SemaChecking.cpp revision b7cfe88e88cb4f46308de89cf3f0c81bfe624128
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/LiteralSupport.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringExtras.h"
30#include "SemaUtil.h"
31using namespace clang;
32
33/// CheckFunctionCall - Check a direct function call for various correctness
34/// and safety properties not strictly enforced by the C type system.
35Action::ExprResult
36Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
37  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
38  // Get the IdentifierInfo* for the called function.
39  IdentifierInfo *FnInfo = FDecl->getIdentifier();
40
41  switch (FnInfo->getBuiltinID()) {
42  case Builtin::BI__builtin___CFStringMakeConstantString:
43    assert(TheCall->getNumArgs() == 1 &&
44           "Wrong # arguments to builtin CFStringMakeConstantString");
45    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
46      return true;
47    return TheCall.take();
48  case Builtin::BI__builtin_va_start:
49    if (SemaBuiltinVAStart(TheCall.get()))
50      return true;
51    return TheCall.take();
52  case Builtin::BI__builtin_isgreater:
53  case Builtin::BI__builtin_isgreaterequal:
54  case Builtin::BI__builtin_isless:
55  case Builtin::BI__builtin_islessequal:
56  case Builtin::BI__builtin_islessgreater:
57  case Builtin::BI__builtin_isunordered:
58    if (SemaBuiltinUnorderedCompare(TheCall.get()))
59      return true;
60    return TheCall.take();
61  case Builtin::BI__builtin_return_address:
62  case Builtin::BI__builtin_frame_address:
63    if (SemaBuiltinStackAddress(TheCall.get()))
64      return true;
65    return TheCall.take();
66  case Builtin::BI__builtin_shufflevector:
67    return SemaBuiltinShuffleVector(TheCall.get());
68  }
69
70  // Search the KnownFunctionIDs for the identifier.
71  unsigned i = 0, e = id_num_known_functions;
72  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
73  if (i == e) return TheCall.take();
74
75  // Printf checking.
76  if (i <= id_vprintf) {
77    // Retrieve the index of the format string parameter and determine
78    // if the function is passed a va_arg argument.
79    unsigned format_idx = 0;
80    bool HasVAListArg = false;
81
82    switch (i) {
83    default: assert(false && "No format string argument index.");
84    case id_printf:    format_idx = 0; break;
85    case id_fprintf:   format_idx = 1; break;
86    case id_sprintf:   format_idx = 1; break;
87    case id_snprintf:  format_idx = 2; break;
88    case id_asprintf:  format_idx = 1; break;
89    case id_NSLog:     format_idx = 0; break;
90    case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
91    case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
92    case id_vfprintf:  format_idx = 1; HasVAListArg = true; break;
93    case id_vsprintf:  format_idx = 1; HasVAListArg = true; break;
94    case id_vprintf:   format_idx = 0; HasVAListArg = true; break;
95    }
96
97    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
98  }
99
100  return TheCall.take();
101}
102
103/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
104/// CFString constructor is correct
105bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
106  Arg = Arg->IgnoreParenCasts();
107
108  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
109
110  if (!Literal || Literal->isWide()) {
111    Diag(Arg->getLocStart(),
112         diag::err_cfstring_literal_not_string_constant,
113         Arg->getSourceRange());
114    return true;
115  }
116
117  const char *Data = Literal->getStrData();
118  unsigned Length = Literal->getByteLength();
119
120  for (unsigned i = 0; i < Length; ++i) {
121    if (!isascii(Data[i])) {
122      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
123           diag::warn_cfstring_literal_contains_non_ascii_character,
124           Arg->getSourceRange());
125      break;
126    }
127
128    if (!Data[i]) {
129      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
130           diag::warn_cfstring_literal_contains_nul_character,
131           Arg->getSourceRange());
132      break;
133    }
134  }
135
136  return false;
137}
138
139/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
140/// Emit an error and return true on failure, return false on success.
141bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
142  Expr *Fn = TheCall->getCallee();
143  if (TheCall->getNumArgs() > 2) {
144    Diag(TheCall->getArg(2)->getLocStart(),
145         diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
146         SourceRange(TheCall->getArg(2)->getLocStart(),
147                     (*(TheCall->arg_end()-1))->getLocEnd()));
148    return true;
149  }
150
151  // Determine whether the current function is variadic or not.
152  bool isVariadic;
153  if (getCurFunctionDecl())
154    isVariadic =
155      cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
156  else
157    isVariadic = getCurMethodDecl()->isVariadic();
158
159  if (!isVariadic) {
160    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
161    return true;
162  }
163
164  // Verify that the second argument to the builtin is the last argument of the
165  // current function or method.
166  bool SecondArgIsLastNamedArgument = false;
167  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
168
169  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
170    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
171      // FIXME: This isn't correct for methods (results in bogus warning).
172      // Get the last formal in the current function.
173      const ParmVarDecl *LastArg;
174      if (getCurFunctionDecl())
175        LastArg = *(getCurFunctionDecl()->param_end()-1);
176      else
177        LastArg = *(getCurMethodDecl()->param_end()-1);
178      SecondArgIsLastNamedArgument = PV == LastArg;
179    }
180  }
181
182  if (!SecondArgIsLastNamedArgument)
183    Diag(TheCall->getArg(1)->getLocStart(),
184         diag::warn_second_parameter_of_va_start_not_last_named_argument);
185  return false;
186}
187
188/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
189/// friends.  This is declared to take (...), so we have to check everything.
190bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
191  if (TheCall->getNumArgs() < 2)
192    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
193  if (TheCall->getNumArgs() > 2)
194    return Diag(TheCall->getArg(2)->getLocStart(),
195                diag::err_typecheck_call_too_many_args,
196                SourceRange(TheCall->getArg(2)->getLocStart(),
197                            (*(TheCall->arg_end()-1))->getLocEnd()));
198
199  Expr *OrigArg0 = TheCall->getArg(0);
200  Expr *OrigArg1 = TheCall->getArg(1);
201
202  // Do standard promotions between the two arguments, returning their common
203  // type.
204  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
205
206  // If the common type isn't a real floating type, then the arguments were
207  // invalid for this operation.
208  if (!Res->isRealFloatingType())
209    return Diag(OrigArg0->getLocStart(),
210                diag::err_typecheck_call_invalid_ordered_compare,
211                OrigArg0->getType().getAsString(),
212                OrigArg1->getType().getAsString(),
213                SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()));
214
215  return false;
216}
217
218bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
219  // The signature for these builtins is exact; the only thing we need
220  // to check is that the argument is a constant.
221  SourceLocation Loc;
222  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc)) {
223    return Diag(Loc, diag::err_stack_const_level, TheCall->getSourceRange());
224  }
225  return false;
226}
227
228/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
229// This is declared to take (...), so we have to check everything.
230Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
231  if (TheCall->getNumArgs() < 3)
232    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
233                TheCall->getSourceRange());
234
235  QualType FAType = TheCall->getArg(0)->getType();
236  QualType SAType = TheCall->getArg(1)->getType();
237
238  if (!FAType->isVectorType() || !SAType->isVectorType()) {
239    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector,
240         SourceRange(TheCall->getArg(0)->getLocStart(),
241                     TheCall->getArg(1)->getLocEnd()));
242    return true;
243  }
244
245  if (FAType.getCanonicalType().getUnqualifiedType() !=
246      SAType.getCanonicalType().getUnqualifiedType()) {
247    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector,
248         SourceRange(TheCall->getArg(0)->getLocStart(),
249                     TheCall->getArg(1)->getLocEnd()));
250    return true;
251  }
252
253  unsigned numElements = FAType->getAsVectorType()->getNumElements();
254  if (TheCall->getNumArgs() != numElements+2) {
255    if (TheCall->getNumArgs() < numElements+2)
256      Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
257           TheCall->getSourceRange());
258    else
259      Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
260           TheCall->getSourceRange());
261    return true;
262  }
263
264  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
265    llvm::APSInt Result(32);
266    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) {
267      Diag(TheCall->getLocStart(),
268           diag::err_shufflevector_nonconstant_argument,
269           TheCall->getArg(i)->getSourceRange());
270      return true;
271    }
272    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) {
273      Diag(TheCall->getLocStart(),
274           diag::err_shufflevector_argument_too_large,
275           TheCall->getArg(i)->getSourceRange());
276      return true;
277    }
278  }
279
280  llvm::SmallVector<Expr*, 32> exprs;
281
282  for (unsigned i = 0; i < TheCall->getNumArgs(); i++) {
283    exprs.push_back(TheCall->getArg(i));
284    TheCall->setArg(i, 0);
285  }
286
287  ShuffleVectorExpr* E = new ShuffleVectorExpr(
288      exprs.begin(), numElements+2, FAType,
289      TheCall->getCallee()->getLocStart(),
290      TheCall->getRParenLoc());
291
292  return E;
293}
294
295/// CheckPrintfArguments - Check calls to printf (and similar functions) for
296/// correct use of format strings.
297///
298///  HasVAListArg - A predicate indicating whether the printf-like
299///    function is passed an explicit va_arg argument (e.g., vprintf)
300///
301///  format_idx - The index into Args for the format string.
302///
303/// Improper format strings to functions in the printf family can be
304/// the source of bizarre bugs and very serious security holes.  A
305/// good source of information is available in the following paper
306/// (which includes additional references):
307///
308///  FormatGuard: Automatic Protection From printf Format String
309///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
310///
311/// Functionality implemented:
312///
313///  We can statically check the following properties for string
314///  literal format strings for non v.*printf functions (where the
315///  arguments are passed directly):
316//
317///  (1) Are the number of format conversions equal to the number of
318///      data arguments?
319///
320///  (2) Does each format conversion correctly match the type of the
321///      corresponding data argument?  (TODO)
322///
323/// Moreover, for all printf functions we can:
324///
325///  (3) Check for a missing format string (when not caught by type checking).
326///
327///  (4) Check for no-operation flags; e.g. using "#" with format
328///      conversion 'c'  (TODO)
329///
330///  (5) Check the use of '%n', a major source of security holes.
331///
332///  (6) Check for malformed format conversions that don't specify anything.
333///
334///  (7) Check for empty format strings.  e.g: printf("");
335///
336///  (8) Check that the format string is a wide literal.
337///
338///  (9) Also check the arguments of functions with the __format__ attribute.
339///      (TODO).
340///
341/// All of these checks can be done by parsing the format string.
342///
343/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
344void
345Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
346                           unsigned format_idx) {
347  Expr *Fn = TheCall->getCallee();
348
349  // CHECK: printf-like function is called with no format string.
350  if (format_idx >= TheCall->getNumArgs()) {
351    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string,
352         Fn->getSourceRange());
353    return;
354  }
355
356  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
357
358  // CHECK: format string is not a string literal.
359  //
360  // Dynamically generated format strings are difficult to
361  // automatically vet at compile time.  Requiring that format strings
362  // are string literals: (1) permits the checking of format strings by
363  // the compiler and thereby (2) can practically remove the source of
364  // many format string exploits.
365
366  // Format string can be either ObjC string (e.g. @"%d") or
367  // C string (e.g. "%d")
368  // ObjC string uses the same format specifiers as C string, so we can use
369  // the same format string checking logic for both ObjC and C strings.
370  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
371  StringLiteral *FExpr = NULL;
372
373  if(ObjCFExpr != NULL)
374    FExpr = ObjCFExpr->getString();
375  else
376    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
377
378  if (FExpr == NULL) {
379    // For vprintf* functions (i.e., HasVAListArg==true), we add a
380    // special check to see if the format string is a function parameter
381    // of the function calling the printf function.  If the function
382    // has an attribute indicating it is a printf-like function, then we
383    // should suppress warnings concerning non-literals being used in a call
384    // to a vprintf function.  For example:
385    //
386    // void
387    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
388    //      va_list ap;
389    //      va_start(ap, fmt);
390    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
391    //      ...
392    //
393    //
394    //  FIXME: We don't have full attribute support yet, so just check to see
395    //    if the argument is a DeclRefExpr that references a parameter.  We'll
396    //    add proper support for checking the attribute later.
397    if (HasVAListArg)
398      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
399        if (isa<ParmVarDecl>(DR->getDecl()))
400          return;
401
402    Diag(TheCall->getArg(format_idx)->getLocStart(),
403         diag::warn_printf_not_string_constant, Fn->getSourceRange());
404    return;
405  }
406
407  // CHECK: is the format string a wide literal?
408  if (FExpr->isWide()) {
409    Diag(FExpr->getLocStart(),
410         diag::warn_printf_format_string_is_wide_literal, Fn->getSourceRange());
411    return;
412  }
413
414  // Str - The format string.  NOTE: this is NOT null-terminated!
415  const char * const Str = FExpr->getStrData();
416
417  // CHECK: empty format string?
418  const unsigned StrLen = FExpr->getByteLength();
419
420  if (StrLen == 0) {
421    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string,
422         Fn->getSourceRange());
423    return;
424  }
425
426  // We process the format string using a binary state machine.  The
427  // current state is stored in CurrentState.
428  enum {
429    state_OrdChr,
430    state_Conversion
431  } CurrentState = state_OrdChr;
432
433  // numConversions - The number of conversions seen so far.  This is
434  //  incremented as we traverse the format string.
435  unsigned numConversions = 0;
436
437  // numDataArgs - The number of data arguments after the format
438  //  string.  This can only be determined for non vprintf-like
439  //  functions.  For those functions, this value is 1 (the sole
440  //  va_arg argument).
441  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
442
443  // Inspect the format string.
444  unsigned StrIdx = 0;
445
446  // LastConversionIdx - Index within the format string where we last saw
447  //  a '%' character that starts a new format conversion.
448  unsigned LastConversionIdx = 0;
449
450  for (; StrIdx < StrLen; ++StrIdx) {
451
452    // Is the number of detected conversion conversions greater than
453    // the number of matching data arguments?  If so, stop.
454    if (!HasVAListArg && numConversions > numDataArgs) break;
455
456    // Handle "\0"
457    if (Str[StrIdx] == '\0') {
458      // The string returned by getStrData() is not null-terminated,
459      // so the presence of a null character is likely an error.
460      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
461           diag::warn_printf_format_string_contains_null_char,
462           Fn->getSourceRange());
463      return;
464    }
465
466    // Ordinary characters (not processing a format conversion).
467    if (CurrentState == state_OrdChr) {
468      if (Str[StrIdx] == '%') {
469        CurrentState = state_Conversion;
470        LastConversionIdx = StrIdx;
471      }
472      continue;
473    }
474
475    // Seen '%'.  Now processing a format conversion.
476    switch (Str[StrIdx]) {
477    // Handle dynamic precision or width specifier.
478    case '*': {
479      ++numConversions;
480
481      if (!HasVAListArg && numConversions > numDataArgs) {
482        SourceLocation Loc = FExpr->getLocStart();
483        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
484
485        if (Str[StrIdx-1] == '.')
486          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg,
487               Fn->getSourceRange());
488        else
489          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg,
490               Fn->getSourceRange());
491
492        // Don't do any more checking.  We'll just emit spurious errors.
493        return;
494      }
495
496      // Perform type checking on width/precision specifier.
497      Expr *E = TheCall->getArg(format_idx+numConversions);
498      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
499        if (BT->getKind() == BuiltinType::Int)
500          break;
501
502      SourceLocation Loc =
503        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
504
505      if (Str[StrIdx-1] == '.')
506        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type,
507             E->getType().getAsString(), E->getSourceRange());
508      else
509        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type,
510             E->getType().getAsString(), E->getSourceRange());
511
512      break;
513    }
514
515    // Characters which can terminate a format conversion
516    // (e.g. "%d").  Characters that specify length modifiers or
517    // other flags are handled by the default case below.
518    //
519    // FIXME: additional checks will go into the following cases.
520    case 'i':
521    case 'd':
522    case 'o':
523    case 'u':
524    case 'x':
525    case 'X':
526    case 'D':
527    case 'O':
528    case 'U':
529    case 'e':
530    case 'E':
531    case 'f':
532    case 'F':
533    case 'g':
534    case 'G':
535    case 'a':
536    case 'A':
537    case 'c':
538    case 'C':
539    case 'S':
540    case 's':
541    case 'p':
542      ++numConversions;
543      CurrentState = state_OrdChr;
544      break;
545
546    // CHECK: Are we using "%n"?  Issue a warning.
547    case 'n': {
548      ++numConversions;
549      CurrentState = state_OrdChr;
550      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
551                                                      LastConversionIdx+1);
552
553      Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange());
554      break;
555    }
556
557    // Handle "%@"
558    case '@':
559      // %@ is allowed in ObjC format strings only.
560      if(ObjCFExpr != NULL)
561        CurrentState = state_OrdChr;
562      else {
563        // Issue a warning: invalid format conversion.
564        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
565                                                    LastConversionIdx+1);
566
567        Diag(Loc, diag::warn_printf_invalid_conversion,
568          std::string(Str+LastConversionIdx,
569          Str+std::min(LastConversionIdx+2, StrLen)),
570          Fn->getSourceRange());
571      }
572      ++numConversions;
573      break;
574
575    // Handle "%%"
576    case '%':
577      // Sanity check: Was the first "%" character the previous one?
578      // If not, we will assume that we have a malformed format
579      // conversion, and that the current "%" character is the start
580      // of a new conversion.
581      if (StrIdx - LastConversionIdx == 1)
582        CurrentState = state_OrdChr;
583      else {
584        // Issue a warning: invalid format conversion.
585        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
586                                                        LastConversionIdx+1);
587
588        Diag(Loc, diag::warn_printf_invalid_conversion,
589             std::string(Str+LastConversionIdx, Str+StrIdx),
590             Fn->getSourceRange());
591
592        // This conversion is broken.  Advance to the next format
593        // conversion.
594        LastConversionIdx = StrIdx;
595        ++numConversions;
596      }
597      break;
598
599    default:
600      // This case catches all other characters: flags, widths, etc.
601      // We should eventually process those as well.
602      break;
603    }
604  }
605
606  if (CurrentState == state_Conversion) {
607    // Issue a warning: invalid format conversion.
608    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
609                                                    LastConversionIdx+1);
610
611    Diag(Loc, diag::warn_printf_invalid_conversion,
612         std::string(Str+LastConversionIdx,
613                     Str+std::min(LastConversionIdx+2, StrLen)),
614         Fn->getSourceRange());
615    return;
616  }
617
618  if (!HasVAListArg) {
619    // CHECK: Does the number of format conversions exceed the number
620    //        of data arguments?
621    if (numConversions > numDataArgs) {
622      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
623                                                      LastConversionIdx);
624
625      Diag(Loc, diag::warn_printf_insufficient_data_args,
626           Fn->getSourceRange());
627    }
628    // CHECK: Does the number of data arguments exceed the number of
629    //        format conversions in the format string?
630    else if (numConversions < numDataArgs)
631      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
632           diag::warn_printf_too_many_data_args, Fn->getSourceRange());
633  }
634}
635
636//===--- CHECK: Return Address of Stack Variable --------------------------===//
637
638static DeclRefExpr* EvalVal(Expr *E);
639static DeclRefExpr* EvalAddr(Expr* E);
640
641/// CheckReturnStackAddr - Check if a return statement returns the address
642///   of a stack variable.
643void
644Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
645                           SourceLocation ReturnLoc) {
646
647  // Perform checking for returned stack addresses.
648  if (lhsType->isPointerType()) {
649    if (DeclRefExpr *DR = EvalAddr(RetValExp))
650      Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
651           DR->getDecl()->getIdentifier()->getName(),
652           RetValExp->getSourceRange());
653  }
654  // Perform checking for stack values returned by reference.
655  else if (lhsType->isReferenceType()) {
656    // Check for an implicit cast to a reference.
657    if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
658      if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
659        Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
660             DR->getDecl()->getIdentifier()->getName(),
661             RetValExp->getSourceRange());
662  }
663}
664
665/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
666///  check if the expression in a return statement evaluates to an address
667///  to a location on the stack.  The recursion is used to traverse the
668///  AST of the return expression, with recursion backtracking when we
669///  encounter a subexpression that (1) clearly does not lead to the address
670///  of a stack variable or (2) is something we cannot determine leads to
671///  the address of a stack variable based on such local checking.
672///
673///  EvalAddr processes expressions that are pointers that are used as
674///  references (and not L-values).  EvalVal handles all other values.
675///  At the base case of the recursion is a check for a DeclRefExpr* in
676///  the refers to a stack variable.
677///
678///  This implementation handles:
679///
680///   * pointer-to-pointer casts
681///   * implicit conversions from array references to pointers
682///   * taking the address of fields
683///   * arbitrary interplay between "&" and "*" operators
684///   * pointer arithmetic from an address of a stack variable
685///   * taking the address of an array element where the array is on the stack
686static DeclRefExpr* EvalAddr(Expr *E) {
687  // We should only be called for evaluating pointer expressions.
688  assert((E->getType()->isPointerType() ||
689          E->getType()->isObjCQualifiedIdType()) &&
690         "EvalAddr only works on pointers");
691
692  // Our "symbolic interpreter" is just a dispatch off the currently
693  // viewed AST node.  We then recursively traverse the AST by calling
694  // EvalAddr and EvalVal appropriately.
695  switch (E->getStmtClass()) {
696  case Stmt::ParenExprClass:
697    // Ignore parentheses.
698    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
699
700  case Stmt::UnaryOperatorClass: {
701    // The only unary operator that make sense to handle here
702    // is AddrOf.  All others don't make sense as pointers.
703    UnaryOperator *U = cast<UnaryOperator>(E);
704
705    if (U->getOpcode() == UnaryOperator::AddrOf)
706      return EvalVal(U->getSubExpr());
707    else
708      return NULL;
709  }
710
711  case Stmt::BinaryOperatorClass: {
712    // Handle pointer arithmetic.  All other binary operators are not valid
713    // in this context.
714    BinaryOperator *B = cast<BinaryOperator>(E);
715    BinaryOperator::Opcode op = B->getOpcode();
716
717    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
718      return NULL;
719
720    Expr *Base = B->getLHS();
721
722    // Determine which argument is the real pointer base.  It could be
723    // the RHS argument instead of the LHS.
724    if (!Base->getType()->isPointerType()) Base = B->getRHS();
725
726    assert (Base->getType()->isPointerType());
727    return EvalAddr(Base);
728  }
729
730  // For conditional operators we need to see if either the LHS or RHS are
731  // valid DeclRefExpr*s.  If one of them is valid, we return it.
732  case Stmt::ConditionalOperatorClass: {
733    ConditionalOperator *C = cast<ConditionalOperator>(E);
734
735    // Handle the GNU extension for missing LHS.
736    if (Expr *lhsExpr = C->getLHS())
737      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
738        return LHS;
739
740     return EvalAddr(C->getRHS());
741  }
742
743  // For implicit casts, we need to handle conversions from arrays to
744  // pointer values, and implicit pointer-to-pointer conversions.
745  case Stmt::ImplicitCastExprClass: {
746    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
747    Expr* SubExpr = IE->getSubExpr();
748
749    if (SubExpr->getType()->isPointerType() ||
750        SubExpr->getType()->isObjCQualifiedIdType())
751      return EvalAddr(SubExpr);
752    else
753      return EvalVal(SubExpr);
754  }
755
756  // For casts, we handle pointer-to-pointer conversions (which
757  // is essentially a no-op from our mini-interpreter's standpoint).
758  // For other casts we abort.
759  case Stmt::CastExprClass: {
760    CastExpr *C = cast<CastExpr>(E);
761    Expr *SubExpr = C->getSubExpr();
762
763    if (SubExpr->getType()->isPointerType())
764      return EvalAddr(SubExpr);
765    else
766      return NULL;
767  }
768
769  // C++ casts.  For dynamic casts, static casts, and const casts, we
770  // are always converting from a pointer-to-pointer, so we just blow
771  // through the cast.  In the case the dynamic cast doesn't fail
772  // (and return NULL), we take the conservative route and report cases
773  // where we return the address of a stack variable.  For Reinterpre
774  case Stmt::CXXCastExprClass: {
775    CXXCastExpr *C = cast<CXXCastExpr>(E);
776
777    if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
778      Expr *S = C->getSubExpr();
779      if (S->getType()->isPointerType())
780        return EvalAddr(S);
781      else
782        return NULL;
783    }
784    else
785      return EvalAddr(C->getSubExpr());
786  }
787
788  // Everything else: we simply don't reason about them.
789  default:
790    return NULL;
791  }
792}
793
794
795///  EvalVal - This function is complements EvalAddr in the mutual recursion.
796///   See the comments for EvalAddr for more details.
797static DeclRefExpr* EvalVal(Expr *E) {
798
799  // We should only be called for evaluating non-pointer expressions, or
800  // expressions with a pointer type that are not used as references but instead
801  // are l-values (e.g., DeclRefExpr with a pointer type).
802
803  // Our "symbolic interpreter" is just a dispatch off the currently
804  // viewed AST node.  We then recursively traverse the AST by calling
805  // EvalAddr and EvalVal appropriately.
806  switch (E->getStmtClass()) {
807  case Stmt::DeclRefExprClass: {
808    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
809    //  at code that refers to a variable's name.  We check if it has local
810    //  storage within the function, and if so, return the expression.
811    DeclRefExpr *DR = cast<DeclRefExpr>(E);
812
813    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
814      if(V->hasLocalStorage()) return DR;
815
816    return NULL;
817  }
818
819  case Stmt::ParenExprClass:
820    // Ignore parentheses.
821    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
822
823  case Stmt::UnaryOperatorClass: {
824    // The only unary operator that make sense to handle here
825    // is Deref.  All others don't resolve to a "name."  This includes
826    // handling all sorts of rvalues passed to a unary operator.
827    UnaryOperator *U = cast<UnaryOperator>(E);
828
829    if (U->getOpcode() == UnaryOperator::Deref)
830      return EvalAddr(U->getSubExpr());
831
832    return NULL;
833  }
834
835  case Stmt::ArraySubscriptExprClass: {
836    // Array subscripts are potential references to data on the stack.  We
837    // retrieve the DeclRefExpr* for the array variable if it indeed
838    // has local storage.
839    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
840  }
841
842  case Stmt::ConditionalOperatorClass: {
843    // For conditional operators we need to see if either the LHS or RHS are
844    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
845    ConditionalOperator *C = cast<ConditionalOperator>(E);
846
847    // Handle the GNU extension for missing LHS.
848    if (Expr *lhsExpr = C->getLHS())
849      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
850        return LHS;
851
852    return EvalVal(C->getRHS());
853  }
854
855  // Accesses to members are potential references to data on the stack.
856  case Stmt::MemberExprClass: {
857    MemberExpr *M = cast<MemberExpr>(E);
858
859    // Check for indirect access.  We only want direct field accesses.
860    if (!M->isArrow())
861      return EvalVal(M->getBase());
862    else
863      return NULL;
864  }
865
866  // Everything else: we simply don't reason about them.
867  default:
868    return NULL;
869  }
870}
871
872//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
873
874/// Check for comparisons of floating point operands using != and ==.
875/// Issue a warning if these are no self-comparisons, as they are not likely
876/// to do what the programmer intended.
877void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
878  bool EmitWarning = true;
879
880  Expr* LeftExprSansParen = lex->IgnoreParens();
881  Expr* RightExprSansParen = rex->IgnoreParens();
882
883  // Special case: check for x == x (which is OK).
884  // Do not emit warnings for such cases.
885  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
886    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
887      if (DRL->getDecl() == DRR->getDecl())
888        EmitWarning = false;
889
890
891  // Special case: check for comparisons against literals that can be exactly
892  //  represented by APFloat.  In such cases, do not emit a warning.  This
893  //  is a heuristic: often comparison against such literals are used to
894  //  detect if a value in a variable has not changed.  This clearly can
895  //  lead to false negatives.
896  if (EmitWarning) {
897    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
898      if (FLL->isExact())
899        EmitWarning = false;
900    }
901    else
902      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
903        if (FLR->isExact())
904          EmitWarning = false;
905    }
906  }
907
908  // Check for comparisons with builtin types.
909  if (EmitWarning)
910    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
911      if (isCallBuiltin(CL))
912        EmitWarning = false;
913
914  if (EmitWarning)
915    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
916      if (isCallBuiltin(CR))
917        EmitWarning = false;
918
919  // Emit the diagnostic.
920  if (EmitWarning)
921    Diag(loc, diag::warn_floatingpoint_eq,
922         lex->getSourceRange(),rex->getSourceRange());
923}
924