152
1153      // Type check the data argument.  It should be an 'int'.
1154      // Although not in conformance with C99, we also allow the argument to be
1155      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1156      // doesn't emit a warning for that case.
1157      const Expr *Arg = getDataArg(NumConversions);
1158      QualType T = Arg->getType();
1159      const BuiltinType *BT = T->getAs<BuiltinType>();
1160      if (!BT || (BT->getKind() != BuiltinType::Int &&
1161                  BT->getKind() != BuiltinType::UInt)) {
1162        S.Diag(getLocationOfByte(Amt.getStart()), BadTypeDiag)
1163          << T
1164		  << getFormatSpecifierRange(startSpecifier, specifierLen)
1165		  << Arg->getSourceRange();
1166        // Don't do any more checking.  We will just emit
1167        // spurious errors.
1168        return false;
1169      }
1170    }
1171  }
1172  return true;
1173}
1174
1175bool
1176CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1177                                          const char *startSpecifier,
1178                                          unsigned specifierLen) {
1179
1180  using namespace analyze_printf;
1181  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1182
1183  // First check if the field width, precision, and conversion specifier
1184  // have matching data arguments.
1185  if (!HandleAmount(FS.getFieldWidth(),
1186                    diag::warn_printf_asterisk_width_missing_arg,
1187                    diag::warn_printf_asterisk_width_wrong_type,
1188					startSpecifier, specifierLen)) {
1189    return false;
1190  }
1191
1192  if (!HandleAmount(FS.getPrecision(),
1193                    diag::warn_printf_asterisk_precision_missing_arg,
1194                    diag::warn_printf_asterisk_precision_wrong_type,
1195					startSpecifier, specifierLen)) {
1196    return false;
1197  }
1198
1199  // Check for using an Objective-C specific conversion specifier
1200  // in a non-ObjC literal.
1201  if (!IsObjCLiteral && CS.isObjCArg()) {
1202    HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1203
1204    // Continue checking the other format specifiers.
1205    return true;
1206  }
1207
1208  if (!CS.consumesDataArgument()) {
1209    // FIXME: Technically specifying a precision or field width here
1210    // makes no sense.  Worth issuing a warning at some point.
1211	return true;
1212  }
1213
1214  ++NumConversions;
1215
1216  // Are we using '%n'?  Issue a warning about this being
1217  // a possible security issue.
1218  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1219    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1220      << getFormatSpecifierRange(startSpecifier, specifierLen);
1221    // Continue checking the other format specifiers.
1222    return true;
1223  }
1224
1225
1226  // The remaining checks depend on the data arguments.
1227  if (HasVAListArg)
1228    return true;
1229
1230  if (NumConversions > NumDataArgs) {
1231    S.Diag(getLocationOfByte(CS.getStart()),
1232           diag::warn_printf_insufficient_data_args)
1233      << getFormatSpecifierRange(startSpecifier, specifierLen);
1234    // Don't do any more checking.
1235    return false;
1236  }
1237
1238  return true;
1239}
1240
1241void CheckPrintfHandler::DoneProcessing() {
1242  // Does the number of data arguments exceed the number of
1243  // format conversions in the format string?
1244  if (!HasVAListArg && NumConversions < NumDataArgs)
1245    S.Diag(getDataArg(NumConversions+1)->getLocStart(),
1246           diag::warn_printf_too_many_data_args)
1247      << getFormatStringRange();
1248}
1249
1250void Sema::CheckPrintfString(const StringLiteral *FExpr,
1251							 const Expr *OrigFormatExpr,
1252							 const CallExpr *TheCall, bool HasVAListArg,
1253							 unsigned format_idx, unsigned firstDataArg) {
1254
1255  // CHECK: is the format string a wide literal?
1256  if (FExpr->isWide()) {
1257    Diag(FExpr->getLocStart(),
1258         diag::warn_printf_format_string_is_wide_literal)
1259    << OrigFormatExpr->getSourceRange();
1260    return;
1261  }
1262
1263  // Str - The format string.  NOTE: this is NOT null-terminated!
1264  const char *Str = FExpr->getStrData();
1265
1266  // CHECK: empty format string?
1267  unsigned StrLen = FExpr->getByteLength();
1268
1269  if (StrLen == 0) {
1270    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1271    << OrigFormatExpr->getSourceRange();
1272    return;
1273  }
1274
1275  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr,
1276                       TheCall->getNumArgs() - firstDataArg,
1277                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1278                       HasVAListArg, TheCall, format_idx);
1279
1280  if (!ParseFormatString(H, Str, Str + StrLen))
1281    H.DoneProcessing();
1282}
1283
1284//===--- CHECK: Return Address of Stack Variable --------------------------===//
1285
1286static DeclRefExpr* EvalVal(Expr *E);
1287static DeclRefExpr* EvalAddr(Expr* E);
1288
1289/// CheckReturnStackAddr - Check if a return statement returns the address
1290///   of a stack variable.
1291void
1292Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1293                           SourceLocation ReturnLoc) {
1294
1295  // Perform checking for returned stack addresses.
1296  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1297    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1298      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1299       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1300
1301    // Skip over implicit cast expressions when checking for block expressions.
1302    RetValExp = RetValExp->IgnoreParenCasts();
1303
1304    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1305      if (C->hasBlockDeclRefExprs())
1306        Diag(C->getLocStart(), diag::err_ret_local_block)
1307          << C->getSourceRange();
1308
1309    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1310      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1311        << ALE->getSourceRange();
1312
1313  } else if (lhsType->isReferenceType()) {
1314    // Perform checking for stack values returned by reference.
1315    // Check for a reference to the stack
1316    if (DeclRefExpr *DR = EvalVal(RetValExp))
1317      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1318        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1319  }
1320}
1321
1322/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1323///  check if the expression in a return statement evaluates to an address
1324///  to a location on the stack.  The recursion is used to traverse the
1325///  AST of the return expression, with recursion backtracking when we
1326///  encounter a subexpression that (1) clearly does not lead to the address
1327///  of a stack variable or (2) is something we cannot determine leads to
1328///  the address of a stack variable based on such local checking.
1329///
1330///  EvalAddr processes expressions that are pointers that are used as
1331///  references (and not L-values).  EvalVal handles all other values.
1332///  At the base case of the recursion is a check for a DeclRefExpr* in
1333///  the refers to a stack variable.
1334///
1335///  This implementation handles:
1336///
1337///   * pointer-to-pointer casts
1338///   * implicit conversions from array references to pointers
1339///   * taking the address of fields
1340///   * arbitrary interplay between "&" and "*" operators
1341///   * pointer arithmetic from an address of a stack variable
1342///   * taking the address of an array element where the array is on the stack
1343static DeclRefExpr* EvalAddr(Expr *E) {
1344  // We should only be called for evaluating pointer expressions.
1345  assert((E->getType()->isAnyPointerType() ||
1346          E->getType()->isBlockPointerType() ||
1347          E->getType()->isObjCQualifiedIdType()) &&
1348         "EvalAddr only works on pointers");
1349
1350  // Our "symbolic interpreter" is just a dispatch off the currently
1351  // viewed AST node.  We then recursively traverse the AST by calling
1352  // EvalAddr and EvalVal appropriately.
1353  switch (E->getStmtClass()) {
1354  case Stmt::ParenExprClass:
1355    // Ignore parentheses.
1356    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1357
1358  case Stmt::UnaryOperatorClass: {
1359    // The only unary operator that make sense to handle here
1360    // is AddrOf.  All others don't make sense as pointers.
1361    UnaryOperator *U = cast<UnaryOperator>(E);
1362
1363    if (U->getOpcode() == UnaryOperator::AddrOf)
1364      return EvalVal(U->getSubExpr());
1365    else
1366      return NULL;
1367  }
1368
1369  case Stmt::BinaryOperatorClass: {
1370    // Handle pointer arithmetic.  All other binary operators are not valid
1371    // in this context.
1372    BinaryOperator *B = cast<BinaryOperator>(E);
1373    BinaryOperator::Opcode op = B->getOpcode();
1374
1375    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1376      return NULL;
1377
1378    Expr *Base = B->getLHS();
1379
1380    // Determine which argument is the real pointer base.  It could be
1381    // the RHS argument instead of the LHS.
1382    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1383
1384    assert (Base->getType()->isPointerType());
1385    return EvalAddr(Base);
1386  }
1387
1388  // For conditional operators we need to see if either the LHS or RHS are
1389  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1390  case Stmt::ConditionalOperatorClass: {
1391    ConditionalOperator *C = cast<ConditionalOperator>(E);
1392
1393    // Handle the GNU extension for missing LHS.
1394    if (Expr *lhsExpr = C->getLHS())
1395      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1396        return LHS;
1397
1398     return EvalAddr(C->getRHS());
1399  }
1400
1401  // For casts, we need to handle conversions from arrays to
1402  // pointer values, and pointer-to-pointer conversions.
1403  case Stmt::ImplicitCastExprClass:
1404  case Stmt::CStyleCastExprClass:
1405  case Stmt::CXXFunctionalCastExprClass: {
1406    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1407    QualType T = SubExpr->getType();
1408
1409    if (SubExpr->getType()->isPointerType() ||
1410        SubExpr->getType()->isBlockPointerType() ||
1411        SubExpr->getType()->isObjCQualifiedIdType())
1412      return EvalAddr(SubExpr);
1413    else if (T->isArrayType())
1414      return EvalVal(SubExpr);
1415    else
1416      return 0;
1417  }
1418
1419  // C++ casts.  For dynamic casts, static casts, and const casts, we
1420  // are always converting from a pointer-to-pointer, so we just blow
1421  // through the cast.  In the case the dynamic cast doesn't fail (and
1422  // return NULL), we take the conservative route and report cases
1423  // where we return the address of a stack variable.  For Reinterpre
1424  // FIXME: The comment about is wrong; we're not always converting
1425  // from pointer to pointer. I'm guessing that this code should also
1426  // handle references to objects.
1427  case Stmt::CXXStaticCastExprClass:
1428  case Stmt::CXXDynamicCastExprClass:
1429  case Stmt::CXXConstCastExprClass:
1430  case Stmt::CXXReinterpretCastExprClass: {
1431      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1432      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1433        return EvalAddr(S);
1434      else
1435        return NULL;
1436  }
1437
1438  // Everything else: we simply don't reason about them.
1439  default:
1440    return NULL;
1441  }
1442}
1443
1444
1445///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1446///   See the comments for EvalAddr for more details.
1447static DeclRefExpr* EvalVal(Expr *E) {
1448
1449  // We should only be called for evaluating non-pointer expressions, or
1450  // expressions with a pointer type that are not used as references but instead
1451  // are l-values (e.g., DeclRefExpr with a pointer type).
1452
1453  // Our "symbolic interpreter" is just a dispatch off the currently
1454  // viewed AST node.  We then recursively traverse the AST by calling
1455  // EvalAddr and EvalVal appropriately.
1456  switch (E->getStmtClass()) {
1457  case Stmt::DeclRefExprClass: {
1458    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1459    //  at code that refers to a variable's name.  We check if it has local
1460    //  storage within the function, and if so, return the expression.
1461    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1462
1463    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1464      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1465
1466    return NULL;
1467  }
1468
1469  case Stmt::ParenExprClass:
1470    // Ignore parentheses.
1471    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1472
1473  case Stmt::UnaryOperatorClass: {
1474    // The only unary operator that make sense to handle here
1475    // is Deref.  All others don't resolve to a "name."  This includes
1476    // handling all sorts of rvalues passed to a unary operator.
1477    UnaryOperator *U = cast<UnaryOperator>(E);
1478
1479    if (U->getOpcode() == UnaryOperator::Deref)
1480      return EvalAddr(U->getSubExpr());
1481
1482    return NULL;
1483  }
1484
1485  case Stmt::ArraySubscriptExprClass: {
1486    // Array subscripts are potential references to data on the stack.  We
1487    // retrieve the DeclRefExpr* for the array variable if it indeed
1488    // has local storage.
1489    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1490  }
1491
1492  case Stmt::ConditionalOperatorClass: {
1493    // For conditional operators we need to see if either the LHS or RHS are
1494    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1495    ConditionalOperator *C = cast<ConditionalOperator>(E);
1496
1497    // Handle the GNU extension for missing LHS.
1498    if (Expr *lhsExpr = C->getLHS())
1499      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1500        return LHS;
1501
1502    return EvalVal(C->getRHS());
1503  }
1504
1505  // Accesses to members are potential references to data on the stack.
1506  case Stmt::MemberExprClass: {
1507    MemberExpr *M = cast<MemberExpr>(E);
1508
1509    // Check for indirect access.  We only want direct field accesses.
1510    if (!M->isArrow())
1511      return EvalVal(M->getBase());
1512    else
1513      return NULL;
1514  }
1515
1516  // Everything else: we simply don't reason about them.
1517  default:
1518    return NULL;
1519  }
1520}
1521
1522//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1523
1524/// Check for comparisons of floating point operands using != and ==.
1525/// Issue a warning if these are no self-comparisons, as they are not likely
1526/// to do what the programmer intended.
1527void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1528  bool EmitWarning = true;
1529
1530  Expr* LeftExprSansParen = lex->IgnoreParens();
1531  Expr* RightExprSansParen = rex->IgnoreParens();
1532
1533  // Special case: check for x == x (which is OK).
1534  // Do not emit warnings for such cases.
1535  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1536    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1537      if (DRL->getDecl() == DRR->getDecl())
1538        EmitWarning = false;
1539
1540
1541  // Special case: check for comparisons against literals that can be exactly
1542  //  represented by APFloat.  In such cases, do not emit a warning.  This
1543  //  is a heuristic: often comparison against such literals are used to
1544  //  detect if a value in a variable has not changed.  This clearly can
1545  //  lead to false negatives.
1546  if (EmitWarning) {
1547    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1548      if (FLL->isExact())
1549        EmitWarning = false;
1550    } else
1551      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1552        if (FLR->isExact())
1553          EmitWarning = false;
1554    }
1555  }
1556
1557  // Check for comparisons with builtin types.
1558  if (EmitWarning)
1559    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1560      if (CL->isBuiltinCall(Context))
1561        EmitWarning = false;
1562
1563  if (EmitWarning)
1564    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1565      if (CR->isBuiltinCall(Context))
1566        EmitWarning = false;
1567
1568  // Emit the diagnostic.
1569  if (EmitWarning)
1570    Diag(loc, diag::warn_floatingpoint_eq)
1571      << lex->getSourceRange() << rex->getSourceRange();
1572}
1573
1574//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1575//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1576
1577namespace {
1578
1579/// Structure recording the 'active' range of an integer-valued
1580/// expression.
1581struct IntRange {
1582  /// The number of bits active in the int.
1583  unsigned Width;
1584
1585  /// True if the int is known not to have negative values.
1586  bool NonNegative;
1587
1588  IntRange() {}
1589  IntRange(unsigned Width, bool NonNegative)
1590    : Width(Width), NonNegative(NonNegative)
1591  {}
1592
1593  // Returns the range of the bool type.
1594  static IntRange forBoolType() {
1595    return IntRange(1, true);
1596  }
1597
1598  // Returns the range of an integral type.
1599  static IntRange forType(ASTContext &C, QualType T) {
1600    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1601  }
1602
1603  // Returns the range of an integeral type based on its canonical
1604  // representation.
1605  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1606    assert(T->isCanonicalUnqualified());
1607
1608    if (const VectorType *VT = dyn_cast<VectorType>(T))
1609      T = VT->getElementType().getTypePtr();
1610    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1611      T = CT->getElementType().getTypePtr();
1612    if (const EnumType *ET = dyn_cast<EnumType>(T))
1613      T = ET->getDecl()->getIntegerType().getTypePtr();
1614
1615    const BuiltinType *BT = cast<BuiltinType>(T);
1616    assert(BT->isInteger());
1617
1618    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1619  }
1620
1621  // Returns the supremum of two ranges: i.e. their conservative merge.
1622  static IntRange join(const IntRange &L, const IntRange &R) {
1623    return IntRange(std::max(L.Width, R.Width),
1624                    L.NonNegative && R.NonNegative);
1625  }
1626
1627  // Returns the infinum of two ranges: i.e. their aggressive merge.
1628  static IntRange meet(const IntRange &L, const IntRange &R) {
1629    return IntRange(std::min(L.Width, R.Width),
1630                    L.NonNegative || R.NonNegative);
1631  }
1632};
1633
1634IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1635  if (value.isSigned() && value.isNegative())
1636    return IntRange(value.getMinSignedBits(), false);
1637
1638  if (value.getBitWidth() > MaxWidth)
1639    value.trunc(MaxWidth);
1640
1641  // isNonNegative() just checks the sign bit without considering
1642  // signedness.
1643  return IntRange(value.getActiveBits(), true);
1644}
1645
1646IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1647                       unsigned MaxWidth) {
1648  if (result.isInt())
1649    return GetValueRange(C, result.getInt(), MaxWidth);
1650
1651  if (result.isVector()) {
1652    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1653    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1654      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1655      R = IntRange::join(R, El);
1656    }
1657    return R;
1658  }
1659
1660  if (result.isComplexInt()) {
1661    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1662    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1663    return IntRange::join(R, I);
1664  }
1665
1666  // This can happen with lossless casts to intptr_t of "based" lvalues.
1667  // Assume it might use arbitrary bits.
1668  // FIXME: The only reason we need to pass the type in here is to get
1669  // the sign right on this one case.  It would be nice if APValue
1670  // preserved this.
1671  assert(result.isLValue());
1672  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1673}
1674
1675/// Pseudo-evaluate the given integer expression, estimating the
1676/// range of values it might take.
1677///
1678/// \param MaxWidth - the width to which the value will be truncated
1679IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1680  E = E->IgnoreParens();
1681
1682  // Try a full evaluation first.
1683  Expr::EvalResult result;
1684  if (E->Evaluate(result, C))
1685    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1686
1687  // I think we only want to look through implicit casts here; if the
1688  // user has an explicit widening cast, we should treat the value as
1689  // being of the new, wider type.
1690  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1691    if (CE->getCastKind() == CastExpr::CK_NoOp)
1692      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1693
1694    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1695
1696    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1697    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1698      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1699
1700    // Assume that non-integer casts can span the full range of the type.
1701    if (!isIntegerCast)
1702      return OutputTypeRange;
1703
1704    IntRange SubRange
1705      = GetExprRange(C, CE->getSubExpr(),
1706                     std::min(MaxWidth, OutputTypeRange.Width));
1707
1708    // Bail out if the subexpr's range is as wide as the cast type.
1709    if (SubRange.Width >= OutputTypeRange.Width)
1710      return OutputTypeRange;
1711
1712    // Otherwise, we take the smaller width, and we're non-negative if
1713    // either the output type or the subexpr is.
1714    return IntRange(SubRange.Width,
1715                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1716  }
1717
1718  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1719    // If we can fold the condition, just take that operand.
1720    bool CondResult;
1721    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1722      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1723                                        : CO->getFalseExpr(),
1724                          MaxWidth);
1725
1726    // Otherwise, conservatively merge.
1727    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1728    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1729    return IntRange::join(L, R);
1730  }
1731
1732  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1733    switch (BO->getOpcode()) {
1734
1735    // Boolean-valued operations are single-bit and positive.
1736    case BinaryOperator::LAnd:
1737    case BinaryOperator::LOr:
1738    case BinaryOperator::LT:
1739    case BinaryOperator::GT:
1740    case BinaryOperator::LE:
1741    case BinaryOperator::GE:
1742    case BinaryOperator::EQ:
1743    case BinaryOperator::NE:
1744      return IntRange::forBoolType();
1745
1746    // Operations with opaque sources are black-listed.
1747    case BinaryOperator::PtrMemD:
1748    case BinaryOperator::PtrMemI:
1749      return IntRange::forType(C, E->getType());
1750
1751    // Bitwise-and uses the *infinum* of the two source ranges.
1752    case BinaryOperator::And:
1753      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1754                            GetExprRange(C, BO->getRHS(), MaxWidth));
1755
1756    // Left shift gets black-listed based on a judgement call.
1757    case BinaryOperator::Shl:
1758      return IntRange::forType(C, E->getType());
1759
1760    // Right shift by a constant can narrow its left argument.
1761    case BinaryOperator::Shr: {
1762      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1763
1764      // If the shift amount is a positive constant, drop the width by
1765      // that much.
1766      llvm::APSInt shift;
1767      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1768          shift.isNonNegative()) {
1769        unsigned zext = shift.getZExtValue();
1770        if (zext >= L.Width)
1771          L.Width = (L.NonNegative ? 0 : 1);
1772        else
1773          L.Width -= zext;
1774      }
1775
1776      return L;
1777    }
1778
1779    // Comma acts as its right operand.
1780    case BinaryOperator::Comma:
1781      return GetExprRange(C, BO->getRHS(), MaxWidth);
1782
1783    // Black-list pointer subtractions.
1784    case BinaryOperator::Sub:
1785      if (BO->getLHS()->getType()->isPointerType())
1786        return IntRange::forType(C, E->getType());
1787      // fallthrough
1788
1789    default:
1790      break;
1791    }
1792
1793    // Treat every other operator as if it were closed on the
1794    // narrowest type that encompasses both operands.
1795    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1796    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1797    return IntRange::join(L, R);
1798  }
1799
1800  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1801    switch (UO->getOpcode()) {
1802    // Boolean-valued operations are white-listed.
1803    case UnaryOperator::LNot:
1804      return IntRange::forBoolType();
1805
1806    // Operations with opaque sources are black-listed.
1807    case UnaryOperator::Deref:
1808    case UnaryOperator::AddrOf: // should be impossible
1809    case UnaryOperator::OffsetOf:
1810      return IntRange::forType(C, E->getType());
1811
1812    default:
1813      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1814    }
1815  }
1816
1817  FieldDecl *BitField = E->getBitField();
1818  if (BitField) {
1819    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1820    unsigned BitWidth = BitWidthAP.getZExtValue();
1821
1822    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1823  }
1824
1825  return IntRange::forType(C, E->getType());
1826}
1827
1828/// Checks whether the given value, which currently has the given
1829/// source semantics, has the same value when coerced through the
1830/// target semantics.
1831bool IsSameFloatAfterCast(const llvm::APFloat &value,
1832                          const llvm::fltSemantics &Src,
1833                          const llvm::fltSemantics &Tgt) {
1834  llvm::APFloat truncated = value;
1835
1836  bool ignored;
1837  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1838  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1839
1840  return truncated.bitwiseIsEqual(value);
1841}
1842
1843/// Checks whether the given value, which currently has the given
1844/// source semantics, has the same value when coerced through the
1845/// target semantics.
1846///
1847/// The value might be a vector of floats (or a complex number).
1848bool IsSameFloatAfterCast(const APValue &value,
1849                          const llvm::fltSemantics &Src,
1850                          const llvm::fltSemantics &Tgt) {
1851  if (value.isFloat())
1852    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
1853
1854  if (value.isVector()) {
1855    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
1856      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
1857        return false;
1858    return true;
1859  }
1860
1861  assert(value.isComplexFloat());
1862  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
1863          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
1864}
1865
1866} // end anonymous namespace
1867
1868/// \brief Implements -Wsign-compare.
1869///
1870/// \param lex the left-hand expression
1871/// \param rex the right-hand expression
1872/// \param OpLoc the location of the joining operator
1873/// \param Equality whether this is an "equality-like" join, which
1874///   suppresses the warning in some cases
1875void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
1876                            const PartialDiagnostic &PD, bool Equality) {
1877  // Don't warn if we're in an unevaluated context.
1878  if (ExprEvalContexts.back().Context == Unevaluated)
1879    return;
1880
1881  // If either expression is value-dependent, don't warn. We'll get another
1882  // chance at instantiation time.
1883  if (lex->isValueDependent() || rex->isValueDependent())
1884    return;
1885
1886  QualType lt = lex->getType(), rt = rex->getType();
1887
1888  // Only warn if both operands are integral.
1889  if (!lt->isIntegerType() || !rt->isIntegerType())
1890    return;
1891
1892  // In C, the width of a bitfield determines its type, and the
1893  // declared type only contributes the signedness.  This duplicates
1894  // the work that will later be done by UsualUnaryConversions.
1895  // Eventually, this check will be reorganized in a way that avoids
1896  // this duplication.
1897  if (!getLangOptions().CPlusPlus) {
1898    QualType tmp;
1899    tmp = Context.isPromotableBitField(lex);
1900    if (!tmp.isNull()) lt = tmp;
1901    tmp = Context.isPromotableBitField(rex);
1902    if (!tmp.isNull()) rt = tmp;
1903  }
1904
1905  // The rule is that the signed operand becomes unsigned, so isolate the
1906  // signed operand.
1907  Expr *signedOperand = lex, *unsignedOperand = rex;
1908  QualType signedType = lt, unsignedType = rt;
1909  if (lt->isSignedIntegerType()) {
1910    if (rt->isSignedIntegerType()) return;
1911  } else {
1912    if (!rt->isSignedIntegerType()) return;
1913    std::swap(signedOperand, unsignedOperand);
1914    std::swap(signedType, unsignedType);
1915  }
1916
1917  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
1918  unsigned signedWidth = Context.getIntWidth(signedType);
1919
1920  // If the unsigned type is strictly smaller than the signed type,
1921  // then (1) the result type will be signed and (2) the unsigned
1922  // value will fit fully within the signed type, and thus the result
1923  // of the comparison will be exact.
1924  if (signedWidth > unsignedWidth)
1925    return;
1926
1927  // Otherwise, calculate the effective ranges.
1928  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
1929  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
1930
1931  // We should never be unable to prove that the unsigned operand is
1932  // non-negative.
1933  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
1934
1935  // If the signed operand is non-negative, then the signed->unsigned
1936  // conversion won't change it.
1937  if (signedRange.NonNegative)
1938    return;
1939
1940  // For (in)equality comparisons, if the unsigned operand is a
1941  // constant which cannot collide with a overflowed signed operand,
1942  // then reinterpreting the signed operand as unsigned will not
1943  // change the result of the comparison.
1944  if (Equality && unsignedRange.Width < unsignedWidth)
1945    return;
1946
1947  Diag(OpLoc, PD)
1948    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
1949}
1950
1951/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
1952static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
1953  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
1954}
1955
1956/// Implements -Wconversion.
1957void Sema::CheckImplicitConversion(Expr *E, QualType T) {
1958  // Don't diagnose in unevaluated contexts.
1959  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
1960    return;
1961
1962  // Don't diagnose for value-dependent expressions.
1963  if (E->isValueDependent())
1964    return;
1965
1966  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
1967  const Type *Target = Context.getCanonicalType(T).getTypePtr();
1968
1969  // Never diagnose implicit casts to bool.
1970  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
1971    return;
1972
1973  // Strip vector types.
1974  if (isa<VectorType>(Source)) {
1975    if (!isa<VectorType>(Target))
1976      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
1977
1978    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
1979    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
1980  }
1981
1982  // Strip complex types.
1983  if (isa<ComplexType>(Source)) {
1984    if (!isa<ComplexType>(Target))
1985      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
1986
1987    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
1988    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
1989  }
1990
1991  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
1992  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
1993
1994  // If the source is floating point...
1995  if (SourceBT && SourceBT->isFloatingPoint()) {
1996    // ...and the target is floating point...
1997    if (TargetBT && TargetBT->isFloatingPoint()) {
1998      // ...then warn if we're dropping FP rank.
1999
2000      // Builtin FP kinds are ordered by increasing FP rank.
2001      if (SourceBT->getKind() > TargetBT->getKind()) {
2002        // Don't warn about float constants that are precisely
2003        // representable in the target type.
2004        Expr::EvalResult result;
2005        if (E->Evaluate(result, Context)) {
2006          // Value might be a float, a float vector, or a float complex.
2007          if (IsSameFloatAfterCast(result.Val,
2008                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2009                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2010            return;
2011        }
2012
2013        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
2014      }
2015      return;
2016    }
2017
2018    // If the target is integral, always warn.
2019    if ((TargetBT && TargetBT->isInteger()))
2020      // TODO: don't warn for integer values?
2021      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
2022
2023    return;
2024  }
2025
2026  if (!Source->isIntegerType() || !Target->isIntegerType())
2027    return;
2028
2029  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
2030  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
2031
2032  // FIXME: also signed<->unsigned?
2033
2034  if (SourceRange.Width > TargetRange.Width) {
2035    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2036    // and by god we'll let them.
2037    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2038      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
2039    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
2040  }
2041
2042  return;
2043}
2044
2045// MarkLive - Mark all the blocks reachable from e as live.  Returns the total
2046// number of blocks just marked live.
2047static unsigned MarkLive(CFGBlock *e, llvm::BitVector &live) {
2048  unsigned count = 0;
2049  std::queue<CFGBlock*> workq;
2050  // Prep work queue
2051  live.set(e->getBlockID());
2052  ++count;
2053  workq.push(e);
2054  // Solve
2055  while (!workq.empty()) {
2056    CFGBlock *item = workq.front();
2057    workq.pop();
2058    for (CFGBlock::succ_iterator I=item->succ_begin(),
2059           E=item->succ_end();
2060         I != E;
2061         ++I) {
2062      if ((*I) && !live[(*I)->getBlockID()]) {
2063        live.set((*I)->getBlockID());
2064        ++count;
2065        workq.push(*I);
2066      }
2067    }
2068  }
2069  return count;
2070}
2071
2072static SourceLocation GetUnreachableLoc(CFGBlock &b, SourceRange &R1,
2073                                        SourceRange &R2) {
2074  Stmt *S;
2075  unsigned sn = 0;
2076  R1 = R2 = SourceRange();
2077
2078  top:
2079  if (sn < b.size())
2080    S = b[sn].getStmt();
2081  else if (b.getTerminator())
2082    S = b.getTerminator();
2083  else
2084    return SourceLocation();
2085
2086  switch (S->getStmtClass()) {
2087  case Expr::BinaryOperatorClass: {
2088    BinaryOperator *BO = cast<BinaryOperator>(S);
2089    if (BO->getOpcode() == BinaryOperator::Comma) {
2090      if (sn+1 < b.size())
2091        return b[sn+1].getStmt()->getLocStart();
2092      CFGBlock *n = &b;
2093      while (1) {
2094        if (n->getTerminator())
2095          return n->getTerminator()->getLocStart();
2096        if (n->succ_size() != 1)
2097          return SourceLocation();
2098        n = n[0].succ_begin()[0];
2099        if (n->pred_size() != 1)
2100          return SourceLocation();
2101        if (!n->empty())
2102          return n[0][0].getStmt()->getLocStart();
2103      }
2104    }
2105    R1 = BO->getLHS()->getSourceRange();
2106    R2 = BO->getRHS()->getSourceRange();
2107    return BO->getOperatorLoc();
2108  }
2109  case Expr::UnaryOperatorClass: {
2110    const UnaryOperator *UO = cast<UnaryOperator>(S);
2111    R1 = UO->getSubExpr()->getSourceRange();
2112    return UO->getOperatorLoc();
2113  }
2114  case Expr::CompoundAssignOperatorClass: {
2115    const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
2116    R1 = CAO->getLHS()->getSourceRange();
2117    R2 = CAO->getRHS()->getSourceRange();
2118    return CAO->getOperatorLoc();
2119  }
2120  case Expr::ConditionalOperatorClass: {
2121    const ConditionalOperator *CO = cast<ConditionalOperator>(S);
2122    return CO->getQuestionLoc();
2123  }
2124  case Expr::MemberExprClass: {
2125    const MemberExpr *ME = cast<MemberExpr>(S);
2126    R1 = ME->getSourceRange();
2127    return ME->getMemberLoc();
2128  }
2129  case Expr::ArraySubscriptExprClass: {
2130    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
2131    R1 = ASE->getLHS()->getSourceRange();
2132    R2 = ASE->getRHS()->getSourceRange();
2133    return ASE->getRBracketLoc();
2134  }
2135  case Expr::CStyleCastExprClass: {
2136    const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
2137    R1 = CSC->getSubExpr()->getSourceRange();
2138    return CSC->getLParenLoc();
2139  }
2140  case Expr::CXXFunctionalCastExprClass: {
2141    const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
2142    R1 = CE->getSubExpr()->getSourceRange();
2143    return CE->getTypeBeginLoc();
2144  }
2145  case Expr::ImplicitCastExprClass:
2146    ++sn;
2147    goto top;
2148  case Stmt::CXXTryStmtClass: {
2149    return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
2150  }
2151  default: ;
2152  }
2153  R1 = S->getSourceRange();
2154  return S->getLocStart();
2155}
2156
2157static SourceLocation MarkLiveTop(CFGBlock *e, llvm::BitVector &live,
2158                               SourceManager &SM) {
2159  std::queue<CFGBlock*> workq;
2160  // Prep work queue
2161  workq.push(e);
2162  SourceRange R1, R2;
2163  SourceLocation top = GetUnreachableLoc(*e, R1, R2);
2164  bool FromMainFile = false;
2165  bool FromSystemHeader = false;
2166  bool TopValid = false;
2167  if (top.isValid()) {
2168    FromMainFile = SM.isFromMainFile(top);
2169    FromSystemHeader = SM.isInSystemHeader(top);
2170    TopValid = true;
2171  }
2172  // Solve
2173  while (!workq.empty()) {
2174    CFGBlock *item = workq.front();
2175    workq.pop();
2176    SourceLocation c = GetUnreachableLoc(*item, R1, R2);
2177    if (c.isValid()
2178        && (!TopValid
2179            || (SM.isFromMainFile(c) && !FromMainFile)
2180            || (FromSystemHeader && !SM.isInSystemHeader(c))
2181            || SM.isBeforeInTranslationUnit(c, top))) {
2182      top = c;
2183      FromMainFile = SM.isFromMainFile(top);
2184      FromSystemHeader = SM.isInSystemHeader(top);
2185    }
2186    live.set(item->getBlockID());
2187    for (CFGBlock::succ_iterator I=item->succ_begin(),
2188           E=item->succ_end();
2189         I != E;
2190         ++I) {
2191      if ((*I) && !live[(*I)->getBlockID()]) {
2192        live.set((*I)->getBlockID());
2193        workq.push(*I);
2194      }
2195    }
2196  }
2197  return top;
2198}
2199
2200static int LineCmp(const void *p1, const void *p2) {
2201  SourceLocation *Line1 = (SourceLocation *)p1;
2202  SourceLocation *Line2 = (SourceLocation *)p2;
2203  return !(*Line1 < *Line2);
2204}
2205
2206namespace {
2207  struct ErrLoc {
2208    SourceLocation Loc;
2209    SourceRange R1;
2210    SourceRange R2;
2211    ErrLoc(SourceLocation l, SourceRange r1, SourceRange r2)
2212      : Loc(l), R1(r1), R2(r2) { }
2213  };
2214}
2215
2216/// CheckUnreachable - Check for unreachable code.
2217void Sema::CheckUnreachable(AnalysisContext &AC) {
2218  unsigned count;
2219  // We avoid checking when there are errors, as the CFG won't faithfully match
2220  // the user's code.
2221  if (getDiagnostics().hasErrorOccurred())
2222    return;
2223  if (Diags.getDiagnosticLevel(diag::warn_unreachable) == Diagnostic::Ignored)
2224    return;
2225
2226  CFG *cfg = AC.getCFG();
2227  if (cfg == 0)
2228    return;
2229
2230  llvm::BitVector live(cfg->getNumBlockIDs());
2231  // Mark all live things first.
2232  count = MarkLive(&cfg->getEntry(), live);
2233
2234  if (count == cfg->getNumBlockIDs())
2235    // If there are no dead blocks, we're done.
2236    return;
2237
2238  SourceRange R1, R2;
2239
2240  llvm::SmallVector<ErrLoc, 24> lines;
2241  bool AddEHEdges = AC.getAddEHEdges();
2242  // First, give warnings for blocks with no predecessors, as they
2243  // can't be part of a loop.
2244  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
2245    CFGBlock &b = **I;
2246    if (!live[b.getBlockID()]) {
2247      if (b.pred_begin() == b.pred_end()) {
2248        if (!AddEHEdges && b.getTerminator()
2249            && isa<CXXTryStmt>(b.getTerminator())) {
2250          // When not adding EH edges from calls, catch clauses
2251          // can otherwise seem dead.  Avoid noting them as dead.
2252          count += MarkLive(&b, live);
2253          continue;
2254        }
2255        SourceLocation c = GetUnreachableLoc(b, R1, R2);
2256        if (!c.isValid()) {
2257          // Blocks without a location can't produce a warning, so don't mark
2258          // reachable blocks from here as live.
2259          live.set(b.getBlockID());
2260          ++count;
2261          continue;
2262        }
2263        lines.push_back(ErrLoc(c, R1, R2));
2264        // Avoid excessive errors by marking everything reachable from here
2265        count += MarkLive(&b, live);
2266      }
2267    }
2268  }
2269
2270  if (count < cfg->getNumBlockIDs()) {
2271    // And then give warnings for the tops of loops.
2272    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
2273      CFGBlock &b = **I;
2274      if (!live[b.getBlockID()])
2275        // Avoid excessive errors by marking everything reachable from here
2276        lines.push_back(ErrLoc(MarkLiveTop(&b, live,
2277                                           Context.getSourceManager()),
2278                               SourceRange(), SourceRange()));
2279    }
2280  }
2281
2282  llvm::array_pod_sort(lines.begin(), lines.end(), LineCmp);
2283  for (llvm::SmallVector<ErrLoc, 24>::iterator I = lines.begin(),
2284         E = lines.end();
2285       I != E;
2286       ++I)
2287    if (I->Loc.isValid())
2288      Diag(I->Loc, diag::warn_unreachable) << I->R1 << I->R2;
2289}
2290
2291/// CheckFallThrough - Check that we don't fall off the end of a
2292/// Statement that should return a value.
2293///
2294/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
2295/// MaybeFallThrough iff we might or might not fall off the end,
2296/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
2297/// return.  We assume NeverFallThrough iff we never fall off the end of the
2298/// statement but we may return.  We assume that functions not marked noreturn
2299/// will return.
2300Sema::ControlFlowKind Sema::CheckFallThrough(AnalysisContext &AC) {
2301  CFG *cfg = AC.getCFG();
2302  if (cfg == 0)
2303    // FIXME: This should be NeverFallThrough
2304    return NeverFallThroughOrReturn;
2305
2306  // The CFG leaves in dead things, and we don't want the dead code paths to
2307  // confuse us, so we mark all live things first.
2308  std::queue<CFGBlock*> workq;
2309  llvm::BitVector live(cfg->getNumBlockIDs());
2310  unsigned count = MarkLive(&cfg->getEntry(), live);
2311
2312  bool AddEHEdges = AC.getAddEHEdges();
2313  if (!AddEHEdges && count != cfg->getNumBlockIDs())
2314    // When there are things remaining dead, and we didn't add EH edges
2315    // from CallExprs to the catch clauses, we have to go back and
2316    // mark them as live.
2317    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
2318      CFGBlock &b = **I;
2319      if (!live[b.getBlockID()]) {
2320        if (b.pred_begin() == b.pred_end()) {
2321          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
2322            // When not adding EH edges from calls, catch clauses
2323            // can otherwise seem dead.  Avoid noting them as dead.
2324            count += MarkLive(&b, live);
2325          continue;
2326        }
2327      }
2328    }
2329
2330  // Now we know what is live, we check the live precessors of the exit block
2331  // and look for fall through paths, being careful to ignore normal returns,
2332  // and exceptional paths.
2333  bool HasLiveReturn = false;
2334  bool HasFakeEdge = false;
2335  bool HasPlainEdge = false;
2336  bool HasAbnormalEdge = false;
2337  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
2338         E = cfg->getExit().pred_end();
2339       I != E;
2340       ++I) {
2341    CFGBlock& B = **I;
2342    if (!live[B.getBlockID()])
2343      continue;
2344    if (B.size() == 0) {
2345      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
2346        HasAbnormalEdge = true;
2347        continue;
2348      }
2349
2350      // A labeled empty statement, or the entry block...
2351      HasPlainEdge = true;
2352      continue;
2353    }
2354    Stmt *S = B[B.size()-1];
2355    if (isa<ReturnStmt>(S)) {
2356      HasLiveReturn = true;
2357      continue;
2358    }
2359    if (isa<ObjCAtThrowStmt>(S)) {
2360      HasFakeEdge = true;
2361      continue;
2362    }
2363    if (isa<CXXThrowExpr>(S)) {
2364      HasFakeEdge = true;
2365      continue;
2366    }
2367    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
2368      if (AS->isMSAsm()) {
2369        HasFakeEdge = true;
2370        HasLiveReturn = true;
2371        continue;
2372      }
2373    }
2374    if (isa<CXXTryStmt>(S)) {
2375      HasAbnormalEdge = true;
2376      continue;
2377    }
2378
2379    bool NoReturnEdge = false;
2380    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
2381      if (B.succ_begin()[0] != &cfg->getExit()) {
2382        HasAbnormalEdge = true;
2383        continue;
2384      }
2385      Expr *CEE = C->getCallee()->IgnoreParenCasts();
2386      if (CEE->getType().getNoReturnAttr()) {
2387        NoReturnEdge = true;
2388        HasFakeEdge = true;
2389      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
2390        ValueDecl *VD = DRE->getDecl();
2391        if (VD->hasAttr<NoReturnAttr>()) {
2392          NoReturnEdge = true;
2393          HasFakeEdge = true;
2394        }
2395      }
2396    }
2397    // FIXME: Add noreturn message sends.
2398    if (NoReturnEdge == false)
2399      HasPlainEdge = true;
2400  }
2401  if (!HasPlainEdge) {
2402    if (HasLiveReturn)
2403      return NeverFallThrough;
2404    return NeverFallThroughOrReturn;
2405  }
2406  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
2407    return MaybeFallThrough;
2408  // This says AlwaysFallThrough for calls to functions that are not marked
2409  // noreturn, that don't return.  If people would like this warning to be more
2410  // accurate, such functions should be marked as noreturn.
2411  return AlwaysFallThrough;
2412}
2413
2414/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
2415/// function that should return a value.  Check that we don't fall off the end
2416/// of a noreturn function.  We assume that functions and blocks not marked
2417/// noreturn will return.
2418void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body,
2419                                          AnalysisContext &AC) {
2420  // FIXME: Would be nice if we had a better way to control cascading errors,
2421  // but for now, avoid them.  The problem is that when Parse sees:
2422  //   int foo() { return a; }
2423  // The return is eaten and the Sema code sees just:
2424  //   int foo() { }
2425  // which this code would then warn about.
2426  if (getDiagnostics().hasErrorOccurred())
2427    return;
2428
2429  bool ReturnsVoid = false;
2430  bool HasNoReturn = false;
2431  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2432    // If the result type of the function is a dependent type, we don't know
2433    // whether it will be void or not, so don't
2434    if (FD->getResultType()->isDependentType())
2435      return;
2436    if (FD->getResultType()->isVoidType())
2437      ReturnsVoid = true;
2438    if (FD->hasAttr<NoReturnAttr>())
2439      HasNoReturn = true;
2440  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2441    if (MD->getResultType()->isVoidType())
2442      ReturnsVoid = true;
2443    if (MD->hasAttr<NoReturnAttr>())
2444      HasNoReturn = true;
2445  }
2446
2447  // Short circuit for compilation speed.
2448  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
2449       == Diagnostic::Ignored || ReturnsVoid)
2450      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
2451          == Diagnostic::Ignored || !HasNoReturn)
2452      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
2453          == Diagnostic::Ignored || !ReturnsVoid))
2454    return;
2455  // FIXME: Function try block
2456  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
2457    switch (CheckFallThrough(AC)) {
2458    case MaybeFallThrough:
2459      if (HasNoReturn)
2460        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
2461      else if (!ReturnsVoid)
2462        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
2463      break;
2464    case AlwaysFallThrough:
2465      if (HasNoReturn)
2466        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
2467      else if (!ReturnsVoid)
2468        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
2469      break;
2470    case NeverFallThroughOrReturn:
2471      if (ReturnsVoid && !HasNoReturn)
2472        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
2473      break;
2474    case NeverFallThrough:
2475      break;
2476    }
2477  }
2478}
2479
2480/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
2481/// that should return a value.  Check that we don't fall off the end of a
2482/// noreturn block.  We assume that functions and blocks not marked noreturn
2483/// will return.
2484void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body,
2485                                    AnalysisContext &AC) {
2486  // FIXME: Would be nice if we had a better way to control cascading errors,
2487  // but for now, avoid them.  The problem is that when Parse sees:
2488  //   int foo() { return a; }
2489  // The return is eaten and the Sema code sees just:
2490  //   int foo() { }
2491  // which this code would then warn about.
2492  if (getDiagnostics().hasErrorOccurred())
2493    return;
2494  bool ReturnsVoid = false;
2495  bool HasNoReturn = false;
2496  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
2497    if (FT->getResultType()->isVoidType())
2498      ReturnsVoid = true;
2499    if (FT->getNoReturnAttr())
2500      HasNoReturn = true;
2501  }
2502
2503  // Short circuit for compilation speed.
2504  if (ReturnsVoid
2505      && !HasNoReturn
2506      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
2507          == Diagnostic::Ignored || !ReturnsVoid))
2508    return;
2509  // FIXME: Funtion try block
2510  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
2511    switch (CheckFallThrough(AC)) {
2512    case MaybeFallThrough:
2513      if (HasNoReturn)
2514        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
2515      else if (!ReturnsVoid)
2516        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
2517      break;
2518    case AlwaysFallThrough:
2519      if (HasNoReturn)
2520        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
2521      else if (!ReturnsVoid)
2522        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
2523      break;
2524    case NeverFallThroughOrReturn:
2525      if (ReturnsVoid)
2526        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
2527      break;
2528    case NeverFallThrough:
2529      break;
2530    }
2531  }
2532}
2533
2534/// CheckParmsForFunctionDef - Check that the parameters of the given
2535/// function are appropriate for the definition of a function. This
2536/// takes care of any checks that cannot be performed on the
2537/// declaration itself, e.g., that the types of each of the function
2538/// parameters are complete.
2539bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2540  bool HasInvalidParm = false;
2541  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2542    ParmVarDecl *Param = FD->getParamDecl(p);
2543
2544    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2545    // function declarator that is part of a function definition of
2546    // that function shall not have incomplete type.
2547    //
2548    // This is also C++ [dcl.fct]p6.
2549    if (!Param->isInvalidDecl() &&
2550        RequireCompleteType(Param->getLocation(), Param->getType(),
2551                               diag::err_typecheck_decl_incomplete_type)) {
2552      Param->setInvalidDecl();
2553      HasInvalidParm = true;
2554    }
2555
2556    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2557    // declaration of each parameter shall include an identifier.
2558    if (Param->getIdentifier() == 0 &&
2559        !Param->isImplicit() &&
2560        !getLangOptions().CPlusPlus)
2561      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2562  }
2563
2564  return HasInvalidParm;
2565}
2566