SemaDecl.cpp revision 7c24334bedf59bd9af57ee53eb8f6d9f6a50ca9b
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = ObjectTypePtr.get();
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isNotEmpty()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return ParsedType();
96
97        // We know from the grammar that this name refers to a type,
98        // so build a dependent node to describe the type.
99        if (WantNontrivialTypeSourceInfo)
100          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
101
102        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
103        QualType T =
104          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
105                            II, NameLoc);
106
107          return ParsedType::make(T);
108      }
109
110      return ParsedType();
111    }
112
113    if (!LookupCtx->isDependentContext() &&
114        RequireCompleteDeclContext(*SS, LookupCtx))
115      return ParsedType();
116  }
117
118  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
119  // lookup for class-names.
120  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
121                                      LookupOrdinaryName;
122  LookupResult Result(*this, &II, NameLoc, Kind);
123  if (LookupCtx) {
124    // Perform "qualified" name lookup into the declaration context we
125    // computed, which is either the type of the base of a member access
126    // expression or the declaration context associated with a prior
127    // nested-name-specifier.
128    LookupQualifiedName(Result, LookupCtx);
129
130    if (ObjectTypePtr && Result.empty()) {
131      // C++ [basic.lookup.classref]p3:
132      //   If the unqualified-id is ~type-name, the type-name is looked up
133      //   in the context of the entire postfix-expression. If the type T of
134      //   the object expression is of a class type C, the type-name is also
135      //   looked up in the scope of class C. At least one of the lookups shall
136      //   find a name that refers to (possibly cv-qualified) T.
137      LookupName(Result, S);
138    }
139  } else {
140    // Perform unqualified name lookup.
141    LookupName(Result, S);
142  }
143
144  NamedDecl *IIDecl = 0;
145  switch (Result.getResultKind()) {
146  case LookupResult::NotFound:
147  case LookupResult::NotFoundInCurrentInstantiation:
148  case LookupResult::FoundOverloaded:
149  case LookupResult::FoundUnresolvedValue:
150    Result.suppressDiagnostics();
151    return ParsedType();
152
153  case LookupResult::Ambiguous:
154    // Recover from type-hiding ambiguities by hiding the type.  We'll
155    // do the lookup again when looking for an object, and we can
156    // diagnose the error then.  If we don't do this, then the error
157    // about hiding the type will be immediately followed by an error
158    // that only makes sense if the identifier was treated like a type.
159    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
160      Result.suppressDiagnostics();
161      return ParsedType();
162    }
163
164    // Look to see if we have a type anywhere in the list of results.
165    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
166         Res != ResEnd; ++Res) {
167      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
168        if (!IIDecl ||
169            (*Res)->getLocation().getRawEncoding() <
170              IIDecl->getLocation().getRawEncoding())
171          IIDecl = *Res;
172      }
173    }
174
175    if (!IIDecl) {
176      // None of the entities we found is a type, so there is no way
177      // to even assume that the result is a type. In this case, don't
178      // complain about the ambiguity. The parser will either try to
179      // perform this lookup again (e.g., as an object name), which
180      // will produce the ambiguity, or will complain that it expected
181      // a type name.
182      Result.suppressDiagnostics();
183      return ParsedType();
184    }
185
186    // We found a type within the ambiguous lookup; diagnose the
187    // ambiguity and then return that type. This might be the right
188    // answer, or it might not be, but it suppresses any attempt to
189    // perform the name lookup again.
190    break;
191
192  case LookupResult::Found:
193    IIDecl = Result.getFoundDecl();
194    break;
195  }
196
197  assert(IIDecl && "Didn't find decl");
198
199  QualType T;
200  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
201    DiagnoseUseOfDecl(IIDecl, NameLoc);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS && SS->isNotEmpty()) {
207      if (WantNontrivialTypeSourceInfo) {
208        // Construct a type with type-source information.
209        TypeLocBuilder Builder;
210        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
211
212        T = getElaboratedType(ETK_None, *SS, T);
213        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
214        ElabTL.setKeywordLoc(SourceLocation());
215        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
216        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
217      } else {
218        T = getElaboratedType(ETK_None, *SS, T);
219      }
220    }
221  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
222    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
223    if (!HasTrailingDot)
224      T = Context.getObjCInterfaceType(IDecl);
225  }
226
227  if (T.isNull()) {
228    // If it's not plausibly a type, suppress diagnostics.
229    Result.suppressDiagnostics();
230    return ParsedType();
231  }
232  return ParsedType::make(T);
233}
234
235/// isTagName() - This method is called *for error recovery purposes only*
236/// to determine if the specified name is a valid tag name ("struct foo").  If
237/// so, this returns the TST for the tag corresponding to it (TST_enum,
238/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
239/// where the user forgot to specify the tag.
240DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
241  // Do a tag name lookup in this scope.
242  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
243  LookupName(R, S, false);
244  R.suppressDiagnostics();
245  if (R.getResultKind() == LookupResult::Found)
246    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
247      switch (TD->getTagKind()) {
248      default:         return DeclSpec::TST_unspecified;
249      case TTK_Struct: return DeclSpec::TST_struct;
250      case TTK_Union:  return DeclSpec::TST_union;
251      case TTK_Class:  return DeclSpec::TST_class;
252      case TTK_Enum:   return DeclSpec::TST_enum;
253      }
254    }
255
256  return DeclSpec::TST_unspecified;
257}
258
259/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
260/// if a CXXScopeSpec's type is equal to the type of one of the base classes
261/// then downgrade the missing typename error to a warning.
262/// This is needed for MSVC compatibility; Example:
263/// @code
264/// template<class T> class A {
265/// public:
266///   typedef int TYPE;
267/// };
268/// template<class T> class B : public A<T> {
269/// public:
270///   A<T>::TYPE a; // no typename required because A<T> is a base class.
271/// };
272/// @endcode
273bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
274  if (CurContext->isRecord()) {
275    const Type *Ty = SS->getScopeRep()->getAsType();
276
277    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
278    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
279          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
280      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
281        return true;
282  }
283  return false;
284}
285
286bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
287                                   SourceLocation IILoc,
288                                   Scope *S,
289                                   CXXScopeSpec *SS,
290                                   ParsedType &SuggestedType) {
291  // We don't have anything to suggest (yet).
292  SuggestedType = ParsedType();
293
294  // There may have been a typo in the name of the type. Look up typo
295  // results, in case we have something that we can suggest.
296  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
297                                             LookupOrdinaryName, S, SS, NULL,
298                                             false, CTC_Type)) {
299    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
300    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
301
302    if (Corrected.isKeyword()) {
303      // We corrected to a keyword.
304      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
305      Diag(IILoc, diag::err_unknown_typename_suggest)
306        << &II << CorrectedQuotedStr;
307      return true;
308    } else {
309      NamedDecl *Result = Corrected.getCorrectionDecl();
310      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
311          !Result->isInvalidDecl()) {
312        // We found a similarly-named type or interface; suggest that.
313        if (!SS || !SS->isSet())
314          Diag(IILoc, diag::err_unknown_typename_suggest)
315            << &II << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
317        else if (DeclContext *DC = computeDeclContext(*SS, false))
318          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
319            << &II << DC << CorrectedQuotedStr << SS->getRange()
320            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
321        else
322          llvm_unreachable("could not have corrected a typo here");
323
324        Diag(Result->getLocation(), diag::note_previous_decl)
325          << CorrectedQuotedStr;
326
327        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
328                                    false, false, ParsedType(),
329                                    /*NonTrivialTypeSourceInfo=*/true);
330        return true;
331      }
332    }
333  }
334
335  if (getLangOptions().CPlusPlus) {
336    // See if II is a class template that the user forgot to pass arguments to.
337    UnqualifiedId Name;
338    Name.setIdentifier(&II, IILoc);
339    CXXScopeSpec EmptySS;
340    TemplateTy TemplateResult;
341    bool MemberOfUnknownSpecialization;
342    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
343                       Name, ParsedType(), true, TemplateResult,
344                       MemberOfUnknownSpecialization) == TNK_Type_template) {
345      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
346      Diag(IILoc, diag::err_template_missing_args) << TplName;
347      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
348        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
349          << TplDecl->getTemplateParameters()->getSourceRange();
350      }
351      return true;
352    }
353  }
354
355  // FIXME: Should we move the logic that tries to recover from a missing tag
356  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
357
358  if (!SS || (!SS->isSet() && !SS->isInvalid()))
359    Diag(IILoc, diag::err_unknown_typename) << &II;
360  else if (DeclContext *DC = computeDeclContext(*SS, false))
361    Diag(IILoc, diag::err_typename_nested_not_found)
362      << &II << DC << SS->getRange();
363  else if (isDependentScopeSpecifier(*SS)) {
364    unsigned DiagID = diag::err_typename_missing;
365    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
366      DiagID = diag::warn_typename_missing;
367
368    Diag(SS->getRange().getBegin(), DiagID)
369      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
370      << SourceRange(SS->getRange().getBegin(), IILoc)
371      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
372    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
373  } else {
374    assert(SS && SS->isInvalid() &&
375           "Invalid scope specifier has already been diagnosed");
376  }
377
378  return true;
379}
380
381/// \brief Determine whether the given result set contains either a type name
382/// or
383static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
384  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
385                       NextToken.is(tok::less);
386
387  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
388    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
389      return true;
390
391    if (CheckTemplate && isa<TemplateDecl>(*I))
392      return true;
393  }
394
395  return false;
396}
397
398Sema::NameClassification Sema::ClassifyName(Scope *S,
399                                            CXXScopeSpec &SS,
400                                            IdentifierInfo *&Name,
401                                            SourceLocation NameLoc,
402                                            const Token &NextToken) {
403  DeclarationNameInfo NameInfo(Name, NameLoc);
404  ObjCMethodDecl *CurMethod = getCurMethodDecl();
405
406  if (NextToken.is(tok::coloncolon)) {
407    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
408                                QualType(), false, SS, 0, false);
409
410  }
411
412  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
413  LookupParsedName(Result, S, &SS, !CurMethod);
414
415  // Perform lookup for Objective-C instance variables (including automatically
416  // synthesized instance variables), if we're in an Objective-C method.
417  // FIXME: This lookup really, really needs to be folded in to the normal
418  // unqualified lookup mechanism.
419  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
420    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
421    if (E.get() || E.isInvalid())
422      return E;
423  }
424
425  bool SecondTry = false;
426  bool IsFilteredTemplateName = false;
427
428Corrected:
429  switch (Result.getResultKind()) {
430  case LookupResult::NotFound:
431    // If an unqualified-id is followed by a '(', then we have a function
432    // call.
433    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
434      // In C++, this is an ADL-only call.
435      // FIXME: Reference?
436      if (getLangOptions().CPlusPlus)
437        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
438
439      // C90 6.3.2.2:
440      //   If the expression that precedes the parenthesized argument list in a
441      //   function call consists solely of an identifier, and if no
442      //   declaration is visible for this identifier, the identifier is
443      //   implicitly declared exactly as if, in the innermost block containing
444      //   the function call, the declaration
445      //
446      //     extern int identifier ();
447      //
448      //   appeared.
449      //
450      // We also allow this in C99 as an extension.
451      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
452        Result.addDecl(D);
453        Result.resolveKind();
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
455      }
456    }
457
458    // In C, we first see whether there is a tag type by the same name, in
459    // which case it's likely that the user just forget to write "enum",
460    // "struct", or "union".
461    if (!getLangOptions().CPlusPlus && !SecondTry) {
462      Result.clear(LookupTagName);
463      LookupParsedName(Result, S, &SS);
464      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
465        const char *TagName = 0;
466        const char *FixItTagName = 0;
467        switch (Tag->getTagKind()) {
468          case TTK_Class:
469            TagName = "class";
470            FixItTagName = "class ";
471            break;
472
473          case TTK_Enum:
474            TagName = "enum";
475            FixItTagName = "enum ";
476            break;
477
478          case TTK_Struct:
479            TagName = "struct";
480            FixItTagName = "struct ";
481            break;
482
483          case TTK_Union:
484            TagName = "union";
485            FixItTagName = "union ";
486            break;
487        }
488
489        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
490          << Name << TagName << getLangOptions().CPlusPlus
491          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
492        break;
493      }
494
495      Result.clear(LookupOrdinaryName);
496    }
497
498    // Perform typo correction to determine if there is another name that is
499    // close to this name.
500    if (!SecondTry) {
501      SecondTry = true;
502      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
503                                                 Result.getLookupKind(), S, &SS)) {
504        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
505        unsigned QualifiedDiag = diag::err_no_member_suggest;
506        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
507        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
508
509        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
510        NamedDecl *UnderlyingFirstDecl
511          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
512        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
513            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
514          UnqualifiedDiag = diag::err_no_template_suggest;
515          QualifiedDiag = diag::err_no_member_template_suggest;
516        } else if (UnderlyingFirstDecl &&
517                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
518                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
520           UnqualifiedDiag = diag::err_unknown_typename_suggest;
521           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
522         }
523
524        if (SS.isEmpty())
525          Diag(NameLoc, UnqualifiedDiag)
526            << Name << CorrectedQuotedStr
527            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
528        else
529          Diag(NameLoc, QualifiedDiag)
530            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
531            << SS.getRange()
532            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
533
534        // Update the name, so that the caller has the new name.
535        Name = Corrected.getCorrectionAsIdentifierInfo();
536
537        // Also update the LookupResult...
538        // FIXME: This should probably go away at some point
539        Result.clear();
540        Result.setLookupName(Corrected.getCorrection());
541        if (FirstDecl) Result.addDecl(FirstDecl);
542
543        // Typo correction corrected to a keyword.
544        if (Corrected.isKeyword())
545          return Corrected.getCorrectionAsIdentifierInfo();
546
547        if (FirstDecl)
548          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549            << CorrectedQuotedStr;
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  return DC->getLexicalParent();
724}
725
726void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
727  assert(getContainingDC(DC) == CurContext &&
728      "The next DeclContext should be lexically contained in the current one.");
729  CurContext = DC;
730  S->setEntity(DC);
731}
732
733void Sema::PopDeclContext() {
734  assert(CurContext && "DeclContext imbalance!");
735
736  CurContext = getContainingDC(CurContext);
737  assert(CurContext && "Popped translation unit!");
738}
739
740/// EnterDeclaratorContext - Used when we must lookup names in the context
741/// of a declarator's nested name specifier.
742///
743void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
744  // C++0x [basic.lookup.unqual]p13:
745  //   A name used in the definition of a static data member of class
746  //   X (after the qualified-id of the static member) is looked up as
747  //   if the name was used in a member function of X.
748  // C++0x [basic.lookup.unqual]p14:
749  //   If a variable member of a namespace is defined outside of the
750  //   scope of its namespace then any name used in the definition of
751  //   the variable member (after the declarator-id) is looked up as
752  //   if the definition of the variable member occurred in its
753  //   namespace.
754  // Both of these imply that we should push a scope whose context
755  // is the semantic context of the declaration.  We can't use
756  // PushDeclContext here because that context is not necessarily
757  // lexically contained in the current context.  Fortunately,
758  // the containing scope should have the appropriate information.
759
760  assert(!S->getEntity() && "scope already has entity");
761
762#ifndef NDEBUG
763  Scope *Ancestor = S->getParent();
764  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
765  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
766#endif
767
768  CurContext = DC;
769  S->setEntity(DC);
770}
771
772void Sema::ExitDeclaratorContext(Scope *S) {
773  assert(S->getEntity() == CurContext && "Context imbalance!");
774
775  // Switch back to the lexical context.  The safety of this is
776  // enforced by an assert in EnterDeclaratorContext.
777  Scope *Ancestor = S->getParent();
778  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
779  CurContext = (DeclContext*) Ancestor->getEntity();
780
781  // We don't need to do anything with the scope, which is going to
782  // disappear.
783}
784
785
786void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
787  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
788  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
789    // We assume that the caller has already called
790    // ActOnReenterTemplateScope
791    FD = TFD->getTemplatedDecl();
792  }
793  if (!FD)
794    return;
795
796  PushDeclContext(S, FD);
797  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
798    ParmVarDecl *Param = FD->getParamDecl(P);
799    // If the parameter has an identifier, then add it to the scope
800    if (Param->getIdentifier()) {
801      S->AddDecl(Param);
802      IdResolver.AddDecl(Param);
803    }
804  }
805}
806
807
808/// \brief Determine whether we allow overloading of the function
809/// PrevDecl with another declaration.
810///
811/// This routine determines whether overloading is possible, not
812/// whether some new function is actually an overload. It will return
813/// true in C++ (where we can always provide overloads) or, as an
814/// extension, in C when the previous function is already an
815/// overloaded function declaration or has the "overloadable"
816/// attribute.
817static bool AllowOverloadingOfFunction(LookupResult &Previous,
818                                       ASTContext &Context) {
819  if (Context.getLangOptions().CPlusPlus)
820    return true;
821
822  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
823    return true;
824
825  return (Previous.getResultKind() == LookupResult::Found
826          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
827}
828
829/// Add this decl to the scope shadowed decl chains.
830void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
831  // Move up the scope chain until we find the nearest enclosing
832  // non-transparent context. The declaration will be introduced into this
833  // scope.
834  while (S->getEntity() &&
835         ((DeclContext *)S->getEntity())->isTransparentContext())
836    S = S->getParent();
837
838  // Add scoped declarations into their context, so that they can be
839  // found later. Declarations without a context won't be inserted
840  // into any context.
841  if (AddToContext)
842    CurContext->addDecl(D);
843
844  // Out-of-line definitions shouldn't be pushed into scope in C++.
845  // Out-of-line variable and function definitions shouldn't even in C.
846  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
847      D->isOutOfLine())
848    return;
849
850  // Template instantiations should also not be pushed into scope.
851  if (isa<FunctionDecl>(D) &&
852      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
853    return;
854
855  // If this replaces anything in the current scope,
856  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
857                               IEnd = IdResolver.end();
858  for (; I != IEnd; ++I) {
859    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
860      S->RemoveDecl(*I);
861      IdResolver.RemoveDecl(*I);
862
863      // Should only need to replace one decl.
864      break;
865    }
866  }
867
868  S->AddDecl(D);
869
870  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
871    // Implicitly-generated labels may end up getting generated in an order that
872    // isn't strictly lexical, which breaks name lookup. Be careful to insert
873    // the label at the appropriate place in the identifier chain.
874    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
875      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
876      if (IDC == CurContext) {
877        if (!S->isDeclScope(*I))
878          continue;
879      } else if (IDC->Encloses(CurContext))
880        break;
881    }
882
883    IdResolver.InsertDeclAfter(I, D);
884  } else {
885    IdResolver.AddDecl(D);
886  }
887}
888
889bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
890                         bool ExplicitInstantiationOrSpecialization) {
891  return IdResolver.isDeclInScope(D, Ctx, Context, S,
892                                  ExplicitInstantiationOrSpecialization);
893}
894
895Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
896  DeclContext *TargetDC = DC->getPrimaryContext();
897  do {
898    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
899      if (ScopeDC->getPrimaryContext() == TargetDC)
900        return S;
901  } while ((S = S->getParent()));
902
903  return 0;
904}
905
906static bool isOutOfScopePreviousDeclaration(NamedDecl *,
907                                            DeclContext*,
908                                            ASTContext&);
909
910/// Filters out lookup results that don't fall within the given scope
911/// as determined by isDeclInScope.
912void Sema::FilterLookupForScope(LookupResult &R,
913                                DeclContext *Ctx, Scope *S,
914                                bool ConsiderLinkage,
915                                bool ExplicitInstantiationOrSpecialization) {
916  LookupResult::Filter F = R.makeFilter();
917  while (F.hasNext()) {
918    NamedDecl *D = F.next();
919
920    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
921      continue;
922
923    if (ConsiderLinkage &&
924        isOutOfScopePreviousDeclaration(D, Ctx, Context))
925      continue;
926
927    F.erase();
928  }
929
930  F.done();
931}
932
933static bool isUsingDecl(NamedDecl *D) {
934  return isa<UsingShadowDecl>(D) ||
935         isa<UnresolvedUsingTypenameDecl>(D) ||
936         isa<UnresolvedUsingValueDecl>(D);
937}
938
939/// Removes using shadow declarations from the lookup results.
940static void RemoveUsingDecls(LookupResult &R) {
941  LookupResult::Filter F = R.makeFilter();
942  while (F.hasNext())
943    if (isUsingDecl(F.next()))
944      F.erase();
945
946  F.done();
947}
948
949/// \brief Check for this common pattern:
950/// @code
951/// class S {
952///   S(const S&); // DO NOT IMPLEMENT
953///   void operator=(const S&); // DO NOT IMPLEMENT
954/// };
955/// @endcode
956static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
957  // FIXME: Should check for private access too but access is set after we get
958  // the decl here.
959  if (D->doesThisDeclarationHaveABody())
960    return false;
961
962  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
963    return CD->isCopyConstructor();
964  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
965    return Method->isCopyAssignmentOperator();
966  return false;
967}
968
969bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
970  assert(D);
971
972  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
973    return false;
974
975  // Ignore class templates.
976  if (D->getDeclContext()->isDependentContext() ||
977      D->getLexicalDeclContext()->isDependentContext())
978    return false;
979
980  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
981    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
982      return false;
983
984    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
985      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
986        return false;
987    } else {
988      // 'static inline' functions are used in headers; don't warn.
989      if (FD->getStorageClass() == SC_Static &&
990          FD->isInlineSpecified())
991        return false;
992    }
993
994    if (FD->doesThisDeclarationHaveABody() &&
995        Context.DeclMustBeEmitted(FD))
996      return false;
997  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
998    if (!VD->isFileVarDecl() ||
999        VD->getType().isConstant(Context) ||
1000        Context.DeclMustBeEmitted(VD))
1001      return false;
1002
1003    if (VD->isStaticDataMember() &&
1004        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1005      return false;
1006
1007  } else {
1008    return false;
1009  }
1010
1011  // Only warn for unused decls internal to the translation unit.
1012  if (D->getLinkage() == ExternalLinkage)
1013    return false;
1014
1015  return true;
1016}
1017
1018void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1019  if (!D)
1020    return;
1021
1022  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1023    const FunctionDecl *First = FD->getFirstDeclaration();
1024    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1025      return; // First should already be in the vector.
1026  }
1027
1028  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1029    const VarDecl *First = VD->getFirstDeclaration();
1030    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1031      return; // First should already be in the vector.
1032  }
1033
1034   if (ShouldWarnIfUnusedFileScopedDecl(D))
1035     UnusedFileScopedDecls.push_back(D);
1036 }
1037
1038static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1039  if (D->isInvalidDecl())
1040    return false;
1041
1042  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1043    return false;
1044
1045  if (isa<LabelDecl>(D))
1046    return true;
1047
1048  // White-list anything that isn't a local variable.
1049  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1050      !D->getDeclContext()->isFunctionOrMethod())
1051    return false;
1052
1053  // Types of valid local variables should be complete, so this should succeed.
1054  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1055
1056    // White-list anything with an __attribute__((unused)) type.
1057    QualType Ty = VD->getType();
1058
1059    // Only look at the outermost level of typedef.
1060    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1061      if (TT->getDecl()->hasAttr<UnusedAttr>())
1062        return false;
1063    }
1064
1065    // If we failed to complete the type for some reason, or if the type is
1066    // dependent, don't diagnose the variable.
1067    if (Ty->isIncompleteType() || Ty->isDependentType())
1068      return false;
1069
1070    if (const TagType *TT = Ty->getAs<TagType>()) {
1071      const TagDecl *Tag = TT->getDecl();
1072      if (Tag->hasAttr<UnusedAttr>())
1073        return false;
1074
1075      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1076        // FIXME: Checking for the presence of a user-declared constructor
1077        // isn't completely accurate; we'd prefer to check that the initializer
1078        // has no side effects.
1079        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1080          return false;
1081      }
1082    }
1083
1084    // TODO: __attribute__((unused)) templates?
1085  }
1086
1087  return true;
1088}
1089
1090static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1091                                     FixItHint &Hint) {
1092  if (isa<LabelDecl>(D)) {
1093    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1094                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1095    if (AfterColon.isInvalid())
1096      return;
1097    Hint = FixItHint::CreateRemoval(CharSourceRange::
1098                                    getCharRange(D->getLocStart(), AfterColon));
1099  }
1100  return;
1101}
1102
1103/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1104/// unless they are marked attr(unused).
1105void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1106  FixItHint Hint;
1107  if (!ShouldDiagnoseUnusedDecl(D))
1108    return;
1109
1110  GenerateFixForUnusedDecl(D, Context, Hint);
1111
1112  unsigned DiagID;
1113  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1114    DiagID = diag::warn_unused_exception_param;
1115  else if (isa<LabelDecl>(D))
1116    DiagID = diag::warn_unused_label;
1117  else
1118    DiagID = diag::warn_unused_variable;
1119
1120  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1121}
1122
1123static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1124  // Verify that we have no forward references left.  If so, there was a goto
1125  // or address of a label taken, but no definition of it.  Label fwd
1126  // definitions are indicated with a null substmt.
1127  if (L->getStmt() == 0)
1128    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1129}
1130
1131void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1132  if (S->decl_empty()) return;
1133  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1134         "Scope shouldn't contain decls!");
1135
1136  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1137       I != E; ++I) {
1138    Decl *TmpD = (*I);
1139    assert(TmpD && "This decl didn't get pushed??");
1140
1141    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1142    NamedDecl *D = cast<NamedDecl>(TmpD);
1143
1144    if (!D->getDeclName()) continue;
1145
1146    // Diagnose unused variables in this scope.
1147    if (!S->hasErrorOccurred())
1148      DiagnoseUnusedDecl(D);
1149
1150    // If this was a forward reference to a label, verify it was defined.
1151    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1152      CheckPoppedLabel(LD, *this);
1153
1154    // Remove this name from our lexical scope.
1155    IdResolver.RemoveDecl(D);
1156  }
1157}
1158
1159/// \brief Look for an Objective-C class in the translation unit.
1160///
1161/// \param Id The name of the Objective-C class we're looking for. If
1162/// typo-correction fixes this name, the Id will be updated
1163/// to the fixed name.
1164///
1165/// \param IdLoc The location of the name in the translation unit.
1166///
1167/// \param TypoCorrection If true, this routine will attempt typo correction
1168/// if there is no class with the given name.
1169///
1170/// \returns The declaration of the named Objective-C class, or NULL if the
1171/// class could not be found.
1172ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1173                                              SourceLocation IdLoc,
1174                                              bool DoTypoCorrection) {
1175  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1176  // creation from this context.
1177  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1178
1179  if (!IDecl && DoTypoCorrection) {
1180    // Perform typo correction at the given location, but only if we
1181    // find an Objective-C class name.
1182    TypoCorrection C;
1183    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1184                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1185        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1186      Diag(IdLoc, diag::err_undef_interface_suggest)
1187        << Id << IDecl->getDeclName()
1188        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1189      Diag(IDecl->getLocation(), diag::note_previous_decl)
1190        << IDecl->getDeclName();
1191
1192      Id = IDecl->getIdentifier();
1193    }
1194  }
1195
1196  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1197}
1198
1199/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1200/// from S, where a non-field would be declared. This routine copes
1201/// with the difference between C and C++ scoping rules in structs and
1202/// unions. For example, the following code is well-formed in C but
1203/// ill-formed in C++:
1204/// @code
1205/// struct S6 {
1206///   enum { BAR } e;
1207/// };
1208///
1209/// void test_S6() {
1210///   struct S6 a;
1211///   a.e = BAR;
1212/// }
1213/// @endcode
1214/// For the declaration of BAR, this routine will return a different
1215/// scope. The scope S will be the scope of the unnamed enumeration
1216/// within S6. In C++, this routine will return the scope associated
1217/// with S6, because the enumeration's scope is a transparent
1218/// context but structures can contain non-field names. In C, this
1219/// routine will return the translation unit scope, since the
1220/// enumeration's scope is a transparent context and structures cannot
1221/// contain non-field names.
1222Scope *Sema::getNonFieldDeclScope(Scope *S) {
1223  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1224         (S->getEntity() &&
1225          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1226         (S->isClassScope() && !getLangOptions().CPlusPlus))
1227    S = S->getParent();
1228  return S;
1229}
1230
1231/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1232/// file scope.  lazily create a decl for it. ForRedeclaration is true
1233/// if we're creating this built-in in anticipation of redeclaring the
1234/// built-in.
1235NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1236                                     Scope *S, bool ForRedeclaration,
1237                                     SourceLocation Loc) {
1238  Builtin::ID BID = (Builtin::ID)bid;
1239
1240  ASTContext::GetBuiltinTypeError Error;
1241  QualType R = Context.GetBuiltinType(BID, Error);
1242  switch (Error) {
1243  case ASTContext::GE_None:
1244    // Okay
1245    break;
1246
1247  case ASTContext::GE_Missing_stdio:
1248    if (ForRedeclaration)
1249      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1250        << Context.BuiltinInfo.GetName(BID);
1251    return 0;
1252
1253  case ASTContext::GE_Missing_setjmp:
1254    if (ForRedeclaration)
1255      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1256        << Context.BuiltinInfo.GetName(BID);
1257    return 0;
1258  }
1259
1260  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1261    Diag(Loc, diag::ext_implicit_lib_function_decl)
1262      << Context.BuiltinInfo.GetName(BID)
1263      << R;
1264    if (Context.BuiltinInfo.getHeaderName(BID) &&
1265        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1266          != Diagnostic::Ignored)
1267      Diag(Loc, diag::note_please_include_header)
1268        << Context.BuiltinInfo.getHeaderName(BID)
1269        << Context.BuiltinInfo.GetName(BID);
1270  }
1271
1272  FunctionDecl *New = FunctionDecl::Create(Context,
1273                                           Context.getTranslationUnitDecl(),
1274                                           Loc, Loc, II, R, /*TInfo=*/0,
1275                                           SC_Extern,
1276                                           SC_None, false,
1277                                           /*hasPrototype=*/true);
1278  New->setImplicit();
1279
1280  // Create Decl objects for each parameter, adding them to the
1281  // FunctionDecl.
1282  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1283    SmallVector<ParmVarDecl*, 16> Params;
1284    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1285      ParmVarDecl *parm =
1286        ParmVarDecl::Create(Context, New, SourceLocation(),
1287                            SourceLocation(), 0,
1288                            FT->getArgType(i), /*TInfo=*/0,
1289                            SC_None, SC_None, 0);
1290      parm->setScopeInfo(0, i);
1291      Params.push_back(parm);
1292    }
1293    New->setParams(Params.data(), Params.size());
1294  }
1295
1296  AddKnownFunctionAttributes(New);
1297
1298  // TUScope is the translation-unit scope to insert this function into.
1299  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1300  // relate Scopes to DeclContexts, and probably eliminate CurContext
1301  // entirely, but we're not there yet.
1302  DeclContext *SavedContext = CurContext;
1303  CurContext = Context.getTranslationUnitDecl();
1304  PushOnScopeChains(New, TUScope);
1305  CurContext = SavedContext;
1306  return New;
1307}
1308
1309/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1310/// same name and scope as a previous declaration 'Old'.  Figure out
1311/// how to resolve this situation, merging decls or emitting
1312/// diagnostics as appropriate. If there was an error, set New to be invalid.
1313///
1314void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1315  // If the new decl is known invalid already, don't bother doing any
1316  // merging checks.
1317  if (New->isInvalidDecl()) return;
1318
1319  // Allow multiple definitions for ObjC built-in typedefs.
1320  // FIXME: Verify the underlying types are equivalent!
1321  if (getLangOptions().ObjC1) {
1322    const IdentifierInfo *TypeID = New->getIdentifier();
1323    switch (TypeID->getLength()) {
1324    default: break;
1325    case 2:
1326      if (!TypeID->isStr("id"))
1327        break;
1328      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1329      // Install the built-in type for 'id', ignoring the current definition.
1330      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1331      return;
1332    case 5:
1333      if (!TypeID->isStr("Class"))
1334        break;
1335      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1336      // Install the built-in type for 'Class', ignoring the current definition.
1337      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1338      return;
1339    case 3:
1340      if (!TypeID->isStr("SEL"))
1341        break;
1342      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1343      // Install the built-in type for 'SEL', ignoring the current definition.
1344      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1345      return;
1346    }
1347    // Fall through - the typedef name was not a builtin type.
1348  }
1349
1350  // Verify the old decl was also a type.
1351  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1352  if (!Old) {
1353    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1354      << New->getDeclName();
1355
1356    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1357    if (OldD->getLocation().isValid())
1358      Diag(OldD->getLocation(), diag::note_previous_definition);
1359
1360    return New->setInvalidDecl();
1361  }
1362
1363  // If the old declaration is invalid, just give up here.
1364  if (Old->isInvalidDecl())
1365    return New->setInvalidDecl();
1366
1367  // Determine the "old" type we'll use for checking and diagnostics.
1368  QualType OldType;
1369  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1370    OldType = OldTypedef->getUnderlyingType();
1371  else
1372    OldType = Context.getTypeDeclType(Old);
1373
1374  // If the typedef types are not identical, reject them in all languages and
1375  // with any extensions enabled.
1376
1377  if (OldType != New->getUnderlyingType() &&
1378      Context.getCanonicalType(OldType) !=
1379      Context.getCanonicalType(New->getUnderlyingType())) {
1380    int Kind = 0;
1381    if (isa<TypeAliasDecl>(Old))
1382      Kind = 1;
1383    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1384      << Kind << New->getUnderlyingType() << OldType;
1385    if (Old->getLocation().isValid())
1386      Diag(Old->getLocation(), diag::note_previous_definition);
1387    return New->setInvalidDecl();
1388  }
1389
1390  // The types match.  Link up the redeclaration chain if the old
1391  // declaration was a typedef.
1392  // FIXME: this is a potential source of weirdness if the type
1393  // spellings don't match exactly.
1394  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1395    New->setPreviousDeclaration(Typedef);
1396
1397  // __module_private__ is propagated to later declarations.
1398  if (Old->isModulePrivate())
1399    New->setModulePrivate();
1400  else if (New->isModulePrivate())
1401    diagnoseModulePrivateRedeclaration(New, Old);
1402
1403  if (getLangOptions().Microsoft)
1404    return;
1405
1406  if (getLangOptions().CPlusPlus) {
1407    // C++ [dcl.typedef]p2:
1408    //   In a given non-class scope, a typedef specifier can be used to
1409    //   redefine the name of any type declared in that scope to refer
1410    //   to the type to which it already refers.
1411    if (!isa<CXXRecordDecl>(CurContext))
1412      return;
1413
1414    // C++0x [dcl.typedef]p4:
1415    //   In a given class scope, a typedef specifier can be used to redefine
1416    //   any class-name declared in that scope that is not also a typedef-name
1417    //   to refer to the type to which it already refers.
1418    //
1419    // This wording came in via DR424, which was a correction to the
1420    // wording in DR56, which accidentally banned code like:
1421    //
1422    //   struct S {
1423    //     typedef struct A { } A;
1424    //   };
1425    //
1426    // in the C++03 standard. We implement the C++0x semantics, which
1427    // allow the above but disallow
1428    //
1429    //   struct S {
1430    //     typedef int I;
1431    //     typedef int I;
1432    //   };
1433    //
1434    // since that was the intent of DR56.
1435    if (!isa<TypedefNameDecl>(Old))
1436      return;
1437
1438    Diag(New->getLocation(), diag::err_redefinition)
1439      << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441    return New->setInvalidDecl();
1442  }
1443
1444  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1445  // is normally mapped to an error, but can be controlled with
1446  // -Wtypedef-redefinition.  If either the original or the redefinition is
1447  // in a system header, don't emit this for compatibility with GCC.
1448  if (getDiagnostics().getSuppressSystemWarnings() &&
1449      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1450       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1451    return;
1452
1453  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1454    << New->getDeclName();
1455  Diag(Old->getLocation(), diag::note_previous_definition);
1456  return;
1457}
1458
1459/// DeclhasAttr - returns true if decl Declaration already has the target
1460/// attribute.
1461static bool
1462DeclHasAttr(const Decl *D, const Attr *A) {
1463  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1464  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1465  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1466    if ((*i)->getKind() == A->getKind()) {
1467      if (Ann) {
1468        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1469          return true;
1470        continue;
1471      }
1472      // FIXME: Don't hardcode this check
1473      if (OA && isa<OwnershipAttr>(*i))
1474        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1475      return true;
1476    }
1477
1478  return false;
1479}
1480
1481/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1482static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1483                                ASTContext &C, bool mergeDeprecation = true) {
1484  if (!oldDecl->hasAttrs())
1485    return;
1486
1487  bool foundAny = newDecl->hasAttrs();
1488
1489  // Ensure that any moving of objects within the allocated map is done before
1490  // we process them.
1491  if (!foundAny) newDecl->setAttrs(AttrVec());
1492
1493  for (specific_attr_iterator<InheritableAttr>
1494       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1495       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1496    // Ignore deprecated and unavailable attributes if requested.
1497    if (!mergeDeprecation &&
1498        (isa<DeprecatedAttr>(*i) || isa<UnavailableAttr>(*i)))
1499      continue;
1500
1501    if (!DeclHasAttr(newDecl, *i)) {
1502      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1503      newAttr->setInherited(true);
1504      newDecl->addAttr(newAttr);
1505      foundAny = true;
1506    }
1507  }
1508
1509  if (!foundAny) newDecl->dropAttrs();
1510}
1511
1512/// mergeParamDeclAttributes - Copy attributes from the old parameter
1513/// to the new one.
1514static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1515                                     const ParmVarDecl *oldDecl,
1516                                     ASTContext &C) {
1517  if (!oldDecl->hasAttrs())
1518    return;
1519
1520  bool foundAny = newDecl->hasAttrs();
1521
1522  // Ensure that any moving of objects within the allocated map is
1523  // done before we process them.
1524  if (!foundAny) newDecl->setAttrs(AttrVec());
1525
1526  for (specific_attr_iterator<InheritableParamAttr>
1527       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1528       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1529    if (!DeclHasAttr(newDecl, *i)) {
1530      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1531      newAttr->setInherited(true);
1532      newDecl->addAttr(newAttr);
1533      foundAny = true;
1534    }
1535  }
1536
1537  if (!foundAny) newDecl->dropAttrs();
1538}
1539
1540namespace {
1541
1542/// Used in MergeFunctionDecl to keep track of function parameters in
1543/// C.
1544struct GNUCompatibleParamWarning {
1545  ParmVarDecl *OldParm;
1546  ParmVarDecl *NewParm;
1547  QualType PromotedType;
1548};
1549
1550}
1551
1552/// getSpecialMember - get the special member enum for a method.
1553Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1554  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1555    if (Ctor->isDefaultConstructor())
1556      return Sema::CXXDefaultConstructor;
1557
1558    if (Ctor->isCopyConstructor())
1559      return Sema::CXXCopyConstructor;
1560
1561    if (Ctor->isMoveConstructor())
1562      return Sema::CXXMoveConstructor;
1563  } else if (isa<CXXDestructorDecl>(MD)) {
1564    return Sema::CXXDestructor;
1565  } else if (MD->isCopyAssignmentOperator()) {
1566    return Sema::CXXCopyAssignment;
1567  } else if (MD->isMoveAssignmentOperator()) {
1568    return Sema::CXXMoveAssignment;
1569  }
1570
1571  return Sema::CXXInvalid;
1572}
1573
1574/// canRedefineFunction - checks if a function can be redefined. Currently,
1575/// only extern inline functions can be redefined, and even then only in
1576/// GNU89 mode.
1577static bool canRedefineFunction(const FunctionDecl *FD,
1578                                const LangOptions& LangOpts) {
1579  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1580          !LangOpts.CPlusPlus &&
1581          FD->isInlineSpecified() &&
1582          FD->getStorageClass() == SC_Extern);
1583}
1584
1585/// MergeFunctionDecl - We just parsed a function 'New' from
1586/// declarator D which has the same name and scope as a previous
1587/// declaration 'Old'.  Figure out how to resolve this situation,
1588/// merging decls or emitting diagnostics as appropriate.
1589///
1590/// In C++, New and Old must be declarations that are not
1591/// overloaded. Use IsOverload to determine whether New and Old are
1592/// overloaded, and to select the Old declaration that New should be
1593/// merged with.
1594///
1595/// Returns true if there was an error, false otherwise.
1596bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1597  // Verify the old decl was also a function.
1598  FunctionDecl *Old = 0;
1599  if (FunctionTemplateDecl *OldFunctionTemplate
1600        = dyn_cast<FunctionTemplateDecl>(OldD))
1601    Old = OldFunctionTemplate->getTemplatedDecl();
1602  else
1603    Old = dyn_cast<FunctionDecl>(OldD);
1604  if (!Old) {
1605    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1606      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1607      Diag(Shadow->getTargetDecl()->getLocation(),
1608           diag::note_using_decl_target);
1609      Diag(Shadow->getUsingDecl()->getLocation(),
1610           diag::note_using_decl) << 0;
1611      return true;
1612    }
1613
1614    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1615      << New->getDeclName();
1616    Diag(OldD->getLocation(), diag::note_previous_definition);
1617    return true;
1618  }
1619
1620  // Determine whether the previous declaration was a definition,
1621  // implicit declaration, or a declaration.
1622  diag::kind PrevDiag;
1623  if (Old->isThisDeclarationADefinition())
1624    PrevDiag = diag::note_previous_definition;
1625  else if (Old->isImplicit())
1626    PrevDiag = diag::note_previous_implicit_declaration;
1627  else
1628    PrevDiag = diag::note_previous_declaration;
1629
1630  QualType OldQType = Context.getCanonicalType(Old->getType());
1631  QualType NewQType = Context.getCanonicalType(New->getType());
1632
1633  // Don't complain about this if we're in GNU89 mode and the old function
1634  // is an extern inline function.
1635  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1636      New->getStorageClass() == SC_Static &&
1637      Old->getStorageClass() != SC_Static &&
1638      !canRedefineFunction(Old, getLangOptions())) {
1639    if (getLangOptions().Microsoft) {
1640      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1641      Diag(Old->getLocation(), PrevDiag);
1642    } else {
1643      Diag(New->getLocation(), diag::err_static_non_static) << New;
1644      Diag(Old->getLocation(), PrevDiag);
1645      return true;
1646    }
1647  }
1648
1649  // If a function is first declared with a calling convention, but is
1650  // later declared or defined without one, the second decl assumes the
1651  // calling convention of the first.
1652  //
1653  // For the new decl, we have to look at the NON-canonical type to tell the
1654  // difference between a function that really doesn't have a calling
1655  // convention and one that is declared cdecl. That's because in
1656  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1657  // because it is the default calling convention.
1658  //
1659  // Note also that we DO NOT return at this point, because we still have
1660  // other tests to run.
1661  const FunctionType *OldType = cast<FunctionType>(OldQType);
1662  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1663  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1664  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1665  bool RequiresAdjustment = false;
1666  if (OldTypeInfo.getCC() != CC_Default &&
1667      NewTypeInfo.getCC() == CC_Default) {
1668    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1669    RequiresAdjustment = true;
1670  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1671                                     NewTypeInfo.getCC())) {
1672    // Calling conventions really aren't compatible, so complain.
1673    Diag(New->getLocation(), diag::err_cconv_change)
1674      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1675      << (OldTypeInfo.getCC() == CC_Default)
1676      << (OldTypeInfo.getCC() == CC_Default ? "" :
1677          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1678    Diag(Old->getLocation(), diag::note_previous_declaration);
1679    return true;
1680  }
1681
1682  // FIXME: diagnose the other way around?
1683  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1684    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1685    RequiresAdjustment = true;
1686  }
1687
1688  // Merge regparm attribute.
1689  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1690      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1691    if (NewTypeInfo.getHasRegParm()) {
1692      Diag(New->getLocation(), diag::err_regparm_mismatch)
1693        << NewType->getRegParmType()
1694        << OldType->getRegParmType();
1695      Diag(Old->getLocation(), diag::note_previous_declaration);
1696      return true;
1697    }
1698
1699    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1700    RequiresAdjustment = true;
1701  }
1702
1703  if (RequiresAdjustment) {
1704    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1705    New->setType(QualType(NewType, 0));
1706    NewQType = Context.getCanonicalType(New->getType());
1707  }
1708
1709  if (getLangOptions().CPlusPlus) {
1710    // (C++98 13.1p2):
1711    //   Certain function declarations cannot be overloaded:
1712    //     -- Function declarations that differ only in the return type
1713    //        cannot be overloaded.
1714    QualType OldReturnType = OldType->getResultType();
1715    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1716    QualType ResQT;
1717    if (OldReturnType != NewReturnType) {
1718      if (NewReturnType->isObjCObjectPointerType()
1719          && OldReturnType->isObjCObjectPointerType())
1720        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1721      if (ResQT.isNull()) {
1722        if (New->isCXXClassMember() && New->isOutOfLine())
1723          Diag(New->getLocation(),
1724               diag::err_member_def_does_not_match_ret_type) << New;
1725        else
1726          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1727        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1728        return true;
1729      }
1730      else
1731        NewQType = ResQT;
1732    }
1733
1734    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1735    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1736    if (OldMethod && NewMethod) {
1737      // Preserve triviality.
1738      NewMethod->setTrivial(OldMethod->isTrivial());
1739
1740      // MSVC allows explicit template specialization at class scope:
1741      // 2 CXMethodDecls referring to the same function will be injected.
1742      // We don't want a redeclartion error.
1743      bool IsClassScopeExplicitSpecialization =
1744                              OldMethod->isFunctionTemplateSpecialization() &&
1745                              NewMethod->isFunctionTemplateSpecialization();
1746      bool isFriend = NewMethod->getFriendObjectKind();
1747
1748      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1749          !IsClassScopeExplicitSpecialization) {
1750        //    -- Member function declarations with the same name and the
1751        //       same parameter types cannot be overloaded if any of them
1752        //       is a static member function declaration.
1753        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1754          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1755          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1756          return true;
1757        }
1758
1759        // C++ [class.mem]p1:
1760        //   [...] A member shall not be declared twice in the
1761        //   member-specification, except that a nested class or member
1762        //   class template can be declared and then later defined.
1763        unsigned NewDiag;
1764        if (isa<CXXConstructorDecl>(OldMethod))
1765          NewDiag = diag::err_constructor_redeclared;
1766        else if (isa<CXXDestructorDecl>(NewMethod))
1767          NewDiag = diag::err_destructor_redeclared;
1768        else if (isa<CXXConversionDecl>(NewMethod))
1769          NewDiag = diag::err_conv_function_redeclared;
1770        else
1771          NewDiag = diag::err_member_redeclared;
1772
1773        Diag(New->getLocation(), NewDiag);
1774        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1775
1776      // Complain if this is an explicit declaration of a special
1777      // member that was initially declared implicitly.
1778      //
1779      // As an exception, it's okay to befriend such methods in order
1780      // to permit the implicit constructor/destructor/operator calls.
1781      } else if (OldMethod->isImplicit()) {
1782        if (isFriend) {
1783          NewMethod->setImplicit();
1784        } else {
1785          Diag(NewMethod->getLocation(),
1786               diag::err_definition_of_implicitly_declared_member)
1787            << New << getSpecialMember(OldMethod);
1788          return true;
1789        }
1790      } else if (OldMethod->isExplicitlyDefaulted()) {
1791        Diag(NewMethod->getLocation(),
1792             diag::err_definition_of_explicitly_defaulted_member)
1793          << getSpecialMember(OldMethod);
1794        return true;
1795      }
1796    }
1797
1798    // (C++98 8.3.5p3):
1799    //   All declarations for a function shall agree exactly in both the
1800    //   return type and the parameter-type-list.
1801    // We also want to respect all the extended bits except noreturn.
1802
1803    // noreturn should now match unless the old type info didn't have it.
1804    QualType OldQTypeForComparison = OldQType;
1805    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1806      assert(OldQType == QualType(OldType, 0));
1807      const FunctionType *OldTypeForComparison
1808        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1809      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1810      assert(OldQTypeForComparison.isCanonical());
1811    }
1812
1813    if (OldQTypeForComparison == NewQType)
1814      return MergeCompatibleFunctionDecls(New, Old);
1815
1816    // Fall through for conflicting redeclarations and redefinitions.
1817  }
1818
1819  // C: Function types need to be compatible, not identical. This handles
1820  // duplicate function decls like "void f(int); void f(enum X);" properly.
1821  if (!getLangOptions().CPlusPlus &&
1822      Context.typesAreCompatible(OldQType, NewQType)) {
1823    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1824    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1825    const FunctionProtoType *OldProto = 0;
1826    if (isa<FunctionNoProtoType>(NewFuncType) &&
1827        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1828      // The old declaration provided a function prototype, but the
1829      // new declaration does not. Merge in the prototype.
1830      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1831      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1832                                                 OldProto->arg_type_end());
1833      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1834                                         ParamTypes.data(), ParamTypes.size(),
1835                                         OldProto->getExtProtoInfo());
1836      New->setType(NewQType);
1837      New->setHasInheritedPrototype();
1838
1839      // Synthesize a parameter for each argument type.
1840      SmallVector<ParmVarDecl*, 16> Params;
1841      for (FunctionProtoType::arg_type_iterator
1842             ParamType = OldProto->arg_type_begin(),
1843             ParamEnd = OldProto->arg_type_end();
1844           ParamType != ParamEnd; ++ParamType) {
1845        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1846                                                 SourceLocation(),
1847                                                 SourceLocation(), 0,
1848                                                 *ParamType, /*TInfo=*/0,
1849                                                 SC_None, SC_None,
1850                                                 0);
1851        Param->setScopeInfo(0, Params.size());
1852        Param->setImplicit();
1853        Params.push_back(Param);
1854      }
1855
1856      New->setParams(Params.data(), Params.size());
1857    }
1858
1859    return MergeCompatibleFunctionDecls(New, Old);
1860  }
1861
1862  // GNU C permits a K&R definition to follow a prototype declaration
1863  // if the declared types of the parameters in the K&R definition
1864  // match the types in the prototype declaration, even when the
1865  // promoted types of the parameters from the K&R definition differ
1866  // from the types in the prototype. GCC then keeps the types from
1867  // the prototype.
1868  //
1869  // If a variadic prototype is followed by a non-variadic K&R definition,
1870  // the K&R definition becomes variadic.  This is sort of an edge case, but
1871  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1872  // C99 6.9.1p8.
1873  if (!getLangOptions().CPlusPlus &&
1874      Old->hasPrototype() && !New->hasPrototype() &&
1875      New->getType()->getAs<FunctionProtoType>() &&
1876      Old->getNumParams() == New->getNumParams()) {
1877    SmallVector<QualType, 16> ArgTypes;
1878    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1879    const FunctionProtoType *OldProto
1880      = Old->getType()->getAs<FunctionProtoType>();
1881    const FunctionProtoType *NewProto
1882      = New->getType()->getAs<FunctionProtoType>();
1883
1884    // Determine whether this is the GNU C extension.
1885    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1886                                               NewProto->getResultType());
1887    bool LooseCompatible = !MergedReturn.isNull();
1888    for (unsigned Idx = 0, End = Old->getNumParams();
1889         LooseCompatible && Idx != End; ++Idx) {
1890      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1891      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1892      if (Context.typesAreCompatible(OldParm->getType(),
1893                                     NewProto->getArgType(Idx))) {
1894        ArgTypes.push_back(NewParm->getType());
1895      } else if (Context.typesAreCompatible(OldParm->getType(),
1896                                            NewParm->getType(),
1897                                            /*CompareUnqualified=*/true)) {
1898        GNUCompatibleParamWarning Warn
1899          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1900        Warnings.push_back(Warn);
1901        ArgTypes.push_back(NewParm->getType());
1902      } else
1903        LooseCompatible = false;
1904    }
1905
1906    if (LooseCompatible) {
1907      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1908        Diag(Warnings[Warn].NewParm->getLocation(),
1909             diag::ext_param_promoted_not_compatible_with_prototype)
1910          << Warnings[Warn].PromotedType
1911          << Warnings[Warn].OldParm->getType();
1912        if (Warnings[Warn].OldParm->getLocation().isValid())
1913          Diag(Warnings[Warn].OldParm->getLocation(),
1914               diag::note_previous_declaration);
1915      }
1916
1917      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1918                                           ArgTypes.size(),
1919                                           OldProto->getExtProtoInfo()));
1920      return MergeCompatibleFunctionDecls(New, Old);
1921    }
1922
1923    // Fall through to diagnose conflicting types.
1924  }
1925
1926  // A function that has already been declared has been redeclared or defined
1927  // with a different type- show appropriate diagnostic
1928  if (unsigned BuiltinID = Old->getBuiltinID()) {
1929    // The user has declared a builtin function with an incompatible
1930    // signature.
1931    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1932      // The function the user is redeclaring is a library-defined
1933      // function like 'malloc' or 'printf'. Warn about the
1934      // redeclaration, then pretend that we don't know about this
1935      // library built-in.
1936      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1937      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1938        << Old << Old->getType();
1939      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1940      Old->setInvalidDecl();
1941      return false;
1942    }
1943
1944    PrevDiag = diag::note_previous_builtin_declaration;
1945  }
1946
1947  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1948  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1949  return true;
1950}
1951
1952/// \brief Completes the merge of two function declarations that are
1953/// known to be compatible.
1954///
1955/// This routine handles the merging of attributes and other
1956/// properties of function declarations form the old declaration to
1957/// the new declaration, once we know that New is in fact a
1958/// redeclaration of Old.
1959///
1960/// \returns false
1961bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1962  // Merge the attributes
1963  mergeDeclAttributes(New, Old, Context);
1964
1965  // Merge the storage class.
1966  if (Old->getStorageClass() != SC_Extern &&
1967      Old->getStorageClass() != SC_None)
1968    New->setStorageClass(Old->getStorageClass());
1969
1970  // Merge "pure" flag.
1971  if (Old->isPure())
1972    New->setPure();
1973
1974  // __module_private__ is propagated to later declarations.
1975  if (Old->isModulePrivate())
1976    New->setModulePrivate();
1977  else if (New->isModulePrivate())
1978    diagnoseModulePrivateRedeclaration(New, Old);
1979
1980  // Merge attributes from the parameters.  These can mismatch with K&R
1981  // declarations.
1982  if (New->getNumParams() == Old->getNumParams())
1983    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1984      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1985                               Context);
1986
1987  if (getLangOptions().CPlusPlus)
1988    return MergeCXXFunctionDecl(New, Old);
1989
1990  return false;
1991}
1992
1993
1994void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1995                                const ObjCMethodDecl *oldMethod) {
1996  // We don't want to merge unavailable and deprecated attributes
1997  // except from interface to implementation.
1998  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
1999
2000  // Merge the attributes.
2001  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2002
2003  // Merge attributes from the parameters.
2004  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
2005         ni = newMethod->param_begin(), ne = newMethod->param_end();
2006       ni != ne; ++ni, ++oi)
2007    mergeParamDeclAttributes(*ni, *oi, Context);
2008
2009  CheckObjCMethodOverride(newMethod, oldMethod, true);
2010}
2011
2012/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2013/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2014/// emitting diagnostics as appropriate.
2015///
2016/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2017/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2018/// check them before the initializer is attached.
2019///
2020void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2021  if (New->isInvalidDecl() || Old->isInvalidDecl())
2022    return;
2023
2024  QualType MergedT;
2025  if (getLangOptions().CPlusPlus) {
2026    AutoType *AT = New->getType()->getContainedAutoType();
2027    if (AT && !AT->isDeduced()) {
2028      // We don't know what the new type is until the initializer is attached.
2029      return;
2030    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2031      // These could still be something that needs exception specs checked.
2032      return MergeVarDeclExceptionSpecs(New, Old);
2033    }
2034    // C++ [basic.link]p10:
2035    //   [...] the types specified by all declarations referring to a given
2036    //   object or function shall be identical, except that declarations for an
2037    //   array object can specify array types that differ by the presence or
2038    //   absence of a major array bound (8.3.4).
2039    else if (Old->getType()->isIncompleteArrayType() &&
2040             New->getType()->isArrayType()) {
2041      CanQual<ArrayType> OldArray
2042        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2043      CanQual<ArrayType> NewArray
2044        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2045      if (OldArray->getElementType() == NewArray->getElementType())
2046        MergedT = New->getType();
2047    } else if (Old->getType()->isArrayType() &&
2048             New->getType()->isIncompleteArrayType()) {
2049      CanQual<ArrayType> OldArray
2050        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2051      CanQual<ArrayType> NewArray
2052        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2053      if (OldArray->getElementType() == NewArray->getElementType())
2054        MergedT = Old->getType();
2055    } else if (New->getType()->isObjCObjectPointerType()
2056               && Old->getType()->isObjCObjectPointerType()) {
2057        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2058                                                        Old->getType());
2059    }
2060  } else {
2061    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2062  }
2063  if (MergedT.isNull()) {
2064    Diag(New->getLocation(), diag::err_redefinition_different_type)
2065      << New->getDeclName();
2066    Diag(Old->getLocation(), diag::note_previous_definition);
2067    return New->setInvalidDecl();
2068  }
2069  New->setType(MergedT);
2070}
2071
2072/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2073/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2074/// situation, merging decls or emitting diagnostics as appropriate.
2075///
2076/// Tentative definition rules (C99 6.9.2p2) are checked by
2077/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2078/// definitions here, since the initializer hasn't been attached.
2079///
2080void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2081  // If the new decl is already invalid, don't do any other checking.
2082  if (New->isInvalidDecl())
2083    return;
2084
2085  // Verify the old decl was also a variable.
2086  VarDecl *Old = 0;
2087  if (!Previous.isSingleResult() ||
2088      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2089    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2090      << New->getDeclName();
2091    Diag(Previous.getRepresentativeDecl()->getLocation(),
2092         diag::note_previous_definition);
2093    return New->setInvalidDecl();
2094  }
2095
2096  // C++ [class.mem]p1:
2097  //   A member shall not be declared twice in the member-specification [...]
2098  //
2099  // Here, we need only consider static data members.
2100  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2101    Diag(New->getLocation(), diag::err_duplicate_member)
2102      << New->getIdentifier();
2103    Diag(Old->getLocation(), diag::note_previous_declaration);
2104    New->setInvalidDecl();
2105  }
2106
2107  mergeDeclAttributes(New, Old, Context);
2108  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2109  if (New->getAttr<WeakImportAttr>() &&
2110      Old->getStorageClass() == SC_None &&
2111      !Old->getAttr<WeakImportAttr>()) {
2112    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2113    Diag(Old->getLocation(), diag::note_previous_definition);
2114    // Remove weak_import attribute on new declaration.
2115    New->dropAttr<WeakImportAttr>();
2116  }
2117
2118  // Merge the types.
2119  MergeVarDeclTypes(New, Old);
2120  if (New->isInvalidDecl())
2121    return;
2122
2123  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2124  if (New->getStorageClass() == SC_Static &&
2125      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2126    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2127    Diag(Old->getLocation(), diag::note_previous_definition);
2128    return New->setInvalidDecl();
2129  }
2130  // C99 6.2.2p4:
2131  //   For an identifier declared with the storage-class specifier
2132  //   extern in a scope in which a prior declaration of that
2133  //   identifier is visible,23) if the prior declaration specifies
2134  //   internal or external linkage, the linkage of the identifier at
2135  //   the later declaration is the same as the linkage specified at
2136  //   the prior declaration. If no prior declaration is visible, or
2137  //   if the prior declaration specifies no linkage, then the
2138  //   identifier has external linkage.
2139  if (New->hasExternalStorage() && Old->hasLinkage())
2140    /* Okay */;
2141  else if (New->getStorageClass() != SC_Static &&
2142           Old->getStorageClass() == SC_Static) {
2143    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2144    Diag(Old->getLocation(), diag::note_previous_definition);
2145    return New->setInvalidDecl();
2146  }
2147
2148  // Check if extern is followed by non-extern and vice-versa.
2149  if (New->hasExternalStorage() &&
2150      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2151    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2152    Diag(Old->getLocation(), diag::note_previous_definition);
2153    return New->setInvalidDecl();
2154  }
2155  if (Old->hasExternalStorage() &&
2156      !New->hasLinkage() && New->isLocalVarDecl()) {
2157    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2158    Diag(Old->getLocation(), diag::note_previous_definition);
2159    return New->setInvalidDecl();
2160  }
2161
2162  // __module_private__ is propagated to later declarations.
2163  if (Old->isModulePrivate())
2164    New->setModulePrivate();
2165  else if (New->isModulePrivate())
2166    diagnoseModulePrivateRedeclaration(New, Old);
2167
2168  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2169
2170  // FIXME: The test for external storage here seems wrong? We still
2171  // need to check for mismatches.
2172  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2173      // Don't complain about out-of-line definitions of static members.
2174      !(Old->getLexicalDeclContext()->isRecord() &&
2175        !New->getLexicalDeclContext()->isRecord())) {
2176    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2177    Diag(Old->getLocation(), diag::note_previous_definition);
2178    return New->setInvalidDecl();
2179  }
2180
2181  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2182    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2183    Diag(Old->getLocation(), diag::note_previous_definition);
2184  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2185    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2186    Diag(Old->getLocation(), diag::note_previous_definition);
2187  }
2188
2189  // C++ doesn't have tentative definitions, so go right ahead and check here.
2190  const VarDecl *Def;
2191  if (getLangOptions().CPlusPlus &&
2192      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2193      (Def = Old->getDefinition())) {
2194    Diag(New->getLocation(), diag::err_redefinition)
2195      << New->getDeclName();
2196    Diag(Def->getLocation(), diag::note_previous_definition);
2197    New->setInvalidDecl();
2198    return;
2199  }
2200  // c99 6.2.2 P4.
2201  // For an identifier declared with the storage-class specifier extern in a
2202  // scope in which a prior declaration of that identifier is visible, if
2203  // the prior declaration specifies internal or external linkage, the linkage
2204  // of the identifier at the later declaration is the same as the linkage
2205  // specified at the prior declaration.
2206  // FIXME. revisit this code.
2207  if (New->hasExternalStorage() &&
2208      Old->getLinkage() == InternalLinkage &&
2209      New->getDeclContext() == Old->getDeclContext())
2210    New->setStorageClass(Old->getStorageClass());
2211
2212  // Keep a chain of previous declarations.
2213  New->setPreviousDeclaration(Old);
2214
2215  // Inherit access appropriately.
2216  New->setAccess(Old->getAccess());
2217}
2218
2219/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2220/// no declarator (e.g. "struct foo;") is parsed.
2221Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2222                                       DeclSpec &DS) {
2223  return ParsedFreeStandingDeclSpec(S, AS, DS,
2224                                    MultiTemplateParamsArg(*this, 0, 0));
2225}
2226
2227/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2228/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2229/// parameters to cope with template friend declarations.
2230Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2231                                       DeclSpec &DS,
2232                                       MultiTemplateParamsArg TemplateParams) {
2233  Decl *TagD = 0;
2234  TagDecl *Tag = 0;
2235  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2236      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2237      DS.getTypeSpecType() == DeclSpec::TST_union ||
2238      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2239    TagD = DS.getRepAsDecl();
2240
2241    if (!TagD) // We probably had an error
2242      return 0;
2243
2244    // Note that the above type specs guarantee that the
2245    // type rep is a Decl, whereas in many of the others
2246    // it's a Type.
2247    Tag = dyn_cast<TagDecl>(TagD);
2248  }
2249
2250  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2251    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2252    // or incomplete types shall not be restrict-qualified."
2253    if (TypeQuals & DeclSpec::TQ_restrict)
2254      Diag(DS.getRestrictSpecLoc(),
2255           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2256           << DS.getSourceRange();
2257  }
2258
2259  if (DS.isConstexprSpecified()) {
2260    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2261    // and definitions of functions and variables.
2262    if (Tag)
2263      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2264        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2265            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2266            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2267    else
2268      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2269    // Don't emit warnings after this error.
2270    return TagD;
2271  }
2272
2273  if (DS.isFriendSpecified()) {
2274    // If we're dealing with a decl but not a TagDecl, assume that
2275    // whatever routines created it handled the friendship aspect.
2276    if (TagD && !Tag)
2277      return 0;
2278    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2279  }
2280
2281  // Track whether we warned about the fact that there aren't any
2282  // declarators.
2283  bool emittedWarning = false;
2284
2285  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2286    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2287
2288    if (!Record->getDeclName() && Record->isDefinition() &&
2289        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2290      if (getLangOptions().CPlusPlus ||
2291          Record->getDeclContext()->isRecord())
2292        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2293
2294      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2295        << DS.getSourceRange();
2296      emittedWarning = true;
2297    }
2298  }
2299
2300  // Check for Microsoft C extension: anonymous struct.
2301  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2302      CurContext->isRecord() &&
2303      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2304    // Handle 2 kinds of anonymous struct:
2305    //   struct STRUCT;
2306    // and
2307    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2308    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2309    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2310        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2311         DS.getRepAsType().get()->isStructureType())) {
2312      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2313        << DS.getSourceRange();
2314      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2315    }
2316  }
2317
2318  if (getLangOptions().CPlusPlus &&
2319      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2320    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2321      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2322          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2323        Diag(Enum->getLocation(), diag::ext_no_declarators)
2324          << DS.getSourceRange();
2325        emittedWarning = true;
2326      }
2327
2328  // Skip all the checks below if we have a type error.
2329  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2330
2331  if (!DS.isMissingDeclaratorOk()) {
2332    // Warn about typedefs of enums without names, since this is an
2333    // extension in both Microsoft and GNU.
2334    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2335        Tag && isa<EnumDecl>(Tag)) {
2336      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2337        << DS.getSourceRange();
2338      return Tag;
2339    }
2340
2341    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2342      << DS.getSourceRange();
2343    emittedWarning = true;
2344  }
2345
2346  // We're going to complain about a bunch of spurious specifiers;
2347  // only do this if we're declaring a tag, because otherwise we
2348  // should be getting diag::ext_no_declarators.
2349  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2350    return TagD;
2351
2352  // Note that a linkage-specification sets a storage class, but
2353  // 'extern "C" struct foo;' is actually valid and not theoretically
2354  // useless.
2355  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2356    if (!DS.isExternInLinkageSpec())
2357      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2358        << DeclSpec::getSpecifierName(scs);
2359
2360  if (DS.isThreadSpecified())
2361    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2362  if (DS.getTypeQualifiers()) {
2363    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2364      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2365    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2366      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2367    // Restrict is covered above.
2368  }
2369  if (DS.isInlineSpecified())
2370    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2371  if (DS.isVirtualSpecified())
2372    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2373  if (DS.isExplicitSpecified())
2374    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2375
2376  if (DS.isModulePrivateSpecified() &&
2377      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2378    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2379      << Tag->getTagKind()
2380      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2381
2382  // FIXME: Warn on useless attributes
2383
2384  return TagD;
2385}
2386
2387/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2388/// builds a statement for it and returns it so it is evaluated.
2389StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2390  StmtResult R;
2391  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2392    Expr *Exp = DS.getRepAsExpr();
2393    QualType Ty = Exp->getType();
2394    if (Ty->isPointerType()) {
2395      do
2396        Ty = Ty->getAs<PointerType>()->getPointeeType();
2397      while (Ty->isPointerType());
2398    }
2399    if (Ty->isVariableArrayType()) {
2400      R = ActOnExprStmt(MakeFullExpr(Exp));
2401    }
2402  }
2403  return R;
2404}
2405
2406/// We are trying to inject an anonymous member into the given scope;
2407/// check if there's an existing declaration that can't be overloaded.
2408///
2409/// \return true if this is a forbidden redeclaration
2410static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2411                                         Scope *S,
2412                                         DeclContext *Owner,
2413                                         DeclarationName Name,
2414                                         SourceLocation NameLoc,
2415                                         unsigned diagnostic) {
2416  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2417                 Sema::ForRedeclaration);
2418  if (!SemaRef.LookupName(R, S)) return false;
2419
2420  if (R.getAsSingle<TagDecl>())
2421    return false;
2422
2423  // Pick a representative declaration.
2424  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2425  assert(PrevDecl && "Expected a non-null Decl");
2426
2427  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2428    return false;
2429
2430  SemaRef.Diag(NameLoc, diagnostic) << Name;
2431  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2432
2433  return true;
2434}
2435
2436/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2437/// anonymous struct or union AnonRecord into the owning context Owner
2438/// and scope S. This routine will be invoked just after we realize
2439/// that an unnamed union or struct is actually an anonymous union or
2440/// struct, e.g.,
2441///
2442/// @code
2443/// union {
2444///   int i;
2445///   float f;
2446/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2447///    // f into the surrounding scope.x
2448/// @endcode
2449///
2450/// This routine is recursive, injecting the names of nested anonymous
2451/// structs/unions into the owning context and scope as well.
2452static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2453                                                DeclContext *Owner,
2454                                                RecordDecl *AnonRecord,
2455                                                AccessSpecifier AS,
2456                              SmallVector<NamedDecl*, 2> &Chaining,
2457                                                      bool MSAnonStruct) {
2458  unsigned diagKind
2459    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2460                            : diag::err_anonymous_struct_member_redecl;
2461
2462  bool Invalid = false;
2463
2464  // Look every FieldDecl and IndirectFieldDecl with a name.
2465  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2466                               DEnd = AnonRecord->decls_end();
2467       D != DEnd; ++D) {
2468    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2469        cast<NamedDecl>(*D)->getDeclName()) {
2470      ValueDecl *VD = cast<ValueDecl>(*D);
2471      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2472                                       VD->getLocation(), diagKind)) {
2473        // C++ [class.union]p2:
2474        //   The names of the members of an anonymous union shall be
2475        //   distinct from the names of any other entity in the
2476        //   scope in which the anonymous union is declared.
2477        Invalid = true;
2478      } else {
2479        // C++ [class.union]p2:
2480        //   For the purpose of name lookup, after the anonymous union
2481        //   definition, the members of the anonymous union are
2482        //   considered to have been defined in the scope in which the
2483        //   anonymous union is declared.
2484        unsigned OldChainingSize = Chaining.size();
2485        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2486          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2487               PE = IF->chain_end(); PI != PE; ++PI)
2488            Chaining.push_back(*PI);
2489        else
2490          Chaining.push_back(VD);
2491
2492        assert(Chaining.size() >= 2);
2493        NamedDecl **NamedChain =
2494          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2495        for (unsigned i = 0; i < Chaining.size(); i++)
2496          NamedChain[i] = Chaining[i];
2497
2498        IndirectFieldDecl* IndirectField =
2499          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2500                                    VD->getIdentifier(), VD->getType(),
2501                                    NamedChain, Chaining.size());
2502
2503        IndirectField->setAccess(AS);
2504        IndirectField->setImplicit();
2505        SemaRef.PushOnScopeChains(IndirectField, S);
2506
2507        // That includes picking up the appropriate access specifier.
2508        if (AS != AS_none) IndirectField->setAccess(AS);
2509
2510        Chaining.resize(OldChainingSize);
2511      }
2512    }
2513  }
2514
2515  return Invalid;
2516}
2517
2518/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2519/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2520/// illegal input values are mapped to SC_None.
2521static StorageClass
2522StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2523  switch (StorageClassSpec) {
2524  case DeclSpec::SCS_unspecified:    return SC_None;
2525  case DeclSpec::SCS_extern:         return SC_Extern;
2526  case DeclSpec::SCS_static:         return SC_Static;
2527  case DeclSpec::SCS_auto:           return SC_Auto;
2528  case DeclSpec::SCS_register:       return SC_Register;
2529  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2530    // Illegal SCSs map to None: error reporting is up to the caller.
2531  case DeclSpec::SCS_mutable:        // Fall through.
2532  case DeclSpec::SCS_typedef:        return SC_None;
2533  }
2534  llvm_unreachable("unknown storage class specifier");
2535}
2536
2537/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2538/// a StorageClass. Any error reporting is up to the caller:
2539/// illegal input values are mapped to SC_None.
2540static StorageClass
2541StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2542  switch (StorageClassSpec) {
2543  case DeclSpec::SCS_unspecified:    return SC_None;
2544  case DeclSpec::SCS_extern:         return SC_Extern;
2545  case DeclSpec::SCS_static:         return SC_Static;
2546  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2547    // Illegal SCSs map to None: error reporting is up to the caller.
2548  case DeclSpec::SCS_auto:           // Fall through.
2549  case DeclSpec::SCS_mutable:        // Fall through.
2550  case DeclSpec::SCS_register:       // Fall through.
2551  case DeclSpec::SCS_typedef:        return SC_None;
2552  }
2553  llvm_unreachable("unknown storage class specifier");
2554}
2555
2556/// BuildAnonymousStructOrUnion - Handle the declaration of an
2557/// anonymous structure or union. Anonymous unions are a C++ feature
2558/// (C++ [class.union]) and a GNU C extension; anonymous structures
2559/// are a GNU C and GNU C++ extension.
2560Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2561                                             AccessSpecifier AS,
2562                                             RecordDecl *Record) {
2563  DeclContext *Owner = Record->getDeclContext();
2564
2565  // Diagnose whether this anonymous struct/union is an extension.
2566  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2567    Diag(Record->getLocation(), diag::ext_anonymous_union);
2568  else if (!Record->isUnion())
2569    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2570
2571  // C and C++ require different kinds of checks for anonymous
2572  // structs/unions.
2573  bool Invalid = false;
2574  if (getLangOptions().CPlusPlus) {
2575    const char* PrevSpec = 0;
2576    unsigned DiagID;
2577    // C++ [class.union]p3:
2578    //   Anonymous unions declared in a named namespace or in the
2579    //   global namespace shall be declared static.
2580    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2581        (isa<TranslationUnitDecl>(Owner) ||
2582         (isa<NamespaceDecl>(Owner) &&
2583          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2584      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2585      Invalid = true;
2586
2587      // Recover by adding 'static'.
2588      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2589                             PrevSpec, DiagID, getLangOptions());
2590    }
2591    // C++ [class.union]p3:
2592    //   A storage class is not allowed in a declaration of an
2593    //   anonymous union in a class scope.
2594    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2595             isa<RecordDecl>(Owner)) {
2596      Diag(DS.getStorageClassSpecLoc(),
2597           diag::err_anonymous_union_with_storage_spec);
2598      Invalid = true;
2599
2600      // Recover by removing the storage specifier.
2601      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2602                             PrevSpec, DiagID, getLangOptions());
2603    }
2604
2605    // Ignore const/volatile/restrict qualifiers.
2606    if (DS.getTypeQualifiers()) {
2607      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2608        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2609          << Record->isUnion() << 0
2610          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2611      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2612        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2613          << Record->isUnion() << 1
2614          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2615      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2616        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2617          << Record->isUnion() << 2
2618          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2619
2620      DS.ClearTypeQualifiers();
2621    }
2622
2623    // C++ [class.union]p2:
2624    //   The member-specification of an anonymous union shall only
2625    //   define non-static data members. [Note: nested types and
2626    //   functions cannot be declared within an anonymous union. ]
2627    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2628                                 MemEnd = Record->decls_end();
2629         Mem != MemEnd; ++Mem) {
2630      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2631        // C++ [class.union]p3:
2632        //   An anonymous union shall not have private or protected
2633        //   members (clause 11).
2634        assert(FD->getAccess() != AS_none);
2635        if (FD->getAccess() != AS_public) {
2636          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2637            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2638          Invalid = true;
2639        }
2640
2641        // C++ [class.union]p1
2642        //   An object of a class with a non-trivial constructor, a non-trivial
2643        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2644        //   assignment operator cannot be a member of a union, nor can an
2645        //   array of such objects.
2646        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2647          Invalid = true;
2648      } else if ((*Mem)->isImplicit()) {
2649        // Any implicit members are fine.
2650      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2651        // This is a type that showed up in an
2652        // elaborated-type-specifier inside the anonymous struct or
2653        // union, but which actually declares a type outside of the
2654        // anonymous struct or union. It's okay.
2655      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2656        if (!MemRecord->isAnonymousStructOrUnion() &&
2657            MemRecord->getDeclName()) {
2658          // Visual C++ allows type definition in anonymous struct or union.
2659          if (getLangOptions().Microsoft)
2660            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2661              << (int)Record->isUnion();
2662          else {
2663            // This is a nested type declaration.
2664            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2665              << (int)Record->isUnion();
2666            Invalid = true;
2667          }
2668        }
2669      } else if (isa<AccessSpecDecl>(*Mem)) {
2670        // Any access specifier is fine.
2671      } else {
2672        // We have something that isn't a non-static data
2673        // member. Complain about it.
2674        unsigned DK = diag::err_anonymous_record_bad_member;
2675        if (isa<TypeDecl>(*Mem))
2676          DK = diag::err_anonymous_record_with_type;
2677        else if (isa<FunctionDecl>(*Mem))
2678          DK = diag::err_anonymous_record_with_function;
2679        else if (isa<VarDecl>(*Mem))
2680          DK = diag::err_anonymous_record_with_static;
2681
2682        // Visual C++ allows type definition in anonymous struct or union.
2683        if (getLangOptions().Microsoft &&
2684            DK == diag::err_anonymous_record_with_type)
2685          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2686            << (int)Record->isUnion();
2687        else {
2688          Diag((*Mem)->getLocation(), DK)
2689              << (int)Record->isUnion();
2690          Invalid = true;
2691        }
2692      }
2693    }
2694  }
2695
2696  if (!Record->isUnion() && !Owner->isRecord()) {
2697    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2698      << (int)getLangOptions().CPlusPlus;
2699    Invalid = true;
2700  }
2701
2702  // Mock up a declarator.
2703  Declarator Dc(DS, Declarator::MemberContext);
2704  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2705  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2706
2707  // Create a declaration for this anonymous struct/union.
2708  NamedDecl *Anon = 0;
2709  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2710    Anon = FieldDecl::Create(Context, OwningClass,
2711                             DS.getSourceRange().getBegin(),
2712                             Record->getLocation(),
2713                             /*IdentifierInfo=*/0,
2714                             Context.getTypeDeclType(Record),
2715                             TInfo,
2716                             /*BitWidth=*/0, /*Mutable=*/false,
2717                             /*HasInit=*/false);
2718    Anon->setAccess(AS);
2719    if (getLangOptions().CPlusPlus)
2720      FieldCollector->Add(cast<FieldDecl>(Anon));
2721  } else {
2722    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2723    assert(SCSpec != DeclSpec::SCS_typedef &&
2724           "Parser allowed 'typedef' as storage class VarDecl.");
2725    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2726    if (SCSpec == DeclSpec::SCS_mutable) {
2727      // mutable can only appear on non-static class members, so it's always
2728      // an error here
2729      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2730      Invalid = true;
2731      SC = SC_None;
2732    }
2733    SCSpec = DS.getStorageClassSpecAsWritten();
2734    VarDecl::StorageClass SCAsWritten
2735      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2736
2737    Anon = VarDecl::Create(Context, Owner,
2738                           DS.getSourceRange().getBegin(),
2739                           Record->getLocation(), /*IdentifierInfo=*/0,
2740                           Context.getTypeDeclType(Record),
2741                           TInfo, SC, SCAsWritten);
2742  }
2743  Anon->setImplicit();
2744
2745  // Add the anonymous struct/union object to the current
2746  // context. We'll be referencing this object when we refer to one of
2747  // its members.
2748  Owner->addDecl(Anon);
2749
2750  // Inject the members of the anonymous struct/union into the owning
2751  // context and into the identifier resolver chain for name lookup
2752  // purposes.
2753  SmallVector<NamedDecl*, 2> Chain;
2754  Chain.push_back(Anon);
2755
2756  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2757                                          Chain, false))
2758    Invalid = true;
2759
2760  // Mark this as an anonymous struct/union type. Note that we do not
2761  // do this until after we have already checked and injected the
2762  // members of this anonymous struct/union type, because otherwise
2763  // the members could be injected twice: once by DeclContext when it
2764  // builds its lookup table, and once by
2765  // InjectAnonymousStructOrUnionMembers.
2766  Record->setAnonymousStructOrUnion(true);
2767
2768  if (Invalid)
2769    Anon->setInvalidDecl();
2770
2771  return Anon;
2772}
2773
2774/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2775/// Microsoft C anonymous structure.
2776/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2777/// Example:
2778///
2779/// struct A { int a; };
2780/// struct B { struct A; int b; };
2781///
2782/// void foo() {
2783///   B var;
2784///   var.a = 3;
2785/// }
2786///
2787Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2788                                           RecordDecl *Record) {
2789
2790  // If there is no Record, get the record via the typedef.
2791  if (!Record)
2792    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2793
2794  // Mock up a declarator.
2795  Declarator Dc(DS, Declarator::TypeNameContext);
2796  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2797  assert(TInfo && "couldn't build declarator info for anonymous struct");
2798
2799  // Create a declaration for this anonymous struct.
2800  NamedDecl* Anon = FieldDecl::Create(Context,
2801                             cast<RecordDecl>(CurContext),
2802                             DS.getSourceRange().getBegin(),
2803                             DS.getSourceRange().getBegin(),
2804                             /*IdentifierInfo=*/0,
2805                             Context.getTypeDeclType(Record),
2806                             TInfo,
2807                             /*BitWidth=*/0, /*Mutable=*/false,
2808                             /*HasInit=*/false);
2809  Anon->setImplicit();
2810
2811  // Add the anonymous struct object to the current context.
2812  CurContext->addDecl(Anon);
2813
2814  // Inject the members of the anonymous struct into the current
2815  // context and into the identifier resolver chain for name lookup
2816  // purposes.
2817  SmallVector<NamedDecl*, 2> Chain;
2818  Chain.push_back(Anon);
2819
2820  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2821                                          Record->getDefinition(),
2822                                          AS_none, Chain, true))
2823    Anon->setInvalidDecl();
2824
2825  return Anon;
2826}
2827
2828/// GetNameForDeclarator - Determine the full declaration name for the
2829/// given Declarator.
2830DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2831  return GetNameFromUnqualifiedId(D.getName());
2832}
2833
2834/// \brief Retrieves the declaration name from a parsed unqualified-id.
2835DeclarationNameInfo
2836Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2837  DeclarationNameInfo NameInfo;
2838  NameInfo.setLoc(Name.StartLocation);
2839
2840  switch (Name.getKind()) {
2841
2842  case UnqualifiedId::IK_ImplicitSelfParam:
2843  case UnqualifiedId::IK_Identifier:
2844    NameInfo.setName(Name.Identifier);
2845    NameInfo.setLoc(Name.StartLocation);
2846    return NameInfo;
2847
2848  case UnqualifiedId::IK_OperatorFunctionId:
2849    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2850                                           Name.OperatorFunctionId.Operator));
2851    NameInfo.setLoc(Name.StartLocation);
2852    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2853      = Name.OperatorFunctionId.SymbolLocations[0];
2854    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2855      = Name.EndLocation.getRawEncoding();
2856    return NameInfo;
2857
2858  case UnqualifiedId::IK_LiteralOperatorId:
2859    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2860                                                           Name.Identifier));
2861    NameInfo.setLoc(Name.StartLocation);
2862    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2863    return NameInfo;
2864
2865  case UnqualifiedId::IK_ConversionFunctionId: {
2866    TypeSourceInfo *TInfo;
2867    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2868    if (Ty.isNull())
2869      return DeclarationNameInfo();
2870    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2871                                               Context.getCanonicalType(Ty)));
2872    NameInfo.setLoc(Name.StartLocation);
2873    NameInfo.setNamedTypeInfo(TInfo);
2874    return NameInfo;
2875  }
2876
2877  case UnqualifiedId::IK_ConstructorName: {
2878    TypeSourceInfo *TInfo;
2879    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2880    if (Ty.isNull())
2881      return DeclarationNameInfo();
2882    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2883                                              Context.getCanonicalType(Ty)));
2884    NameInfo.setLoc(Name.StartLocation);
2885    NameInfo.setNamedTypeInfo(TInfo);
2886    return NameInfo;
2887  }
2888
2889  case UnqualifiedId::IK_ConstructorTemplateId: {
2890    // In well-formed code, we can only have a constructor
2891    // template-id that refers to the current context, so go there
2892    // to find the actual type being constructed.
2893    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2894    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2895      return DeclarationNameInfo();
2896
2897    // Determine the type of the class being constructed.
2898    QualType CurClassType = Context.getTypeDeclType(CurClass);
2899
2900    // FIXME: Check two things: that the template-id names the same type as
2901    // CurClassType, and that the template-id does not occur when the name
2902    // was qualified.
2903
2904    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2905                                    Context.getCanonicalType(CurClassType)));
2906    NameInfo.setLoc(Name.StartLocation);
2907    // FIXME: should we retrieve TypeSourceInfo?
2908    NameInfo.setNamedTypeInfo(0);
2909    return NameInfo;
2910  }
2911
2912  case UnqualifiedId::IK_DestructorName: {
2913    TypeSourceInfo *TInfo;
2914    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2915    if (Ty.isNull())
2916      return DeclarationNameInfo();
2917    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2918                                              Context.getCanonicalType(Ty)));
2919    NameInfo.setLoc(Name.StartLocation);
2920    NameInfo.setNamedTypeInfo(TInfo);
2921    return NameInfo;
2922  }
2923
2924  case UnqualifiedId::IK_TemplateId: {
2925    TemplateName TName = Name.TemplateId->Template.get();
2926    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2927    return Context.getNameForTemplate(TName, TNameLoc);
2928  }
2929
2930  } // switch (Name.getKind())
2931
2932  assert(false && "Unknown name kind");
2933  return DeclarationNameInfo();
2934}
2935
2936static QualType getCoreType(QualType Ty) {
2937  do {
2938    if (Ty->isPointerType() || Ty->isReferenceType())
2939      Ty = Ty->getPointeeType();
2940    else if (Ty->isArrayType())
2941      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2942    else
2943      return Ty.withoutLocalFastQualifiers();
2944  } while (true);
2945}
2946
2947/// isNearlyMatchingFunction - Determine whether the C++ functions
2948/// Declaration and Definition are "nearly" matching. This heuristic
2949/// is used to improve diagnostics in the case where an out-of-line
2950/// function definition doesn't match any declaration within the class
2951/// or namespace. Also sets Params to the list of indices to the
2952/// parameters that differ between the declaration and the definition.
2953static bool isNearlyMatchingFunction(ASTContext &Context,
2954                                     FunctionDecl *Declaration,
2955                                     FunctionDecl *Definition,
2956                                     llvm::SmallVectorImpl<unsigned> &Params) {
2957  Params.clear();
2958  if (Declaration->param_size() != Definition->param_size())
2959    return false;
2960  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2961    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2962    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2963
2964    // The parameter types are identical
2965    if (Context.hasSameType(DefParamTy, DeclParamTy))
2966      continue;
2967
2968    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2969    QualType DefParamBaseTy = getCoreType(DefParamTy);
2970    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2971    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2972
2973    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2974        (DeclTyName && DeclTyName == DefTyName))
2975      Params.push_back(Idx);
2976    else  // The two parameters aren't even close
2977      return false;
2978  }
2979
2980  return true;
2981}
2982
2983/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2984/// declarator needs to be rebuilt in the current instantiation.
2985/// Any bits of declarator which appear before the name are valid for
2986/// consideration here.  That's specifically the type in the decl spec
2987/// and the base type in any member-pointer chunks.
2988static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2989                                                    DeclarationName Name) {
2990  // The types we specifically need to rebuild are:
2991  //   - typenames, typeofs, and decltypes
2992  //   - types which will become injected class names
2993  // Of course, we also need to rebuild any type referencing such a
2994  // type.  It's safest to just say "dependent", but we call out a
2995  // few cases here.
2996
2997  DeclSpec &DS = D.getMutableDeclSpec();
2998  switch (DS.getTypeSpecType()) {
2999  case DeclSpec::TST_typename:
3000  case DeclSpec::TST_typeofType:
3001  case DeclSpec::TST_decltype:
3002  case DeclSpec::TST_underlyingType: {
3003    // Grab the type from the parser.
3004    TypeSourceInfo *TSI = 0;
3005    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3006    if (T.isNull() || !T->isDependentType()) break;
3007
3008    // Make sure there's a type source info.  This isn't really much
3009    // of a waste; most dependent types should have type source info
3010    // attached already.
3011    if (!TSI)
3012      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3013
3014    // Rebuild the type in the current instantiation.
3015    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3016    if (!TSI) return true;
3017
3018    // Store the new type back in the decl spec.
3019    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3020    DS.UpdateTypeRep(LocType);
3021    break;
3022  }
3023
3024  case DeclSpec::TST_typeofExpr: {
3025    Expr *E = DS.getRepAsExpr();
3026    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3027    if (Result.isInvalid()) return true;
3028    DS.UpdateExprRep(Result.get());
3029    break;
3030  }
3031
3032  default:
3033    // Nothing to do for these decl specs.
3034    break;
3035  }
3036
3037  // It doesn't matter what order we do this in.
3038  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3039    DeclaratorChunk &Chunk = D.getTypeObject(I);
3040
3041    // The only type information in the declarator which can come
3042    // before the declaration name is the base type of a member
3043    // pointer.
3044    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3045      continue;
3046
3047    // Rebuild the scope specifier in-place.
3048    CXXScopeSpec &SS = Chunk.Mem.Scope();
3049    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3050      return true;
3051  }
3052
3053  return false;
3054}
3055
3056Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3057  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3058                          /*IsFunctionDefinition=*/false);
3059}
3060
3061/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3062///   If T is the name of a class, then each of the following shall have a
3063///   name different from T:
3064///     - every static data member of class T;
3065///     - every member function of class T
3066///     - every member of class T that is itself a type;
3067/// \returns true if the declaration name violates these rules.
3068bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3069                                   DeclarationNameInfo NameInfo) {
3070  DeclarationName Name = NameInfo.getName();
3071
3072  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3073    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3074      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3075      return true;
3076    }
3077
3078  return false;
3079}
3080
3081Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3082                             MultiTemplateParamsArg TemplateParamLists,
3083                             bool IsFunctionDefinition) {
3084  // TODO: consider using NameInfo for diagnostic.
3085  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3086  DeclarationName Name = NameInfo.getName();
3087
3088  // All of these full declarators require an identifier.  If it doesn't have
3089  // one, the ParsedFreeStandingDeclSpec action should be used.
3090  if (!Name) {
3091    if (!D.isInvalidType())  // Reject this if we think it is valid.
3092      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3093           diag::err_declarator_need_ident)
3094        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3095    return 0;
3096  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3097    return 0;
3098
3099  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3100  // we find one that is.
3101  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3102         (S->getFlags() & Scope::TemplateParamScope) != 0)
3103    S = S->getParent();
3104
3105  DeclContext *DC = CurContext;
3106  if (D.getCXXScopeSpec().isInvalid())
3107    D.setInvalidType();
3108  else if (D.getCXXScopeSpec().isSet()) {
3109    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3110                                        UPPC_DeclarationQualifier))
3111      return 0;
3112
3113    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3114    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3115    if (!DC) {
3116      // If we could not compute the declaration context, it's because the
3117      // declaration context is dependent but does not refer to a class,
3118      // class template, or class template partial specialization. Complain
3119      // and return early, to avoid the coming semantic disaster.
3120      Diag(D.getIdentifierLoc(),
3121           diag::err_template_qualified_declarator_no_match)
3122        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3123        << D.getCXXScopeSpec().getRange();
3124      return 0;
3125    }
3126    bool IsDependentContext = DC->isDependentContext();
3127
3128    if (!IsDependentContext &&
3129        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3130      return 0;
3131
3132    if (isa<CXXRecordDecl>(DC)) {
3133      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3134        Diag(D.getIdentifierLoc(),
3135             diag::err_member_def_undefined_record)
3136          << Name << DC << D.getCXXScopeSpec().getRange();
3137        D.setInvalidType();
3138      } else if (isa<CXXRecordDecl>(CurContext) &&
3139                 !D.getDeclSpec().isFriendSpecified()) {
3140        // The user provided a superfluous scope specifier inside a class
3141        // definition:
3142        //
3143        // class X {
3144        //   void X::f();
3145        // };
3146        if (CurContext->Equals(DC))
3147          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3148            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3149        else
3150          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3151            << Name << D.getCXXScopeSpec().getRange();
3152
3153        // Pretend that this qualifier was not here.
3154        D.getCXXScopeSpec().clear();
3155      }
3156    }
3157
3158    // Check whether we need to rebuild the type of the given
3159    // declaration in the current instantiation.
3160    if (EnteringContext && IsDependentContext &&
3161        TemplateParamLists.size() != 0) {
3162      ContextRAII SavedContext(*this, DC);
3163      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3164        D.setInvalidType();
3165    }
3166  }
3167
3168  if (DiagnoseClassNameShadow(DC, NameInfo))
3169    // If this is a typedef, we'll end up spewing multiple diagnostics.
3170    // Just return early; it's safer.
3171    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3172      return 0;
3173
3174  NamedDecl *New;
3175
3176  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3177  QualType R = TInfo->getType();
3178
3179  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3180                                      UPPC_DeclarationType))
3181    D.setInvalidType();
3182
3183  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3184                        ForRedeclaration);
3185
3186  // See if this is a redefinition of a variable in the same scope.
3187  if (!D.getCXXScopeSpec().isSet()) {
3188    bool IsLinkageLookup = false;
3189
3190    // If the declaration we're planning to build will be a function
3191    // or object with linkage, then look for another declaration with
3192    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3193    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3194      /* Do nothing*/;
3195    else if (R->isFunctionType()) {
3196      if (CurContext->isFunctionOrMethod() ||
3197          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3198        IsLinkageLookup = true;
3199    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3200      IsLinkageLookup = true;
3201    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3202             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3203      IsLinkageLookup = true;
3204
3205    if (IsLinkageLookup)
3206      Previous.clear(LookupRedeclarationWithLinkage);
3207
3208    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3209  } else { // Something like "int foo::x;"
3210    LookupQualifiedName(Previous, DC);
3211
3212    // Don't consider using declarations as previous declarations for
3213    // out-of-line members.
3214    RemoveUsingDecls(Previous);
3215
3216    // C++ 7.3.1.2p2:
3217    // Members (including explicit specializations of templates) of a named
3218    // namespace can also be defined outside that namespace by explicit
3219    // qualification of the name being defined, provided that the entity being
3220    // defined was already declared in the namespace and the definition appears
3221    // after the point of declaration in a namespace that encloses the
3222    // declarations namespace.
3223    //
3224    // Note that we only check the context at this point. We don't yet
3225    // have enough information to make sure that PrevDecl is actually
3226    // the declaration we want to match. For example, given:
3227    //
3228    //   class X {
3229    //     void f();
3230    //     void f(float);
3231    //   };
3232    //
3233    //   void X::f(int) { } // ill-formed
3234    //
3235    // In this case, PrevDecl will point to the overload set
3236    // containing the two f's declared in X, but neither of them
3237    // matches.
3238
3239    // First check whether we named the global scope.
3240    if (isa<TranslationUnitDecl>(DC)) {
3241      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3242        << Name << D.getCXXScopeSpec().getRange();
3243    } else {
3244      DeclContext *Cur = CurContext;
3245      while (isa<LinkageSpecDecl>(Cur))
3246        Cur = Cur->getParent();
3247      if (!Cur->Encloses(DC)) {
3248        // The qualifying scope doesn't enclose the original declaration.
3249        // Emit diagnostic based on current scope.
3250        SourceLocation L = D.getIdentifierLoc();
3251        SourceRange R = D.getCXXScopeSpec().getRange();
3252        if (isa<FunctionDecl>(Cur))
3253          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3254        else
3255          Diag(L, diag::err_invalid_declarator_scope)
3256            << Name << cast<NamedDecl>(DC) << R;
3257        D.setInvalidType();
3258      }
3259    }
3260  }
3261
3262  if (Previous.isSingleResult() &&
3263      Previous.getFoundDecl()->isTemplateParameter()) {
3264    // Maybe we will complain about the shadowed template parameter.
3265    if (!D.isInvalidType())
3266      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3267                                          Previous.getFoundDecl()))
3268        D.setInvalidType();
3269
3270    // Just pretend that we didn't see the previous declaration.
3271    Previous.clear();
3272  }
3273
3274  // In C++, the previous declaration we find might be a tag type
3275  // (class or enum). In this case, the new declaration will hide the
3276  // tag type. Note that this does does not apply if we're declaring a
3277  // typedef (C++ [dcl.typedef]p4).
3278  if (Previous.isSingleTagDecl() &&
3279      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3280    Previous.clear();
3281
3282  bool Redeclaration = false;
3283  bool AddToScope = true;
3284  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3285    if (TemplateParamLists.size()) {
3286      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3287      return 0;
3288    }
3289
3290    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3291  } else if (R->isFunctionType()) {
3292    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3293                                  move(TemplateParamLists),
3294                                  IsFunctionDefinition, Redeclaration,
3295                                  AddToScope);
3296  } else {
3297    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3298                                  move(TemplateParamLists),
3299                                  Redeclaration);
3300  }
3301
3302  if (New == 0)
3303    return 0;
3304
3305  // If this has an identifier and is not an invalid redeclaration or
3306  // function template specialization, add it to the scope stack.
3307  if (New->getDeclName() && AddToScope &&
3308       !(Redeclaration && New->isInvalidDecl()))
3309    PushOnScopeChains(New, S);
3310
3311  return New;
3312}
3313
3314/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3315/// types into constant array types in certain situations which would otherwise
3316/// be errors (for GCC compatibility).
3317static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3318                                                    ASTContext &Context,
3319                                                    bool &SizeIsNegative,
3320                                                    llvm::APSInt &Oversized) {
3321  // This method tries to turn a variable array into a constant
3322  // array even when the size isn't an ICE.  This is necessary
3323  // for compatibility with code that depends on gcc's buggy
3324  // constant expression folding, like struct {char x[(int)(char*)2];}
3325  SizeIsNegative = false;
3326  Oversized = 0;
3327
3328  if (T->isDependentType())
3329    return QualType();
3330
3331  QualifierCollector Qs;
3332  const Type *Ty = Qs.strip(T);
3333
3334  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3335    QualType Pointee = PTy->getPointeeType();
3336    QualType FixedType =
3337        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3338                                            Oversized);
3339    if (FixedType.isNull()) return FixedType;
3340    FixedType = Context.getPointerType(FixedType);
3341    return Qs.apply(Context, FixedType);
3342  }
3343  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3344    QualType Inner = PTy->getInnerType();
3345    QualType FixedType =
3346        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3347                                            Oversized);
3348    if (FixedType.isNull()) return FixedType;
3349    FixedType = Context.getParenType(FixedType);
3350    return Qs.apply(Context, FixedType);
3351  }
3352
3353  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3354  if (!VLATy)
3355    return QualType();
3356  // FIXME: We should probably handle this case
3357  if (VLATy->getElementType()->isVariablyModifiedType())
3358    return QualType();
3359
3360  Expr::EvalResult EvalResult;
3361  if (!VLATy->getSizeExpr() ||
3362      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3363      !EvalResult.Val.isInt())
3364    return QualType();
3365
3366  // Check whether the array size is negative.
3367  llvm::APSInt &Res = EvalResult.Val.getInt();
3368  if (Res.isSigned() && Res.isNegative()) {
3369    SizeIsNegative = true;
3370    return QualType();
3371  }
3372
3373  // Check whether the array is too large to be addressed.
3374  unsigned ActiveSizeBits
3375    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3376                                              Res);
3377  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3378    Oversized = Res;
3379    return QualType();
3380  }
3381
3382  return Context.getConstantArrayType(VLATy->getElementType(),
3383                                      Res, ArrayType::Normal, 0);
3384}
3385
3386/// \brief Register the given locally-scoped external C declaration so
3387/// that it can be found later for redeclarations
3388void
3389Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3390                                       const LookupResult &Previous,
3391                                       Scope *S) {
3392  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3393         "Decl is not a locally-scoped decl!");
3394  // Note that we have a locally-scoped external with this name.
3395  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3396
3397  if (!Previous.isSingleResult())
3398    return;
3399
3400  NamedDecl *PrevDecl = Previous.getFoundDecl();
3401
3402  // If there was a previous declaration of this variable, it may be
3403  // in our identifier chain. Update the identifier chain with the new
3404  // declaration.
3405  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3406    // The previous declaration was found on the identifer resolver
3407    // chain, so remove it from its scope.
3408
3409    if (S->isDeclScope(PrevDecl)) {
3410      // Special case for redeclarations in the SAME scope.
3411      // Because this declaration is going to be added to the identifier chain
3412      // later, we should temporarily take it OFF the chain.
3413      IdResolver.RemoveDecl(ND);
3414
3415    } else {
3416      // Find the scope for the original declaration.
3417      while (S && !S->isDeclScope(PrevDecl))
3418        S = S->getParent();
3419    }
3420
3421    if (S)
3422      S->RemoveDecl(PrevDecl);
3423  }
3424}
3425
3426llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3427Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3428  if (ExternalSource) {
3429    // Load locally-scoped external decls from the external source.
3430    SmallVector<NamedDecl *, 4> Decls;
3431    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3432    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3433      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3434        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3435      if (Pos == LocallyScopedExternalDecls.end())
3436        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3437    }
3438  }
3439
3440  return LocallyScopedExternalDecls.find(Name);
3441}
3442
3443/// \brief Diagnose function specifiers on a declaration of an identifier that
3444/// does not identify a function.
3445void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3446  // FIXME: We should probably indicate the identifier in question to avoid
3447  // confusion for constructs like "inline int a(), b;"
3448  if (D.getDeclSpec().isInlineSpecified())
3449    Diag(D.getDeclSpec().getInlineSpecLoc(),
3450         diag::err_inline_non_function);
3451
3452  if (D.getDeclSpec().isVirtualSpecified())
3453    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3454         diag::err_virtual_non_function);
3455
3456  if (D.getDeclSpec().isExplicitSpecified())
3457    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3458         diag::err_explicit_non_function);
3459}
3460
3461NamedDecl*
3462Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3463                             QualType R,  TypeSourceInfo *TInfo,
3464                             LookupResult &Previous, bool &Redeclaration) {
3465  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3466  if (D.getCXXScopeSpec().isSet()) {
3467    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3468      << D.getCXXScopeSpec().getRange();
3469    D.setInvalidType();
3470    // Pretend we didn't see the scope specifier.
3471    DC = CurContext;
3472    Previous.clear();
3473  }
3474
3475  if (getLangOptions().CPlusPlus) {
3476    // Check that there are no default arguments (C++ only).
3477    CheckExtraCXXDefaultArguments(D);
3478  }
3479
3480  DiagnoseFunctionSpecifiers(D);
3481
3482  if (D.getDeclSpec().isThreadSpecified())
3483    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3484  if (D.getDeclSpec().isConstexprSpecified())
3485    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3486      << 1;
3487
3488  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3489    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3490      << D.getName().getSourceRange();
3491    return 0;
3492  }
3493
3494  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3495  if (!NewTD) return 0;
3496
3497  // Handle attributes prior to checking for duplicates in MergeVarDecl
3498  ProcessDeclAttributes(S, NewTD, D);
3499
3500  CheckTypedefForVariablyModifiedType(S, NewTD);
3501
3502  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3503}
3504
3505void
3506Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3507  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3508  // then it shall have block scope.
3509  // Note that variably modified types must be fixed before merging the decl so
3510  // that redeclarations will match.
3511  QualType T = NewTD->getUnderlyingType();
3512  if (T->isVariablyModifiedType()) {
3513    getCurFunction()->setHasBranchProtectedScope();
3514
3515    if (S->getFnParent() == 0) {
3516      bool SizeIsNegative;
3517      llvm::APSInt Oversized;
3518      QualType FixedTy =
3519          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3520                                              Oversized);
3521      if (!FixedTy.isNull()) {
3522        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3523        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3524      } else {
3525        if (SizeIsNegative)
3526          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3527        else if (T->isVariableArrayType())
3528          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3529        else if (Oversized.getBoolValue())
3530          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3531        else
3532          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3533        NewTD->setInvalidDecl();
3534      }
3535    }
3536  }
3537}
3538
3539
3540/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3541/// declares a typedef-name, either using the 'typedef' type specifier or via
3542/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3543NamedDecl*
3544Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3545                           LookupResult &Previous, bool &Redeclaration) {
3546  // Merge the decl with the existing one if appropriate. If the decl is
3547  // in an outer scope, it isn't the same thing.
3548  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3549                       /*ExplicitInstantiationOrSpecialization=*/false);
3550  if (!Previous.empty()) {
3551    Redeclaration = true;
3552    MergeTypedefNameDecl(NewTD, Previous);
3553  }
3554
3555  // If this is the C FILE type, notify the AST context.
3556  if (IdentifierInfo *II = NewTD->getIdentifier())
3557    if (!NewTD->isInvalidDecl() &&
3558        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3559      if (II->isStr("FILE"))
3560        Context.setFILEDecl(NewTD);
3561      else if (II->isStr("jmp_buf"))
3562        Context.setjmp_bufDecl(NewTD);
3563      else if (II->isStr("sigjmp_buf"))
3564        Context.setsigjmp_bufDecl(NewTD);
3565      else if (II->isStr("__builtin_va_list"))
3566        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3567    }
3568
3569  return NewTD;
3570}
3571
3572/// \brief Determines whether the given declaration is an out-of-scope
3573/// previous declaration.
3574///
3575/// This routine should be invoked when name lookup has found a
3576/// previous declaration (PrevDecl) that is not in the scope where a
3577/// new declaration by the same name is being introduced. If the new
3578/// declaration occurs in a local scope, previous declarations with
3579/// linkage may still be considered previous declarations (C99
3580/// 6.2.2p4-5, C++ [basic.link]p6).
3581///
3582/// \param PrevDecl the previous declaration found by name
3583/// lookup
3584///
3585/// \param DC the context in which the new declaration is being
3586/// declared.
3587///
3588/// \returns true if PrevDecl is an out-of-scope previous declaration
3589/// for a new delcaration with the same name.
3590static bool
3591isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3592                                ASTContext &Context) {
3593  if (!PrevDecl)
3594    return false;
3595
3596  if (!PrevDecl->hasLinkage())
3597    return false;
3598
3599  if (Context.getLangOptions().CPlusPlus) {
3600    // C++ [basic.link]p6:
3601    //   If there is a visible declaration of an entity with linkage
3602    //   having the same name and type, ignoring entities declared
3603    //   outside the innermost enclosing namespace scope, the block
3604    //   scope declaration declares that same entity and receives the
3605    //   linkage of the previous declaration.
3606    DeclContext *OuterContext = DC->getRedeclContext();
3607    if (!OuterContext->isFunctionOrMethod())
3608      // This rule only applies to block-scope declarations.
3609      return false;
3610
3611    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3612    if (PrevOuterContext->isRecord())
3613      // We found a member function: ignore it.
3614      return false;
3615
3616    // Find the innermost enclosing namespace for the new and
3617    // previous declarations.
3618    OuterContext = OuterContext->getEnclosingNamespaceContext();
3619    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3620
3621    // The previous declaration is in a different namespace, so it
3622    // isn't the same function.
3623    if (!OuterContext->Equals(PrevOuterContext))
3624      return false;
3625  }
3626
3627  return true;
3628}
3629
3630static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3631  CXXScopeSpec &SS = D.getCXXScopeSpec();
3632  if (!SS.isSet()) return;
3633  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3634}
3635
3636bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3637  QualType type = decl->getType();
3638  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3639  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3640    // Various kinds of declaration aren't allowed to be __autoreleasing.
3641    unsigned kind = -1U;
3642    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3643      if (var->hasAttr<BlocksAttr>())
3644        kind = 0; // __block
3645      else if (!var->hasLocalStorage())
3646        kind = 1; // global
3647    } else if (isa<ObjCIvarDecl>(decl)) {
3648      kind = 3; // ivar
3649    } else if (isa<FieldDecl>(decl)) {
3650      kind = 2; // field
3651    }
3652
3653    if (kind != -1U) {
3654      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3655        << kind;
3656    }
3657  } else if (lifetime == Qualifiers::OCL_None) {
3658    // Try to infer lifetime.
3659    if (!type->isObjCLifetimeType())
3660      return false;
3661
3662    lifetime = type->getObjCARCImplicitLifetime();
3663    type = Context.getLifetimeQualifiedType(type, lifetime);
3664    decl->setType(type);
3665  }
3666
3667  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3668    // Thread-local variables cannot have lifetime.
3669    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3670        var->isThreadSpecified()) {
3671      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3672        << var->getType();
3673      return true;
3674    }
3675  }
3676
3677  return false;
3678}
3679
3680NamedDecl*
3681Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3682                              QualType R, TypeSourceInfo *TInfo,
3683                              LookupResult &Previous,
3684                              MultiTemplateParamsArg TemplateParamLists,
3685                              bool &Redeclaration) {
3686  DeclarationName Name = GetNameForDeclarator(D).getName();
3687
3688  // Check that there are no default arguments (C++ only).
3689  if (getLangOptions().CPlusPlus)
3690    CheckExtraCXXDefaultArguments(D);
3691
3692  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3693  assert(SCSpec != DeclSpec::SCS_typedef &&
3694         "Parser allowed 'typedef' as storage class VarDecl.");
3695  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3696  if (SCSpec == DeclSpec::SCS_mutable) {
3697    // mutable can only appear on non-static class members, so it's always
3698    // an error here
3699    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3700    D.setInvalidType();
3701    SC = SC_None;
3702  }
3703  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3704  VarDecl::StorageClass SCAsWritten
3705    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3706
3707  IdentifierInfo *II = Name.getAsIdentifierInfo();
3708  if (!II) {
3709    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3710      << Name.getAsString();
3711    return 0;
3712  }
3713
3714  DiagnoseFunctionSpecifiers(D);
3715
3716  if (!DC->isRecord() && S->getFnParent() == 0) {
3717    // C99 6.9p2: The storage-class specifiers auto and register shall not
3718    // appear in the declaration specifiers in an external declaration.
3719    if (SC == SC_Auto || SC == SC_Register) {
3720
3721      // If this is a register variable with an asm label specified, then this
3722      // is a GNU extension.
3723      if (SC == SC_Register && D.getAsmLabel())
3724        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3725      else
3726        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3727      D.setInvalidType();
3728    }
3729  }
3730
3731  bool isExplicitSpecialization = false;
3732  VarDecl *NewVD;
3733  if (!getLangOptions().CPlusPlus) {
3734    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3735                            D.getIdentifierLoc(), II,
3736                            R, TInfo, SC, SCAsWritten);
3737
3738    if (D.isInvalidType())
3739      NewVD->setInvalidDecl();
3740  } else {
3741    if (DC->isRecord() && !CurContext->isRecord()) {
3742      // This is an out-of-line definition of a static data member.
3743      if (SC == SC_Static) {
3744        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3745             diag::err_static_out_of_line)
3746          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3747      } else if (SC == SC_None)
3748        SC = SC_Static;
3749    }
3750    if (SC == SC_Static) {
3751      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3752        if (RD->isLocalClass())
3753          Diag(D.getIdentifierLoc(),
3754               diag::err_static_data_member_not_allowed_in_local_class)
3755            << Name << RD->getDeclName();
3756
3757        // C++ [class.union]p1: If a union contains a static data member,
3758        // the program is ill-formed.
3759        //
3760        // We also disallow static data members in anonymous structs.
3761        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3762          Diag(D.getIdentifierLoc(),
3763               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3764            << Name << RD->isUnion();
3765      }
3766    }
3767
3768    // Match up the template parameter lists with the scope specifier, then
3769    // determine whether we have a template or a template specialization.
3770    isExplicitSpecialization = false;
3771    bool Invalid = false;
3772    if (TemplateParameterList *TemplateParams
3773        = MatchTemplateParametersToScopeSpecifier(
3774                                  D.getDeclSpec().getSourceRange().getBegin(),
3775                                                  D.getIdentifierLoc(),
3776                                                  D.getCXXScopeSpec(),
3777                                                  TemplateParamLists.get(),
3778                                                  TemplateParamLists.size(),
3779                                                  /*never a friend*/ false,
3780                                                  isExplicitSpecialization,
3781                                                  Invalid)) {
3782      if (TemplateParams->size() > 0) {
3783        // There is no such thing as a variable template.
3784        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3785          << II
3786          << SourceRange(TemplateParams->getTemplateLoc(),
3787                         TemplateParams->getRAngleLoc());
3788        return 0;
3789      } else {
3790        // There is an extraneous 'template<>' for this variable. Complain
3791        // about it, but allow the declaration of the variable.
3792        Diag(TemplateParams->getTemplateLoc(),
3793             diag::err_template_variable_noparams)
3794          << II
3795          << SourceRange(TemplateParams->getTemplateLoc(),
3796                         TemplateParams->getRAngleLoc());
3797      }
3798    }
3799
3800    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3801                            D.getIdentifierLoc(), II,
3802                            R, TInfo, SC, SCAsWritten);
3803
3804    // If this decl has an auto type in need of deduction, make a note of the
3805    // Decl so we can diagnose uses of it in its own initializer.
3806    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3807        R->getContainedAutoType())
3808      ParsingInitForAutoVars.insert(NewVD);
3809
3810    if (D.isInvalidType() || Invalid)
3811      NewVD->setInvalidDecl();
3812
3813    SetNestedNameSpecifier(NewVD, D);
3814
3815    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3816      NewVD->setTemplateParameterListsInfo(Context,
3817                                           TemplateParamLists.size(),
3818                                           TemplateParamLists.release());
3819    }
3820
3821    if (D.getDeclSpec().isConstexprSpecified()) {
3822      // FIXME: check this is a valid use of constexpr.
3823      NewVD->setConstexpr(true);
3824    }
3825  }
3826
3827  // Set the lexical context. If the declarator has a C++ scope specifier, the
3828  // lexical context will be different from the semantic context.
3829  NewVD->setLexicalDeclContext(CurContext);
3830
3831  if (D.getDeclSpec().isThreadSpecified()) {
3832    if (NewVD->hasLocalStorage())
3833      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3834    else if (!Context.getTargetInfo().isTLSSupported())
3835      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3836    else
3837      NewVD->setThreadSpecified(true);
3838  }
3839
3840  if (D.getDeclSpec().isModulePrivateSpecified()) {
3841    if (isExplicitSpecialization)
3842      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3843        << 2
3844        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3845    else if (NewVD->hasLocalStorage())
3846      Diag(NewVD->getLocation(), diag::err_module_private_local)
3847        << 0 << NewVD->getDeclName()
3848        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3849        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3850    else
3851      NewVD->setModulePrivate();
3852  }
3853
3854  // Handle attributes prior to checking for duplicates in MergeVarDecl
3855  ProcessDeclAttributes(S, NewVD, D);
3856
3857  // In auto-retain/release, infer strong retension for variables of
3858  // retainable type.
3859  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3860    NewVD->setInvalidDecl();
3861
3862  // Handle GNU asm-label extension (encoded as an attribute).
3863  if (Expr *E = (Expr*)D.getAsmLabel()) {
3864    // The parser guarantees this is a string.
3865    StringLiteral *SE = cast<StringLiteral>(E);
3866    StringRef Label = SE->getString();
3867    if (S->getFnParent() != 0) {
3868      switch (SC) {
3869      case SC_None:
3870      case SC_Auto:
3871        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3872        break;
3873      case SC_Register:
3874        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3875          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3876        break;
3877      case SC_Static:
3878      case SC_Extern:
3879      case SC_PrivateExtern:
3880        break;
3881      }
3882    }
3883
3884    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3885                                                Context, Label));
3886  }
3887
3888  // Diagnose shadowed variables before filtering for scope.
3889  if (!D.getCXXScopeSpec().isSet())
3890    CheckShadow(S, NewVD, Previous);
3891
3892  // Don't consider existing declarations that are in a different
3893  // scope and are out-of-semantic-context declarations (if the new
3894  // declaration has linkage).
3895  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3896                       isExplicitSpecialization);
3897
3898  if (!getLangOptions().CPlusPlus)
3899    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3900  else {
3901    // Merge the decl with the existing one if appropriate.
3902    if (!Previous.empty()) {
3903      if (Previous.isSingleResult() &&
3904          isa<FieldDecl>(Previous.getFoundDecl()) &&
3905          D.getCXXScopeSpec().isSet()) {
3906        // The user tried to define a non-static data member
3907        // out-of-line (C++ [dcl.meaning]p1).
3908        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3909          << D.getCXXScopeSpec().getRange();
3910        Previous.clear();
3911        NewVD->setInvalidDecl();
3912      }
3913    } else if (D.getCXXScopeSpec().isSet()) {
3914      // No previous declaration in the qualifying scope.
3915      Diag(D.getIdentifierLoc(), diag::err_no_member)
3916        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3917        << D.getCXXScopeSpec().getRange();
3918      NewVD->setInvalidDecl();
3919    }
3920
3921    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3922
3923    // This is an explicit specialization of a static data member. Check it.
3924    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3925        CheckMemberSpecialization(NewVD, Previous))
3926      NewVD->setInvalidDecl();
3927  }
3928
3929  // attributes declared post-definition are currently ignored
3930  // FIXME: This should be handled in attribute merging, not
3931  // here.
3932  if (Previous.isSingleResult()) {
3933    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3934    if (Def && (Def = Def->getDefinition()) &&
3935        Def != NewVD && D.hasAttributes()) {
3936      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3937      Diag(Def->getLocation(), diag::note_previous_definition);
3938    }
3939  }
3940
3941  // If this is a locally-scoped extern C variable, update the map of
3942  // such variables.
3943  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3944      !NewVD->isInvalidDecl())
3945    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3946
3947  // If there's a #pragma GCC visibility in scope, and this isn't a class
3948  // member, set the visibility of this variable.
3949  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3950    AddPushedVisibilityAttribute(NewVD);
3951
3952  MarkUnusedFileScopedDecl(NewVD);
3953
3954  return NewVD;
3955}
3956
3957/// \brief Diagnose variable or built-in function shadowing.  Implements
3958/// -Wshadow.
3959///
3960/// This method is called whenever a VarDecl is added to a "useful"
3961/// scope.
3962///
3963/// \param S the scope in which the shadowing name is being declared
3964/// \param R the lookup of the name
3965///
3966void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3967  // Return if warning is ignored.
3968  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3969        Diagnostic::Ignored)
3970    return;
3971
3972  // Don't diagnose declarations at file scope.
3973  if (D->hasGlobalStorage())
3974    return;
3975
3976  DeclContext *NewDC = D->getDeclContext();
3977
3978  // Only diagnose if we're shadowing an unambiguous field or variable.
3979  if (R.getResultKind() != LookupResult::Found)
3980    return;
3981
3982  NamedDecl* ShadowedDecl = R.getFoundDecl();
3983  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3984    return;
3985
3986  // Fields are not shadowed by variables in C++ static methods.
3987  if (isa<FieldDecl>(ShadowedDecl))
3988    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3989      if (MD->isStatic())
3990        return;
3991
3992  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3993    if (shadowedVar->isExternC()) {
3994      // For shadowing external vars, make sure that we point to the global
3995      // declaration, not a locally scoped extern declaration.
3996      for (VarDecl::redecl_iterator
3997             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3998           I != E; ++I)
3999        if (I->isFileVarDecl()) {
4000          ShadowedDecl = *I;
4001          break;
4002        }
4003    }
4004
4005  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4006
4007  // Only warn about certain kinds of shadowing for class members.
4008  if (NewDC && NewDC->isRecord()) {
4009    // In particular, don't warn about shadowing non-class members.
4010    if (!OldDC->isRecord())
4011      return;
4012
4013    // TODO: should we warn about static data members shadowing
4014    // static data members from base classes?
4015
4016    // TODO: don't diagnose for inaccessible shadowed members.
4017    // This is hard to do perfectly because we might friend the
4018    // shadowing context, but that's just a false negative.
4019  }
4020
4021  // Determine what kind of declaration we're shadowing.
4022  unsigned Kind;
4023  if (isa<RecordDecl>(OldDC)) {
4024    if (isa<FieldDecl>(ShadowedDecl))
4025      Kind = 3; // field
4026    else
4027      Kind = 2; // static data member
4028  } else if (OldDC->isFileContext())
4029    Kind = 1; // global
4030  else
4031    Kind = 0; // local
4032
4033  DeclarationName Name = R.getLookupName();
4034
4035  // Emit warning and note.
4036  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4037  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4038}
4039
4040/// \brief Check -Wshadow without the advantage of a previous lookup.
4041void Sema::CheckShadow(Scope *S, VarDecl *D) {
4042  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4043        Diagnostic::Ignored)
4044    return;
4045
4046  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4047                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4048  LookupName(R, S);
4049  CheckShadow(S, D, R);
4050}
4051
4052/// \brief Perform semantic checking on a newly-created variable
4053/// declaration.
4054///
4055/// This routine performs all of the type-checking required for a
4056/// variable declaration once it has been built. It is used both to
4057/// check variables after they have been parsed and their declarators
4058/// have been translated into a declaration, and to check variables
4059/// that have been instantiated from a template.
4060///
4061/// Sets NewVD->isInvalidDecl() if an error was encountered.
4062void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4063                                    LookupResult &Previous,
4064                                    bool &Redeclaration) {
4065  // If the decl is already known invalid, don't check it.
4066  if (NewVD->isInvalidDecl())
4067    return;
4068
4069  QualType T = NewVD->getType();
4070
4071  if (T->isObjCObjectType()) {
4072    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4073      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4074    T = Context.getObjCObjectPointerType(T);
4075    NewVD->setType(T);
4076  }
4077
4078  // Emit an error if an address space was applied to decl with local storage.
4079  // This includes arrays of objects with address space qualifiers, but not
4080  // automatic variables that point to other address spaces.
4081  // ISO/IEC TR 18037 S5.1.2
4082  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4083    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4084    return NewVD->setInvalidDecl();
4085  }
4086
4087  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4088      && !NewVD->hasAttr<BlocksAttr>()) {
4089    if (getLangOptions().getGC() != LangOptions::NonGC)
4090      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4091    else
4092      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4093  }
4094
4095  bool isVM = T->isVariablyModifiedType();
4096  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4097      NewVD->hasAttr<BlocksAttr>())
4098    getCurFunction()->setHasBranchProtectedScope();
4099
4100  if ((isVM && NewVD->hasLinkage()) ||
4101      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4102    bool SizeIsNegative;
4103    llvm::APSInt Oversized;
4104    QualType FixedTy =
4105        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4106                                            Oversized);
4107
4108    if (FixedTy.isNull() && T->isVariableArrayType()) {
4109      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4110      // FIXME: This won't give the correct result for
4111      // int a[10][n];
4112      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4113
4114      if (NewVD->isFileVarDecl())
4115        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4116        << SizeRange;
4117      else if (NewVD->getStorageClass() == SC_Static)
4118        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4119        << SizeRange;
4120      else
4121        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4122        << SizeRange;
4123      return NewVD->setInvalidDecl();
4124    }
4125
4126    if (FixedTy.isNull()) {
4127      if (NewVD->isFileVarDecl())
4128        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4129      else
4130        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4131      return NewVD->setInvalidDecl();
4132    }
4133
4134    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4135    NewVD->setType(FixedTy);
4136  }
4137
4138  if (Previous.empty() && NewVD->isExternC()) {
4139    // Since we did not find anything by this name and we're declaring
4140    // an extern "C" variable, look for a non-visible extern "C"
4141    // declaration with the same name.
4142    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4143      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4144    if (Pos != LocallyScopedExternalDecls.end())
4145      Previous.addDecl(Pos->second);
4146  }
4147
4148  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4149    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4150      << T;
4151    return NewVD->setInvalidDecl();
4152  }
4153
4154  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4155    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4156    return NewVD->setInvalidDecl();
4157  }
4158
4159  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4160    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4161    return NewVD->setInvalidDecl();
4162  }
4163
4164  // Function pointers and references cannot have qualified function type, only
4165  // function pointer-to-members can do that.
4166  QualType Pointee;
4167  unsigned PtrOrRef = 0;
4168  if (const PointerType *Ptr = T->getAs<PointerType>())
4169    Pointee = Ptr->getPointeeType();
4170  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4171    Pointee = Ref->getPointeeType();
4172    PtrOrRef = 1;
4173  }
4174  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4175      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4176    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4177        << PtrOrRef;
4178    return NewVD->setInvalidDecl();
4179  }
4180
4181  if (!Previous.empty()) {
4182    Redeclaration = true;
4183    MergeVarDecl(NewVD, Previous);
4184  }
4185}
4186
4187/// \brief Data used with FindOverriddenMethod
4188struct FindOverriddenMethodData {
4189  Sema *S;
4190  CXXMethodDecl *Method;
4191};
4192
4193/// \brief Member lookup function that determines whether a given C++
4194/// method overrides a method in a base class, to be used with
4195/// CXXRecordDecl::lookupInBases().
4196static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4197                                 CXXBasePath &Path,
4198                                 void *UserData) {
4199  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4200
4201  FindOverriddenMethodData *Data
4202    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4203
4204  DeclarationName Name = Data->Method->getDeclName();
4205
4206  // FIXME: Do we care about other names here too?
4207  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4208    // We really want to find the base class destructor here.
4209    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4210    CanQualType CT = Data->S->Context.getCanonicalType(T);
4211
4212    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4213  }
4214
4215  for (Path.Decls = BaseRecord->lookup(Name);
4216       Path.Decls.first != Path.Decls.second;
4217       ++Path.Decls.first) {
4218    NamedDecl *D = *Path.Decls.first;
4219    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4220      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4221        return true;
4222    }
4223  }
4224
4225  return false;
4226}
4227
4228/// AddOverriddenMethods - See if a method overrides any in the base classes,
4229/// and if so, check that it's a valid override and remember it.
4230bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4231  // Look for virtual methods in base classes that this method might override.
4232  CXXBasePaths Paths;
4233  FindOverriddenMethodData Data;
4234  Data.Method = MD;
4235  Data.S = this;
4236  bool AddedAny = false;
4237  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4238    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4239         E = Paths.found_decls_end(); I != E; ++I) {
4240      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4241        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4242        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4243            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4244            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4245          AddedAny = true;
4246        }
4247      }
4248    }
4249  }
4250
4251  return AddedAny;
4252}
4253
4254static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4255                                         bool isFriendDecl) {
4256  DeclarationName Name = NewFD->getDeclName();
4257  DeclContext *DC = NewFD->getDeclContext();
4258  LookupResult Prev(S, Name, NewFD->getLocation(),
4259                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4260  llvm::SmallVector<unsigned, 1> MismatchedParams;
4261  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4262  TypoCorrection Correction;
4263  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4264                                  : diag::err_member_def_does_not_match;
4265
4266  NewFD->setInvalidDecl();
4267  S.LookupQualifiedName(Prev, DC);
4268  assert(!Prev.isAmbiguous() &&
4269         "Cannot have an ambiguity in previous-declaration lookup");
4270  if (!Prev.empty()) {
4271    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4272         Func != FuncEnd; ++Func) {
4273      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4274      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4275                                         MismatchedParams)) {
4276        // Add 1 to the index so that 0 can mean the mismatch didn't
4277        // involve a parameter
4278        unsigned ParamNum =
4279            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4280        NearMatches.push_back(std::make_pair(FD, ParamNum));
4281      }
4282    }
4283  // If the qualified name lookup yielded nothing, try typo correction
4284  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4285                                         Prev.getLookupKind(), 0, 0, DC)) &&
4286             Correction.getCorrection() != Name) {
4287    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4288                                    CDeclEnd = Correction.end();
4289         CDecl != CDeclEnd; ++CDecl) {
4290      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4291      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4292                                         MismatchedParams)) {
4293        // Add 1 to the index so that 0 can mean the mismatch didn't
4294        // involve a parameter
4295        unsigned ParamNum =
4296            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4297        NearMatches.push_back(std::make_pair(FD, ParamNum));
4298      }
4299    }
4300    if (!NearMatches.empty())
4301      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4302                             : diag::err_member_def_does_not_match_suggest;
4303  }
4304
4305  // Ignore the correction if it didn't yield any close FunctionDecl matches
4306  if (Correction && NearMatches.empty())
4307    Correction = TypoCorrection();
4308
4309  if (Correction)
4310    S.Diag(NewFD->getLocation(), DiagMsg)
4311        << Name << DC << Correction.getQuoted(S.getLangOptions())
4312        << FixItHint::CreateReplacement(
4313            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4314  else
4315    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4316
4317  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4318       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4319       NearMatch != NearMatchEnd; ++NearMatch) {
4320    FunctionDecl *FD = NearMatch->first;
4321
4322    if (unsigned Idx = NearMatch->second) {
4323      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4324      S.Diag(FDParam->getTypeSpecStartLoc(),
4325             diag::note_member_def_close_param_match)
4326          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4327    } else if (Correction) {
4328      S.Diag(FD->getLocation(), diag::note_previous_decl)
4329        << Correction.getQuoted(S.getLangOptions());
4330    } else
4331      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4332  }
4333}
4334
4335NamedDecl*
4336Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4337                              QualType R, TypeSourceInfo *TInfo,
4338                              LookupResult &Previous,
4339                              MultiTemplateParamsArg TemplateParamLists,
4340                              bool IsFunctionDefinition, bool &Redeclaration,
4341                              bool &AddToScope) {
4342  assert(R.getTypePtr()->isFunctionType());
4343
4344  // TODO: consider using NameInfo for diagnostic.
4345  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4346  DeclarationName Name = NameInfo.getName();
4347  FunctionDecl::StorageClass SC = SC_None;
4348  switch (D.getDeclSpec().getStorageClassSpec()) {
4349  default: assert(0 && "Unknown storage class!");
4350  case DeclSpec::SCS_auto:
4351  case DeclSpec::SCS_register:
4352  case DeclSpec::SCS_mutable:
4353    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4354         diag::err_typecheck_sclass_func);
4355    D.setInvalidType();
4356    break;
4357  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4358  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4359  case DeclSpec::SCS_static: {
4360    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4361      // C99 6.7.1p5:
4362      //   The declaration of an identifier for a function that has
4363      //   block scope shall have no explicit storage-class specifier
4364      //   other than extern
4365      // See also (C++ [dcl.stc]p4).
4366      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4367           diag::err_static_block_func);
4368      SC = SC_None;
4369    } else
4370      SC = SC_Static;
4371    break;
4372  }
4373  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4374  }
4375
4376  if (D.getDeclSpec().isThreadSpecified())
4377    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4378
4379  // Do not allow returning a objc interface by-value.
4380  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4381    Diag(D.getIdentifierLoc(),
4382         diag::err_object_cannot_be_passed_returned_by_value) << 0
4383    << R->getAs<FunctionType>()->getResultType()
4384    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4385
4386    QualType T = R->getAs<FunctionType>()->getResultType();
4387    T = Context.getObjCObjectPointerType(T);
4388    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4389      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4390      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4391                                  FPT->getNumArgs(), EPI);
4392    }
4393    else if (isa<FunctionNoProtoType>(R))
4394      R = Context.getFunctionNoProtoType(T);
4395  }
4396
4397  FunctionDecl *NewFD;
4398  bool isInline = D.getDeclSpec().isInlineSpecified();
4399  bool isFriend = false;
4400  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4401  FunctionDecl::StorageClass SCAsWritten
4402    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4403  FunctionTemplateDecl *FunctionTemplate = 0;
4404  bool isExplicitSpecialization = false;
4405  bool isFunctionTemplateSpecialization = false;
4406  bool isDependentClassScopeExplicitSpecialization = false;
4407
4408  if (!getLangOptions().CPlusPlus) {
4409    // Determine whether the function was written with a
4410    // prototype. This true when:
4411    //   - there is a prototype in the declarator, or
4412    //   - the type R of the function is some kind of typedef or other reference
4413    //     to a type name (which eventually refers to a function type).
4414    bool HasPrototype =
4415    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4416    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4417
4418    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4419                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4420                                 HasPrototype);
4421    if (D.isInvalidType())
4422      NewFD->setInvalidDecl();
4423
4424    // Set the lexical context.
4425    NewFD->setLexicalDeclContext(CurContext);
4426    // Filter out previous declarations that don't match the scope.
4427    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4428                         /*ExplicitInstantiationOrSpecialization=*/false);
4429  } else {
4430    isFriend = D.getDeclSpec().isFriendSpecified();
4431    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4432    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4433    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4434    bool isVirtualOkay = false;
4435
4436    // Check that the return type is not an abstract class type.
4437    // For record types, this is done by the AbstractClassUsageDiagnoser once
4438    // the class has been completely parsed.
4439    if (!DC->isRecord() &&
4440      RequireNonAbstractType(D.getIdentifierLoc(),
4441                             R->getAs<FunctionType>()->getResultType(),
4442                             diag::err_abstract_type_in_decl,
4443                             AbstractReturnType))
4444      D.setInvalidType();
4445
4446    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4447      // This is a C++ constructor declaration.
4448      assert(DC->isRecord() &&
4449             "Constructors can only be declared in a member context");
4450
4451      R = CheckConstructorDeclarator(D, R, SC);
4452
4453      // Create the new declaration
4454      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4455                                         Context,
4456                                         cast<CXXRecordDecl>(DC),
4457                                         D.getSourceRange().getBegin(),
4458                                         NameInfo, R, TInfo,
4459                                         isExplicit, isInline,
4460                                         /*isImplicitlyDeclared=*/false,
4461                                         isConstexpr);
4462
4463      NewFD = NewCD;
4464    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4465      // This is a C++ destructor declaration.
4466      if (DC->isRecord()) {
4467        R = CheckDestructorDeclarator(D, R, SC);
4468        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4469
4470        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4471                                          D.getSourceRange().getBegin(),
4472                                          NameInfo, R, TInfo,
4473                                          isInline,
4474                                          /*isImplicitlyDeclared=*/false);
4475        NewFD = NewDD;
4476        isVirtualOkay = true;
4477
4478        // If the class is complete, then we now create the implicit exception
4479        // specification. If the class is incomplete or dependent, we can't do
4480        // it yet.
4481        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4482            Record->getDefinition() && !Record->isBeingDefined() &&
4483            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4484          AdjustDestructorExceptionSpec(Record, NewDD);
4485        }
4486
4487      } else {
4488        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4489
4490        // Create a FunctionDecl to satisfy the function definition parsing
4491        // code path.
4492        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4493                                     D.getIdentifierLoc(), Name, R, TInfo,
4494                                     SC, SCAsWritten, isInline,
4495                                     /*hasPrototype=*/true, isConstexpr);
4496        D.setInvalidType();
4497      }
4498    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4499      if (!DC->isRecord()) {
4500        Diag(D.getIdentifierLoc(),
4501             diag::err_conv_function_not_member);
4502        return 0;
4503      }
4504
4505      CheckConversionDeclarator(D, R, SC);
4506      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4507                                        D.getSourceRange().getBegin(),
4508                                        NameInfo, R, TInfo,
4509                                        isInline, isExplicit, isConstexpr,
4510                                        SourceLocation());
4511
4512      isVirtualOkay = true;
4513    } else if (DC->isRecord()) {
4514      // If the name of the function is the same as the name of the record,
4515      // then this must be an invalid constructor that has a return type.
4516      // (The parser checks for a return type and makes the declarator a
4517      // constructor if it has no return type).
4518      if (Name.getAsIdentifierInfo() &&
4519          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4520        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4521          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4522          << SourceRange(D.getIdentifierLoc());
4523        return 0;
4524      }
4525
4526      bool isStatic = SC == SC_Static;
4527
4528      // [class.free]p1:
4529      // Any allocation function for a class T is a static member
4530      // (even if not explicitly declared static).
4531      if (Name.getCXXOverloadedOperator() == OO_New ||
4532          Name.getCXXOverloadedOperator() == OO_Array_New)
4533        isStatic = true;
4534
4535      // [class.free]p6 Any deallocation function for a class X is a static member
4536      // (even if not explicitly declared static).
4537      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4538          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4539        isStatic = true;
4540
4541      // This is a C++ method declaration.
4542      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4543                                               Context, cast<CXXRecordDecl>(DC),
4544                                               D.getSourceRange().getBegin(),
4545                                               NameInfo, R, TInfo,
4546                                               isStatic, SCAsWritten, isInline,
4547                                               isConstexpr,
4548                                               SourceLocation());
4549      NewFD = NewMD;
4550
4551      isVirtualOkay = !isStatic;
4552    } else {
4553      // Determine whether the function was written with a
4554      // prototype. This true when:
4555      //   - we're in C++ (where every function has a prototype),
4556      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4557                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4558                                   true/*HasPrototype*/, isConstexpr);
4559    }
4560
4561    if (isFriend && !isInline && IsFunctionDefinition) {
4562      // C++ [class.friend]p5
4563      //   A function can be defined in a friend declaration of a
4564      //   class . . . . Such a function is implicitly inline.
4565      NewFD->setImplicitlyInline();
4566    }
4567
4568    SetNestedNameSpecifier(NewFD, D);
4569    isExplicitSpecialization = false;
4570    isFunctionTemplateSpecialization = false;
4571    if (D.isInvalidType())
4572      NewFD->setInvalidDecl();
4573
4574    // Set the lexical context. If the declarator has a C++
4575    // scope specifier, or is the object of a friend declaration, the
4576    // lexical context will be different from the semantic context.
4577    NewFD->setLexicalDeclContext(CurContext);
4578
4579    // Match up the template parameter lists with the scope specifier, then
4580    // determine whether we have a template or a template specialization.
4581    bool Invalid = false;
4582    if (TemplateParameterList *TemplateParams
4583          = MatchTemplateParametersToScopeSpecifier(
4584                                  D.getDeclSpec().getSourceRange().getBegin(),
4585                                  D.getIdentifierLoc(),
4586                                  D.getCXXScopeSpec(),
4587                                  TemplateParamLists.get(),
4588                                  TemplateParamLists.size(),
4589                                  isFriend,
4590                                  isExplicitSpecialization,
4591                                  Invalid)) {
4592      if (TemplateParams->size() > 0) {
4593        // This is a function template
4594
4595        // Check that we can declare a template here.
4596        if (CheckTemplateDeclScope(S, TemplateParams))
4597          return 0;
4598
4599        // A destructor cannot be a template.
4600        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4601          Diag(NewFD->getLocation(), diag::err_destructor_template);
4602          return 0;
4603        }
4604
4605        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4606                                                        NewFD->getLocation(),
4607                                                        Name, TemplateParams,
4608                                                        NewFD);
4609        FunctionTemplate->setLexicalDeclContext(CurContext);
4610        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4611
4612        // For source fidelity, store the other template param lists.
4613        if (TemplateParamLists.size() > 1) {
4614          NewFD->setTemplateParameterListsInfo(Context,
4615                                               TemplateParamLists.size() - 1,
4616                                               TemplateParamLists.release());
4617        }
4618      } else {
4619        // This is a function template specialization.
4620        isFunctionTemplateSpecialization = true;
4621        // For source fidelity, store all the template param lists.
4622        NewFD->setTemplateParameterListsInfo(Context,
4623                                             TemplateParamLists.size(),
4624                                             TemplateParamLists.release());
4625
4626        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4627        if (isFriend) {
4628          // We want to remove the "template<>", found here.
4629          SourceRange RemoveRange = TemplateParams->getSourceRange();
4630
4631          // If we remove the template<> and the name is not a
4632          // template-id, we're actually silently creating a problem:
4633          // the friend declaration will refer to an untemplated decl,
4634          // and clearly the user wants a template specialization.  So
4635          // we need to insert '<>' after the name.
4636          SourceLocation InsertLoc;
4637          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4638            InsertLoc = D.getName().getSourceRange().getEnd();
4639            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4640          }
4641
4642          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4643            << Name << RemoveRange
4644            << FixItHint::CreateRemoval(RemoveRange)
4645            << FixItHint::CreateInsertion(InsertLoc, "<>");
4646        }
4647      }
4648    }
4649    else {
4650      // All template param lists were matched against the scope specifier:
4651      // this is NOT (an explicit specialization of) a template.
4652      if (TemplateParamLists.size() > 0)
4653        // For source fidelity, store all the template param lists.
4654        NewFD->setTemplateParameterListsInfo(Context,
4655                                             TemplateParamLists.size(),
4656                                             TemplateParamLists.release());
4657    }
4658
4659    if (Invalid) {
4660      NewFD->setInvalidDecl();
4661      if (FunctionTemplate)
4662        FunctionTemplate->setInvalidDecl();
4663    }
4664
4665    // C++ [dcl.fct.spec]p5:
4666    //   The virtual specifier shall only be used in declarations of
4667    //   nonstatic class member functions that appear within a
4668    //   member-specification of a class declaration; see 10.3.
4669    //
4670    if (isVirtual && !NewFD->isInvalidDecl()) {
4671      if (!isVirtualOkay) {
4672        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4673             diag::err_virtual_non_function);
4674      } else if (!CurContext->isRecord()) {
4675        // 'virtual' was specified outside of the class.
4676        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4677             diag::err_virtual_out_of_class)
4678          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4679      } else if (NewFD->getDescribedFunctionTemplate()) {
4680        // C++ [temp.mem]p3:
4681        //  A member function template shall not be virtual.
4682        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4683             diag::err_virtual_member_function_template)
4684          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4685      } else {
4686        // Okay: Add virtual to the method.
4687        NewFD->setVirtualAsWritten(true);
4688      }
4689    }
4690
4691    // C++ [dcl.fct.spec]p3:
4692    //  The inline specifier shall not appear on a block scope function declaration.
4693    if (isInline && !NewFD->isInvalidDecl()) {
4694      if (CurContext->isFunctionOrMethod()) {
4695        // 'inline' is not allowed on block scope function declaration.
4696        Diag(D.getDeclSpec().getInlineSpecLoc(),
4697             diag::err_inline_declaration_block_scope) << Name
4698          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4699      }
4700    }
4701
4702    // C++ [dcl.fct.spec]p6:
4703    //  The explicit specifier shall be used only in the declaration of a
4704    //  constructor or conversion function within its class definition; see 12.3.1
4705    //  and 12.3.2.
4706    if (isExplicit && !NewFD->isInvalidDecl()) {
4707      if (!CurContext->isRecord()) {
4708        // 'explicit' was specified outside of the class.
4709        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4710             diag::err_explicit_out_of_class)
4711          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4712      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4713                 !isa<CXXConversionDecl>(NewFD)) {
4714        // 'explicit' was specified on a function that wasn't a constructor
4715        // or conversion function.
4716        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4717             diag::err_explicit_non_ctor_or_conv_function)
4718          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4719      }
4720    }
4721
4722    if (isConstexpr) {
4723      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4724      // are implicitly inline.
4725      NewFD->setImplicitlyInline();
4726
4727      // FIXME: If this is a redeclaration, check the original declaration was
4728      // marked constepr.
4729
4730      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4731      // be either constructors or to return a literal type. Therefore,
4732      // destructors cannot be declared constexpr.
4733      if (isa<CXXDestructorDecl>(NewFD))
4734        Diag(D.getDeclSpec().getConstexprSpecLoc(),
4735             diag::err_constexpr_dtor);
4736    }
4737
4738    // If __module_private__ was specified, mark the function accordingly.
4739    if (D.getDeclSpec().isModulePrivateSpecified()) {
4740      if (isFunctionTemplateSpecialization) {
4741        SourceLocation ModulePrivateLoc
4742          = D.getDeclSpec().getModulePrivateSpecLoc();
4743        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4744          << 0
4745          << FixItHint::CreateRemoval(ModulePrivateLoc);
4746      } else {
4747        NewFD->setModulePrivate();
4748        if (FunctionTemplate)
4749          FunctionTemplate->setModulePrivate();
4750      }
4751    }
4752
4753    // Filter out previous declarations that don't match the scope.
4754    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4755                         isExplicitSpecialization ||
4756                         isFunctionTemplateSpecialization);
4757
4758    if (isFriend) {
4759      // For now, claim that the objects have no previous declaration.
4760      if (FunctionTemplate) {
4761        FunctionTemplate->setObjectOfFriendDecl(false);
4762        FunctionTemplate->setAccess(AS_public);
4763      }
4764      NewFD->setObjectOfFriendDecl(false);
4765      NewFD->setAccess(AS_public);
4766    }
4767
4768    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4769      // A method is implicitly inline if it's defined in its class
4770      // definition.
4771      NewFD->setImplicitlyInline();
4772    }
4773
4774    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4775        !CurContext->isRecord()) {
4776      // C++ [class.static]p1:
4777      //   A data or function member of a class may be declared static
4778      //   in a class definition, in which case it is a static member of
4779      //   the class.
4780
4781      // Complain about the 'static' specifier if it's on an out-of-line
4782      // member function definition.
4783      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4784           diag::err_static_out_of_line)
4785        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4786    }
4787  }
4788
4789  // Handle GNU asm-label extension (encoded as an attribute).
4790  if (Expr *E = (Expr*) D.getAsmLabel()) {
4791    // The parser guarantees this is a string.
4792    StringLiteral *SE = cast<StringLiteral>(E);
4793    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4794                                                SE->getString()));
4795  }
4796
4797  // Copy the parameter declarations from the declarator D to the function
4798  // declaration NewFD, if they are available.  First scavenge them into Params.
4799  SmallVector<ParmVarDecl*, 16> Params;
4800  if (D.isFunctionDeclarator()) {
4801    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4802
4803    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4804    // function that takes no arguments, not a function that takes a
4805    // single void argument.
4806    // We let through "const void" here because Sema::GetTypeForDeclarator
4807    // already checks for that case.
4808    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4809        FTI.ArgInfo[0].Param &&
4810        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4811      // Empty arg list, don't push any params.
4812      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4813
4814      // In C++, the empty parameter-type-list must be spelled "void"; a
4815      // typedef of void is not permitted.
4816      if (getLangOptions().CPlusPlus &&
4817          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4818        bool IsTypeAlias = false;
4819        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4820          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4821        else if (const TemplateSpecializationType *TST =
4822                   Param->getType()->getAs<TemplateSpecializationType>())
4823          IsTypeAlias = TST->isTypeAlias();
4824        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4825          << IsTypeAlias;
4826      }
4827    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4828      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4829        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4830        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4831        Param->setDeclContext(NewFD);
4832        Params.push_back(Param);
4833
4834        if (Param->isInvalidDecl())
4835          NewFD->setInvalidDecl();
4836      }
4837    }
4838
4839  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4840    // When we're declaring a function with a typedef, typeof, etc as in the
4841    // following example, we'll need to synthesize (unnamed)
4842    // parameters for use in the declaration.
4843    //
4844    // @code
4845    // typedef void fn(int);
4846    // fn f;
4847    // @endcode
4848
4849    // Synthesize a parameter for each argument type.
4850    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4851         AE = FT->arg_type_end(); AI != AE; ++AI) {
4852      ParmVarDecl *Param =
4853        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4854      Param->setScopeInfo(0, Params.size());
4855      Params.push_back(Param);
4856    }
4857  } else {
4858    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4859           "Should not need args for typedef of non-prototype fn");
4860  }
4861  // Finally, we know we have the right number of parameters, install them.
4862  NewFD->setParams(Params.data(), Params.size());
4863
4864  // Process the non-inheritable attributes on this declaration.
4865  ProcessDeclAttributes(S, NewFD, D,
4866                        /*NonInheritable=*/true, /*Inheritable=*/false);
4867
4868  if (!getLangOptions().CPlusPlus) {
4869    // Perform semantic checking on the function declaration.
4870    bool isExplicitSpecialization=false;
4871    if (!NewFD->isInvalidDecl()) {
4872      if (NewFD->getResultType()->isVariablyModifiedType()) {
4873        // Functions returning a variably modified type violate C99 6.7.5.2p2
4874        // because all functions have linkage.
4875        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4876        NewFD->setInvalidDecl();
4877      } else {
4878        if (NewFD->isMain())
4879          CheckMain(NewFD, D.getDeclSpec());
4880        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4881                                 Redeclaration);
4882      }
4883    }
4884    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4885            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4886           "previous declaration set still overloaded");
4887  } else {
4888    // If the declarator is a template-id, translate the parser's template
4889    // argument list into our AST format.
4890    bool HasExplicitTemplateArgs = false;
4891    TemplateArgumentListInfo TemplateArgs;
4892    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4893      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4894      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4895      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4896      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4897                                         TemplateId->getTemplateArgs(),
4898                                         TemplateId->NumArgs);
4899      translateTemplateArguments(TemplateArgsPtr,
4900                                 TemplateArgs);
4901      TemplateArgsPtr.release();
4902
4903      HasExplicitTemplateArgs = true;
4904
4905      if (NewFD->isInvalidDecl()) {
4906        HasExplicitTemplateArgs = false;
4907      } else if (FunctionTemplate) {
4908        // Function template with explicit template arguments.
4909        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4910          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4911
4912        HasExplicitTemplateArgs = false;
4913      } else if (!isFunctionTemplateSpecialization &&
4914                 !D.getDeclSpec().isFriendSpecified()) {
4915        // We have encountered something that the user meant to be a
4916        // specialization (because it has explicitly-specified template
4917        // arguments) but that was not introduced with a "template<>" (or had
4918        // too few of them).
4919        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4920          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4921          << FixItHint::CreateInsertion(
4922                                        D.getDeclSpec().getSourceRange().getBegin(),
4923                                                  "template<> ");
4924        isFunctionTemplateSpecialization = true;
4925      } else {
4926        // "friend void foo<>(int);" is an implicit specialization decl.
4927        isFunctionTemplateSpecialization = true;
4928      }
4929    } else if (isFriend && isFunctionTemplateSpecialization) {
4930      // This combination is only possible in a recovery case;  the user
4931      // wrote something like:
4932      //   template <> friend void foo(int);
4933      // which we're recovering from as if the user had written:
4934      //   friend void foo<>(int);
4935      // Go ahead and fake up a template id.
4936      HasExplicitTemplateArgs = true;
4937        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4938      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4939    }
4940
4941    // If it's a friend (and only if it's a friend), it's possible
4942    // that either the specialized function type or the specialized
4943    // template is dependent, and therefore matching will fail.  In
4944    // this case, don't check the specialization yet.
4945    if (isFunctionTemplateSpecialization && isFriend &&
4946        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4947      assert(HasExplicitTemplateArgs &&
4948             "friend function specialization without template args");
4949      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4950                                                       Previous))
4951        NewFD->setInvalidDecl();
4952    } else if (isFunctionTemplateSpecialization) {
4953      if (CurContext->isDependentContext() && CurContext->isRecord()
4954          && !isFriend) {
4955        isDependentClassScopeExplicitSpecialization = true;
4956        Diag(NewFD->getLocation(), getLangOptions().Microsoft ?
4957          diag::ext_function_specialization_in_class :
4958          diag::err_function_specialization_in_class)
4959          << NewFD->getDeclName();
4960      } else if (CheckFunctionTemplateSpecialization(NewFD,
4961                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4962                                                     Previous))
4963        NewFD->setInvalidDecl();
4964
4965      // C++ [dcl.stc]p1:
4966      //   A storage-class-specifier shall not be specified in an explicit
4967      //   specialization (14.7.3)
4968      if (SC != SC_None) {
4969        if (SC != NewFD->getStorageClass())
4970          Diag(NewFD->getLocation(),
4971               diag::err_explicit_specialization_inconsistent_storage_class)
4972            << SC
4973            << FixItHint::CreateRemoval(
4974                                      D.getDeclSpec().getStorageClassSpecLoc());
4975
4976        else
4977          Diag(NewFD->getLocation(),
4978               diag::ext_explicit_specialization_storage_class)
4979            << FixItHint::CreateRemoval(
4980                                      D.getDeclSpec().getStorageClassSpecLoc());
4981      }
4982
4983    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4984      if (CheckMemberSpecialization(NewFD, Previous))
4985          NewFD->setInvalidDecl();
4986    }
4987
4988    // Perform semantic checking on the function declaration.
4989    if (!isDependentClassScopeExplicitSpecialization) {
4990      if (NewFD->isInvalidDecl()) {
4991        // If this is a class member, mark the class invalid immediately.
4992        // This avoids some consistency errors later.
4993        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
4994          methodDecl->getParent()->setInvalidDecl();
4995      } else {
4996        if (NewFD->isMain())
4997          CheckMain(NewFD, D.getDeclSpec());
4998        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4999                                 Redeclaration);
5000      }
5001    }
5002
5003    assert((NewFD->isInvalidDecl() || !Redeclaration ||
5004            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5005           "previous declaration set still overloaded");
5006
5007    NamedDecl *PrincipalDecl = (FunctionTemplate
5008                                ? cast<NamedDecl>(FunctionTemplate)
5009                                : NewFD);
5010
5011    if (isFriend && Redeclaration) {
5012      AccessSpecifier Access = AS_public;
5013      if (!NewFD->isInvalidDecl())
5014        Access = NewFD->getPreviousDeclaration()->getAccess();
5015
5016      NewFD->setAccess(Access);
5017      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5018
5019      PrincipalDecl->setObjectOfFriendDecl(true);
5020    }
5021
5022    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5023        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5024      PrincipalDecl->setNonMemberOperator();
5025
5026    // If we have a function template, check the template parameter
5027    // list. This will check and merge default template arguments.
5028    if (FunctionTemplate) {
5029      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5030      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5031                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5032                            D.getDeclSpec().isFriendSpecified()
5033                              ? (IsFunctionDefinition
5034                                   ? TPC_FriendFunctionTemplateDefinition
5035                                   : TPC_FriendFunctionTemplate)
5036                              : (D.getCXXScopeSpec().isSet() &&
5037                                 DC && DC->isRecord() &&
5038                                 DC->isDependentContext())
5039                                  ? TPC_ClassTemplateMember
5040                                  : TPC_FunctionTemplate);
5041    }
5042
5043    if (NewFD->isInvalidDecl()) {
5044      // Ignore all the rest of this.
5045    } else if (!Redeclaration) {
5046      // Fake up an access specifier if it's supposed to be a class member.
5047      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5048        NewFD->setAccess(AS_public);
5049
5050      // Qualified decls generally require a previous declaration.
5051      if (D.getCXXScopeSpec().isSet()) {
5052        // ...with the major exception of templated-scope or
5053        // dependent-scope friend declarations.
5054
5055        // TODO: we currently also suppress this check in dependent
5056        // contexts because (1) the parameter depth will be off when
5057        // matching friend templates and (2) we might actually be
5058        // selecting a friend based on a dependent factor.  But there
5059        // are situations where these conditions don't apply and we
5060        // can actually do this check immediately.
5061        if (isFriend &&
5062            (TemplateParamLists.size() ||
5063             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5064             CurContext->isDependentContext())) {
5065          // ignore these
5066        } else {
5067          // The user tried to provide an out-of-line definition for a
5068          // function that is a member of a class or namespace, but there
5069          // was no such member function declared (C++ [class.mfct]p2,
5070          // C++ [namespace.memdef]p2). For example:
5071          //
5072          // class X {
5073          //   void f() const;
5074          // };
5075          //
5076          // void X::f() { } // ill-formed
5077          //
5078          // Complain about this problem, and attempt to suggest close
5079          // matches (e.g., those that differ only in cv-qualifiers and
5080          // whether the parameter types are references).
5081
5082          DiagnoseInvalidRedeclaration(*this, NewFD, false);
5083        }
5084
5085        // Unqualified local friend declarations are required to resolve
5086        // to something.
5087      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5088        DiagnoseInvalidRedeclaration(*this, NewFD, true);
5089      }
5090
5091    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5092               !isFriend && !isFunctionTemplateSpecialization &&
5093               !isExplicitSpecialization) {
5094      // An out-of-line member function declaration must also be a
5095      // definition (C++ [dcl.meaning]p1).
5096      // Note that this is not the case for explicit specializations of
5097      // function templates or member functions of class templates, per
5098      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5099      // for compatibility with old SWIG code which likes to generate them.
5100      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5101        << D.getCXXScopeSpec().getRange();
5102    }
5103  }
5104
5105
5106  // Handle attributes. We need to have merged decls when handling attributes
5107  // (for example to check for conflicts, etc).
5108  // FIXME: This needs to happen before we merge declarations. Then,
5109  // let attribute merging cope with attribute conflicts.
5110  ProcessDeclAttributes(S, NewFD, D,
5111                        /*NonInheritable=*/false, /*Inheritable=*/true);
5112
5113  // attributes declared post-definition are currently ignored
5114  // FIXME: This should happen during attribute merging
5115  if (Redeclaration && Previous.isSingleResult()) {
5116    const FunctionDecl *Def;
5117    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5118    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5119      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5120      Diag(Def->getLocation(), diag::note_previous_definition);
5121    }
5122  }
5123
5124  AddKnownFunctionAttributes(NewFD);
5125
5126  if (NewFD->hasAttr<OverloadableAttr>() &&
5127      !NewFD->getType()->getAs<FunctionProtoType>()) {
5128    Diag(NewFD->getLocation(),
5129         diag::err_attribute_overloadable_no_prototype)
5130      << NewFD;
5131
5132    // Turn this into a variadic function with no parameters.
5133    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5134    FunctionProtoType::ExtProtoInfo EPI;
5135    EPI.Variadic = true;
5136    EPI.ExtInfo = FT->getExtInfo();
5137
5138    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5139    NewFD->setType(R);
5140  }
5141
5142  // If there's a #pragma GCC visibility in scope, and this isn't a class
5143  // member, set the visibility of this function.
5144  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5145    AddPushedVisibilityAttribute(NewFD);
5146
5147  // If this is a locally-scoped extern C function, update the
5148  // map of such names.
5149  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5150      && !NewFD->isInvalidDecl())
5151    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5152
5153  // Set this FunctionDecl's range up to the right paren.
5154  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5155
5156  if (getLangOptions().CPlusPlus) {
5157    if (FunctionTemplate) {
5158      if (NewFD->isInvalidDecl())
5159        FunctionTemplate->setInvalidDecl();
5160      return FunctionTemplate;
5161    }
5162  }
5163
5164  MarkUnusedFileScopedDecl(NewFD);
5165
5166  if (getLangOptions().CUDA)
5167    if (IdentifierInfo *II = NewFD->getIdentifier())
5168      if (!NewFD->isInvalidDecl() &&
5169          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5170        if (II->isStr("cudaConfigureCall")) {
5171          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5172            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5173
5174          Context.setcudaConfigureCallDecl(NewFD);
5175        }
5176      }
5177
5178  // Here we have an function template explicit specialization at class scope.
5179  // The actually specialization will be postponed to template instatiation
5180  // time via the ClassScopeFunctionSpecializationDecl node.
5181  if (isDependentClassScopeExplicitSpecialization) {
5182    ClassScopeFunctionSpecializationDecl *NewSpec =
5183                         ClassScopeFunctionSpecializationDecl::Create(
5184                                Context, CurContext,  SourceLocation(),
5185                                cast<CXXMethodDecl>(NewFD));
5186    CurContext->addDecl(NewSpec);
5187    AddToScope = false;
5188  }
5189
5190  return NewFD;
5191}
5192
5193/// \brief Perform semantic checking of a new function declaration.
5194///
5195/// Performs semantic analysis of the new function declaration
5196/// NewFD. This routine performs all semantic checking that does not
5197/// require the actual declarator involved in the declaration, and is
5198/// used both for the declaration of functions as they are parsed
5199/// (called via ActOnDeclarator) and for the declaration of functions
5200/// that have been instantiated via C++ template instantiation (called
5201/// via InstantiateDecl).
5202///
5203/// \param IsExplicitSpecialiation whether this new function declaration is
5204/// an explicit specialization of the previous declaration.
5205///
5206/// This sets NewFD->isInvalidDecl() to true if there was an error.
5207void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5208                                    LookupResult &Previous,
5209                                    bool IsExplicitSpecialization,
5210                                    bool &Redeclaration) {
5211  assert(!NewFD->getResultType()->isVariablyModifiedType()
5212         && "Variably modified return types are not handled here");
5213
5214  // Check for a previous declaration of this name.
5215  if (Previous.empty() && NewFD->isExternC()) {
5216    // Since we did not find anything by this name and we're declaring
5217    // an extern "C" function, look for a non-visible extern "C"
5218    // declaration with the same name.
5219    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5220      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5221    if (Pos != LocallyScopedExternalDecls.end())
5222      Previous.addDecl(Pos->second);
5223  }
5224
5225  // Merge or overload the declaration with an existing declaration of
5226  // the same name, if appropriate.
5227  if (!Previous.empty()) {
5228    // Determine whether NewFD is an overload of PrevDecl or
5229    // a declaration that requires merging. If it's an overload,
5230    // there's no more work to do here; we'll just add the new
5231    // function to the scope.
5232
5233    NamedDecl *OldDecl = 0;
5234    if (!AllowOverloadingOfFunction(Previous, Context)) {
5235      Redeclaration = true;
5236      OldDecl = Previous.getFoundDecl();
5237    } else {
5238      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5239                            /*NewIsUsingDecl*/ false)) {
5240      case Ovl_Match:
5241        Redeclaration = true;
5242        break;
5243
5244      case Ovl_NonFunction:
5245        Redeclaration = true;
5246        break;
5247
5248      case Ovl_Overload:
5249        Redeclaration = false;
5250        break;
5251      }
5252
5253      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5254        // If a function name is overloadable in C, then every function
5255        // with that name must be marked "overloadable".
5256        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5257          << Redeclaration << NewFD;
5258        NamedDecl *OverloadedDecl = 0;
5259        if (Redeclaration)
5260          OverloadedDecl = OldDecl;
5261        else if (!Previous.empty())
5262          OverloadedDecl = Previous.getRepresentativeDecl();
5263        if (OverloadedDecl)
5264          Diag(OverloadedDecl->getLocation(),
5265               diag::note_attribute_overloadable_prev_overload);
5266        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5267                                                        Context));
5268      }
5269    }
5270
5271    if (Redeclaration) {
5272      // NewFD and OldDecl represent declarations that need to be
5273      // merged.
5274      if (MergeFunctionDecl(NewFD, OldDecl))
5275        return NewFD->setInvalidDecl();
5276
5277      Previous.clear();
5278      Previous.addDecl(OldDecl);
5279
5280      if (FunctionTemplateDecl *OldTemplateDecl
5281                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5282        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5283        FunctionTemplateDecl *NewTemplateDecl
5284          = NewFD->getDescribedFunctionTemplate();
5285        assert(NewTemplateDecl && "Template/non-template mismatch");
5286        if (CXXMethodDecl *Method
5287              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5288          Method->setAccess(OldTemplateDecl->getAccess());
5289          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5290        }
5291
5292        // If this is an explicit specialization of a member that is a function
5293        // template, mark it as a member specialization.
5294        if (IsExplicitSpecialization &&
5295            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5296          NewTemplateDecl->setMemberSpecialization();
5297          assert(OldTemplateDecl->isMemberSpecialization());
5298        }
5299
5300        if (OldTemplateDecl->isModulePrivate())
5301          NewTemplateDecl->setModulePrivate();
5302
5303      } else {
5304        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5305          NewFD->setAccess(OldDecl->getAccess());
5306        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5307      }
5308    }
5309  }
5310
5311  // Semantic checking for this function declaration (in isolation).
5312  if (getLangOptions().CPlusPlus) {
5313    // C++-specific checks.
5314    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5315      CheckConstructor(Constructor);
5316    } else if (CXXDestructorDecl *Destructor =
5317                dyn_cast<CXXDestructorDecl>(NewFD)) {
5318      CXXRecordDecl *Record = Destructor->getParent();
5319      QualType ClassType = Context.getTypeDeclType(Record);
5320
5321      // FIXME: Shouldn't we be able to perform this check even when the class
5322      // type is dependent? Both gcc and edg can handle that.
5323      if (!ClassType->isDependentType()) {
5324        DeclarationName Name
5325          = Context.DeclarationNames.getCXXDestructorName(
5326                                        Context.getCanonicalType(ClassType));
5327        if (NewFD->getDeclName() != Name) {
5328          Diag(NewFD->getLocation(), diag::err_destructor_name);
5329          return NewFD->setInvalidDecl();
5330        }
5331      }
5332    } else if (CXXConversionDecl *Conversion
5333               = dyn_cast<CXXConversionDecl>(NewFD)) {
5334      ActOnConversionDeclarator(Conversion);
5335    }
5336
5337    // Find any virtual functions that this function overrides.
5338    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5339      if (!Method->isFunctionTemplateSpecialization() &&
5340          !Method->getDescribedFunctionTemplate()) {
5341        if (AddOverriddenMethods(Method->getParent(), Method)) {
5342          // If the function was marked as "static", we have a problem.
5343          if (NewFD->getStorageClass() == SC_Static) {
5344            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5345              << NewFD->getDeclName();
5346            for (CXXMethodDecl::method_iterator
5347                      Overridden = Method->begin_overridden_methods(),
5348                   OverriddenEnd = Method->end_overridden_methods();
5349                 Overridden != OverriddenEnd;
5350                 ++Overridden) {
5351              Diag((*Overridden)->getLocation(),
5352                   diag::note_overridden_virtual_function);
5353            }
5354          }
5355        }
5356      }
5357    }
5358
5359    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5360    if (NewFD->isOverloadedOperator() &&
5361        CheckOverloadedOperatorDeclaration(NewFD))
5362      return NewFD->setInvalidDecl();
5363
5364    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5365    if (NewFD->getLiteralIdentifier() &&
5366        CheckLiteralOperatorDeclaration(NewFD))
5367      return NewFD->setInvalidDecl();
5368
5369    // In C++, check default arguments now that we have merged decls. Unless
5370    // the lexical context is the class, because in this case this is done
5371    // during delayed parsing anyway.
5372    if (!CurContext->isRecord())
5373      CheckCXXDefaultArguments(NewFD);
5374
5375    // If this function declares a builtin function, check the type of this
5376    // declaration against the expected type for the builtin.
5377    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5378      ASTContext::GetBuiltinTypeError Error;
5379      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5380      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5381        // The type of this function differs from the type of the builtin,
5382        // so forget about the builtin entirely.
5383        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5384      }
5385    }
5386  }
5387}
5388
5389void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5390  // C++ [basic.start.main]p3:  A program that declares main to be inline
5391  //   or static is ill-formed.
5392  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5393  //   shall not appear in a declaration of main.
5394  // static main is not an error under C99, but we should warn about it.
5395  if (FD->getStorageClass() == SC_Static)
5396    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5397         ? diag::err_static_main : diag::warn_static_main)
5398      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5399  if (FD->isInlineSpecified())
5400    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5401      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5402
5403  QualType T = FD->getType();
5404  assert(T->isFunctionType() && "function decl is not of function type");
5405  const FunctionType* FT = T->getAs<FunctionType>();
5406
5407  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5408    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5409    FD->setInvalidDecl(true);
5410  }
5411
5412  // Treat protoless main() as nullary.
5413  if (isa<FunctionNoProtoType>(FT)) return;
5414
5415  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5416  unsigned nparams = FTP->getNumArgs();
5417  assert(FD->getNumParams() == nparams);
5418
5419  bool HasExtraParameters = (nparams > 3);
5420
5421  // Darwin passes an undocumented fourth argument of type char**.  If
5422  // other platforms start sprouting these, the logic below will start
5423  // getting shifty.
5424  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5425    HasExtraParameters = false;
5426
5427  if (HasExtraParameters) {
5428    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5429    FD->setInvalidDecl(true);
5430    nparams = 3;
5431  }
5432
5433  // FIXME: a lot of the following diagnostics would be improved
5434  // if we had some location information about types.
5435
5436  QualType CharPP =
5437    Context.getPointerType(Context.getPointerType(Context.CharTy));
5438  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5439
5440  for (unsigned i = 0; i < nparams; ++i) {
5441    QualType AT = FTP->getArgType(i);
5442
5443    bool mismatch = true;
5444
5445    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5446      mismatch = false;
5447    else if (Expected[i] == CharPP) {
5448      // As an extension, the following forms are okay:
5449      //   char const **
5450      //   char const * const *
5451      //   char * const *
5452
5453      QualifierCollector qs;
5454      const PointerType* PT;
5455      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5456          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5457          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5458        qs.removeConst();
5459        mismatch = !qs.empty();
5460      }
5461    }
5462
5463    if (mismatch) {
5464      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5465      // TODO: suggest replacing given type with expected type
5466      FD->setInvalidDecl(true);
5467    }
5468  }
5469
5470  if (nparams == 1 && !FD->isInvalidDecl()) {
5471    Diag(FD->getLocation(), diag::warn_main_one_arg);
5472  }
5473
5474  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5475    Diag(FD->getLocation(), diag::err_main_template_decl);
5476    FD->setInvalidDecl();
5477  }
5478}
5479
5480bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5481  // FIXME: Need strict checking.  In C89, we need to check for
5482  // any assignment, increment, decrement, function-calls, or
5483  // commas outside of a sizeof.  In C99, it's the same list,
5484  // except that the aforementioned are allowed in unevaluated
5485  // expressions.  Everything else falls under the
5486  // "may accept other forms of constant expressions" exception.
5487  // (We never end up here for C++, so the constant expression
5488  // rules there don't matter.)
5489  if (Init->isConstantInitializer(Context, false))
5490    return false;
5491  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5492    << Init->getSourceRange();
5493  return true;
5494}
5495
5496namespace {
5497  // Visits an initialization expression to see if OrigDecl is evaluated in
5498  // its own initialization and throws a warning if it does.
5499  class SelfReferenceChecker
5500      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5501    Sema &S;
5502    Decl *OrigDecl;
5503    bool isRecordType;
5504    bool isPODType;
5505
5506  public:
5507    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5508
5509    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5510                                                    S(S), OrigDecl(OrigDecl) {
5511      isPODType = false;
5512      isRecordType = false;
5513      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5514        isPODType = VD->getType().isPODType(S.Context);
5515        isRecordType = VD->getType()->isRecordType();
5516      }
5517    }
5518
5519    void VisitExpr(Expr *E) {
5520      if (isa<ObjCMessageExpr>(*E)) return;
5521      if (isRecordType) {
5522        Expr *expr = E;
5523        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5524          ValueDecl *VD = ME->getMemberDecl();
5525          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5526          expr = ME->getBase();
5527        }
5528        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5529          HandleDeclRefExpr(DRE);
5530          return;
5531        }
5532      }
5533      Inherited::VisitExpr(E);
5534    }
5535
5536    void VisitMemberExpr(MemberExpr *E) {
5537      if (E->getType()->canDecayToPointerType()) return;
5538      if (isa<FieldDecl>(E->getMemberDecl()))
5539        if (DeclRefExpr *DRE
5540              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5541          HandleDeclRefExpr(DRE);
5542          return;
5543        }
5544      Inherited::VisitMemberExpr(E);
5545    }
5546
5547    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5548      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5549          (isRecordType && E->getCastKind() == CK_NoOp)) {
5550        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5551        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5552          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5553        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5554          HandleDeclRefExpr(DRE);
5555          return;
5556        }
5557      }
5558      Inherited::VisitImplicitCastExpr(E);
5559    }
5560
5561    void VisitUnaryOperator(UnaryOperator *E) {
5562      // For POD record types, addresses of its own members are well-defined.
5563      if (isRecordType && isPODType) return;
5564      Inherited::VisitUnaryOperator(E);
5565    }
5566
5567    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5568      Decl* ReferenceDecl = DRE->getDecl();
5569      if (OrigDecl != ReferenceDecl) return;
5570      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5571                          Sema::NotForRedeclaration);
5572      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5573                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5574                              << Result.getLookupName()
5575                              << OrigDecl->getLocation()
5576                              << DRE->getSourceRange());
5577    }
5578  };
5579}
5580
5581/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5582void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5583  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5584}
5585
5586/// AddInitializerToDecl - Adds the initializer Init to the
5587/// declaration dcl. If DirectInit is true, this is C++ direct
5588/// initialization rather than copy initialization.
5589void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5590                                bool DirectInit, bool TypeMayContainAuto) {
5591  // If there is no declaration, there was an error parsing it.  Just ignore
5592  // the initializer.
5593  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5594    return;
5595
5596  // Check for self-references within variable initializers.
5597  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5598    // Variables declared within a function/method body are handled
5599    // by a dataflow analysis.
5600    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5601      CheckSelfReference(RealDecl, Init);
5602  }
5603  else {
5604    CheckSelfReference(RealDecl, Init);
5605  }
5606
5607  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5608    // With declarators parsed the way they are, the parser cannot
5609    // distinguish between a normal initializer and a pure-specifier.
5610    // Thus this grotesque test.
5611    IntegerLiteral *IL;
5612    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5613        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5614      CheckPureMethod(Method, Init->getSourceRange());
5615    else {
5616      Diag(Method->getLocation(), diag::err_member_function_initialization)
5617        << Method->getDeclName() << Init->getSourceRange();
5618      Method->setInvalidDecl();
5619    }
5620    return;
5621  }
5622
5623  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5624  if (!VDecl) {
5625    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5626    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5627    RealDecl->setInvalidDecl();
5628    return;
5629  }
5630
5631  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5632  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5633    TypeSourceInfo *DeducedType = 0;
5634    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5635      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5636        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5637        << Init->getSourceRange();
5638    if (!DeducedType) {
5639      RealDecl->setInvalidDecl();
5640      return;
5641    }
5642    VDecl->setTypeSourceInfo(DeducedType);
5643    VDecl->setType(DeducedType->getType());
5644
5645    // In ARC, infer lifetime.
5646    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5647      VDecl->setInvalidDecl();
5648
5649    // If this is a redeclaration, check that the type we just deduced matches
5650    // the previously declared type.
5651    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5652      MergeVarDeclTypes(VDecl, Old);
5653  }
5654
5655
5656  // A definition must end up with a complete type, which means it must be
5657  // complete with the restriction that an array type might be completed by the
5658  // initializer; note that later code assumes this restriction.
5659  QualType BaseDeclType = VDecl->getType();
5660  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5661    BaseDeclType = Array->getElementType();
5662  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5663                          diag::err_typecheck_decl_incomplete_type)) {
5664    RealDecl->setInvalidDecl();
5665    return;
5666  }
5667
5668  // The variable can not have an abstract class type.
5669  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5670                             diag::err_abstract_type_in_decl,
5671                             AbstractVariableType))
5672    VDecl->setInvalidDecl();
5673
5674  const VarDecl *Def;
5675  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5676    Diag(VDecl->getLocation(), diag::err_redefinition)
5677      << VDecl->getDeclName();
5678    Diag(Def->getLocation(), diag::note_previous_definition);
5679    VDecl->setInvalidDecl();
5680    return;
5681  }
5682
5683  const VarDecl* PrevInit = 0;
5684  if (getLangOptions().CPlusPlus) {
5685    // C++ [class.static.data]p4
5686    //   If a static data member is of const integral or const
5687    //   enumeration type, its declaration in the class definition can
5688    //   specify a constant-initializer which shall be an integral
5689    //   constant expression (5.19). In that case, the member can appear
5690    //   in integral constant expressions. The member shall still be
5691    //   defined in a namespace scope if it is used in the program and the
5692    //   namespace scope definition shall not contain an initializer.
5693    //
5694    // We already performed a redefinition check above, but for static
5695    // data members we also need to check whether there was an in-class
5696    // declaration with an initializer.
5697    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5698      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5699      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5700      return;
5701    }
5702
5703    if (VDecl->hasLocalStorage())
5704      getCurFunction()->setHasBranchProtectedScope();
5705
5706    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5707      VDecl->setInvalidDecl();
5708      return;
5709    }
5710  }
5711
5712  // Capture the variable that is being initialized and the style of
5713  // initialization.
5714  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5715
5716  // FIXME: Poor source location information.
5717  InitializationKind Kind
5718    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5719                                                   Init->getLocStart(),
5720                                                   Init->getLocEnd())
5721                : InitializationKind::CreateCopy(VDecl->getLocation(),
5722                                                 Init->getLocStart());
5723
5724  // Get the decls type and save a reference for later, since
5725  // CheckInitializerTypes may change it.
5726  QualType DclT = VDecl->getType(), SavT = DclT;
5727  if (VDecl->isLocalVarDecl()) {
5728    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5729      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5730      VDecl->setInvalidDecl();
5731    } else if (!VDecl->isInvalidDecl()) {
5732      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5733      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5734                                                MultiExprArg(*this, &Init, 1),
5735                                                &DclT);
5736      if (Result.isInvalid()) {
5737        VDecl->setInvalidDecl();
5738        return;
5739      }
5740
5741      Init = Result.takeAs<Expr>();
5742
5743      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5744      // Don't check invalid declarations to avoid emitting useless diagnostics.
5745      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5746        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5747          CheckForConstantInitializer(Init, DclT);
5748      }
5749    }
5750  } else if (VDecl->isStaticDataMember() &&
5751             VDecl->getLexicalDeclContext()->isRecord()) {
5752    // This is an in-class initialization for a static data member, e.g.,
5753    //
5754    // struct S {
5755    //   static const int value = 17;
5756    // };
5757
5758    // Try to perform the initialization regardless.
5759    if (!VDecl->isInvalidDecl()) {
5760      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5761      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5762                                          MultiExprArg(*this, &Init, 1),
5763                                          &DclT);
5764      if (Result.isInvalid()) {
5765        VDecl->setInvalidDecl();
5766        return;
5767      }
5768
5769      Init = Result.takeAs<Expr>();
5770    }
5771
5772    // C++ [class.mem]p4:
5773    //   A member-declarator can contain a constant-initializer only
5774    //   if it declares a static member (9.4) of const integral or
5775    //   const enumeration type, see 9.4.2.
5776    QualType T = VDecl->getType();
5777
5778    // Do nothing on dependent types.
5779    if (T->isDependentType()) {
5780
5781    // Require constness.
5782    } else if (!T.isConstQualified()) {
5783      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5784        << Init->getSourceRange();
5785      VDecl->setInvalidDecl();
5786
5787    // We allow integer constant expressions in all cases.
5788    } else if (T->isIntegralOrEnumerationType()) {
5789      // Check whether the expression is a constant expression.
5790      SourceLocation Loc;
5791      if (Init->isValueDependent())
5792        ; // Nothing to check.
5793      else if (Init->isIntegerConstantExpr(Context, &Loc))
5794        ; // Ok, it's an ICE!
5795      else if (Init->isEvaluatable(Context)) {
5796        // If we can constant fold the initializer through heroics, accept it,
5797        // but report this as a use of an extension for -pedantic.
5798        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5799          << Init->getSourceRange();
5800      } else {
5801        // Otherwise, this is some crazy unknown case.  Report the issue at the
5802        // location provided by the isIntegerConstantExpr failed check.
5803        Diag(Loc, diag::err_in_class_initializer_non_constant)
5804          << Init->getSourceRange();
5805        VDecl->setInvalidDecl();
5806      }
5807
5808    // We allow floating-point constants as an extension in C++03, and
5809    // C++0x has far more complicated rules that we don't really
5810    // implement fully.
5811    } else {
5812      bool Allowed = false;
5813      if (getLangOptions().CPlusPlus0x) {
5814        Allowed = T->isLiteralType();
5815      } else if (T->isFloatingType()) { // also permits complex, which is ok
5816        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5817          << T << Init->getSourceRange();
5818        Allowed = true;
5819      }
5820
5821      if (!Allowed) {
5822        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5823          << T << Init->getSourceRange();
5824        VDecl->setInvalidDecl();
5825
5826      // TODO: there are probably expressions that pass here that shouldn't.
5827      } else if (!Init->isValueDependent() &&
5828                 !Init->isConstantInitializer(Context, false)) {
5829        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5830          << Init->getSourceRange();
5831        VDecl->setInvalidDecl();
5832      }
5833    }
5834  } else if (VDecl->isFileVarDecl()) {
5835    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5836        (!getLangOptions().CPlusPlus ||
5837         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5838      Diag(VDecl->getLocation(), diag::warn_extern_init);
5839    if (!VDecl->isInvalidDecl()) {
5840      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5841      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5842                                                MultiExprArg(*this, &Init, 1),
5843                                                &DclT);
5844      if (Result.isInvalid()) {
5845        VDecl->setInvalidDecl();
5846        return;
5847      }
5848
5849      Init = Result.takeAs<Expr>();
5850    }
5851
5852    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5853    // Don't check invalid declarations to avoid emitting useless diagnostics.
5854    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5855      // C99 6.7.8p4. All file scoped initializers need to be constant.
5856      CheckForConstantInitializer(Init, DclT);
5857    }
5858  }
5859  // If the type changed, it means we had an incomplete type that was
5860  // completed by the initializer. For example:
5861  //   int ary[] = { 1, 3, 5 };
5862  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5863  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5864    VDecl->setType(DclT);
5865    Init->setType(DclT);
5866  }
5867
5868  // Check any implicit conversions within the expression.
5869  CheckImplicitConversions(Init, VDecl->getLocation());
5870
5871  if (!VDecl->isInvalidDecl())
5872    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5873
5874  Init = MaybeCreateExprWithCleanups(Init);
5875  // Attach the initializer to the decl.
5876  VDecl->setInit(Init);
5877
5878  CheckCompleteVariableDeclaration(VDecl);
5879}
5880
5881/// ActOnInitializerError - Given that there was an error parsing an
5882/// initializer for the given declaration, try to return to some form
5883/// of sanity.
5884void Sema::ActOnInitializerError(Decl *D) {
5885  // Our main concern here is re-establishing invariants like "a
5886  // variable's type is either dependent or complete".
5887  if (!D || D->isInvalidDecl()) return;
5888
5889  VarDecl *VD = dyn_cast<VarDecl>(D);
5890  if (!VD) return;
5891
5892  // Auto types are meaningless if we can't make sense of the initializer.
5893  if (ParsingInitForAutoVars.count(D)) {
5894    D->setInvalidDecl();
5895    return;
5896  }
5897
5898  QualType Ty = VD->getType();
5899  if (Ty->isDependentType()) return;
5900
5901  // Require a complete type.
5902  if (RequireCompleteType(VD->getLocation(),
5903                          Context.getBaseElementType(Ty),
5904                          diag::err_typecheck_decl_incomplete_type)) {
5905    VD->setInvalidDecl();
5906    return;
5907  }
5908
5909  // Require an abstract type.
5910  if (RequireNonAbstractType(VD->getLocation(), Ty,
5911                             diag::err_abstract_type_in_decl,
5912                             AbstractVariableType)) {
5913    VD->setInvalidDecl();
5914    return;
5915  }
5916
5917  // Don't bother complaining about constructors or destructors,
5918  // though.
5919}
5920
5921void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5922                                  bool TypeMayContainAuto) {
5923  // If there is no declaration, there was an error parsing it. Just ignore it.
5924  if (RealDecl == 0)
5925    return;
5926
5927  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5928    QualType Type = Var->getType();
5929
5930    // C++0x [dcl.spec.auto]p3
5931    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5932      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5933        << Var->getDeclName() << Type;
5934      Var->setInvalidDecl();
5935      return;
5936    }
5937
5938    switch (Var->isThisDeclarationADefinition()) {
5939    case VarDecl::Definition:
5940      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5941        break;
5942
5943      // We have an out-of-line definition of a static data member
5944      // that has an in-class initializer, so we type-check this like
5945      // a declaration.
5946      //
5947      // Fall through
5948
5949    case VarDecl::DeclarationOnly:
5950      // It's only a declaration.
5951
5952      // Block scope. C99 6.7p7: If an identifier for an object is
5953      // declared with no linkage (C99 6.2.2p6), the type for the
5954      // object shall be complete.
5955      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5956          !Var->getLinkage() && !Var->isInvalidDecl() &&
5957          RequireCompleteType(Var->getLocation(), Type,
5958                              diag::err_typecheck_decl_incomplete_type))
5959        Var->setInvalidDecl();
5960
5961      // Make sure that the type is not abstract.
5962      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5963          RequireNonAbstractType(Var->getLocation(), Type,
5964                                 diag::err_abstract_type_in_decl,
5965                                 AbstractVariableType))
5966        Var->setInvalidDecl();
5967      return;
5968
5969    case VarDecl::TentativeDefinition:
5970      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5971      // object that has file scope without an initializer, and without a
5972      // storage-class specifier or with the storage-class specifier "static",
5973      // constitutes a tentative definition. Note: A tentative definition with
5974      // external linkage is valid (C99 6.2.2p5).
5975      if (!Var->isInvalidDecl()) {
5976        if (const IncompleteArrayType *ArrayT
5977                                    = Context.getAsIncompleteArrayType(Type)) {
5978          if (RequireCompleteType(Var->getLocation(),
5979                                  ArrayT->getElementType(),
5980                                  diag::err_illegal_decl_array_incomplete_type))
5981            Var->setInvalidDecl();
5982        } else if (Var->getStorageClass() == SC_Static) {
5983          // C99 6.9.2p3: If the declaration of an identifier for an object is
5984          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5985          // declared type shall not be an incomplete type.
5986          // NOTE: code such as the following
5987          //     static struct s;
5988          //     struct s { int a; };
5989          // is accepted by gcc. Hence here we issue a warning instead of
5990          // an error and we do not invalidate the static declaration.
5991          // NOTE: to avoid multiple warnings, only check the first declaration.
5992          if (Var->getPreviousDeclaration() == 0)
5993            RequireCompleteType(Var->getLocation(), Type,
5994                                diag::ext_typecheck_decl_incomplete_type);
5995        }
5996      }
5997
5998      // Record the tentative definition; we're done.
5999      if (!Var->isInvalidDecl())
6000        TentativeDefinitions.push_back(Var);
6001      return;
6002    }
6003
6004    // Provide a specific diagnostic for uninitialized variable
6005    // definitions with incomplete array type.
6006    if (Type->isIncompleteArrayType()) {
6007      Diag(Var->getLocation(),
6008           diag::err_typecheck_incomplete_array_needs_initializer);
6009      Var->setInvalidDecl();
6010      return;
6011    }
6012
6013    // Provide a specific diagnostic for uninitialized variable
6014    // definitions with reference type.
6015    if (Type->isReferenceType()) {
6016      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6017        << Var->getDeclName()
6018        << SourceRange(Var->getLocation(), Var->getLocation());
6019      Var->setInvalidDecl();
6020      return;
6021    }
6022
6023    // Do not attempt to type-check the default initializer for a
6024    // variable with dependent type.
6025    if (Type->isDependentType())
6026      return;
6027
6028    if (Var->isInvalidDecl())
6029      return;
6030
6031    if (RequireCompleteType(Var->getLocation(),
6032                            Context.getBaseElementType(Type),
6033                            diag::err_typecheck_decl_incomplete_type)) {
6034      Var->setInvalidDecl();
6035      return;
6036    }
6037
6038    // The variable can not have an abstract class type.
6039    if (RequireNonAbstractType(Var->getLocation(), Type,
6040                               diag::err_abstract_type_in_decl,
6041                               AbstractVariableType)) {
6042      Var->setInvalidDecl();
6043      return;
6044    }
6045
6046    // Check for jumps past the implicit initializer.  C++0x
6047    // clarifies that this applies to a "variable with automatic
6048    // storage duration", not a "local variable".
6049    // C++0x [stmt.dcl]p3
6050    //   A program that jumps from a point where a variable with automatic
6051    //   storage duration is not in scope to a point where it is in scope is
6052    //   ill-formed unless the variable has scalar type, class type with a
6053    //   trivial default constructor and a trivial destructor, a cv-qualified
6054    //   version of one of these types, or an array of one of the preceding
6055    //   types and is declared without an initializer.
6056    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6057      if (const RecordType *Record
6058            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6059        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6060        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6061            (getLangOptions().CPlusPlus0x &&
6062             (!CXXRecord->hasTrivialDefaultConstructor() ||
6063              !CXXRecord->hasTrivialDestructor())))
6064          getCurFunction()->setHasBranchProtectedScope();
6065      }
6066    }
6067
6068    // C++03 [dcl.init]p9:
6069    //   If no initializer is specified for an object, and the
6070    //   object is of (possibly cv-qualified) non-POD class type (or
6071    //   array thereof), the object shall be default-initialized; if
6072    //   the object is of const-qualified type, the underlying class
6073    //   type shall have a user-declared default
6074    //   constructor. Otherwise, if no initializer is specified for
6075    //   a non- static object, the object and its subobjects, if
6076    //   any, have an indeterminate initial value); if the object
6077    //   or any of its subobjects are of const-qualified type, the
6078    //   program is ill-formed.
6079    // C++0x [dcl.init]p11:
6080    //   If no initializer is specified for an object, the object is
6081    //   default-initialized; [...].
6082    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6083    InitializationKind Kind
6084      = InitializationKind::CreateDefault(Var->getLocation());
6085
6086    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6087    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6088                                      MultiExprArg(*this, 0, 0));
6089    if (Init.isInvalid())
6090      Var->setInvalidDecl();
6091    else if (Init.get())
6092      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6093
6094    CheckCompleteVariableDeclaration(Var);
6095  }
6096}
6097
6098void Sema::ActOnCXXForRangeDecl(Decl *D) {
6099  VarDecl *VD = dyn_cast<VarDecl>(D);
6100  if (!VD) {
6101    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6102    D->setInvalidDecl();
6103    return;
6104  }
6105
6106  VD->setCXXForRangeDecl(true);
6107
6108  // for-range-declaration cannot be given a storage class specifier.
6109  int Error = -1;
6110  switch (VD->getStorageClassAsWritten()) {
6111  case SC_None:
6112    break;
6113  case SC_Extern:
6114    Error = 0;
6115    break;
6116  case SC_Static:
6117    Error = 1;
6118    break;
6119  case SC_PrivateExtern:
6120    Error = 2;
6121    break;
6122  case SC_Auto:
6123    Error = 3;
6124    break;
6125  case SC_Register:
6126    Error = 4;
6127    break;
6128  }
6129  // FIXME: constexpr isn't allowed here.
6130  //if (DS.isConstexprSpecified())
6131  //  Error = 5;
6132  if (Error != -1) {
6133    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6134      << VD->getDeclName() << Error;
6135    D->setInvalidDecl();
6136  }
6137}
6138
6139void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6140  if (var->isInvalidDecl()) return;
6141
6142  // In ARC, don't allow jumps past the implicit initialization of a
6143  // local retaining variable.
6144  if (getLangOptions().ObjCAutoRefCount &&
6145      var->hasLocalStorage()) {
6146    switch (var->getType().getObjCLifetime()) {
6147    case Qualifiers::OCL_None:
6148    case Qualifiers::OCL_ExplicitNone:
6149    case Qualifiers::OCL_Autoreleasing:
6150      break;
6151
6152    case Qualifiers::OCL_Weak:
6153    case Qualifiers::OCL_Strong:
6154      getCurFunction()->setHasBranchProtectedScope();
6155      break;
6156    }
6157  }
6158
6159  // All the following checks are C++ only.
6160  if (!getLangOptions().CPlusPlus) return;
6161
6162  QualType baseType = Context.getBaseElementType(var->getType());
6163  if (baseType->isDependentType()) return;
6164
6165  // __block variables might require us to capture a copy-initializer.
6166  if (var->hasAttr<BlocksAttr>()) {
6167    // It's currently invalid to ever have a __block variable with an
6168    // array type; should we diagnose that here?
6169
6170    // Regardless, we don't want to ignore array nesting when
6171    // constructing this copy.
6172    QualType type = var->getType();
6173
6174    if (type->isStructureOrClassType()) {
6175      SourceLocation poi = var->getLocation();
6176      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6177      ExprResult result =
6178        PerformCopyInitialization(
6179                        InitializedEntity::InitializeBlock(poi, type, false),
6180                                  poi, Owned(varRef));
6181      if (!result.isInvalid()) {
6182        result = MaybeCreateExprWithCleanups(result);
6183        Expr *init = result.takeAs<Expr>();
6184        Context.setBlockVarCopyInits(var, init);
6185      }
6186    }
6187  }
6188
6189  // Check for global constructors.
6190  if (!var->getDeclContext()->isDependentContext() &&
6191      var->hasGlobalStorage() &&
6192      !var->isStaticLocal() &&
6193      var->getInit() &&
6194      !var->getInit()->isConstantInitializer(Context,
6195                                             baseType->isReferenceType()))
6196    Diag(var->getLocation(), diag::warn_global_constructor)
6197      << var->getInit()->getSourceRange();
6198
6199  // Require the destructor.
6200  if (const RecordType *recordType = baseType->getAs<RecordType>())
6201    FinalizeVarWithDestructor(var, recordType);
6202}
6203
6204/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6205/// any semantic actions necessary after any initializer has been attached.
6206void
6207Sema::FinalizeDeclaration(Decl *ThisDecl) {
6208  // Note that we are no longer parsing the initializer for this declaration.
6209  ParsingInitForAutoVars.erase(ThisDecl);
6210}
6211
6212Sema::DeclGroupPtrTy
6213Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6214                              Decl **Group, unsigned NumDecls) {
6215  SmallVector<Decl*, 8> Decls;
6216
6217  if (DS.isTypeSpecOwned())
6218    Decls.push_back(DS.getRepAsDecl());
6219
6220  for (unsigned i = 0; i != NumDecls; ++i)
6221    if (Decl *D = Group[i])
6222      Decls.push_back(D);
6223
6224  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6225                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6226}
6227
6228/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6229/// group, performing any necessary semantic checking.
6230Sema::DeclGroupPtrTy
6231Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6232                           bool TypeMayContainAuto) {
6233  // C++0x [dcl.spec.auto]p7:
6234  //   If the type deduced for the template parameter U is not the same in each
6235  //   deduction, the program is ill-formed.
6236  // FIXME: When initializer-list support is added, a distinction is needed
6237  // between the deduced type U and the deduced type which 'auto' stands for.
6238  //   auto a = 0, b = { 1, 2, 3 };
6239  // is legal because the deduced type U is 'int' in both cases.
6240  if (TypeMayContainAuto && NumDecls > 1) {
6241    QualType Deduced;
6242    CanQualType DeducedCanon;
6243    VarDecl *DeducedDecl = 0;
6244    for (unsigned i = 0; i != NumDecls; ++i) {
6245      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6246        AutoType *AT = D->getType()->getContainedAutoType();
6247        // Don't reissue diagnostics when instantiating a template.
6248        if (AT && D->isInvalidDecl())
6249          break;
6250        if (AT && AT->isDeduced()) {
6251          QualType U = AT->getDeducedType();
6252          CanQualType UCanon = Context.getCanonicalType(U);
6253          if (Deduced.isNull()) {
6254            Deduced = U;
6255            DeducedCanon = UCanon;
6256            DeducedDecl = D;
6257          } else if (DeducedCanon != UCanon) {
6258            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6259                 diag::err_auto_different_deductions)
6260              << Deduced << DeducedDecl->getDeclName()
6261              << U << D->getDeclName()
6262              << DeducedDecl->getInit()->getSourceRange()
6263              << D->getInit()->getSourceRange();
6264            D->setInvalidDecl();
6265            break;
6266          }
6267        }
6268      }
6269    }
6270  }
6271
6272  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6273}
6274
6275
6276/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6277/// to introduce parameters into function prototype scope.
6278Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6279  const DeclSpec &DS = D.getDeclSpec();
6280
6281  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6282  VarDecl::StorageClass StorageClass = SC_None;
6283  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6284  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6285    StorageClass = SC_Register;
6286    StorageClassAsWritten = SC_Register;
6287  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6288    Diag(DS.getStorageClassSpecLoc(),
6289         diag::err_invalid_storage_class_in_func_decl);
6290    D.getMutableDeclSpec().ClearStorageClassSpecs();
6291  }
6292
6293  if (D.getDeclSpec().isThreadSpecified())
6294    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6295  if (D.getDeclSpec().isConstexprSpecified())
6296    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6297      << 0;
6298
6299  DiagnoseFunctionSpecifiers(D);
6300
6301  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6302  QualType parmDeclType = TInfo->getType();
6303
6304  if (getLangOptions().CPlusPlus) {
6305    // Check that there are no default arguments inside the type of this
6306    // parameter.
6307    CheckExtraCXXDefaultArguments(D);
6308
6309    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6310    if (D.getCXXScopeSpec().isSet()) {
6311      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6312        << D.getCXXScopeSpec().getRange();
6313      D.getCXXScopeSpec().clear();
6314    }
6315  }
6316
6317  // Ensure we have a valid name
6318  IdentifierInfo *II = 0;
6319  if (D.hasName()) {
6320    II = D.getIdentifier();
6321    if (!II) {
6322      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6323        << GetNameForDeclarator(D).getName().getAsString();
6324      D.setInvalidType(true);
6325    }
6326  }
6327
6328  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6329  if (II) {
6330    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6331                   ForRedeclaration);
6332    LookupName(R, S);
6333    if (R.isSingleResult()) {
6334      NamedDecl *PrevDecl = R.getFoundDecl();
6335      if (PrevDecl->isTemplateParameter()) {
6336        // Maybe we will complain about the shadowed template parameter.
6337        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6338        // Just pretend that we didn't see the previous declaration.
6339        PrevDecl = 0;
6340      } else if (S->isDeclScope(PrevDecl)) {
6341        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6342        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6343
6344        // Recover by removing the name
6345        II = 0;
6346        D.SetIdentifier(0, D.getIdentifierLoc());
6347        D.setInvalidType(true);
6348      }
6349    }
6350  }
6351
6352  // Temporarily put parameter variables in the translation unit, not
6353  // the enclosing context.  This prevents them from accidentally
6354  // looking like class members in C++.
6355  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6356                                    D.getSourceRange().getBegin(),
6357                                    D.getIdentifierLoc(), II,
6358                                    parmDeclType, TInfo,
6359                                    StorageClass, StorageClassAsWritten);
6360
6361  if (D.isInvalidType())
6362    New->setInvalidDecl();
6363
6364  assert(S->isFunctionPrototypeScope());
6365  assert(S->getFunctionPrototypeDepth() >= 1);
6366  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6367                    S->getNextFunctionPrototypeIndex());
6368
6369  // Add the parameter declaration into this scope.
6370  S->AddDecl(New);
6371  if (II)
6372    IdResolver.AddDecl(New);
6373
6374  ProcessDeclAttributes(S, New, D);
6375
6376  if (D.getDeclSpec().isModulePrivateSpecified())
6377    Diag(New->getLocation(), diag::err_module_private_local)
6378      << 1 << New->getDeclName()
6379      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6380      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6381
6382  if (New->hasAttr<BlocksAttr>()) {
6383    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6384  }
6385  return New;
6386}
6387
6388/// \brief Synthesizes a variable for a parameter arising from a
6389/// typedef.
6390ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6391                                              SourceLocation Loc,
6392                                              QualType T) {
6393  /* FIXME: setting StartLoc == Loc.
6394     Would it be worth to modify callers so as to provide proper source
6395     location for the unnamed parameters, embedding the parameter's type? */
6396  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6397                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6398                                           SC_None, SC_None, 0);
6399  Param->setImplicit();
6400  return Param;
6401}
6402
6403void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6404                                    ParmVarDecl * const *ParamEnd) {
6405  // Don't diagnose unused-parameter errors in template instantiations; we
6406  // will already have done so in the template itself.
6407  if (!ActiveTemplateInstantiations.empty())
6408    return;
6409
6410  for (; Param != ParamEnd; ++Param) {
6411    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6412        !(*Param)->hasAttr<UnusedAttr>()) {
6413      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6414        << (*Param)->getDeclName();
6415    }
6416  }
6417}
6418
6419void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6420                                                  ParmVarDecl * const *ParamEnd,
6421                                                  QualType ReturnTy,
6422                                                  NamedDecl *D) {
6423  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6424    return;
6425
6426  // Warn if the return value is pass-by-value and larger than the specified
6427  // threshold.
6428  if (ReturnTy.isPODType(Context)) {
6429    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6430    if (Size > LangOpts.NumLargeByValueCopy)
6431      Diag(D->getLocation(), diag::warn_return_value_size)
6432          << D->getDeclName() << Size;
6433  }
6434
6435  // Warn if any parameter is pass-by-value and larger than the specified
6436  // threshold.
6437  for (; Param != ParamEnd; ++Param) {
6438    QualType T = (*Param)->getType();
6439    if (!T.isPODType(Context))
6440      continue;
6441    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6442    if (Size > LangOpts.NumLargeByValueCopy)
6443      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6444          << (*Param)->getDeclName() << Size;
6445  }
6446}
6447
6448ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6449                                  SourceLocation NameLoc, IdentifierInfo *Name,
6450                                  QualType T, TypeSourceInfo *TSInfo,
6451                                  VarDecl::StorageClass StorageClass,
6452                                  VarDecl::StorageClass StorageClassAsWritten) {
6453  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6454  if (getLangOptions().ObjCAutoRefCount &&
6455      T.getObjCLifetime() == Qualifiers::OCL_None &&
6456      T->isObjCLifetimeType()) {
6457
6458    Qualifiers::ObjCLifetime lifetime;
6459
6460    // Special cases for arrays:
6461    //   - if it's const, use __unsafe_unretained
6462    //   - otherwise, it's an error
6463    if (T->isArrayType()) {
6464      if (!T.isConstQualified()) {
6465        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6466          << TSInfo->getTypeLoc().getSourceRange();
6467      }
6468      lifetime = Qualifiers::OCL_ExplicitNone;
6469    } else {
6470      lifetime = T->getObjCARCImplicitLifetime();
6471    }
6472    T = Context.getLifetimeQualifiedType(T, lifetime);
6473  }
6474
6475  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6476                                         Context.getAdjustedParameterType(T),
6477                                         TSInfo,
6478                                         StorageClass, StorageClassAsWritten,
6479                                         0);
6480
6481  // Parameters can not be abstract class types.
6482  // For record types, this is done by the AbstractClassUsageDiagnoser once
6483  // the class has been completely parsed.
6484  if (!CurContext->isRecord() &&
6485      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6486                             AbstractParamType))
6487    New->setInvalidDecl();
6488
6489  // Parameter declarators cannot be interface types. All ObjC objects are
6490  // passed by reference.
6491  if (T->isObjCObjectType()) {
6492    Diag(NameLoc,
6493         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6494      << FixItHint::CreateInsertion(NameLoc, "*");
6495    T = Context.getObjCObjectPointerType(T);
6496    New->setType(T);
6497  }
6498
6499  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6500  // duration shall not be qualified by an address-space qualifier."
6501  // Since all parameters have automatic store duration, they can not have
6502  // an address space.
6503  if (T.getAddressSpace() != 0) {
6504    Diag(NameLoc, diag::err_arg_with_address_space);
6505    New->setInvalidDecl();
6506  }
6507
6508  return New;
6509}
6510
6511void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6512                                           SourceLocation LocAfterDecls) {
6513  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6514
6515  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6516  // for a K&R function.
6517  if (!FTI.hasPrototype) {
6518    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6519      --i;
6520      if (FTI.ArgInfo[i].Param == 0) {
6521        llvm::SmallString<256> Code;
6522        llvm::raw_svector_ostream(Code) << "  int "
6523                                        << FTI.ArgInfo[i].Ident->getName()
6524                                        << ";\n";
6525        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6526          << FTI.ArgInfo[i].Ident
6527          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6528
6529        // Implicitly declare the argument as type 'int' for lack of a better
6530        // type.
6531        AttributeFactory attrs;
6532        DeclSpec DS(attrs);
6533        const char* PrevSpec; // unused
6534        unsigned DiagID; // unused
6535        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6536                           PrevSpec, DiagID);
6537        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6538        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6539        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6540      }
6541    }
6542  }
6543}
6544
6545Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6546                                         Declarator &D) {
6547  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6548  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6549  Scope *ParentScope = FnBodyScope->getParent();
6550
6551  Decl *DP = HandleDeclarator(ParentScope, D,
6552                              MultiTemplateParamsArg(*this),
6553                              /*IsFunctionDefinition=*/true);
6554  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6555}
6556
6557static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6558  // Don't warn about invalid declarations.
6559  if (FD->isInvalidDecl())
6560    return false;
6561
6562  // Or declarations that aren't global.
6563  if (!FD->isGlobal())
6564    return false;
6565
6566  // Don't warn about C++ member functions.
6567  if (isa<CXXMethodDecl>(FD))
6568    return false;
6569
6570  // Don't warn about 'main'.
6571  if (FD->isMain())
6572    return false;
6573
6574  // Don't warn about inline functions.
6575  if (FD->isInlined())
6576    return false;
6577
6578  // Don't warn about function templates.
6579  if (FD->getDescribedFunctionTemplate())
6580    return false;
6581
6582  // Don't warn about function template specializations.
6583  if (FD->isFunctionTemplateSpecialization())
6584    return false;
6585
6586  bool MissingPrototype = true;
6587  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6588       Prev; Prev = Prev->getPreviousDeclaration()) {
6589    // Ignore any declarations that occur in function or method
6590    // scope, because they aren't visible from the header.
6591    if (Prev->getDeclContext()->isFunctionOrMethod())
6592      continue;
6593
6594    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6595    break;
6596  }
6597
6598  return MissingPrototype;
6599}
6600
6601void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6602  // Don't complain if we're in GNU89 mode and the previous definition
6603  // was an extern inline function.
6604  const FunctionDecl *Definition;
6605  if (FD->isDefined(Definition) &&
6606      !canRedefineFunction(Definition, getLangOptions())) {
6607    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6608        Definition->getStorageClass() == SC_Extern)
6609      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6610        << FD->getDeclName() << getLangOptions().CPlusPlus;
6611    else
6612      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6613    Diag(Definition->getLocation(), diag::note_previous_definition);
6614  }
6615}
6616
6617Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6618  // Clear the last template instantiation error context.
6619  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6620
6621  if (!D)
6622    return D;
6623  FunctionDecl *FD = 0;
6624
6625  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6626    FD = FunTmpl->getTemplatedDecl();
6627  else
6628    FD = cast<FunctionDecl>(D);
6629
6630  // Enter a new function scope
6631  PushFunctionScope();
6632
6633  // See if this is a redefinition.
6634  if (!FD->isLateTemplateParsed())
6635    CheckForFunctionRedefinition(FD);
6636
6637  // Builtin functions cannot be defined.
6638  if (unsigned BuiltinID = FD->getBuiltinID()) {
6639    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6640      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6641      FD->setInvalidDecl();
6642    }
6643  }
6644
6645  // The return type of a function definition must be complete
6646  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6647  QualType ResultType = FD->getResultType();
6648  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6649      !FD->isInvalidDecl() &&
6650      RequireCompleteType(FD->getLocation(), ResultType,
6651                          diag::err_func_def_incomplete_result))
6652    FD->setInvalidDecl();
6653
6654  // GNU warning -Wmissing-prototypes:
6655  //   Warn if a global function is defined without a previous
6656  //   prototype declaration. This warning is issued even if the
6657  //   definition itself provides a prototype. The aim is to detect
6658  //   global functions that fail to be declared in header files.
6659  if (ShouldWarnAboutMissingPrototype(FD))
6660    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6661
6662  if (FnBodyScope)
6663    PushDeclContext(FnBodyScope, FD);
6664
6665  // Check the validity of our function parameters
6666  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6667                           /*CheckParameterNames=*/true);
6668
6669  // Introduce our parameters into the function scope
6670  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6671    ParmVarDecl *Param = FD->getParamDecl(p);
6672    Param->setOwningFunction(FD);
6673
6674    // If this has an identifier, add it to the scope stack.
6675    if (Param->getIdentifier() && FnBodyScope) {
6676      CheckShadow(FnBodyScope, Param);
6677
6678      PushOnScopeChains(Param, FnBodyScope);
6679    }
6680  }
6681
6682  // Checking attributes of current function definition
6683  // dllimport attribute.
6684  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6685  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6686    // dllimport attribute cannot be directly applied to definition.
6687    // Microsoft accepts dllimport for functions defined within class scope.
6688    if (!DA->isInherited() &&
6689        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6690      Diag(FD->getLocation(),
6691           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6692        << "dllimport";
6693      FD->setInvalidDecl();
6694      return FD;
6695    }
6696
6697    // Visual C++ appears to not think this is an issue, so only issue
6698    // a warning when Microsoft extensions are disabled.
6699    if (!LangOpts.Microsoft) {
6700      // If a symbol previously declared dllimport is later defined, the
6701      // attribute is ignored in subsequent references, and a warning is
6702      // emitted.
6703      Diag(FD->getLocation(),
6704           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6705        << FD->getName() << "dllimport";
6706    }
6707  }
6708  return FD;
6709}
6710
6711/// \brief Given the set of return statements within a function body,
6712/// compute the variables that are subject to the named return value
6713/// optimization.
6714///
6715/// Each of the variables that is subject to the named return value
6716/// optimization will be marked as NRVO variables in the AST, and any
6717/// return statement that has a marked NRVO variable as its NRVO candidate can
6718/// use the named return value optimization.
6719///
6720/// This function applies a very simplistic algorithm for NRVO: if every return
6721/// statement in the function has the same NRVO candidate, that candidate is
6722/// the NRVO variable.
6723///
6724/// FIXME: Employ a smarter algorithm that accounts for multiple return
6725/// statements and the lifetimes of the NRVO candidates. We should be able to
6726/// find a maximal set of NRVO variables.
6727void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6728  ReturnStmt **Returns = Scope->Returns.data();
6729
6730  const VarDecl *NRVOCandidate = 0;
6731  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6732    if (!Returns[I]->getNRVOCandidate())
6733      return;
6734
6735    if (!NRVOCandidate)
6736      NRVOCandidate = Returns[I]->getNRVOCandidate();
6737    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6738      return;
6739  }
6740
6741  if (NRVOCandidate)
6742    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6743}
6744
6745Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6746  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6747}
6748
6749Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6750                                    bool IsInstantiation) {
6751  FunctionDecl *FD = 0;
6752  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6753  if (FunTmpl)
6754    FD = FunTmpl->getTemplatedDecl();
6755  else
6756    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6757
6758  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6759  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6760
6761  if (FD) {
6762    FD->setBody(Body);
6763    if (FD->isMain()) {
6764      // C and C++ allow for main to automagically return 0.
6765      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6766      FD->setHasImplicitReturnZero(true);
6767      WP.disableCheckFallThrough();
6768    } else if (FD->hasAttr<NakedAttr>()) {
6769      // If the function is marked 'naked', don't complain about missing return
6770      // statements.
6771      WP.disableCheckFallThrough();
6772    }
6773
6774    // MSVC permits the use of pure specifier (=0) on function definition,
6775    // defined at class scope, warn about this non standard construct.
6776    if (getLangOptions().Microsoft && FD->isPure())
6777      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6778
6779    if (!FD->isInvalidDecl()) {
6780      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6781      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6782                                             FD->getResultType(), FD);
6783
6784      // If this is a constructor, we need a vtable.
6785      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6786        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6787
6788      computeNRVO(Body, getCurFunction());
6789    }
6790
6791    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6792  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6793    assert(MD == getCurMethodDecl() && "Method parsing confused");
6794    MD->setBody(Body);
6795    if (Body)
6796      MD->setEndLoc(Body->getLocEnd());
6797    if (!MD->isInvalidDecl()) {
6798      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6799      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6800                                             MD->getResultType(), MD);
6801
6802      if (Body)
6803        computeNRVO(Body, getCurFunction());
6804    }
6805    if (ObjCShouldCallSuperDealloc) {
6806      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6807      ObjCShouldCallSuperDealloc = false;
6808    }
6809    if (ObjCShouldCallSuperFinalize) {
6810      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6811      ObjCShouldCallSuperFinalize = false;
6812    }
6813  } else {
6814    return 0;
6815  }
6816
6817  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6818         "ObjC methods, which should have been handled in the block above.");
6819  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6820         "ObjC methods, which should have been handled in the block above.");
6821
6822  // Verify and clean out per-function state.
6823  if (Body) {
6824    // C++ constructors that have function-try-blocks can't have return
6825    // statements in the handlers of that block. (C++ [except.handle]p14)
6826    // Verify this.
6827    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6828      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6829
6830    // Verify that gotos and switch cases don't jump into scopes illegally.
6831    if (getCurFunction()->NeedsScopeChecking() &&
6832        !dcl->isInvalidDecl() &&
6833        !hasAnyUnrecoverableErrorsInThisFunction())
6834      DiagnoseInvalidJumps(Body);
6835
6836    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6837      if (!Destructor->getParent()->isDependentType())
6838        CheckDestructor(Destructor);
6839
6840      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6841                                             Destructor->getParent());
6842    }
6843
6844    // If any errors have occurred, clear out any temporaries that may have
6845    // been leftover. This ensures that these temporaries won't be picked up for
6846    // deletion in some later function.
6847    if (PP.getDiagnostics().hasErrorOccurred() ||
6848        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6849      ExprTemporaries.clear();
6850      ExprNeedsCleanups = false;
6851    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6852      // Since the body is valid, issue any analysis-based warnings that are
6853      // enabled.
6854      ActivePolicy = &WP;
6855    }
6856
6857    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6858    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6859  }
6860
6861  if (!IsInstantiation)
6862    PopDeclContext();
6863
6864  PopFunctionOrBlockScope(ActivePolicy, dcl);
6865
6866  // If any errors have occurred, clear out any temporaries that may have
6867  // been leftover. This ensures that these temporaries won't be picked up for
6868  // deletion in some later function.
6869  if (getDiagnostics().hasErrorOccurred()) {
6870    ExprTemporaries.clear();
6871    ExprNeedsCleanups = false;
6872  }
6873
6874  return dcl;
6875}
6876
6877
6878/// When we finish delayed parsing of an attribute, we must attach it to the
6879/// relevant Decl.
6880void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
6881                                       ParsedAttributes &Attrs) {
6882  ProcessDeclAttributeList(S, D, Attrs.getList());
6883}
6884
6885
6886/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6887/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6888NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6889                                          IdentifierInfo &II, Scope *S) {
6890  // Before we produce a declaration for an implicitly defined
6891  // function, see whether there was a locally-scoped declaration of
6892  // this name as a function or variable. If so, use that
6893  // (non-visible) declaration, and complain about it.
6894  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6895    = findLocallyScopedExternalDecl(&II);
6896  if (Pos != LocallyScopedExternalDecls.end()) {
6897    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6898    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6899    return Pos->second;
6900  }
6901
6902  // Extension in C99.  Legal in C90, but warn about it.
6903  if (II.getName().startswith("__builtin_"))
6904    Diag(Loc, diag::warn_builtin_unknown) << &II;
6905  else if (getLangOptions().C99)
6906    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6907  else
6908    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6909
6910  // Set a Declarator for the implicit definition: int foo();
6911  const char *Dummy;
6912  AttributeFactory attrFactory;
6913  DeclSpec DS(attrFactory);
6914  unsigned DiagID;
6915  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6916  (void)Error; // Silence warning.
6917  assert(!Error && "Error setting up implicit decl!");
6918  Declarator D(DS, Declarator::BlockContext);
6919  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6920                                             0, 0, true, SourceLocation(),
6921                                             SourceLocation(),
6922                                             EST_None, SourceLocation(),
6923                                             0, 0, 0, 0, Loc, Loc, D),
6924                DS.getAttributes(),
6925                SourceLocation());
6926  D.SetIdentifier(&II, Loc);
6927
6928  // Insert this function into translation-unit scope.
6929
6930  DeclContext *PrevDC = CurContext;
6931  CurContext = Context.getTranslationUnitDecl();
6932
6933  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6934  FD->setImplicit();
6935
6936  CurContext = PrevDC;
6937
6938  AddKnownFunctionAttributes(FD);
6939
6940  return FD;
6941}
6942
6943/// \brief Adds any function attributes that we know a priori based on
6944/// the declaration of this function.
6945///
6946/// These attributes can apply both to implicitly-declared builtins
6947/// (like __builtin___printf_chk) or to library-declared functions
6948/// like NSLog or printf.
6949///
6950/// We need to check for duplicate attributes both here and where user-written
6951/// attributes are applied to declarations.
6952void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6953  if (FD->isInvalidDecl())
6954    return;
6955
6956  // If this is a built-in function, map its builtin attributes to
6957  // actual attributes.
6958  if (unsigned BuiltinID = FD->getBuiltinID()) {
6959    // Handle printf-formatting attributes.
6960    unsigned FormatIdx;
6961    bool HasVAListArg;
6962    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6963      if (!FD->getAttr<FormatAttr>())
6964        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6965                                                "printf", FormatIdx+1,
6966                                               HasVAListArg ? 0 : FormatIdx+2));
6967    }
6968    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6969                                             HasVAListArg)) {
6970     if (!FD->getAttr<FormatAttr>())
6971       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6972                                              "scanf", FormatIdx+1,
6973                                              HasVAListArg ? 0 : FormatIdx+2));
6974    }
6975
6976    // Mark const if we don't care about errno and that is the only
6977    // thing preventing the function from being const. This allows
6978    // IRgen to use LLVM intrinsics for such functions.
6979    if (!getLangOptions().MathErrno &&
6980        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6981      if (!FD->getAttr<ConstAttr>())
6982        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6983    }
6984
6985    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6986      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6987    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6988      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6989  }
6990
6991  IdentifierInfo *Name = FD->getIdentifier();
6992  if (!Name)
6993    return;
6994  if ((!getLangOptions().CPlusPlus &&
6995       FD->getDeclContext()->isTranslationUnit()) ||
6996      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6997       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6998       LinkageSpecDecl::lang_c)) {
6999    // Okay: this could be a libc/libm/Objective-C function we know
7000    // about.
7001  } else
7002    return;
7003
7004  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7005    // FIXME: NSLog and NSLogv should be target specific
7006    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7007      // FIXME: We known better than our headers.
7008      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7009    } else
7010      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7011                                             "printf", 1,
7012                                             Name->isStr("NSLogv") ? 0 : 2));
7013  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7014    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7015    // target-specific builtins, perhaps?
7016    if (!FD->getAttr<FormatAttr>())
7017      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7018                                             "printf", 2,
7019                                             Name->isStr("vasprintf") ? 0 : 3));
7020  }
7021}
7022
7023TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7024                                    TypeSourceInfo *TInfo) {
7025  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7026  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7027
7028  if (!TInfo) {
7029    assert(D.isInvalidType() && "no declarator info for valid type");
7030    TInfo = Context.getTrivialTypeSourceInfo(T);
7031  }
7032
7033  // Scope manipulation handled by caller.
7034  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7035                                           D.getSourceRange().getBegin(),
7036                                           D.getIdentifierLoc(),
7037                                           D.getIdentifier(),
7038                                           TInfo);
7039
7040  // Bail out immediately if we have an invalid declaration.
7041  if (D.isInvalidType()) {
7042    NewTD->setInvalidDecl();
7043    return NewTD;
7044  }
7045
7046  if (D.getDeclSpec().isModulePrivateSpecified()) {
7047    if (CurContext->isFunctionOrMethod())
7048      Diag(NewTD->getLocation(), diag::err_module_private_local)
7049        << 2 << NewTD->getDeclName()
7050        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7051        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7052    else
7053      NewTD->setModulePrivate();
7054  }
7055
7056  // C++ [dcl.typedef]p8:
7057  //   If the typedef declaration defines an unnamed class (or
7058  //   enum), the first typedef-name declared by the declaration
7059  //   to be that class type (or enum type) is used to denote the
7060  //   class type (or enum type) for linkage purposes only.
7061  // We need to check whether the type was declared in the declaration.
7062  switch (D.getDeclSpec().getTypeSpecType()) {
7063  case TST_enum:
7064  case TST_struct:
7065  case TST_union:
7066  case TST_class: {
7067    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7068
7069    // Do nothing if the tag is not anonymous or already has an
7070    // associated typedef (from an earlier typedef in this decl group).
7071    if (tagFromDeclSpec->getIdentifier()) break;
7072    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7073
7074    // A well-formed anonymous tag must always be a TUK_Definition.
7075    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7076
7077    // The type must match the tag exactly;  no qualifiers allowed.
7078    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7079      break;
7080
7081    // Otherwise, set this is the anon-decl typedef for the tag.
7082    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7083    break;
7084  }
7085
7086  default:
7087    break;
7088  }
7089
7090  return NewTD;
7091}
7092
7093
7094/// \brief Determine whether a tag with a given kind is acceptable
7095/// as a redeclaration of the given tag declaration.
7096///
7097/// \returns true if the new tag kind is acceptable, false otherwise.
7098bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7099                                        TagTypeKind NewTag, bool isDefinition,
7100                                        SourceLocation NewTagLoc,
7101                                        const IdentifierInfo &Name) {
7102  // C++ [dcl.type.elab]p3:
7103  //   The class-key or enum keyword present in the
7104  //   elaborated-type-specifier shall agree in kind with the
7105  //   declaration to which the name in the elaborated-type-specifier
7106  //   refers. This rule also applies to the form of
7107  //   elaborated-type-specifier that declares a class-name or
7108  //   friend class since it can be construed as referring to the
7109  //   definition of the class. Thus, in any
7110  //   elaborated-type-specifier, the enum keyword shall be used to
7111  //   refer to an enumeration (7.2), the union class-key shall be
7112  //   used to refer to a union (clause 9), and either the class or
7113  //   struct class-key shall be used to refer to a class (clause 9)
7114  //   declared using the class or struct class-key.
7115  TagTypeKind OldTag = Previous->getTagKind();
7116  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7117    if (OldTag == NewTag)
7118      return true;
7119
7120  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7121      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7122    // Warn about the struct/class tag mismatch.
7123    bool isTemplate = false;
7124    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7125      isTemplate = Record->getDescribedClassTemplate();
7126
7127    if (!ActiveTemplateInstantiations.empty()) {
7128      // In a template instantiation, do not offer fix-its for tag mismatches
7129      // since they usually mess up the template instead of fixing the problem.
7130      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7131        << (NewTag == TTK_Class) << isTemplate << &Name;
7132      return true;
7133    }
7134
7135    if (isDefinition) {
7136      // On definitions, check previous tags and issue a fix-it for each
7137      // one that doesn't match the current tag.
7138      if (Previous->getDefinition()) {
7139        // Don't suggest fix-its for redefinitions.
7140        return true;
7141      }
7142
7143      bool previousMismatch = false;
7144      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7145           E(Previous->redecls_end()); I != E; ++I) {
7146        if (I->getTagKind() != NewTag) {
7147          if (!previousMismatch) {
7148            previousMismatch = true;
7149            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7150              << (NewTag == TTK_Class) << isTemplate << &Name;
7151          }
7152          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7153            << (NewTag == TTK_Class)
7154            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7155                                            NewTag == TTK_Class?
7156                                            "class" : "struct");
7157        }
7158      }
7159      return true;
7160    }
7161
7162    // Check for a previous definition.  If current tag and definition
7163    // are same type, do nothing.  If no definition, but disagree with
7164    // with previous tag type, give a warning, but no fix-it.
7165    const TagDecl *Redecl = Previous->getDefinition() ?
7166                            Previous->getDefinition() : Previous;
7167    if (Redecl->getTagKind() == NewTag) {
7168      return true;
7169    }
7170
7171    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7172      << (NewTag == TTK_Class)
7173      << isTemplate << &Name;
7174    Diag(Redecl->getLocation(), diag::note_previous_use);
7175
7176    // If there is a previous defintion, suggest a fix-it.
7177    if (Previous->getDefinition()) {
7178        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7179          << (Redecl->getTagKind() == TTK_Class)
7180          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7181                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7182    }
7183
7184    return true;
7185  }
7186  return false;
7187}
7188
7189/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7190/// former case, Name will be non-null.  In the later case, Name will be null.
7191/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7192/// reference/declaration/definition of a tag.
7193Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7194                     SourceLocation KWLoc, CXXScopeSpec &SS,
7195                     IdentifierInfo *Name, SourceLocation NameLoc,
7196                     AttributeList *Attr, AccessSpecifier AS,
7197                     SourceLocation ModulePrivateLoc,
7198                     MultiTemplateParamsArg TemplateParameterLists,
7199                     bool &OwnedDecl, bool &IsDependent,
7200                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7201                     TypeResult UnderlyingType) {
7202  // If this is not a definition, it must have a name.
7203  assert((Name != 0 || TUK == TUK_Definition) &&
7204         "Nameless record must be a definition!");
7205  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7206
7207  OwnedDecl = false;
7208  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7209
7210  // FIXME: Check explicit specializations more carefully.
7211  bool isExplicitSpecialization = false;
7212  bool Invalid = false;
7213
7214  // We only need to do this matching if we have template parameters
7215  // or a scope specifier, which also conveniently avoids this work
7216  // for non-C++ cases.
7217  if (TemplateParameterLists.size() > 0 ||
7218      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7219    if (TemplateParameterList *TemplateParams
7220          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7221                                                TemplateParameterLists.get(),
7222                                                TemplateParameterLists.size(),
7223                                                    TUK == TUK_Friend,
7224                                                    isExplicitSpecialization,
7225                                                    Invalid)) {
7226      if (TemplateParams->size() > 0) {
7227        // This is a declaration or definition of a class template (which may
7228        // be a member of another template).
7229
7230        if (Invalid)
7231          return 0;
7232
7233        OwnedDecl = false;
7234        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7235                                               SS, Name, NameLoc, Attr,
7236                                               TemplateParams, AS,
7237                                               ModulePrivateLoc,
7238                                           TemplateParameterLists.size() - 1,
7239                 (TemplateParameterList**) TemplateParameterLists.release());
7240        return Result.get();
7241      } else {
7242        // The "template<>" header is extraneous.
7243        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7244          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7245        isExplicitSpecialization = true;
7246      }
7247    }
7248  }
7249
7250  // Figure out the underlying type if this a enum declaration. We need to do
7251  // this early, because it's needed to detect if this is an incompatible
7252  // redeclaration.
7253  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7254
7255  if (Kind == TTK_Enum) {
7256    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7257      // No underlying type explicitly specified, or we failed to parse the
7258      // type, default to int.
7259      EnumUnderlying = Context.IntTy.getTypePtr();
7260    else if (UnderlyingType.get()) {
7261      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7262      // integral type; any cv-qualification is ignored.
7263      TypeSourceInfo *TI = 0;
7264      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7265      EnumUnderlying = TI;
7266
7267      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7268
7269      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7270        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7271          << T;
7272        // Recover by falling back to int.
7273        EnumUnderlying = Context.IntTy.getTypePtr();
7274      }
7275
7276      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7277                                          UPPC_FixedUnderlyingType))
7278        EnumUnderlying = Context.IntTy.getTypePtr();
7279
7280    } else if (getLangOptions().Microsoft)
7281      // Microsoft enums are always of int type.
7282      EnumUnderlying = Context.IntTy.getTypePtr();
7283  }
7284
7285  DeclContext *SearchDC = CurContext;
7286  DeclContext *DC = CurContext;
7287  bool isStdBadAlloc = false;
7288
7289  RedeclarationKind Redecl = ForRedeclaration;
7290  if (TUK == TUK_Friend || TUK == TUK_Reference)
7291    Redecl = NotForRedeclaration;
7292
7293  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7294
7295  if (Name && SS.isNotEmpty()) {
7296    // We have a nested-name tag ('struct foo::bar').
7297
7298    // Check for invalid 'foo::'.
7299    if (SS.isInvalid()) {
7300      Name = 0;
7301      goto CreateNewDecl;
7302    }
7303
7304    // If this is a friend or a reference to a class in a dependent
7305    // context, don't try to make a decl for it.
7306    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7307      DC = computeDeclContext(SS, false);
7308      if (!DC) {
7309        IsDependent = true;
7310        return 0;
7311      }
7312    } else {
7313      DC = computeDeclContext(SS, true);
7314      if (!DC) {
7315        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7316          << SS.getRange();
7317        return 0;
7318      }
7319    }
7320
7321    if (RequireCompleteDeclContext(SS, DC))
7322      return 0;
7323
7324    SearchDC = DC;
7325    // Look-up name inside 'foo::'.
7326    LookupQualifiedName(Previous, DC);
7327
7328    if (Previous.isAmbiguous())
7329      return 0;
7330
7331    if (Previous.empty()) {
7332      // Name lookup did not find anything. However, if the
7333      // nested-name-specifier refers to the current instantiation,
7334      // and that current instantiation has any dependent base
7335      // classes, we might find something at instantiation time: treat
7336      // this as a dependent elaborated-type-specifier.
7337      // But this only makes any sense for reference-like lookups.
7338      if (Previous.wasNotFoundInCurrentInstantiation() &&
7339          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7340        IsDependent = true;
7341        return 0;
7342      }
7343
7344      // A tag 'foo::bar' must already exist.
7345      Diag(NameLoc, diag::err_not_tag_in_scope)
7346        << Kind << Name << DC << SS.getRange();
7347      Name = 0;
7348      Invalid = true;
7349      goto CreateNewDecl;
7350    }
7351  } else if (Name) {
7352    // If this is a named struct, check to see if there was a previous forward
7353    // declaration or definition.
7354    // FIXME: We're looking into outer scopes here, even when we
7355    // shouldn't be. Doing so can result in ambiguities that we
7356    // shouldn't be diagnosing.
7357    LookupName(Previous, S);
7358
7359    if (Previous.isAmbiguous() &&
7360        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7361      LookupResult::Filter F = Previous.makeFilter();
7362      while (F.hasNext()) {
7363        NamedDecl *ND = F.next();
7364        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7365          F.erase();
7366      }
7367      F.done();
7368    }
7369
7370    // Note:  there used to be some attempt at recovery here.
7371    if (Previous.isAmbiguous())
7372      return 0;
7373
7374    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7375      // FIXME: This makes sure that we ignore the contexts associated
7376      // with C structs, unions, and enums when looking for a matching
7377      // tag declaration or definition. See the similar lookup tweak
7378      // in Sema::LookupName; is there a better way to deal with this?
7379      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7380        SearchDC = SearchDC->getParent();
7381    }
7382  } else if (S->isFunctionPrototypeScope()) {
7383    // If this is an enum declaration in function prototype scope, set its
7384    // initial context to the translation unit.
7385    SearchDC = Context.getTranslationUnitDecl();
7386  }
7387
7388  if (Previous.isSingleResult() &&
7389      Previous.getFoundDecl()->isTemplateParameter()) {
7390    // Maybe we will complain about the shadowed template parameter.
7391    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7392    // Just pretend that we didn't see the previous declaration.
7393    Previous.clear();
7394  }
7395
7396  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7397      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7398    // This is a declaration of or a reference to "std::bad_alloc".
7399    isStdBadAlloc = true;
7400
7401    if (Previous.empty() && StdBadAlloc) {
7402      // std::bad_alloc has been implicitly declared (but made invisible to
7403      // name lookup). Fill in this implicit declaration as the previous
7404      // declaration, so that the declarations get chained appropriately.
7405      Previous.addDecl(getStdBadAlloc());
7406    }
7407  }
7408
7409  // If we didn't find a previous declaration, and this is a reference
7410  // (or friend reference), move to the correct scope.  In C++, we
7411  // also need to do a redeclaration lookup there, just in case
7412  // there's a shadow friend decl.
7413  if (Name && Previous.empty() &&
7414      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7415    if (Invalid) goto CreateNewDecl;
7416    assert(SS.isEmpty());
7417
7418    if (TUK == TUK_Reference) {
7419      // C++ [basic.scope.pdecl]p5:
7420      //   -- for an elaborated-type-specifier of the form
7421      //
7422      //          class-key identifier
7423      //
7424      //      if the elaborated-type-specifier is used in the
7425      //      decl-specifier-seq or parameter-declaration-clause of a
7426      //      function defined in namespace scope, the identifier is
7427      //      declared as a class-name in the namespace that contains
7428      //      the declaration; otherwise, except as a friend
7429      //      declaration, the identifier is declared in the smallest
7430      //      non-class, non-function-prototype scope that contains the
7431      //      declaration.
7432      //
7433      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7434      // C structs and unions.
7435      //
7436      // It is an error in C++ to declare (rather than define) an enum
7437      // type, including via an elaborated type specifier.  We'll
7438      // diagnose that later; for now, declare the enum in the same
7439      // scope as we would have picked for any other tag type.
7440      //
7441      // GNU C also supports this behavior as part of its incomplete
7442      // enum types extension, while GNU C++ does not.
7443      //
7444      // Find the context where we'll be declaring the tag.
7445      // FIXME: We would like to maintain the current DeclContext as the
7446      // lexical context,
7447      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7448        SearchDC = SearchDC->getParent();
7449
7450      // Find the scope where we'll be declaring the tag.
7451      while (S->isClassScope() ||
7452             (getLangOptions().CPlusPlus &&
7453              S->isFunctionPrototypeScope()) ||
7454             ((S->getFlags() & Scope::DeclScope) == 0) ||
7455             (S->getEntity() &&
7456              ((DeclContext *)S->getEntity())->isTransparentContext()))
7457        S = S->getParent();
7458    } else {
7459      assert(TUK == TUK_Friend);
7460      // C++ [namespace.memdef]p3:
7461      //   If a friend declaration in a non-local class first declares a
7462      //   class or function, the friend class or function is a member of
7463      //   the innermost enclosing namespace.
7464      SearchDC = SearchDC->getEnclosingNamespaceContext();
7465    }
7466
7467    // In C++, we need to do a redeclaration lookup to properly
7468    // diagnose some problems.
7469    if (getLangOptions().CPlusPlus) {
7470      Previous.setRedeclarationKind(ForRedeclaration);
7471      LookupQualifiedName(Previous, SearchDC);
7472    }
7473  }
7474
7475  if (!Previous.empty()) {
7476    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7477
7478    // It's okay to have a tag decl in the same scope as a typedef
7479    // which hides a tag decl in the same scope.  Finding this
7480    // insanity with a redeclaration lookup can only actually happen
7481    // in C++.
7482    //
7483    // This is also okay for elaborated-type-specifiers, which is
7484    // technically forbidden by the current standard but which is
7485    // okay according to the likely resolution of an open issue;
7486    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7487    if (getLangOptions().CPlusPlus) {
7488      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7489        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7490          TagDecl *Tag = TT->getDecl();
7491          if (Tag->getDeclName() == Name &&
7492              Tag->getDeclContext()->getRedeclContext()
7493                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7494            PrevDecl = Tag;
7495            Previous.clear();
7496            Previous.addDecl(Tag);
7497            Previous.resolveKind();
7498          }
7499        }
7500      }
7501    }
7502
7503    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7504      // If this is a use of a previous tag, or if the tag is already declared
7505      // in the same scope (so that the definition/declaration completes or
7506      // rementions the tag), reuse the decl.
7507      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7508          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7509        // Make sure that this wasn't declared as an enum and now used as a
7510        // struct or something similar.
7511        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7512                                          TUK == TUK_Definition, KWLoc,
7513                                          *Name)) {
7514          bool SafeToContinue
7515            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7516               Kind != TTK_Enum);
7517          if (SafeToContinue)
7518            Diag(KWLoc, diag::err_use_with_wrong_tag)
7519              << Name
7520              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7521                                              PrevTagDecl->getKindName());
7522          else
7523            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7524          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7525
7526          if (SafeToContinue)
7527            Kind = PrevTagDecl->getTagKind();
7528          else {
7529            // Recover by making this an anonymous redefinition.
7530            Name = 0;
7531            Previous.clear();
7532            Invalid = true;
7533          }
7534        }
7535
7536        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7537          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7538
7539          // All conflicts with previous declarations are recovered by
7540          // returning the previous declaration.
7541          if (ScopedEnum != PrevEnum->isScoped()) {
7542            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7543              << PrevEnum->isScoped();
7544            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7545            return PrevTagDecl;
7546          }
7547          else if (EnumUnderlying && PrevEnum->isFixed()) {
7548            QualType T;
7549            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7550                T = TI->getType();
7551            else
7552                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7553
7554            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7555              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7556                   diag::err_enum_redeclare_type_mismatch)
7557                << T
7558                << PrevEnum->getIntegerType();
7559              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7560              return PrevTagDecl;
7561            }
7562          }
7563          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7564            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7565              << PrevEnum->isFixed();
7566            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7567            return PrevTagDecl;
7568          }
7569        }
7570
7571        if (!Invalid) {
7572          // If this is a use, just return the declaration we found.
7573
7574          // FIXME: In the future, return a variant or some other clue
7575          // for the consumer of this Decl to know it doesn't own it.
7576          // For our current ASTs this shouldn't be a problem, but will
7577          // need to be changed with DeclGroups.
7578          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7579               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7580            return PrevTagDecl;
7581
7582          // Diagnose attempts to redefine a tag.
7583          if (TUK == TUK_Definition) {
7584            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7585              // If we're defining a specialization and the previous definition
7586              // is from an implicit instantiation, don't emit an error
7587              // here; we'll catch this in the general case below.
7588              if (!isExplicitSpecialization ||
7589                  !isa<CXXRecordDecl>(Def) ||
7590                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7591                                               == TSK_ExplicitSpecialization) {
7592                Diag(NameLoc, diag::err_redefinition) << Name;
7593                Diag(Def->getLocation(), diag::note_previous_definition);
7594                // If this is a redefinition, recover by making this
7595                // struct be anonymous, which will make any later
7596                // references get the previous definition.
7597                Name = 0;
7598                Previous.clear();
7599                Invalid = true;
7600              }
7601            } else {
7602              // If the type is currently being defined, complain
7603              // about a nested redefinition.
7604              const TagType *Tag
7605                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7606              if (Tag->isBeingDefined()) {
7607                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7608                Diag(PrevTagDecl->getLocation(),
7609                     diag::note_previous_definition);
7610                Name = 0;
7611                Previous.clear();
7612                Invalid = true;
7613              }
7614            }
7615
7616            // Okay, this is definition of a previously declared or referenced
7617            // tag PrevDecl. We're going to create a new Decl for it.
7618          }
7619        }
7620        // If we get here we have (another) forward declaration or we
7621        // have a definition.  Just create a new decl.
7622
7623      } else {
7624        // If we get here, this is a definition of a new tag type in a nested
7625        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7626        // new decl/type.  We set PrevDecl to NULL so that the entities
7627        // have distinct types.
7628        Previous.clear();
7629      }
7630      // If we get here, we're going to create a new Decl. If PrevDecl
7631      // is non-NULL, it's a definition of the tag declared by
7632      // PrevDecl. If it's NULL, we have a new definition.
7633
7634
7635    // Otherwise, PrevDecl is not a tag, but was found with tag
7636    // lookup.  This is only actually possible in C++, where a few
7637    // things like templates still live in the tag namespace.
7638    } else {
7639      assert(getLangOptions().CPlusPlus);
7640
7641      // Use a better diagnostic if an elaborated-type-specifier
7642      // found the wrong kind of type on the first
7643      // (non-redeclaration) lookup.
7644      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7645          !Previous.isForRedeclaration()) {
7646        unsigned Kind = 0;
7647        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7648        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7649        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7650        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7651        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7652        Invalid = true;
7653
7654      // Otherwise, only diagnose if the declaration is in scope.
7655      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7656                                isExplicitSpecialization)) {
7657        // do nothing
7658
7659      // Diagnose implicit declarations introduced by elaborated types.
7660      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7661        unsigned Kind = 0;
7662        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7663        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7664        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7665        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7666        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7667        Invalid = true;
7668
7669      // Otherwise it's a declaration.  Call out a particularly common
7670      // case here.
7671      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7672        unsigned Kind = 0;
7673        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7674        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7675          << Name << Kind << TND->getUnderlyingType();
7676        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7677        Invalid = true;
7678
7679      // Otherwise, diagnose.
7680      } else {
7681        // The tag name clashes with something else in the target scope,
7682        // issue an error and recover by making this tag be anonymous.
7683        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7684        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7685        Name = 0;
7686        Invalid = true;
7687      }
7688
7689      // The existing declaration isn't relevant to us; we're in a
7690      // new scope, so clear out the previous declaration.
7691      Previous.clear();
7692    }
7693  }
7694
7695CreateNewDecl:
7696
7697  TagDecl *PrevDecl = 0;
7698  if (Previous.isSingleResult())
7699    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7700
7701  // If there is an identifier, use the location of the identifier as the
7702  // location of the decl, otherwise use the location of the struct/union
7703  // keyword.
7704  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7705
7706  // Otherwise, create a new declaration. If there is a previous
7707  // declaration of the same entity, the two will be linked via
7708  // PrevDecl.
7709  TagDecl *New;
7710
7711  bool IsForwardReference = false;
7712  if (Kind == TTK_Enum) {
7713    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7714    // enum X { A, B, C } D;    D should chain to X.
7715    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7716                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7717                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7718    // If this is an undefined enum, warn.
7719    if (TUK != TUK_Definition && !Invalid) {
7720      TagDecl *Def;
7721      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7722        // C++0x: 7.2p2: opaque-enum-declaration.
7723        // Conflicts are diagnosed above. Do nothing.
7724      }
7725      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7726        Diag(Loc, diag::ext_forward_ref_enum_def)
7727          << New;
7728        Diag(Def->getLocation(), diag::note_previous_definition);
7729      } else {
7730        unsigned DiagID = diag::ext_forward_ref_enum;
7731        if (getLangOptions().Microsoft)
7732          DiagID = diag::ext_ms_forward_ref_enum;
7733        else if (getLangOptions().CPlusPlus)
7734          DiagID = diag::err_forward_ref_enum;
7735        Diag(Loc, DiagID);
7736
7737        // If this is a forward-declared reference to an enumeration, make a
7738        // note of it; we won't actually be introducing the declaration into
7739        // the declaration context.
7740        if (TUK == TUK_Reference)
7741          IsForwardReference = true;
7742      }
7743    }
7744
7745    if (EnumUnderlying) {
7746      EnumDecl *ED = cast<EnumDecl>(New);
7747      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7748        ED->setIntegerTypeSourceInfo(TI);
7749      else
7750        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7751      ED->setPromotionType(ED->getIntegerType());
7752    }
7753
7754  } else {
7755    // struct/union/class
7756
7757    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7758    // struct X { int A; } D;    D should chain to X.
7759    if (getLangOptions().CPlusPlus) {
7760      // FIXME: Look for a way to use RecordDecl for simple structs.
7761      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7762                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7763
7764      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7765        StdBadAlloc = cast<CXXRecordDecl>(New);
7766    } else
7767      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7768                               cast_or_null<RecordDecl>(PrevDecl));
7769  }
7770
7771  // Maybe add qualifier info.
7772  if (SS.isNotEmpty()) {
7773    if (SS.isSet()) {
7774      New->setQualifierInfo(SS.getWithLocInContext(Context));
7775      if (TemplateParameterLists.size() > 0) {
7776        New->setTemplateParameterListsInfo(Context,
7777                                           TemplateParameterLists.size(),
7778                    (TemplateParameterList**) TemplateParameterLists.release());
7779      }
7780    }
7781    else
7782      Invalid = true;
7783  }
7784
7785  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7786    // Add alignment attributes if necessary; these attributes are checked when
7787    // the ASTContext lays out the structure.
7788    //
7789    // It is important for implementing the correct semantics that this
7790    // happen here (in act on tag decl). The #pragma pack stack is
7791    // maintained as a result of parser callbacks which can occur at
7792    // many points during the parsing of a struct declaration (because
7793    // the #pragma tokens are effectively skipped over during the
7794    // parsing of the struct).
7795    AddAlignmentAttributesForRecord(RD);
7796
7797    AddMsStructLayoutForRecord(RD);
7798  }
7799
7800  if (PrevDecl && PrevDecl->isModulePrivate())
7801    New->setModulePrivate();
7802  else if (ModulePrivateLoc.isValid()) {
7803    if (isExplicitSpecialization)
7804      Diag(New->getLocation(), diag::err_module_private_specialization)
7805        << 2
7806        << FixItHint::CreateRemoval(ModulePrivateLoc);
7807    else if (PrevDecl && !PrevDecl->isModulePrivate())
7808      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
7809    // __module_private__ does not apply to local classes. However, we only
7810    // diagnose this as an error when the declaration specifiers are
7811    // freestanding. Here, we just ignore the __module_private__.
7812    // foobar
7813    else if (!SearchDC->isFunctionOrMethod())
7814      New->setModulePrivate();
7815  }
7816
7817  // If this is a specialization of a member class (of a class template),
7818  // check the specialization.
7819  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7820    Invalid = true;
7821
7822  if (Invalid)
7823    New->setInvalidDecl();
7824
7825  if (Attr)
7826    ProcessDeclAttributeList(S, New, Attr);
7827
7828  // If we're declaring or defining a tag in function prototype scope
7829  // in C, note that this type can only be used within the function.
7830  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7831    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7832
7833  // Set the lexical context. If the tag has a C++ scope specifier, the
7834  // lexical context will be different from the semantic context.
7835  New->setLexicalDeclContext(CurContext);
7836
7837  // Mark this as a friend decl if applicable.
7838  // In Microsoft mode, a friend declaration also acts as a forward
7839  // declaration so we always pass true to setObjectOfFriendDecl to make
7840  // the tag name visible.
7841  if (TUK == TUK_Friend)
7842    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7843                               getLangOptions().Microsoft);
7844
7845  // Set the access specifier.
7846  if (!Invalid && SearchDC->isRecord())
7847    SetMemberAccessSpecifier(New, PrevDecl, AS);
7848
7849  if (TUK == TUK_Definition)
7850    New->startDefinition();
7851
7852  // If this has an identifier, add it to the scope stack.
7853  if (TUK == TUK_Friend) {
7854    // We might be replacing an existing declaration in the lookup tables;
7855    // if so, borrow its access specifier.
7856    if (PrevDecl)
7857      New->setAccess(PrevDecl->getAccess());
7858
7859    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7860    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7861    if (Name) // can be null along some error paths
7862      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7863        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7864  } else if (Name) {
7865    S = getNonFieldDeclScope(S);
7866    PushOnScopeChains(New, S, !IsForwardReference);
7867    if (IsForwardReference)
7868      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7869
7870  } else {
7871    CurContext->addDecl(New);
7872  }
7873
7874  // If this is the C FILE type, notify the AST context.
7875  if (IdentifierInfo *II = New->getIdentifier())
7876    if (!New->isInvalidDecl() &&
7877        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7878        II->isStr("FILE"))
7879      Context.setFILEDecl(New);
7880
7881  OwnedDecl = true;
7882  return New;
7883}
7884
7885void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7886  AdjustDeclIfTemplate(TagD);
7887  TagDecl *Tag = cast<TagDecl>(TagD);
7888
7889  // Enter the tag context.
7890  PushDeclContext(S, Tag);
7891}
7892
7893void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
7894  assert(isa<ObjCContainerDecl>(IDecl) &&
7895         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
7896  DeclContext *OCD = cast<DeclContext>(IDecl);
7897  assert(getContainingDC(OCD) == CurContext &&
7898      "The next DeclContext should be lexically contained in the current one.");
7899  CurContext = OCD;
7900}
7901
7902void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7903                                           SourceLocation FinalLoc,
7904                                           SourceLocation LBraceLoc) {
7905  AdjustDeclIfTemplate(TagD);
7906  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7907
7908  FieldCollector->StartClass();
7909
7910  if (!Record->getIdentifier())
7911    return;
7912
7913  if (FinalLoc.isValid())
7914    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7915
7916  // C++ [class]p2:
7917  //   [...] The class-name is also inserted into the scope of the
7918  //   class itself; this is known as the injected-class-name. For
7919  //   purposes of access checking, the injected-class-name is treated
7920  //   as if it were a public member name.
7921  CXXRecordDecl *InjectedClassName
7922    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7923                            Record->getLocStart(), Record->getLocation(),
7924                            Record->getIdentifier(),
7925                            /*PrevDecl=*/0,
7926                            /*DelayTypeCreation=*/true);
7927  Context.getTypeDeclType(InjectedClassName, Record);
7928  InjectedClassName->setImplicit();
7929  InjectedClassName->setAccess(AS_public);
7930  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7931      InjectedClassName->setDescribedClassTemplate(Template);
7932  PushOnScopeChains(InjectedClassName, S);
7933  assert(InjectedClassName->isInjectedClassName() &&
7934         "Broken injected-class-name");
7935}
7936
7937void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7938                                    SourceLocation RBraceLoc) {
7939  AdjustDeclIfTemplate(TagD);
7940  TagDecl *Tag = cast<TagDecl>(TagD);
7941  Tag->setRBraceLoc(RBraceLoc);
7942
7943  if (isa<CXXRecordDecl>(Tag))
7944    FieldCollector->FinishClass();
7945
7946  // Exit this scope of this tag's definition.
7947  PopDeclContext();
7948
7949  // Notify the consumer that we've defined a tag.
7950  Consumer.HandleTagDeclDefinition(Tag);
7951}
7952
7953void Sema::ActOnObjCContainerFinishDefinition() {
7954  // Exit this scope of this interface definition.
7955  PopDeclContext();
7956}
7957
7958void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7959  AdjustDeclIfTemplate(TagD);
7960  TagDecl *Tag = cast<TagDecl>(TagD);
7961  Tag->setInvalidDecl();
7962
7963  // We're undoing ActOnTagStartDefinition here, not
7964  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7965  // the FieldCollector.
7966
7967  PopDeclContext();
7968}
7969
7970// Note that FieldName may be null for anonymous bitfields.
7971bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7972                          QualType FieldTy, const Expr *BitWidth,
7973                          bool *ZeroWidth) {
7974  // Default to true; that shouldn't confuse checks for emptiness
7975  if (ZeroWidth)
7976    *ZeroWidth = true;
7977
7978  // C99 6.7.2.1p4 - verify the field type.
7979  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7980  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7981    // Handle incomplete types with specific error.
7982    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7983      return true;
7984    if (FieldName)
7985      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7986        << FieldName << FieldTy << BitWidth->getSourceRange();
7987    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7988      << FieldTy << BitWidth->getSourceRange();
7989  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7990                                             UPPC_BitFieldWidth))
7991    return true;
7992
7993  // If the bit-width is type- or value-dependent, don't try to check
7994  // it now.
7995  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7996    return false;
7997
7998  llvm::APSInt Value;
7999  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8000    return true;
8001
8002  if (Value != 0 && ZeroWidth)
8003    *ZeroWidth = false;
8004
8005  // Zero-width bitfield is ok for anonymous field.
8006  if (Value == 0 && FieldName)
8007    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8008
8009  if (Value.isSigned() && Value.isNegative()) {
8010    if (FieldName)
8011      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8012               << FieldName << Value.toString(10);
8013    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8014      << Value.toString(10);
8015  }
8016
8017  if (!FieldTy->isDependentType()) {
8018    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8019    if (Value.getZExtValue() > TypeSize) {
8020      if (!getLangOptions().CPlusPlus) {
8021        if (FieldName)
8022          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8023            << FieldName << (unsigned)Value.getZExtValue()
8024            << (unsigned)TypeSize;
8025
8026        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8027          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8028      }
8029
8030      if (FieldName)
8031        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8032          << FieldName << (unsigned)Value.getZExtValue()
8033          << (unsigned)TypeSize;
8034      else
8035        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8036          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8037    }
8038  }
8039
8040  return false;
8041}
8042
8043/// ActOnField - Each field of a C struct/union is passed into this in order
8044/// to create a FieldDecl object for it.
8045Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8046                       Declarator &D, Expr *BitfieldWidth) {
8047  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8048                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8049                               /*HasInit=*/false, AS_public);
8050  return Res;
8051}
8052
8053/// HandleField - Analyze a field of a C struct or a C++ data member.
8054///
8055FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8056                             SourceLocation DeclStart,
8057                             Declarator &D, Expr *BitWidth, bool HasInit,
8058                             AccessSpecifier AS) {
8059  IdentifierInfo *II = D.getIdentifier();
8060  SourceLocation Loc = DeclStart;
8061  if (II) Loc = D.getIdentifierLoc();
8062
8063  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8064  QualType T = TInfo->getType();
8065  if (getLangOptions().CPlusPlus) {
8066    CheckExtraCXXDefaultArguments(D);
8067
8068    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8069                                        UPPC_DataMemberType)) {
8070      D.setInvalidType();
8071      T = Context.IntTy;
8072      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8073    }
8074  }
8075
8076  DiagnoseFunctionSpecifiers(D);
8077
8078  if (D.getDeclSpec().isThreadSpecified())
8079    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8080  if (D.getDeclSpec().isConstexprSpecified())
8081    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8082      << 2;
8083
8084  // Check to see if this name was declared as a member previously
8085  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8086  LookupName(Previous, S);
8087  assert((Previous.empty() || Previous.isOverloadedResult() ||
8088          Previous.isSingleResult())
8089    && "Lookup of member name should be either overloaded, single or null");
8090
8091  // If the name is overloaded then get any declaration else get the single result
8092  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8093    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8094
8095  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8096    // Maybe we will complain about the shadowed template parameter.
8097    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8098    // Just pretend that we didn't see the previous declaration.
8099    PrevDecl = 0;
8100  }
8101
8102  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8103    PrevDecl = 0;
8104
8105  bool Mutable
8106    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8107  SourceLocation TSSL = D.getSourceRange().getBegin();
8108  FieldDecl *NewFD
8109    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8110                     TSSL, AS, PrevDecl, &D);
8111
8112  if (NewFD->isInvalidDecl())
8113    Record->setInvalidDecl();
8114
8115  if (D.getDeclSpec().isModulePrivateSpecified())
8116    NewFD->setModulePrivate();
8117
8118  if (NewFD->isInvalidDecl() && PrevDecl) {
8119    // Don't introduce NewFD into scope; there's already something
8120    // with the same name in the same scope.
8121  } else if (II) {
8122    PushOnScopeChains(NewFD, S);
8123  } else
8124    Record->addDecl(NewFD);
8125
8126  return NewFD;
8127}
8128
8129/// \brief Build a new FieldDecl and check its well-formedness.
8130///
8131/// This routine builds a new FieldDecl given the fields name, type,
8132/// record, etc. \p PrevDecl should refer to any previous declaration
8133/// with the same name and in the same scope as the field to be
8134/// created.
8135///
8136/// \returns a new FieldDecl.
8137///
8138/// \todo The Declarator argument is a hack. It will be removed once
8139FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8140                                TypeSourceInfo *TInfo,
8141                                RecordDecl *Record, SourceLocation Loc,
8142                                bool Mutable, Expr *BitWidth, bool HasInit,
8143                                SourceLocation TSSL,
8144                                AccessSpecifier AS, NamedDecl *PrevDecl,
8145                                Declarator *D) {
8146  IdentifierInfo *II = Name.getAsIdentifierInfo();
8147  bool InvalidDecl = false;
8148  if (D) InvalidDecl = D->isInvalidType();
8149
8150  // If we receive a broken type, recover by assuming 'int' and
8151  // marking this declaration as invalid.
8152  if (T.isNull()) {
8153    InvalidDecl = true;
8154    T = Context.IntTy;
8155  }
8156
8157  QualType EltTy = Context.getBaseElementType(T);
8158  if (!EltTy->isDependentType() &&
8159      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8160    // Fields of incomplete type force their record to be invalid.
8161    Record->setInvalidDecl();
8162    InvalidDecl = true;
8163  }
8164
8165  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8166  // than a variably modified type.
8167  if (!InvalidDecl && T->isVariablyModifiedType()) {
8168    bool SizeIsNegative;
8169    llvm::APSInt Oversized;
8170    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8171                                                           SizeIsNegative,
8172                                                           Oversized);
8173    if (!FixedTy.isNull()) {
8174      Diag(Loc, diag::warn_illegal_constant_array_size);
8175      T = FixedTy;
8176    } else {
8177      if (SizeIsNegative)
8178        Diag(Loc, diag::err_typecheck_negative_array_size);
8179      else if (Oversized.getBoolValue())
8180        Diag(Loc, diag::err_array_too_large)
8181          << Oversized.toString(10);
8182      else
8183        Diag(Loc, diag::err_typecheck_field_variable_size);
8184      InvalidDecl = true;
8185    }
8186  }
8187
8188  // Fields can not have abstract class types
8189  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8190                                             diag::err_abstract_type_in_decl,
8191                                             AbstractFieldType))
8192    InvalidDecl = true;
8193
8194  bool ZeroWidth = false;
8195  // If this is declared as a bit-field, check the bit-field.
8196  if (!InvalidDecl && BitWidth &&
8197      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8198    InvalidDecl = true;
8199    BitWidth = 0;
8200    ZeroWidth = false;
8201  }
8202
8203  // Check that 'mutable' is consistent with the type of the declaration.
8204  if (!InvalidDecl && Mutable) {
8205    unsigned DiagID = 0;
8206    if (T->isReferenceType())
8207      DiagID = diag::err_mutable_reference;
8208    else if (T.isConstQualified())
8209      DiagID = diag::err_mutable_const;
8210
8211    if (DiagID) {
8212      SourceLocation ErrLoc = Loc;
8213      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8214        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8215      Diag(ErrLoc, DiagID);
8216      Mutable = false;
8217      InvalidDecl = true;
8218    }
8219  }
8220
8221  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8222                                       BitWidth, Mutable, HasInit);
8223  if (InvalidDecl)
8224    NewFD->setInvalidDecl();
8225
8226  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8227    Diag(Loc, diag::err_duplicate_member) << II;
8228    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8229    NewFD->setInvalidDecl();
8230  }
8231
8232  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8233    if (Record->isUnion()) {
8234      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8235        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8236        if (RDecl->getDefinition()) {
8237          // C++ [class.union]p1: An object of a class with a non-trivial
8238          // constructor, a non-trivial copy constructor, a non-trivial
8239          // destructor, or a non-trivial copy assignment operator
8240          // cannot be a member of a union, nor can an array of such
8241          // objects.
8242          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8243            NewFD->setInvalidDecl();
8244        }
8245      }
8246
8247      // C++ [class.union]p1: If a union contains a member of reference type,
8248      // the program is ill-formed.
8249      if (EltTy->isReferenceType()) {
8250        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8251          << NewFD->getDeclName() << EltTy;
8252        NewFD->setInvalidDecl();
8253      }
8254    }
8255  }
8256
8257  // FIXME: We need to pass in the attributes given an AST
8258  // representation, not a parser representation.
8259  if (D)
8260    // FIXME: What to pass instead of TUScope?
8261    ProcessDeclAttributes(TUScope, NewFD, *D);
8262
8263  // In auto-retain/release, infer strong retension for fields of
8264  // retainable type.
8265  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8266    NewFD->setInvalidDecl();
8267
8268  if (T.isObjCGCWeak())
8269    Diag(Loc, diag::warn_attribute_weak_on_field);
8270
8271  NewFD->setAccess(AS);
8272  return NewFD;
8273}
8274
8275bool Sema::CheckNontrivialField(FieldDecl *FD) {
8276  assert(FD);
8277  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8278
8279  if (FD->isInvalidDecl())
8280    return true;
8281
8282  QualType EltTy = Context.getBaseElementType(FD->getType());
8283  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8284    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8285    if (RDecl->getDefinition()) {
8286      // We check for copy constructors before constructors
8287      // because otherwise we'll never get complaints about
8288      // copy constructors.
8289
8290      CXXSpecialMember member = CXXInvalid;
8291      if (!RDecl->hasTrivialCopyConstructor())
8292        member = CXXCopyConstructor;
8293      else if (!RDecl->hasTrivialDefaultConstructor())
8294        member = CXXDefaultConstructor;
8295      else if (!RDecl->hasTrivialCopyAssignment())
8296        member = CXXCopyAssignment;
8297      else if (!RDecl->hasTrivialDestructor())
8298        member = CXXDestructor;
8299
8300      if (member != CXXInvalid) {
8301        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8302          // Objective-C++ ARC: it is an error to have a non-trivial field of
8303          // a union. However, system headers in Objective-C programs
8304          // occasionally have Objective-C lifetime objects within unions,
8305          // and rather than cause the program to fail, we make those
8306          // members unavailable.
8307          SourceLocation Loc = FD->getLocation();
8308          if (getSourceManager().isInSystemHeader(Loc)) {
8309            if (!FD->hasAttr<UnavailableAttr>())
8310              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8311                                  "this system field has retaining ownership"));
8312            return false;
8313          }
8314        }
8315
8316        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8317              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8318        DiagnoseNontrivial(RT, member);
8319        return true;
8320      }
8321    }
8322  }
8323
8324  return false;
8325}
8326
8327/// DiagnoseNontrivial - Given that a class has a non-trivial
8328/// special member, figure out why.
8329void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8330  QualType QT(T, 0U);
8331  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8332
8333  // Check whether the member was user-declared.
8334  switch (member) {
8335  case CXXInvalid:
8336    break;
8337
8338  case CXXDefaultConstructor:
8339    if (RD->hasUserDeclaredConstructor()) {
8340      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8341      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8342        const FunctionDecl *body = 0;
8343        ci->hasBody(body);
8344        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8345          SourceLocation CtorLoc = ci->getLocation();
8346          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8347          return;
8348        }
8349      }
8350
8351      assert(0 && "found no user-declared constructors");
8352      return;
8353    }
8354    break;
8355
8356  case CXXCopyConstructor:
8357    if (RD->hasUserDeclaredCopyConstructor()) {
8358      SourceLocation CtorLoc =
8359        RD->getCopyConstructor(0)->getLocation();
8360      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8361      return;
8362    }
8363    break;
8364
8365  case CXXMoveConstructor:
8366    if (RD->hasUserDeclaredMoveConstructor()) {
8367      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8368      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8369      return;
8370    }
8371    break;
8372
8373  case CXXCopyAssignment:
8374    if (RD->hasUserDeclaredCopyAssignment()) {
8375      // FIXME: this should use the location of the copy
8376      // assignment, not the type.
8377      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8378      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8379      return;
8380    }
8381    break;
8382
8383  case CXXMoveAssignment:
8384    if (RD->hasUserDeclaredMoveAssignment()) {
8385      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8386      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8387      return;
8388    }
8389    break;
8390
8391  case CXXDestructor:
8392    if (RD->hasUserDeclaredDestructor()) {
8393      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8394      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8395      return;
8396    }
8397    break;
8398  }
8399
8400  typedef CXXRecordDecl::base_class_iterator base_iter;
8401
8402  // Virtual bases and members inhibit trivial copying/construction,
8403  // but not trivial destruction.
8404  if (member != CXXDestructor) {
8405    // Check for virtual bases.  vbases includes indirect virtual bases,
8406    // so we just iterate through the direct bases.
8407    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8408      if (bi->isVirtual()) {
8409        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8410        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8411        return;
8412      }
8413
8414    // Check for virtual methods.
8415    typedef CXXRecordDecl::method_iterator meth_iter;
8416    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8417         ++mi) {
8418      if (mi->isVirtual()) {
8419        SourceLocation MLoc = mi->getSourceRange().getBegin();
8420        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8421        return;
8422      }
8423    }
8424  }
8425
8426  bool (CXXRecordDecl::*hasTrivial)() const;
8427  switch (member) {
8428  case CXXDefaultConstructor:
8429    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8430  case CXXCopyConstructor:
8431    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8432  case CXXCopyAssignment:
8433    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8434  case CXXDestructor:
8435    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8436  default:
8437    assert(0 && "unexpected special member"); return;
8438  }
8439
8440  // Check for nontrivial bases (and recurse).
8441  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8442    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8443    assert(BaseRT && "Don't know how to handle dependent bases");
8444    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8445    if (!(BaseRecTy->*hasTrivial)()) {
8446      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8447      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8448      DiagnoseNontrivial(BaseRT, member);
8449      return;
8450    }
8451  }
8452
8453  // Check for nontrivial members (and recurse).
8454  typedef RecordDecl::field_iterator field_iter;
8455  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8456       ++fi) {
8457    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8458    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8459      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8460
8461      if (!(EltRD->*hasTrivial)()) {
8462        SourceLocation FLoc = (*fi)->getLocation();
8463        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8464        DiagnoseNontrivial(EltRT, member);
8465        return;
8466      }
8467    }
8468
8469    if (EltTy->isObjCLifetimeType()) {
8470      switch (EltTy.getObjCLifetime()) {
8471      case Qualifiers::OCL_None:
8472      case Qualifiers::OCL_ExplicitNone:
8473        break;
8474
8475      case Qualifiers::OCL_Autoreleasing:
8476      case Qualifiers::OCL_Weak:
8477      case Qualifiers::OCL_Strong:
8478        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8479          << QT << EltTy.getObjCLifetime();
8480        return;
8481      }
8482    }
8483  }
8484
8485  assert(0 && "found no explanation for non-trivial member");
8486}
8487
8488/// TranslateIvarVisibility - Translate visibility from a token ID to an
8489///  AST enum value.
8490static ObjCIvarDecl::AccessControl
8491TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8492  switch (ivarVisibility) {
8493  default: assert(0 && "Unknown visitibility kind");
8494  case tok::objc_private: return ObjCIvarDecl::Private;
8495  case tok::objc_public: return ObjCIvarDecl::Public;
8496  case tok::objc_protected: return ObjCIvarDecl::Protected;
8497  case tok::objc_package: return ObjCIvarDecl::Package;
8498  }
8499}
8500
8501/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8502/// in order to create an IvarDecl object for it.
8503Decl *Sema::ActOnIvar(Scope *S,
8504                                SourceLocation DeclStart,
8505                                Declarator &D, Expr *BitfieldWidth,
8506                                tok::ObjCKeywordKind Visibility) {
8507
8508  IdentifierInfo *II = D.getIdentifier();
8509  Expr *BitWidth = (Expr*)BitfieldWidth;
8510  SourceLocation Loc = DeclStart;
8511  if (II) Loc = D.getIdentifierLoc();
8512
8513  // FIXME: Unnamed fields can be handled in various different ways, for
8514  // example, unnamed unions inject all members into the struct namespace!
8515
8516  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8517  QualType T = TInfo->getType();
8518
8519  if (BitWidth) {
8520    // 6.7.2.1p3, 6.7.2.1p4
8521    if (VerifyBitField(Loc, II, T, BitWidth)) {
8522      D.setInvalidType();
8523      BitWidth = 0;
8524    }
8525  } else {
8526    // Not a bitfield.
8527
8528    // validate II.
8529
8530  }
8531  if (T->isReferenceType()) {
8532    Diag(Loc, diag::err_ivar_reference_type);
8533    D.setInvalidType();
8534  }
8535  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8536  // than a variably modified type.
8537  else if (T->isVariablyModifiedType()) {
8538    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8539    D.setInvalidType();
8540  }
8541
8542  // Get the visibility (access control) for this ivar.
8543  ObjCIvarDecl::AccessControl ac =
8544    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8545                                        : ObjCIvarDecl::None;
8546  // Must set ivar's DeclContext to its enclosing interface.
8547  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8548  ObjCContainerDecl *EnclosingContext;
8549  if (ObjCImplementationDecl *IMPDecl =
8550      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8551    if (!LangOpts.ObjCNonFragileABI2) {
8552    // Case of ivar declared in an implementation. Context is that of its class.
8553      EnclosingContext = IMPDecl->getClassInterface();
8554      assert(EnclosingContext && "Implementation has no class interface!");
8555    }
8556    else
8557      EnclosingContext = EnclosingDecl;
8558  } else {
8559    if (ObjCCategoryDecl *CDecl =
8560        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8561      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8562        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8563        return 0;
8564      }
8565    }
8566    EnclosingContext = EnclosingDecl;
8567  }
8568
8569  // Construct the decl.
8570  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8571                                             DeclStart, Loc, II, T,
8572                                             TInfo, ac, (Expr *)BitfieldWidth);
8573
8574  if (II) {
8575    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8576                                           ForRedeclaration);
8577    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8578        && !isa<TagDecl>(PrevDecl)) {
8579      Diag(Loc, diag::err_duplicate_member) << II;
8580      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8581      NewID->setInvalidDecl();
8582    }
8583  }
8584
8585  // Process attributes attached to the ivar.
8586  ProcessDeclAttributes(S, NewID, D);
8587
8588  if (D.isInvalidType())
8589    NewID->setInvalidDecl();
8590
8591  // In ARC, infer 'retaining' for ivars of retainable type.
8592  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8593    NewID->setInvalidDecl();
8594
8595  if (D.getDeclSpec().isModulePrivateSpecified())
8596    NewID->setModulePrivate();
8597
8598  if (II) {
8599    // FIXME: When interfaces are DeclContexts, we'll need to add
8600    // these to the interface.
8601    S->AddDecl(NewID);
8602    IdResolver.AddDecl(NewID);
8603  }
8604
8605  return NewID;
8606}
8607
8608/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8609/// class and class extensions. For every class @interface and class
8610/// extension @interface, if the last ivar is a bitfield of any type,
8611/// then add an implicit `char :0` ivar to the end of that interface.
8612void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8613                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8614  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8615    return;
8616
8617  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8618  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8619
8620  if (!Ivar->isBitField())
8621    return;
8622  uint64_t BitFieldSize =
8623    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8624  if (BitFieldSize == 0)
8625    return;
8626  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8627  if (!ID) {
8628    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8629      if (!CD->IsClassExtension())
8630        return;
8631    }
8632    // No need to add this to end of @implementation.
8633    else
8634      return;
8635  }
8636  // All conditions are met. Add a new bitfield to the tail end of ivars.
8637  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8638  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8639
8640  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8641                              DeclLoc, DeclLoc, 0,
8642                              Context.CharTy,
8643                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8644                                                               DeclLoc),
8645                              ObjCIvarDecl::Private, BW,
8646                              true);
8647  AllIvarDecls.push_back(Ivar);
8648}
8649
8650void Sema::ActOnFields(Scope* S,
8651                       SourceLocation RecLoc, Decl *EnclosingDecl,
8652                       Decl **Fields, unsigned NumFields,
8653                       SourceLocation LBrac, SourceLocation RBrac,
8654                       AttributeList *Attr) {
8655  assert(EnclosingDecl && "missing record or interface decl");
8656
8657  // If the decl this is being inserted into is invalid, then it may be a
8658  // redeclaration or some other bogus case.  Don't try to add fields to it.
8659  if (EnclosingDecl->isInvalidDecl())
8660    return;
8661
8662  // Verify that all the fields are okay.
8663  unsigned NumNamedMembers = 0;
8664  SmallVector<FieldDecl*, 32> RecFields;
8665
8666  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8667  bool ARCErrReported = false;
8668  for (unsigned i = 0; i != NumFields; ++i) {
8669    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8670
8671    // Get the type for the field.
8672    const Type *FDTy = FD->getType().getTypePtr();
8673
8674    if (!FD->isAnonymousStructOrUnion()) {
8675      // Remember all fields written by the user.
8676      RecFields.push_back(FD);
8677    }
8678
8679    // If the field is already invalid for some reason, don't emit more
8680    // diagnostics about it.
8681    if (FD->isInvalidDecl()) {
8682      EnclosingDecl->setInvalidDecl();
8683      continue;
8684    }
8685
8686    // C99 6.7.2.1p2:
8687    //   A structure or union shall not contain a member with
8688    //   incomplete or function type (hence, a structure shall not
8689    //   contain an instance of itself, but may contain a pointer to
8690    //   an instance of itself), except that the last member of a
8691    //   structure with more than one named member may have incomplete
8692    //   array type; such a structure (and any union containing,
8693    //   possibly recursively, a member that is such a structure)
8694    //   shall not be a member of a structure or an element of an
8695    //   array.
8696    if (FDTy->isFunctionType()) {
8697      // Field declared as a function.
8698      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8699        << FD->getDeclName();
8700      FD->setInvalidDecl();
8701      EnclosingDecl->setInvalidDecl();
8702      continue;
8703    } else if (FDTy->isIncompleteArrayType() && Record &&
8704               ((i == NumFields - 1 && !Record->isUnion()) ||
8705                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8706                 (i == NumFields - 1 || Record->isUnion())))) {
8707      // Flexible array member.
8708      // Microsoft and g++ is more permissive regarding flexible array.
8709      // It will accept flexible array in union and also
8710      // as the sole element of a struct/class.
8711      if (getLangOptions().Microsoft) {
8712        if (Record->isUnion())
8713          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8714            << FD->getDeclName();
8715        else if (NumFields == 1)
8716          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8717            << FD->getDeclName() << Record->getTagKind();
8718      } else if (getLangOptions().CPlusPlus) {
8719        if (Record->isUnion())
8720          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8721            << FD->getDeclName();
8722        else if (NumFields == 1)
8723          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8724            << FD->getDeclName() << Record->getTagKind();
8725      } else if (NumNamedMembers < 1) {
8726        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8727          << FD->getDeclName();
8728        FD->setInvalidDecl();
8729        EnclosingDecl->setInvalidDecl();
8730        continue;
8731      }
8732      if (!FD->getType()->isDependentType() &&
8733          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8734        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8735          << FD->getDeclName() << FD->getType();
8736        FD->setInvalidDecl();
8737        EnclosingDecl->setInvalidDecl();
8738        continue;
8739      }
8740      // Okay, we have a legal flexible array member at the end of the struct.
8741      if (Record)
8742        Record->setHasFlexibleArrayMember(true);
8743    } else if (!FDTy->isDependentType() &&
8744               RequireCompleteType(FD->getLocation(), FD->getType(),
8745                                   diag::err_field_incomplete)) {
8746      // Incomplete type
8747      FD->setInvalidDecl();
8748      EnclosingDecl->setInvalidDecl();
8749      continue;
8750    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8751      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8752        // If this is a member of a union, then entire union becomes "flexible".
8753        if (Record && Record->isUnion()) {
8754          Record->setHasFlexibleArrayMember(true);
8755        } else {
8756          // If this is a struct/class and this is not the last element, reject
8757          // it.  Note that GCC supports variable sized arrays in the middle of
8758          // structures.
8759          if (i != NumFields-1)
8760            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8761              << FD->getDeclName() << FD->getType();
8762          else {
8763            // We support flexible arrays at the end of structs in
8764            // other structs as an extension.
8765            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8766              << FD->getDeclName();
8767            if (Record)
8768              Record->setHasFlexibleArrayMember(true);
8769          }
8770        }
8771      }
8772      if (Record && FDTTy->getDecl()->hasObjectMember())
8773        Record->setHasObjectMember(true);
8774    } else if (FDTy->isObjCObjectType()) {
8775      /// A field cannot be an Objective-c object
8776      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8777        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8778      QualType T = Context.getObjCObjectPointerType(FD->getType());
8779      FD->setType(T);
8780    }
8781    else if (!getLangOptions().CPlusPlus) {
8782      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8783        // It's an error in ARC if a field has lifetime.
8784        // We don't want to report this in a system header, though,
8785        // so we just make the field unavailable.
8786        // FIXME: that's really not sufficient; we need to make the type
8787        // itself invalid to, say, initialize or copy.
8788        QualType T = FD->getType();
8789        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8790        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8791          SourceLocation loc = FD->getLocation();
8792          if (getSourceManager().isInSystemHeader(loc)) {
8793            if (!FD->hasAttr<UnavailableAttr>()) {
8794              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8795                                "this system field has retaining ownership"));
8796            }
8797          } else {
8798            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8799          }
8800          ARCErrReported = true;
8801        }
8802      }
8803      else if (getLangOptions().ObjC1 &&
8804               getLangOptions().getGC() != LangOptions::NonGC &&
8805               Record && !Record->hasObjectMember()) {
8806        if (FD->getType()->isObjCObjectPointerType() ||
8807            FD->getType().isObjCGCStrong())
8808          Record->setHasObjectMember(true);
8809        else if (Context.getAsArrayType(FD->getType())) {
8810          QualType BaseType = Context.getBaseElementType(FD->getType());
8811          if (BaseType->isRecordType() &&
8812              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8813            Record->setHasObjectMember(true);
8814          else if (BaseType->isObjCObjectPointerType() ||
8815                   BaseType.isObjCGCStrong())
8816                 Record->setHasObjectMember(true);
8817        }
8818      }
8819    }
8820    // Keep track of the number of named members.
8821    if (FD->getIdentifier())
8822      ++NumNamedMembers;
8823  }
8824
8825  // Okay, we successfully defined 'Record'.
8826  if (Record) {
8827    bool Completed = false;
8828    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8829      if (!CXXRecord->isInvalidDecl()) {
8830        // Set access bits correctly on the directly-declared conversions.
8831        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8832        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8833             I != E; ++I)
8834          Convs->setAccess(I, (*I)->getAccess());
8835
8836        if (!CXXRecord->isDependentType()) {
8837          // Objective-C Automatic Reference Counting:
8838          //   If a class has a non-static data member of Objective-C pointer
8839          //   type (or array thereof), it is a non-POD type and its
8840          //   default constructor (if any), copy constructor, copy assignment
8841          //   operator, and destructor are non-trivial.
8842          //
8843          // This rule is also handled by CXXRecordDecl::completeDefinition().
8844          // However, here we check whether this particular class is only
8845          // non-POD because of the presence of an Objective-C pointer member.
8846          // If so, objects of this type cannot be shared between code compiled
8847          // with instant objects and code compiled with manual retain/release.
8848          if (getLangOptions().ObjCAutoRefCount &&
8849              CXXRecord->hasObjectMember() &&
8850              CXXRecord->getLinkage() == ExternalLinkage) {
8851            if (CXXRecord->isPOD()) {
8852              Diag(CXXRecord->getLocation(),
8853                   diag::warn_arc_non_pod_class_with_object_member)
8854               << CXXRecord;
8855            } else {
8856              // FIXME: Fix-Its would be nice here, but finding a good location
8857              // for them is going to be tricky.
8858              if (CXXRecord->hasTrivialCopyConstructor())
8859                Diag(CXXRecord->getLocation(),
8860                     diag::warn_arc_trivial_member_function_with_object_member)
8861                  << CXXRecord << 0;
8862              if (CXXRecord->hasTrivialCopyAssignment())
8863                Diag(CXXRecord->getLocation(),
8864                     diag::warn_arc_trivial_member_function_with_object_member)
8865                << CXXRecord << 1;
8866              if (CXXRecord->hasTrivialDestructor())
8867                Diag(CXXRecord->getLocation(),
8868                     diag::warn_arc_trivial_member_function_with_object_member)
8869                << CXXRecord << 2;
8870            }
8871          }
8872
8873          // Adjust user-defined destructor exception spec.
8874          if (getLangOptions().CPlusPlus0x &&
8875              CXXRecord->hasUserDeclaredDestructor())
8876            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8877
8878          // Add any implicitly-declared members to this class.
8879          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8880
8881          // If we have virtual base classes, we may end up finding multiple
8882          // final overriders for a given virtual function. Check for this
8883          // problem now.
8884          if (CXXRecord->getNumVBases()) {
8885            CXXFinalOverriderMap FinalOverriders;
8886            CXXRecord->getFinalOverriders(FinalOverriders);
8887
8888            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8889                                             MEnd = FinalOverriders.end();
8890                 M != MEnd; ++M) {
8891              for (OverridingMethods::iterator SO = M->second.begin(),
8892                                            SOEnd = M->second.end();
8893                   SO != SOEnd; ++SO) {
8894                assert(SO->second.size() > 0 &&
8895                       "Virtual function without overridding functions?");
8896                if (SO->second.size() == 1)
8897                  continue;
8898
8899                // C++ [class.virtual]p2:
8900                //   In a derived class, if a virtual member function of a base
8901                //   class subobject has more than one final overrider the
8902                //   program is ill-formed.
8903                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8904                  << (NamedDecl *)M->first << Record;
8905                Diag(M->first->getLocation(),
8906                     diag::note_overridden_virtual_function);
8907                for (OverridingMethods::overriding_iterator
8908                          OM = SO->second.begin(),
8909                       OMEnd = SO->second.end();
8910                     OM != OMEnd; ++OM)
8911                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8912                    << (NamedDecl *)M->first << OM->Method->getParent();
8913
8914                Record->setInvalidDecl();
8915              }
8916            }
8917            CXXRecord->completeDefinition(&FinalOverriders);
8918            Completed = true;
8919          }
8920        }
8921      }
8922    }
8923
8924    if (!Completed)
8925      Record->completeDefinition();
8926
8927    // Now that the record is complete, do any delayed exception spec checks
8928    // we were missing.
8929    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8930      const CXXDestructorDecl *Dtor =
8931              DelayedDestructorExceptionSpecChecks.back().first;
8932      if (Dtor->getParent() != Record)
8933        break;
8934
8935      assert(!Dtor->getParent()->isDependentType() &&
8936          "Should not ever add destructors of templates into the list.");
8937      CheckOverridingFunctionExceptionSpec(Dtor,
8938          DelayedDestructorExceptionSpecChecks.back().second);
8939      DelayedDestructorExceptionSpecChecks.pop_back();
8940    }
8941
8942  } else {
8943    ObjCIvarDecl **ClsFields =
8944      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8945    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8946      ID->setLocEnd(RBrac);
8947      // Add ivar's to class's DeclContext.
8948      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8949        ClsFields[i]->setLexicalDeclContext(ID);
8950        ID->addDecl(ClsFields[i]);
8951      }
8952      // Must enforce the rule that ivars in the base classes may not be
8953      // duplicates.
8954      if (ID->getSuperClass())
8955        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8956    } else if (ObjCImplementationDecl *IMPDecl =
8957                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8958      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8959      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8960        // Ivar declared in @implementation never belongs to the implementation.
8961        // Only it is in implementation's lexical context.
8962        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8963      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8964    } else if (ObjCCategoryDecl *CDecl =
8965                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8966      // case of ivars in class extension; all other cases have been
8967      // reported as errors elsewhere.
8968      // FIXME. Class extension does not have a LocEnd field.
8969      // CDecl->setLocEnd(RBrac);
8970      // Add ivar's to class extension's DeclContext.
8971      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8972        ClsFields[i]->setLexicalDeclContext(CDecl);
8973        CDecl->addDecl(ClsFields[i]);
8974      }
8975    }
8976  }
8977
8978  if (Attr)
8979    ProcessDeclAttributeList(S, Record, Attr);
8980
8981  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8982  // set the visibility of this record.
8983  if (Record && !Record->getDeclContext()->isRecord())
8984    AddPushedVisibilityAttribute(Record);
8985}
8986
8987/// \brief Determine whether the given integral value is representable within
8988/// the given type T.
8989static bool isRepresentableIntegerValue(ASTContext &Context,
8990                                        llvm::APSInt &Value,
8991                                        QualType T) {
8992  assert(T->isIntegralType(Context) && "Integral type required!");
8993  unsigned BitWidth = Context.getIntWidth(T);
8994
8995  if (Value.isUnsigned() || Value.isNonNegative()) {
8996    if (T->isSignedIntegerOrEnumerationType())
8997      --BitWidth;
8998    return Value.getActiveBits() <= BitWidth;
8999  }
9000  return Value.getMinSignedBits() <= BitWidth;
9001}
9002
9003// \brief Given an integral type, return the next larger integral type
9004// (or a NULL type of no such type exists).
9005static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9006  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9007  // enum checking below.
9008  assert(T->isIntegralType(Context) && "Integral type required!");
9009  const unsigned NumTypes = 4;
9010  QualType SignedIntegralTypes[NumTypes] = {
9011    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9012  };
9013  QualType UnsignedIntegralTypes[NumTypes] = {
9014    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9015    Context.UnsignedLongLongTy
9016  };
9017
9018  unsigned BitWidth = Context.getTypeSize(T);
9019  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9020                                                        : UnsignedIntegralTypes;
9021  for (unsigned I = 0; I != NumTypes; ++I)
9022    if (Context.getTypeSize(Types[I]) > BitWidth)
9023      return Types[I];
9024
9025  return QualType();
9026}
9027
9028EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9029                                          EnumConstantDecl *LastEnumConst,
9030                                          SourceLocation IdLoc,
9031                                          IdentifierInfo *Id,
9032                                          Expr *Val) {
9033  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9034  llvm::APSInt EnumVal(IntWidth);
9035  QualType EltTy;
9036
9037  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9038    Val = 0;
9039
9040  if (Val) {
9041    if (Enum->isDependentType() || Val->isTypeDependent())
9042      EltTy = Context.DependentTy;
9043    else {
9044      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9045      SourceLocation ExpLoc;
9046      if (!Val->isValueDependent() &&
9047          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9048        Val = 0;
9049      } else {
9050        if (!getLangOptions().CPlusPlus) {
9051          // C99 6.7.2.2p2:
9052          //   The expression that defines the value of an enumeration constant
9053          //   shall be an integer constant expression that has a value
9054          //   representable as an int.
9055
9056          // Complain if the value is not representable in an int.
9057          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9058            Diag(IdLoc, diag::ext_enum_value_not_int)
9059              << EnumVal.toString(10) << Val->getSourceRange()
9060              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9061          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9062            // Force the type of the expression to 'int'.
9063            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9064          }
9065        }
9066
9067        if (Enum->isFixed()) {
9068          EltTy = Enum->getIntegerType();
9069
9070          // C++0x [dcl.enum]p5:
9071          //   ... if the initializing value of an enumerator cannot be
9072          //   represented by the underlying type, the program is ill-formed.
9073          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9074            if (getLangOptions().Microsoft) {
9075              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9076              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9077            } else
9078              Diag(IdLoc, diag::err_enumerator_too_large)
9079                << EltTy;
9080          } else
9081            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9082        }
9083        else {
9084          // C++0x [dcl.enum]p5:
9085          //   If the underlying type is not fixed, the type of each enumerator
9086          //   is the type of its initializing value:
9087          //     - If an initializer is specified for an enumerator, the
9088          //       initializing value has the same type as the expression.
9089          EltTy = Val->getType();
9090        }
9091      }
9092    }
9093  }
9094
9095  if (!Val) {
9096    if (Enum->isDependentType())
9097      EltTy = Context.DependentTy;
9098    else if (!LastEnumConst) {
9099      // C++0x [dcl.enum]p5:
9100      //   If the underlying type is not fixed, the type of each enumerator
9101      //   is the type of its initializing value:
9102      //     - If no initializer is specified for the first enumerator, the
9103      //       initializing value has an unspecified integral type.
9104      //
9105      // GCC uses 'int' for its unspecified integral type, as does
9106      // C99 6.7.2.2p3.
9107      if (Enum->isFixed()) {
9108        EltTy = Enum->getIntegerType();
9109      }
9110      else {
9111        EltTy = Context.IntTy;
9112      }
9113    } else {
9114      // Assign the last value + 1.
9115      EnumVal = LastEnumConst->getInitVal();
9116      ++EnumVal;
9117      EltTy = LastEnumConst->getType();
9118
9119      // Check for overflow on increment.
9120      if (EnumVal < LastEnumConst->getInitVal()) {
9121        // C++0x [dcl.enum]p5:
9122        //   If the underlying type is not fixed, the type of each enumerator
9123        //   is the type of its initializing value:
9124        //
9125        //     - Otherwise the type of the initializing value is the same as
9126        //       the type of the initializing value of the preceding enumerator
9127        //       unless the incremented value is not representable in that type,
9128        //       in which case the type is an unspecified integral type
9129        //       sufficient to contain the incremented value. If no such type
9130        //       exists, the program is ill-formed.
9131        QualType T = getNextLargerIntegralType(Context, EltTy);
9132        if (T.isNull() || Enum->isFixed()) {
9133          // There is no integral type larger enough to represent this
9134          // value. Complain, then allow the value to wrap around.
9135          EnumVal = LastEnumConst->getInitVal();
9136          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9137          ++EnumVal;
9138          if (Enum->isFixed())
9139            // When the underlying type is fixed, this is ill-formed.
9140            Diag(IdLoc, diag::err_enumerator_wrapped)
9141              << EnumVal.toString(10)
9142              << EltTy;
9143          else
9144            Diag(IdLoc, diag::warn_enumerator_too_large)
9145              << EnumVal.toString(10);
9146        } else {
9147          EltTy = T;
9148        }
9149
9150        // Retrieve the last enumerator's value, extent that type to the
9151        // type that is supposed to be large enough to represent the incremented
9152        // value, then increment.
9153        EnumVal = LastEnumConst->getInitVal();
9154        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9155        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9156        ++EnumVal;
9157
9158        // If we're not in C++, diagnose the overflow of enumerator values,
9159        // which in C99 means that the enumerator value is not representable in
9160        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9161        // permits enumerator values that are representable in some larger
9162        // integral type.
9163        if (!getLangOptions().CPlusPlus && !T.isNull())
9164          Diag(IdLoc, diag::warn_enum_value_overflow);
9165      } else if (!getLangOptions().CPlusPlus &&
9166                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9167        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9168        Diag(IdLoc, diag::ext_enum_value_not_int)
9169          << EnumVal.toString(10) << 1;
9170      }
9171    }
9172  }
9173
9174  if (!EltTy->isDependentType()) {
9175    // Make the enumerator value match the signedness and size of the
9176    // enumerator's type.
9177    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9178    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9179  }
9180
9181  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9182                                  Val, EnumVal);
9183}
9184
9185
9186Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9187                              SourceLocation IdLoc, IdentifierInfo *Id,
9188                              AttributeList *Attr,
9189                              SourceLocation EqualLoc, Expr *val) {
9190  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9191  EnumConstantDecl *LastEnumConst =
9192    cast_or_null<EnumConstantDecl>(lastEnumConst);
9193  Expr *Val = static_cast<Expr*>(val);
9194
9195  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9196  // we find one that is.
9197  S = getNonFieldDeclScope(S);
9198
9199  // Verify that there isn't already something declared with this name in this
9200  // scope.
9201  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9202                                         ForRedeclaration);
9203  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9204    // Maybe we will complain about the shadowed template parameter.
9205    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9206    // Just pretend that we didn't see the previous declaration.
9207    PrevDecl = 0;
9208  }
9209
9210  if (PrevDecl) {
9211    // When in C++, we may get a TagDecl with the same name; in this case the
9212    // enum constant will 'hide' the tag.
9213    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9214           "Received TagDecl when not in C++!");
9215    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9216      if (isa<EnumConstantDecl>(PrevDecl))
9217        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9218      else
9219        Diag(IdLoc, diag::err_redefinition) << Id;
9220      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9221      return 0;
9222    }
9223  }
9224
9225  // C++ [class.mem]p13:
9226  //   If T is the name of a class, then each of the following shall have a
9227  //   name different from T:
9228  //     - every enumerator of every member of class T that is an enumerated
9229  //       type
9230  if (CXXRecordDecl *Record
9231                      = dyn_cast<CXXRecordDecl>(
9232                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9233    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9234      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9235
9236  EnumConstantDecl *New =
9237    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9238
9239  if (New) {
9240    // Process attributes.
9241    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9242
9243    // Register this decl in the current scope stack.
9244    New->setAccess(TheEnumDecl->getAccess());
9245    PushOnScopeChains(New, S);
9246  }
9247
9248  return New;
9249}
9250
9251void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9252                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9253                         Decl **Elements, unsigned NumElements,
9254                         Scope *S, AttributeList *Attr) {
9255  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9256  QualType EnumType = Context.getTypeDeclType(Enum);
9257
9258  if (Attr)
9259    ProcessDeclAttributeList(S, Enum, Attr);
9260
9261  if (Enum->isDependentType()) {
9262    for (unsigned i = 0; i != NumElements; ++i) {
9263      EnumConstantDecl *ECD =
9264        cast_or_null<EnumConstantDecl>(Elements[i]);
9265      if (!ECD) continue;
9266
9267      ECD->setType(EnumType);
9268    }
9269
9270    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9271    return;
9272  }
9273
9274  // TODO: If the result value doesn't fit in an int, it must be a long or long
9275  // long value.  ISO C does not support this, but GCC does as an extension,
9276  // emit a warning.
9277  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9278  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9279  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9280
9281  // Verify that all the values are okay, compute the size of the values, and
9282  // reverse the list.
9283  unsigned NumNegativeBits = 0;
9284  unsigned NumPositiveBits = 0;
9285
9286  // Keep track of whether all elements have type int.
9287  bool AllElementsInt = true;
9288
9289  for (unsigned i = 0; i != NumElements; ++i) {
9290    EnumConstantDecl *ECD =
9291      cast_or_null<EnumConstantDecl>(Elements[i]);
9292    if (!ECD) continue;  // Already issued a diagnostic.
9293
9294    const llvm::APSInt &InitVal = ECD->getInitVal();
9295
9296    // Keep track of the size of positive and negative values.
9297    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9298      NumPositiveBits = std::max(NumPositiveBits,
9299                                 (unsigned)InitVal.getActiveBits());
9300    else
9301      NumNegativeBits = std::max(NumNegativeBits,
9302                                 (unsigned)InitVal.getMinSignedBits());
9303
9304    // Keep track of whether every enum element has type int (very commmon).
9305    if (AllElementsInt)
9306      AllElementsInt = ECD->getType() == Context.IntTy;
9307  }
9308
9309  // Figure out the type that should be used for this enum.
9310  QualType BestType;
9311  unsigned BestWidth;
9312
9313  // C++0x N3000 [conv.prom]p3:
9314  //   An rvalue of an unscoped enumeration type whose underlying
9315  //   type is not fixed can be converted to an rvalue of the first
9316  //   of the following types that can represent all the values of
9317  //   the enumeration: int, unsigned int, long int, unsigned long
9318  //   int, long long int, or unsigned long long int.
9319  // C99 6.4.4.3p2:
9320  //   An identifier declared as an enumeration constant has type int.
9321  // The C99 rule is modified by a gcc extension
9322  QualType BestPromotionType;
9323
9324  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9325  // -fshort-enums is the equivalent to specifying the packed attribute on all
9326  // enum definitions.
9327  if (LangOpts.ShortEnums)
9328    Packed = true;
9329
9330  if (Enum->isFixed()) {
9331    BestType = BestPromotionType = Enum->getIntegerType();
9332    // We don't need to set BestWidth, because BestType is going to be the type
9333    // of the enumerators, but we do anyway because otherwise some compilers
9334    // warn that it might be used uninitialized.
9335    BestWidth = CharWidth;
9336  }
9337  else if (NumNegativeBits) {
9338    // If there is a negative value, figure out the smallest integer type (of
9339    // int/long/longlong) that fits.
9340    // If it's packed, check also if it fits a char or a short.
9341    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9342      BestType = Context.SignedCharTy;
9343      BestWidth = CharWidth;
9344    } else if (Packed && NumNegativeBits <= ShortWidth &&
9345               NumPositiveBits < ShortWidth) {
9346      BestType = Context.ShortTy;
9347      BestWidth = ShortWidth;
9348    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9349      BestType = Context.IntTy;
9350      BestWidth = IntWidth;
9351    } else {
9352      BestWidth = Context.getTargetInfo().getLongWidth();
9353
9354      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9355        BestType = Context.LongTy;
9356      } else {
9357        BestWidth = Context.getTargetInfo().getLongLongWidth();
9358
9359        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9360          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9361        BestType = Context.LongLongTy;
9362      }
9363    }
9364    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9365  } else {
9366    // If there is no negative value, figure out the smallest type that fits
9367    // all of the enumerator values.
9368    // If it's packed, check also if it fits a char or a short.
9369    if (Packed && NumPositiveBits <= CharWidth) {
9370      BestType = Context.UnsignedCharTy;
9371      BestPromotionType = Context.IntTy;
9372      BestWidth = CharWidth;
9373    } else if (Packed && NumPositiveBits <= ShortWidth) {
9374      BestType = Context.UnsignedShortTy;
9375      BestPromotionType = Context.IntTy;
9376      BestWidth = ShortWidth;
9377    } else if (NumPositiveBits <= IntWidth) {
9378      BestType = Context.UnsignedIntTy;
9379      BestWidth = IntWidth;
9380      BestPromotionType
9381        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9382                           ? Context.UnsignedIntTy : Context.IntTy;
9383    } else if (NumPositiveBits <=
9384               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9385      BestType = Context.UnsignedLongTy;
9386      BestPromotionType
9387        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9388                           ? Context.UnsignedLongTy : Context.LongTy;
9389    } else {
9390      BestWidth = Context.getTargetInfo().getLongLongWidth();
9391      assert(NumPositiveBits <= BestWidth &&
9392             "How could an initializer get larger than ULL?");
9393      BestType = Context.UnsignedLongLongTy;
9394      BestPromotionType
9395        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9396                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9397    }
9398  }
9399
9400  // Loop over all of the enumerator constants, changing their types to match
9401  // the type of the enum if needed.
9402  for (unsigned i = 0; i != NumElements; ++i) {
9403    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9404    if (!ECD) continue;  // Already issued a diagnostic.
9405
9406    // Standard C says the enumerators have int type, but we allow, as an
9407    // extension, the enumerators to be larger than int size.  If each
9408    // enumerator value fits in an int, type it as an int, otherwise type it the
9409    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9410    // that X has type 'int', not 'unsigned'.
9411
9412    // Determine whether the value fits into an int.
9413    llvm::APSInt InitVal = ECD->getInitVal();
9414
9415    // If it fits into an integer type, force it.  Otherwise force it to match
9416    // the enum decl type.
9417    QualType NewTy;
9418    unsigned NewWidth;
9419    bool NewSign;
9420    if (!getLangOptions().CPlusPlus &&
9421        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9422      NewTy = Context.IntTy;
9423      NewWidth = IntWidth;
9424      NewSign = true;
9425    } else if (ECD->getType() == BestType) {
9426      // Already the right type!
9427      if (getLangOptions().CPlusPlus)
9428        // C++ [dcl.enum]p4: Following the closing brace of an
9429        // enum-specifier, each enumerator has the type of its
9430        // enumeration.
9431        ECD->setType(EnumType);
9432      continue;
9433    } else {
9434      NewTy = BestType;
9435      NewWidth = BestWidth;
9436      NewSign = BestType->isSignedIntegerOrEnumerationType();
9437    }
9438
9439    // Adjust the APSInt value.
9440    InitVal = InitVal.extOrTrunc(NewWidth);
9441    InitVal.setIsSigned(NewSign);
9442    ECD->setInitVal(InitVal);
9443
9444    // Adjust the Expr initializer and type.
9445    if (ECD->getInitExpr() &&
9446        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9447      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9448                                                CK_IntegralCast,
9449                                                ECD->getInitExpr(),
9450                                                /*base paths*/ 0,
9451                                                VK_RValue));
9452    if (getLangOptions().CPlusPlus)
9453      // C++ [dcl.enum]p4: Following the closing brace of an
9454      // enum-specifier, each enumerator has the type of its
9455      // enumeration.
9456      ECD->setType(EnumType);
9457    else
9458      ECD->setType(NewTy);
9459  }
9460
9461  Enum->completeDefinition(BestType, BestPromotionType,
9462                           NumPositiveBits, NumNegativeBits);
9463}
9464
9465Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9466                                  SourceLocation StartLoc,
9467                                  SourceLocation EndLoc) {
9468  StringLiteral *AsmString = cast<StringLiteral>(expr);
9469
9470  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9471                                                   AsmString, StartLoc,
9472                                                   EndLoc);
9473  CurContext->addDecl(New);
9474  return New;
9475}
9476
9477DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9478                                   IdentifierInfo &ModuleName,
9479                                   SourceLocation ModuleNameLoc) {
9480  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9481                                                     ModuleName, ModuleNameLoc);
9482  if (!Module)
9483    return true;
9484
9485  // FIXME: Actually create a declaration to describe the module import.
9486  (void)Module;
9487  return DeclResult((Decl *)0);
9488}
9489
9490void
9491Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9492                                         SourceLocation ModulePrivateKeyword) {
9493  assert(!Old->isModulePrivate() && "Old is module-private!");
9494
9495  Diag(New->getLocation(), diag::err_module_private_follows_public)
9496    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9497  Diag(Old->getLocation(), diag::note_previous_declaration)
9498    << Old->getDeclName();
9499
9500  // Drop the __module_private__ from the new declaration, since it's invalid.
9501  New->setModulePrivate(false);
9502}
9503
9504void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9505                             SourceLocation PragmaLoc,
9506                             SourceLocation NameLoc) {
9507  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9508
9509  if (PrevDecl) {
9510    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9511  } else {
9512    (void)WeakUndeclaredIdentifiers.insert(
9513      std::pair<IdentifierInfo*,WeakInfo>
9514        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9515  }
9516}
9517
9518void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9519                                IdentifierInfo* AliasName,
9520                                SourceLocation PragmaLoc,
9521                                SourceLocation NameLoc,
9522                                SourceLocation AliasNameLoc) {
9523  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9524                                    LookupOrdinaryName);
9525  WeakInfo W = WeakInfo(Name, NameLoc);
9526
9527  if (PrevDecl) {
9528    if (!PrevDecl->hasAttr<AliasAttr>())
9529      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9530        DeclApplyPragmaWeak(TUScope, ND, W);
9531  } else {
9532    (void)WeakUndeclaredIdentifiers.insert(
9533      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9534  }
9535}
9536
9537Decl *Sema::getObjCDeclContext() const {
9538  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9539}
9540