SemaDecl.cpp revision 8f17b66c8d383d458e04cada4c9e2452139b0b39
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // Check whether we can use this type
68      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // Check whether we can use this interface.
75      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  return DC->getLexicalParent();
109}
110
111void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
112  assert(getContainingDC(DC) == CurContext &&
113      "The next DeclContext should be lexically contained in the current one.");
114  CurContext = DC;
115  S->setEntity(DC);
116}
117
118void Sema::PopDeclContext() {
119  assert(CurContext && "DeclContext imbalance!");
120
121  CurContext = getContainingDC(CurContext);
122}
123
124/// \brief Determine whether we allow overloading of the function
125/// PrevDecl with another declaration.
126///
127/// This routine determines whether overloading is possible, not
128/// whether some new function is actually an overload. It will return
129/// true in C++ (where we can always provide overloads) or, as an
130/// extension, in C when the previous function is already an
131/// overloaded function declaration or has the "overloadable"
132/// attribute.
133static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
134  if (Context.getLangOptions().CPlusPlus)
135    return true;
136
137  if (isa<OverloadedFunctionDecl>(PrevDecl))
138    return true;
139
140  return PrevDecl->getAttr<OverloadableAttr>() != 0;
141}
142
143/// Add this decl to the scope shadowed decl chains.
144void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
145  // Move up the scope chain until we find the nearest enclosing
146  // non-transparent context. The declaration will be introduced into this
147  // scope.
148  while (S->getEntity() &&
149         ((DeclContext *)S->getEntity())->isTransparentContext())
150    S = S->getParent();
151
152  S->AddDecl(D);
153
154  // Add scoped declarations into their context, so that they can be
155  // found later. Declarations without a context won't be inserted
156  // into any context.
157  CurContext->addDecl(D);
158
159  // C++ [basic.scope]p4:
160  //   -- exactly one declaration shall declare a class name or
161  //   enumeration name that is not a typedef name and the other
162  //   declarations shall all refer to the same object or
163  //   enumerator, or all refer to functions and function templates;
164  //   in this case the class name or enumeration name is hidden.
165  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
166    // We are pushing the name of a tag (enum or class).
167    if (CurContext->getLookupContext()
168          == TD->getDeclContext()->getLookupContext()) {
169      // We're pushing the tag into the current context, which might
170      // require some reshuffling in the identifier resolver.
171      IdentifierResolver::iterator
172        I = IdResolver.begin(TD->getDeclName()),
173        IEnd = IdResolver.end();
174      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
175        NamedDecl *PrevDecl = *I;
176        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
177             PrevDecl = *I, ++I) {
178          if (TD->declarationReplaces(*I)) {
179            // This is a redeclaration. Remove it from the chain and
180            // break out, so that we'll add in the shadowed
181            // declaration.
182            S->RemoveDecl(*I);
183            if (PrevDecl == *I) {
184              IdResolver.RemoveDecl(*I);
185              IdResolver.AddDecl(TD);
186              return;
187            } else {
188              IdResolver.RemoveDecl(*I);
189              break;
190            }
191          }
192        }
193
194        // There is already a declaration with the same name in the same
195        // scope, which is not a tag declaration. It must be found
196        // before we find the new declaration, so insert the new
197        // declaration at the end of the chain.
198        IdResolver.AddShadowedDecl(TD, PrevDecl);
199
200        return;
201      }
202    }
203  } else if (isa<FunctionDecl>(D) &&
204             AllowOverloadingOfFunction(D, Context)) {
205    // We are pushing the name of a function, which might be an
206    // overloaded name.
207    FunctionDecl *FD = cast<FunctionDecl>(D);
208    IdentifierResolver::iterator Redecl
209      = std::find_if(IdResolver.begin(FD->getDeclName()),
210                     IdResolver.end(),
211                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
212                                  FD));
213    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
214      // There is already a declaration of a function on our
215      // IdResolver chain. Replace it with this declaration.
216      S->RemoveDecl(*Redecl);
217      IdResolver.RemoveDecl(*Redecl);
218    }
219  }
220
221  IdResolver.AddDecl(D);
222}
223
224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
225  if (S->decl_empty()) return;
226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
227	 "Scope shouldn't contain decls!");
228
229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
230       I != E; ++I) {
231    Decl *TmpD = static_cast<Decl*>(*I);
232    assert(TmpD && "This decl didn't get pushed??");
233
234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
235    NamedDecl *D = cast<NamedDecl>(TmpD);
236
237    if (!D->getDeclName()) continue;
238
239    // Remove this name from our lexical scope.
240    IdResolver.RemoveDecl(D);
241  }
242}
243
244/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
245/// return 0 if one not found.
246ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
247  // The third "scope" argument is 0 since we aren't enabling lazy built-in
248  // creation from this context.
249  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
250
251  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
252}
253
254/// getNonFieldDeclScope - Retrieves the innermost scope, starting
255/// from S, where a non-field would be declared. This routine copes
256/// with the difference between C and C++ scoping rules in structs and
257/// unions. For example, the following code is well-formed in C but
258/// ill-formed in C++:
259/// @code
260/// struct S6 {
261///   enum { BAR } e;
262/// };
263///
264/// void test_S6() {
265///   struct S6 a;
266///   a.e = BAR;
267/// }
268/// @endcode
269/// For the declaration of BAR, this routine will return a different
270/// scope. The scope S will be the scope of the unnamed enumeration
271/// within S6. In C++, this routine will return the scope associated
272/// with S6, because the enumeration's scope is a transparent
273/// context but structures can contain non-field names. In C, this
274/// routine will return the translation unit scope, since the
275/// enumeration's scope is a transparent context and structures cannot
276/// contain non-field names.
277Scope *Sema::getNonFieldDeclScope(Scope *S) {
278  while (((S->getFlags() & Scope::DeclScope) == 0) ||
279         (S->getEntity() &&
280          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
281         (S->isClassScope() && !getLangOptions().CPlusPlus))
282    S = S->getParent();
283  return S;
284}
285
286void Sema::InitBuiltinVaListType() {
287  if (!Context.getBuiltinVaListType().isNull())
288    return;
289
290  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
291  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
292  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
293  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
294}
295
296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
297/// file scope.  lazily create a decl for it. ForRedeclaration is true
298/// if we're creating this built-in in anticipation of redeclaring the
299/// built-in.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S, bool ForRedeclaration,
302                                     SourceLocation Loc) {
303  Builtin::ID BID = (Builtin::ID)bid;
304
305  if (Context.BuiltinInfo.hasVAListUse(BID))
306    InitBuiltinVaListType();
307
308  Builtin::Context::GetBuiltinTypeError Error;
309  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
310  switch (Error) {
311  case Builtin::Context::GE_None:
312    // Okay
313    break;
314
315  case Builtin::Context::GE_Missing_FILE:
316    if (ForRedeclaration)
317      Diag(Loc, diag::err_implicit_decl_requires_stdio)
318        << Context.BuiltinInfo.GetName(BID);
319    return 0;
320  }
321
322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
323    Diag(Loc, diag::ext_implicit_lib_function_decl)
324      << Context.BuiltinInfo.GetName(BID)
325      << R;
326    if (Context.BuiltinInfo.getHeaderName(BID) &&
327        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
328          != diag::MAP_IGNORE)
329      Diag(Loc, diag::note_please_include_header)
330        << Context.BuiltinInfo.getHeaderName(BID)
331        << Context.BuiltinInfo.GetName(BID);
332  }
333
334  FunctionDecl *New = FunctionDecl::Create(Context,
335                                           Context.getTranslationUnitDecl(),
336                                           Loc, II, R,
337                                           FunctionDecl::Extern, false,
338                                           /*hasPrototype=*/true);
339  New->setImplicit();
340
341  // Create Decl objects for each parameter, adding them to the
342  // FunctionDecl.
343  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
344    llvm::SmallVector<ParmVarDecl*, 16> Params;
345    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
346      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
347                                           FT->getArgType(i), VarDecl::None, 0));
348    New->setParams(Context, &Params[0], Params.size());
349  }
350
351  AddKnownFunctionAttributes(New);
352
353  // TUScope is the translation-unit scope to insert this function into.
354  // FIXME: This is hideous. We need to teach PushOnScopeChains to
355  // relate Scopes to DeclContexts, and probably eliminate CurContext
356  // entirely, but we're not there yet.
357  DeclContext *SavedContext = CurContext;
358  CurContext = Context.getTranslationUnitDecl();
359  PushOnScopeChains(New, TUScope);
360  CurContext = SavedContext;
361  return New;
362}
363
364/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
365/// everything from the standard library is defined.
366NamespaceDecl *Sema::GetStdNamespace() {
367  if (!StdNamespace) {
368    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
369    DeclContext *Global = Context.getTranslationUnitDecl();
370    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
371    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
372  }
373  return StdNamespace;
374}
375
376/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
377/// same name and scope as a previous declaration 'Old'.  Figure out
378/// how to resolve this situation, merging decls or emitting
379/// diagnostics as appropriate. Returns true if there was an error,
380/// false otherwise.
381///
382bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
383  bool objc_types = false;
384  // Allow multiple definitions for ObjC built-in typedefs.
385  // FIXME: Verify the underlying types are equivalent!
386  if (getLangOptions().ObjC1) {
387    const IdentifierInfo *TypeID = New->getIdentifier();
388    switch (TypeID->getLength()) {
389    default: break;
390    case 2:
391      if (!TypeID->isStr("id"))
392        break;
393      Context.setObjCIdType(New);
394      objc_types = true;
395      break;
396    case 5:
397      if (!TypeID->isStr("Class"))
398        break;
399      Context.setObjCClassType(New);
400      objc_types = true;
401      return false;
402    case 3:
403      if (!TypeID->isStr("SEL"))
404        break;
405      Context.setObjCSelType(New);
406      objc_types = true;
407      return false;
408    case 8:
409      if (!TypeID->isStr("Protocol"))
410        break;
411      Context.setObjCProtoType(New->getUnderlyingType());
412      objc_types = true;
413      return false;
414    }
415    // Fall through - the typedef name was not a builtin type.
416  }
417  // Verify the old decl was also a type.
418  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
419  if (!Old) {
420    Diag(New->getLocation(), diag::err_redefinition_different_kind)
421      << New->getDeclName();
422    if (!objc_types)
423      Diag(OldD->getLocation(), diag::note_previous_definition);
424    return true;
425  }
426
427  // Determine the "old" type we'll use for checking and diagnostics.
428  QualType OldType;
429  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
430    OldType = OldTypedef->getUnderlyingType();
431  else
432    OldType = Context.getTypeDeclType(Old);
433
434  // If the typedef types are not identical, reject them in all languages and
435  // with any extensions enabled.
436
437  if (OldType != New->getUnderlyingType() &&
438      Context.getCanonicalType(OldType) !=
439      Context.getCanonicalType(New->getUnderlyingType())) {
440    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
441      << New->getUnderlyingType() << OldType;
442    if (!objc_types)
443      Diag(Old->getLocation(), diag::note_previous_definition);
444    return true;
445  }
446  if (objc_types) return false;
447  if (getLangOptions().Microsoft) return false;
448
449  // C++ [dcl.typedef]p2:
450  //   In a given non-class scope, a typedef specifier can be used to
451  //   redefine the name of any type declared in that scope to refer
452  //   to the type to which it already refers.
453  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
454    return false;
455
456  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
457  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
458  // *either* declaration is in a system header. The code below implements
459  // this adhoc compatibility rule. FIXME: The following code will not
460  // work properly when compiling ".i" files (containing preprocessed output).
461  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
462    SourceManager &SrcMgr = Context.getSourceManager();
463    if (SrcMgr.isInSystemHeader(Old->getLocation()))
464      return false;
465    if (SrcMgr.isInSystemHeader(New->getLocation()))
466      return false;
467  }
468
469  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
470  Diag(Old->getLocation(), diag::note_previous_definition);
471  return true;
472}
473
474/// DeclhasAttr - returns true if decl Declaration already has the target
475/// attribute.
476static bool DeclHasAttr(const Decl *decl, const Attr *target) {
477  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
478    if (attr->getKind() == target->getKind())
479      return true;
480
481  return false;
482}
483
484/// MergeAttributes - append attributes from the Old decl to the New one.
485static void MergeAttributes(Decl *New, Decl *Old) {
486  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
487
488  while (attr) {
489    tmp = attr;
490    attr = attr->getNext();
491
492    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
493      tmp->setInherited(true);
494      New->addAttr(tmp);
495    } else {
496      tmp->setNext(0);
497      delete(tmp);
498    }
499  }
500
501  Old->invalidateAttrs();
502}
503
504/// MergeFunctionDecl - We just parsed a function 'New' from
505/// declarator D which has the same name and scope as a previous
506/// declaration 'Old'.  Figure out how to resolve this situation,
507/// merging decls or emitting diagnostics as appropriate.
508///
509/// In C++, New and Old must be declarations that are not
510/// overloaded. Use IsOverload to determine whether New and Old are
511/// overloaded, and to select the Old declaration that New should be
512/// merged with.
513///
514/// Returns true if there was an error, false otherwise.
515bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
516  assert(!isa<OverloadedFunctionDecl>(OldD) &&
517         "Cannot merge with an overloaded function declaration");
518
519  // Verify the old decl was also a function.
520  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
521  if (!Old) {
522    Diag(New->getLocation(), diag::err_redefinition_different_kind)
523      << New->getDeclName();
524    Diag(OldD->getLocation(), diag::note_previous_definition);
525    return true;
526  }
527
528  // Determine whether the previous declaration was a definition,
529  // implicit declaration, or a declaration.
530  diag::kind PrevDiag;
531  if (Old->isThisDeclarationADefinition())
532    PrevDiag = diag::note_previous_definition;
533  else if (Old->isImplicit())
534    PrevDiag = diag::note_previous_implicit_declaration;
535  else
536    PrevDiag = diag::note_previous_declaration;
537
538  QualType OldQType = Context.getCanonicalType(Old->getType());
539  QualType NewQType = Context.getCanonicalType(New->getType());
540
541  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
542      New->getStorageClass() == FunctionDecl::Static &&
543      Old->getStorageClass() != FunctionDecl::Static) {
544    Diag(New->getLocation(), diag::err_static_non_static)
545      << New;
546    Diag(Old->getLocation(), PrevDiag);
547    return true;
548  }
549
550  if (getLangOptions().CPlusPlus) {
551    // (C++98 13.1p2):
552    //   Certain function declarations cannot be overloaded:
553    //     -- Function declarations that differ only in the return type
554    //        cannot be overloaded.
555    QualType OldReturnType
556      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
557    QualType NewReturnType
558      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
559    if (OldReturnType != NewReturnType) {
560      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
561      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
562      return true;
563    }
564
565    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
566    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
567    if (OldMethod && NewMethod) {
568      //    -- Member function declarations with the same name and the
569      //       same parameter types cannot be overloaded if any of them
570      //       is a static member function declaration.
571      if (OldMethod->isStatic() || NewMethod->isStatic()) {
572        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
573        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
574        return true;
575      }
576
577      // C++ [class.mem]p1:
578      //   [...] A member shall not be declared twice in the
579      //   member-specification, except that a nested class or member
580      //   class template can be declared and then later defined.
581      if (OldMethod->getLexicalDeclContext() ==
582            NewMethod->getLexicalDeclContext()) {
583        unsigned NewDiag;
584        if (isa<CXXConstructorDecl>(OldMethod))
585          NewDiag = diag::err_constructor_redeclared;
586        else if (isa<CXXDestructorDecl>(NewMethod))
587          NewDiag = diag::err_destructor_redeclared;
588        else if (isa<CXXConversionDecl>(NewMethod))
589          NewDiag = diag::err_conv_function_redeclared;
590        else
591          NewDiag = diag::err_member_redeclared;
592
593        Diag(New->getLocation(), NewDiag);
594        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
595      }
596    }
597
598    // (C++98 8.3.5p3):
599    //   All declarations for a function shall agree exactly in both the
600    //   return type and the parameter-type-list.
601    if (OldQType == NewQType)
602      return MergeCompatibleFunctionDecls(New, Old);
603
604    // Fall through for conflicting redeclarations and redefinitions.
605  }
606
607  // C: Function types need to be compatible, not identical. This handles
608  // duplicate function decls like "void f(int); void f(enum X);" properly.
609  if (!getLangOptions().CPlusPlus &&
610      Context.typesAreCompatible(OldQType, NewQType)) {
611    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
612    const FunctionProtoType *OldProto = 0;
613    if (isa<FunctionNoProtoType>(NewFuncType) &&
614        (OldProto = OldQType->getAsFunctionProtoType())) {
615      // The old declaration provided a function prototype, but the
616      // new declaration does not. Merge in the prototype.
617      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
618                                                 OldProto->arg_type_end());
619      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
620                                         &ParamTypes[0], ParamTypes.size(),
621                                         OldProto->isVariadic(),
622                                         OldProto->getTypeQuals());
623      New->setType(NewQType);
624      New->setInheritedPrototype();
625
626      // Synthesize a parameter for each argument type.
627      llvm::SmallVector<ParmVarDecl*, 16> Params;
628      for (FunctionProtoType::arg_type_iterator
629             ParamType = OldProto->arg_type_begin(),
630             ParamEnd = OldProto->arg_type_end();
631           ParamType != ParamEnd; ++ParamType) {
632        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
633                                                 SourceLocation(), 0,
634                                                 *ParamType, VarDecl::None,
635                                                 0);
636        Param->setImplicit();
637        Params.push_back(Param);
638      }
639
640      New->setParams(Context, &Params[0], Params.size());
641
642    }
643
644    return MergeCompatibleFunctionDecls(New, Old);
645  }
646
647  // A function that has already been declared has been redeclared or defined
648  // with a different type- show appropriate diagnostic
649  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
650    // The user has declared a builtin function with an incompatible
651    // signature.
652    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
653      // The function the user is redeclaring is a library-defined
654      // function like 'malloc' or 'printf'. Warn about the
655      // redeclaration, then ignore it.
656      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
657      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
658        << Old << Old->getType();
659      return true;
660    }
661
662    PrevDiag = diag::note_previous_builtin_declaration;
663  }
664
665  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
666  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
667  return true;
668}
669
670/// \brief Completes the merge of two function declarations that are
671/// known to be compatible.
672///
673/// This routine handles the merging of attributes and other
674/// properties of function declarations form the old declaration to
675/// the new declaration, once we know that New is in fact a
676/// redeclaration of Old.
677///
678/// \returns false
679bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
680  // Merge the attributes
681  MergeAttributes(New, Old);
682
683  // Merge the storage class.
684  New->setStorageClass(Old->getStorageClass());
685
686  // FIXME: need to implement inline semantics
687
688  // Merge "pure" flag.
689  if (Old->isPure())
690    New->setPure();
691
692  // Merge the "deleted" flag.
693  if (Old->isDeleted())
694    New->setDeleted();
695
696  if (getLangOptions().CPlusPlus)
697    return MergeCXXFunctionDecl(New, Old);
698
699  return false;
700}
701
702/// Predicate for C "tentative" external object definitions (C99 6.9.2).
703static bool isTentativeDefinition(VarDecl *VD) {
704  if (VD->isFileVarDecl())
705    return (!VD->getInit() &&
706            (VD->getStorageClass() == VarDecl::None ||
707             VD->getStorageClass() == VarDecl::Static));
708  return false;
709}
710
711/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
712/// when dealing with C "tentative" external object definitions (C99 6.9.2).
713void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
714  bool VDIsTentative = isTentativeDefinition(VD);
715  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
716
717  // FIXME: I don't think this will actually see all of the
718  // redefinitions. Can't we check this property on-the-fly?
719  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
720                                    E = IdResolver.end();
721       I != E; ++I) {
722    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
723      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
724
725      // Handle the following case:
726      //   int a[10];
727      //   int a[];   - the code below makes sure we set the correct type.
728      //   int a[11]; - this is an error, size isn't 10.
729      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
730          OldDecl->getType()->isConstantArrayType())
731        VD->setType(OldDecl->getType());
732
733      // Check for "tentative" definitions. We can't accomplish this in
734      // MergeVarDecl since the initializer hasn't been attached.
735      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
736        continue;
737
738      // Handle __private_extern__ just like extern.
739      if (OldDecl->getStorageClass() != VarDecl::Extern &&
740          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
741          VD->getStorageClass() != VarDecl::Extern &&
742          VD->getStorageClass() != VarDecl::PrivateExtern) {
743        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
744        Diag(OldDecl->getLocation(), diag::note_previous_definition);
745        // One redefinition error is enough.
746        break;
747      }
748    }
749  }
750}
751
752/// MergeVarDecl - We just parsed a variable 'New' which has the same name
753/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
754/// situation, merging decls or emitting diagnostics as appropriate.
755///
756/// Tentative definition rules (C99 6.9.2p2) are checked by
757/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
758/// definitions here, since the initializer hasn't been attached.
759///
760bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
761  // Verify the old decl was also a variable.
762  VarDecl *Old = dyn_cast<VarDecl>(OldD);
763  if (!Old) {
764    Diag(New->getLocation(), diag::err_redefinition_different_kind)
765      << New->getDeclName();
766    Diag(OldD->getLocation(), diag::note_previous_definition);
767    return true;
768  }
769
770  MergeAttributes(New, Old);
771
772  // Merge the types
773  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
774  if (MergedT.isNull()) {
775    Diag(New->getLocation(), diag::err_redefinition_different_type)
776      << New->getDeclName();
777    Diag(Old->getLocation(), diag::note_previous_definition);
778    return true;
779  }
780  New->setType(MergedT);
781  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
782  if (New->getStorageClass() == VarDecl::Static &&
783      (Old->getStorageClass() == VarDecl::None ||
784       Old->getStorageClass() == VarDecl::Extern)) {
785    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
786    Diag(Old->getLocation(), diag::note_previous_definition);
787    return true;
788  }
789  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
790  if (New->getStorageClass() != VarDecl::Static &&
791      Old->getStorageClass() == VarDecl::Static) {
792    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
793    Diag(Old->getLocation(), diag::note_previous_definition);
794    return true;
795  }
796  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
797  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
798    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
799    Diag(Old->getLocation(), diag::note_previous_definition);
800    return true;
801  }
802  return false;
803}
804
805/// CheckParmsForFunctionDef - Check that the parameters of the given
806/// function are appropriate for the definition of a function. This
807/// takes care of any checks that cannot be performed on the
808/// declaration itself, e.g., that the types of each of the function
809/// parameters are complete.
810bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
811  bool HasInvalidParm = false;
812  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
813    ParmVarDecl *Param = FD->getParamDecl(p);
814
815    // C99 6.7.5.3p4: the parameters in a parameter type list in a
816    // function declarator that is part of a function definition of
817    // that function shall not have incomplete type.
818    if (!Param->isInvalidDecl() &&
819        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
820                               diag::err_typecheck_decl_incomplete_type)) {
821      Param->setInvalidDecl();
822      HasInvalidParm = true;
823    }
824
825    // C99 6.9.1p5: If the declarator includes a parameter type list, the
826    // declaration of each parameter shall include an identifier.
827    if (Param->getIdentifier() == 0 &&
828        !Param->isImplicit() &&
829        !getLangOptions().CPlusPlus)
830      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
831  }
832
833  return HasInvalidParm;
834}
835
836/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
837/// no declarator (e.g. "struct foo;") is parsed.
838Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
839  TagDecl *Tag = 0;
840  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
841      DS.getTypeSpecType() == DeclSpec::TST_struct ||
842      DS.getTypeSpecType() == DeclSpec::TST_union ||
843      DS.getTypeSpecType() == DeclSpec::TST_enum)
844    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
845
846  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
847    if (!Record->getDeclName() && Record->isDefinition() &&
848        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
849      return BuildAnonymousStructOrUnion(S, DS, Record);
850
851    // Microsoft allows unnamed struct/union fields. Don't complain
852    // about them.
853    // FIXME: Should we support Microsoft's extensions in this area?
854    if (Record->getDeclName() && getLangOptions().Microsoft)
855      return Tag;
856  }
857
858  if (!DS.isMissingDeclaratorOk() &&
859      DS.getTypeSpecType() != DeclSpec::TST_error) {
860    // Warn about typedefs of enums without names, since this is an
861    // extension in both Microsoft an GNU.
862    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
863        Tag && isa<EnumDecl>(Tag)) {
864      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
865        << DS.getSourceRange();
866      return Tag;
867    }
868
869    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
870      << DS.getSourceRange();
871    return 0;
872  }
873
874  return Tag;
875}
876
877/// InjectAnonymousStructOrUnionMembers - Inject the members of the
878/// anonymous struct or union AnonRecord into the owning context Owner
879/// and scope S. This routine will be invoked just after we realize
880/// that an unnamed union or struct is actually an anonymous union or
881/// struct, e.g.,
882///
883/// @code
884/// union {
885///   int i;
886///   float f;
887/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
888///    // f into the surrounding scope.x
889/// @endcode
890///
891/// This routine is recursive, injecting the names of nested anonymous
892/// structs/unions into the owning context and scope as well.
893bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
894                                               RecordDecl *AnonRecord) {
895  bool Invalid = false;
896  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
897                               FEnd = AnonRecord->field_end();
898       F != FEnd; ++F) {
899    if ((*F)->getDeclName()) {
900      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
901                                                LookupOrdinaryName, true);
902      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
903        // C++ [class.union]p2:
904        //   The names of the members of an anonymous union shall be
905        //   distinct from the names of any other entity in the
906        //   scope in which the anonymous union is declared.
907        unsigned diagKind
908          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
909                                 : diag::err_anonymous_struct_member_redecl;
910        Diag((*F)->getLocation(), diagKind)
911          << (*F)->getDeclName();
912        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
913        Invalid = true;
914      } else {
915        // C++ [class.union]p2:
916        //   For the purpose of name lookup, after the anonymous union
917        //   definition, the members of the anonymous union are
918        //   considered to have been defined in the scope in which the
919        //   anonymous union is declared.
920        Owner->makeDeclVisibleInContext(*F);
921        S->AddDecl(*F);
922        IdResolver.AddDecl(*F);
923      }
924    } else if (const RecordType *InnerRecordType
925                 = (*F)->getType()->getAsRecordType()) {
926      RecordDecl *InnerRecord = InnerRecordType->getDecl();
927      if (InnerRecord->isAnonymousStructOrUnion())
928        Invalid = Invalid ||
929          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
930    }
931  }
932
933  return Invalid;
934}
935
936/// ActOnAnonymousStructOrUnion - Handle the declaration of an
937/// anonymous structure or union. Anonymous unions are a C++ feature
938/// (C++ [class.union]) and a GNU C extension; anonymous structures
939/// are a GNU C and GNU C++ extension.
940Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
941                                                RecordDecl *Record) {
942  DeclContext *Owner = Record->getDeclContext();
943
944  // Diagnose whether this anonymous struct/union is an extension.
945  if (Record->isUnion() && !getLangOptions().CPlusPlus)
946    Diag(Record->getLocation(), diag::ext_anonymous_union);
947  else if (!Record->isUnion())
948    Diag(Record->getLocation(), diag::ext_anonymous_struct);
949
950  // C and C++ require different kinds of checks for anonymous
951  // structs/unions.
952  bool Invalid = false;
953  if (getLangOptions().CPlusPlus) {
954    const char* PrevSpec = 0;
955    // C++ [class.union]p3:
956    //   Anonymous unions declared in a named namespace or in the
957    //   global namespace shall be declared static.
958    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
959        (isa<TranslationUnitDecl>(Owner) ||
960         (isa<NamespaceDecl>(Owner) &&
961          cast<NamespaceDecl>(Owner)->getDeclName()))) {
962      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
963      Invalid = true;
964
965      // Recover by adding 'static'.
966      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
967    }
968    // C++ [class.union]p3:
969    //   A storage class is not allowed in a declaration of an
970    //   anonymous union in a class scope.
971    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
972             isa<RecordDecl>(Owner)) {
973      Diag(DS.getStorageClassSpecLoc(),
974           diag::err_anonymous_union_with_storage_spec);
975      Invalid = true;
976
977      // Recover by removing the storage specifier.
978      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
979                             PrevSpec);
980    }
981
982    // C++ [class.union]p2:
983    //   The member-specification of an anonymous union shall only
984    //   define non-static data members. [Note: nested types and
985    //   functions cannot be declared within an anonymous union. ]
986    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
987                                 MemEnd = Record->decls_end();
988         Mem != MemEnd; ++Mem) {
989      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
990        // C++ [class.union]p3:
991        //   An anonymous union shall not have private or protected
992        //   members (clause 11).
993        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
994          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
995            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
996          Invalid = true;
997        }
998      } else if ((*Mem)->isImplicit()) {
999        // Any implicit members are fine.
1000      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1001        // This is a type that showed up in an
1002        // elaborated-type-specifier inside the anonymous struct or
1003        // union, but which actually declares a type outside of the
1004        // anonymous struct or union. It's okay.
1005      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1006        if (!MemRecord->isAnonymousStructOrUnion() &&
1007            MemRecord->getDeclName()) {
1008          // This is a nested type declaration.
1009          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1010            << (int)Record->isUnion();
1011          Invalid = true;
1012        }
1013      } else {
1014        // We have something that isn't a non-static data
1015        // member. Complain about it.
1016        unsigned DK = diag::err_anonymous_record_bad_member;
1017        if (isa<TypeDecl>(*Mem))
1018          DK = diag::err_anonymous_record_with_type;
1019        else if (isa<FunctionDecl>(*Mem))
1020          DK = diag::err_anonymous_record_with_function;
1021        else if (isa<VarDecl>(*Mem))
1022          DK = diag::err_anonymous_record_with_static;
1023        Diag((*Mem)->getLocation(), DK)
1024            << (int)Record->isUnion();
1025          Invalid = true;
1026      }
1027    }
1028  } else {
1029    // FIXME: Check GNU C semantics
1030    if (Record->isUnion() && !Owner->isRecord()) {
1031      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1032        << (int)getLangOptions().CPlusPlus;
1033      Invalid = true;
1034    }
1035  }
1036
1037  if (!Record->isUnion() && !Owner->isRecord()) {
1038    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1039      << (int)getLangOptions().CPlusPlus;
1040    Invalid = true;
1041  }
1042
1043  // Create a declaration for this anonymous struct/union.
1044  NamedDecl *Anon = 0;
1045  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1046    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1047                             /*IdentifierInfo=*/0,
1048                             Context.getTypeDeclType(Record),
1049                             /*BitWidth=*/0, /*Mutable=*/false);
1050    Anon->setAccess(AS_public);
1051    if (getLangOptions().CPlusPlus)
1052      FieldCollector->Add(cast<FieldDecl>(Anon));
1053  } else {
1054    VarDecl::StorageClass SC;
1055    switch (DS.getStorageClassSpec()) {
1056    default: assert(0 && "Unknown storage class!");
1057    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1058    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1059    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1060    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1061    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1062    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1063    case DeclSpec::SCS_mutable:
1064      // mutable can only appear on non-static class members, so it's always
1065      // an error here
1066      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1067      Invalid = true;
1068      SC = VarDecl::None;
1069      break;
1070    }
1071
1072    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1073                           /*IdentifierInfo=*/0,
1074                           Context.getTypeDeclType(Record),
1075                           SC, DS.getSourceRange().getBegin());
1076  }
1077  Anon->setImplicit();
1078
1079  // Add the anonymous struct/union object to the current
1080  // context. We'll be referencing this object when we refer to one of
1081  // its members.
1082  Owner->addDecl(Anon);
1083
1084  // Inject the members of the anonymous struct/union into the owning
1085  // context and into the identifier resolver chain for name lookup
1086  // purposes.
1087  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1088    Invalid = true;
1089
1090  // Mark this as an anonymous struct/union type. Note that we do not
1091  // do this until after we have already checked and injected the
1092  // members of this anonymous struct/union type, because otherwise
1093  // the members could be injected twice: once by DeclContext when it
1094  // builds its lookup table, and once by
1095  // InjectAnonymousStructOrUnionMembers.
1096  Record->setAnonymousStructOrUnion(true);
1097
1098  if (Invalid)
1099    Anon->setInvalidDecl();
1100
1101  return Anon;
1102}
1103
1104
1105/// GetNameForDeclarator - Determine the full declaration name for the
1106/// given Declarator.
1107DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1108  switch (D.getKind()) {
1109  case Declarator::DK_Abstract:
1110    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1111    return DeclarationName();
1112
1113  case Declarator::DK_Normal:
1114    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1115    return DeclarationName(D.getIdentifier());
1116
1117  case Declarator::DK_Constructor: {
1118    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1119    Ty = Context.getCanonicalType(Ty);
1120    return Context.DeclarationNames.getCXXConstructorName(Ty);
1121  }
1122
1123  case Declarator::DK_Destructor: {
1124    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1125    Ty = Context.getCanonicalType(Ty);
1126    return Context.DeclarationNames.getCXXDestructorName(Ty);
1127  }
1128
1129  case Declarator::DK_Conversion: {
1130    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1131    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1132    Ty = Context.getCanonicalType(Ty);
1133    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1134  }
1135
1136  case Declarator::DK_Operator:
1137    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1138    return Context.DeclarationNames.getCXXOperatorName(
1139                                                D.getOverloadedOperator());
1140  }
1141
1142  assert(false && "Unknown name kind");
1143  return DeclarationName();
1144}
1145
1146/// isNearlyMatchingFunction - Determine whether the C++ functions
1147/// Declaration and Definition are "nearly" matching. This heuristic
1148/// is used to improve diagnostics in the case where an out-of-line
1149/// function definition doesn't match any declaration within
1150/// the class or namespace.
1151static bool isNearlyMatchingFunction(ASTContext &Context,
1152                                     FunctionDecl *Declaration,
1153                                     FunctionDecl *Definition) {
1154  if (Declaration->param_size() != Definition->param_size())
1155    return false;
1156  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1157    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1158    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1159
1160    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1161    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1162    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1163      return false;
1164  }
1165
1166  return true;
1167}
1168
1169Sema::DeclTy *
1170Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1171                      bool IsFunctionDefinition) {
1172  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1173  DeclarationName Name = GetNameForDeclarator(D);
1174
1175  // All of these full declarators require an identifier.  If it doesn't have
1176  // one, the ParsedFreeStandingDeclSpec action should be used.
1177  if (!Name) {
1178    if (!D.getInvalidType())  // Reject this if we think it is valid.
1179      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1180           diag::err_declarator_need_ident)
1181        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1182    return 0;
1183  }
1184
1185  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1186  // we find one that is.
1187  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1188         (S->getFlags() & Scope::TemplateParamScope) != 0)
1189    S = S->getParent();
1190
1191  DeclContext *DC;
1192  NamedDecl *PrevDecl;
1193  NamedDecl *New;
1194  bool InvalidDecl = false;
1195
1196  QualType R = GetTypeForDeclarator(D, S);
1197  if (R.isNull()) {
1198    InvalidDecl = true;
1199    R = Context.IntTy;
1200  }
1201
1202  // See if this is a redefinition of a variable in the same scope.
1203  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1204    LookupNameKind NameKind = LookupOrdinaryName;
1205
1206    // If the declaration we're planning to build will be a function
1207    // or object with linkage, then look for another declaration with
1208    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1209    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1210      /* Do nothing*/;
1211    else if (R->isFunctionType()) {
1212      if (CurContext->isFunctionOrMethod())
1213        NameKind = LookupRedeclarationWithLinkage;
1214    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1215      NameKind = LookupRedeclarationWithLinkage;
1216
1217    DC = CurContext;
1218    PrevDecl = LookupName(S, Name, NameKind, true,
1219                          D.getDeclSpec().getStorageClassSpec() !=
1220                            DeclSpec::SCS_static,
1221                          D.getIdentifierLoc());
1222  } else { // Something like "int foo::x;"
1223    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1224    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1225
1226    // C++ 7.3.1.2p2:
1227    // Members (including explicit specializations of templates) of a named
1228    // namespace can also be defined outside that namespace by explicit
1229    // qualification of the name being defined, provided that the entity being
1230    // defined was already declared in the namespace and the definition appears
1231    // after the point of declaration in a namespace that encloses the
1232    // declarations namespace.
1233    //
1234    // Note that we only check the context at this point. We don't yet
1235    // have enough information to make sure that PrevDecl is actually
1236    // the declaration we want to match. For example, given:
1237    //
1238    //   class X {
1239    //     void f();
1240    //     void f(float);
1241    //   };
1242    //
1243    //   void X::f(int) { } // ill-formed
1244    //
1245    // In this case, PrevDecl will point to the overload set
1246    // containing the two f's declared in X, but neither of them
1247    // matches.
1248
1249    // First check whether we named the global scope.
1250    if (isa<TranslationUnitDecl>(DC)) {
1251      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1252        << Name << D.getCXXScopeSpec().getRange();
1253    } else if (!CurContext->Encloses(DC)) {
1254      // The qualifying scope doesn't enclose the original declaration.
1255      // Emit diagnostic based on current scope.
1256      SourceLocation L = D.getIdentifierLoc();
1257      SourceRange R = D.getCXXScopeSpec().getRange();
1258      if (isa<FunctionDecl>(CurContext))
1259        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1260      else
1261        Diag(L, diag::err_invalid_declarator_scope)
1262          << Name << cast<NamedDecl>(DC) << R;
1263      InvalidDecl = true;
1264    }
1265  }
1266
1267  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1268    // Maybe we will complain about the shadowed template parameter.
1269    InvalidDecl = InvalidDecl
1270      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1271    // Just pretend that we didn't see the previous declaration.
1272    PrevDecl = 0;
1273  }
1274
1275  // In C++, the previous declaration we find might be a tag type
1276  // (class or enum). In this case, the new declaration will hide the
1277  // tag type. Note that this does does not apply if we're declaring a
1278  // typedef (C++ [dcl.typedef]p4).
1279  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1280      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1281    PrevDecl = 0;
1282
1283  bool Redeclaration = false;
1284  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1285    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1286                                 InvalidDecl, Redeclaration);
1287  } else if (R->isFunctionType()) {
1288    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1289                                  IsFunctionDefinition, InvalidDecl,
1290                                  Redeclaration);
1291  } else {
1292    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1293                                  InvalidDecl, Redeclaration);
1294  }
1295
1296  if (New == 0)
1297    return 0;
1298
1299  // Set the lexical context. If the declarator has a C++ scope specifier, the
1300  // lexical context will be different from the semantic context.
1301  New->setLexicalDeclContext(CurContext);
1302
1303  // If this has an identifier and is not an invalid redeclaration,
1304  // add it to the scope stack.
1305  if (Name && !(Redeclaration && InvalidDecl))
1306    PushOnScopeChains(New, S);
1307  // If any semantic error occurred, mark the decl as invalid.
1308  if (D.getInvalidType() || InvalidDecl)
1309    New->setInvalidDecl();
1310
1311  return New;
1312}
1313
1314/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1315/// types into constant array types in certain situations which would otherwise
1316/// be errors (for GCC compatibility).
1317static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1318                                                    ASTContext &Context,
1319                                                    bool &SizeIsNegative) {
1320  // This method tries to turn a variable array into a constant
1321  // array even when the size isn't an ICE.  This is necessary
1322  // for compatibility with code that depends on gcc's buggy
1323  // constant expression folding, like struct {char x[(int)(char*)2];}
1324  SizeIsNegative = false;
1325
1326  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1327    QualType Pointee = PTy->getPointeeType();
1328    QualType FixedType =
1329        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1330    if (FixedType.isNull()) return FixedType;
1331    FixedType = Context.getPointerType(FixedType);
1332    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1333    return FixedType;
1334  }
1335
1336  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1337  if (!VLATy)
1338    return QualType();
1339  // FIXME: We should probably handle this case
1340  if (VLATy->getElementType()->isVariablyModifiedType())
1341    return QualType();
1342
1343  Expr::EvalResult EvalResult;
1344  if (!VLATy->getSizeExpr() ||
1345      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1346      !EvalResult.Val.isInt())
1347    return QualType();
1348
1349  llvm::APSInt &Res = EvalResult.Val.getInt();
1350  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1351    return Context.getConstantArrayType(VLATy->getElementType(),
1352                                        Res, ArrayType::Normal, 0);
1353
1354  SizeIsNegative = true;
1355  return QualType();
1356}
1357
1358NamedDecl*
1359Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1360                             QualType R, Decl* LastDeclarator,
1361                             Decl* PrevDecl, bool& InvalidDecl,
1362                             bool &Redeclaration) {
1363  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1364  if (D.getCXXScopeSpec().isSet()) {
1365    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1366      << D.getCXXScopeSpec().getRange();
1367    InvalidDecl = true;
1368    // Pretend we didn't see the scope specifier.
1369    DC = 0;
1370  }
1371
1372  // Check that there are no default arguments (C++ only).
1373  if (getLangOptions().CPlusPlus)
1374    CheckExtraCXXDefaultArguments(D);
1375
1376  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1377  if (!NewTD) return 0;
1378
1379  // Handle attributes prior to checking for duplicates in MergeVarDecl
1380  ProcessDeclAttributes(NewTD, D);
1381  // Merge the decl with the existing one if appropriate. If the decl is
1382  // in an outer scope, it isn't the same thing.
1383  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1384    Redeclaration = true;
1385    if (MergeTypeDefDecl(NewTD, PrevDecl))
1386      InvalidDecl = true;
1387  }
1388
1389  if (S->getFnParent() == 0) {
1390    QualType T = NewTD->getUnderlyingType();
1391    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1392    // then it shall have block scope.
1393    if (T->isVariablyModifiedType()) {
1394      bool SizeIsNegative;
1395      QualType FixedTy =
1396          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1397      if (!FixedTy.isNull()) {
1398        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1399        NewTD->setUnderlyingType(FixedTy);
1400      } else {
1401        if (SizeIsNegative)
1402          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1403        else if (T->isVariableArrayType())
1404          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1405        else
1406          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1407        InvalidDecl = true;
1408      }
1409    }
1410  }
1411  return NewTD;
1412}
1413
1414/// \brief Determines whether the given declaration is an out-of-scope
1415/// previous declaration.
1416///
1417/// This routine should be invoked when name lookup has found a
1418/// previous declaration (PrevDecl) that is not in the scope where a
1419/// new declaration by the same name is being introduced. If the new
1420/// declaration occurs in a local scope, previous declarations with
1421/// linkage may still be considered previous declarations (C99
1422/// 6.2.2p4-5, C++ [basic.link]p6).
1423///
1424/// \param PrevDecl the previous declaration found by name
1425/// lookup
1426///
1427/// \param DC the context in which the new declaration is being
1428/// declared.
1429///
1430/// \returns true if PrevDecl is an out-of-scope previous declaration
1431/// for a new delcaration with the same name.
1432static bool
1433isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1434                                ASTContext &Context) {
1435  if (!PrevDecl)
1436    return 0;
1437
1438  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1439  // case we need to check each of the overloaded functions.
1440  if (!PrevDecl->hasLinkage())
1441    return false;
1442
1443  if (Context.getLangOptions().CPlusPlus) {
1444    // C++ [basic.link]p6:
1445    //   If there is a visible declaration of an entity with linkage
1446    //   having the same name and type, ignoring entities declared
1447    //   outside the innermost enclosing namespace scope, the block
1448    //   scope declaration declares that same entity and receives the
1449    //   linkage of the previous declaration.
1450    DeclContext *OuterContext = DC->getLookupContext();
1451    if (!OuterContext->isFunctionOrMethod())
1452      // This rule only applies to block-scope declarations.
1453      return false;
1454    else {
1455      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1456      if (PrevOuterContext->isRecord())
1457        // We found a member function: ignore it.
1458        return false;
1459      else {
1460        // Find the innermost enclosing namespace for the new and
1461        // previous declarations.
1462        while (!OuterContext->isFileContext())
1463          OuterContext = OuterContext->getParent();
1464        while (!PrevOuterContext->isFileContext())
1465          PrevOuterContext = PrevOuterContext->getParent();
1466
1467        // The previous declaration is in a different namespace, so it
1468        // isn't the same function.
1469        if (OuterContext->getPrimaryContext() !=
1470            PrevOuterContext->getPrimaryContext())
1471          return false;
1472      }
1473    }
1474  }
1475
1476  return true;
1477}
1478
1479/// \brief Inject a locally-scoped declaration with external linkage
1480/// into the appropriate namespace scope.
1481///
1482/// Given a declaration of an entity with linkage that occurs within a
1483/// local scope, this routine inject that declaration into top-level
1484/// scope so that it will be visible for later uses and declarations
1485/// of the same entity.
1486void Sema::InjectLocallyScopedExternalDeclaration(ValueDecl *VD) {
1487  // FIXME: We don't do this in C++ because, although we would like
1488  // to get the extra checking that this operation implies,
1489  // the declaration itself is not visible according to C++'s rules.
1490  assert(!getLangOptions().CPlusPlus &&
1491         "Can't inject locally-scoped declarations in C++");
1492  IdentifierResolver::iterator I = IdResolver.begin(VD->getDeclName()),
1493                            IEnd = IdResolver.end();
1494  NamedDecl *PrevDecl = 0;
1495  while (I != IEnd && !isa<TranslationUnitDecl>((*I)->getDeclContext())) {
1496    PrevDecl = *I;
1497    ++I;
1498  }
1499
1500  if (I == IEnd) {
1501    // No name with this identifier has been declared at translation
1502    // unit scope. Add this name into the appropriate scope.
1503    if (PrevDecl)
1504      IdResolver.AddShadowedDecl(VD, PrevDecl);
1505    else
1506      IdResolver.AddDecl(VD);
1507    TUScope->AddDecl(VD);
1508    return;
1509  }
1510
1511  if (isa<TagDecl>(*I)) {
1512    // The first thing we found was a tag declaration, so insert
1513    // this function so that it will be found before the tag
1514    // declaration.
1515    if (PrevDecl)
1516      IdResolver.AddShadowedDecl(VD, PrevDecl);
1517    else
1518      IdResolver.AddDecl(VD);
1519    TUScope->AddDecl(VD);
1520    return;
1521  }
1522
1523  if (VD->declarationReplaces(*I)) {
1524    // We found a previous declaration of the same entity. Replace
1525    // that declaration with this one.
1526    TUScope->RemoveDecl(*I);
1527    TUScope->AddDecl(VD);
1528    IdResolver.RemoveDecl(*I);
1529    if (PrevDecl)
1530      IdResolver.AddShadowedDecl(VD, PrevDecl);
1531    else
1532      IdResolver.AddDecl(VD);
1533  }
1534}
1535
1536NamedDecl*
1537Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1538                              QualType R, Decl* LastDeclarator,
1539                              NamedDecl* PrevDecl, bool& InvalidDecl,
1540                              bool &Redeclaration) {
1541  DeclarationName Name = GetNameForDeclarator(D);
1542
1543  // Check that there are no default arguments (C++ only).
1544  if (getLangOptions().CPlusPlus)
1545    CheckExtraCXXDefaultArguments(D);
1546
1547  if (R.getTypePtr()->isObjCInterfaceType()) {
1548    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1549    InvalidDecl = true;
1550  }
1551
1552  VarDecl *NewVD;
1553  VarDecl::StorageClass SC;
1554  switch (D.getDeclSpec().getStorageClassSpec()) {
1555  default: assert(0 && "Unknown storage class!");
1556  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1557  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1558  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1559  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1560  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1561  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1562  case DeclSpec::SCS_mutable:
1563    // mutable can only appear on non-static class members, so it's always
1564    // an error here
1565    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1566    InvalidDecl = true;
1567    SC = VarDecl::None;
1568    break;
1569  }
1570
1571  IdentifierInfo *II = Name.getAsIdentifierInfo();
1572  if (!II) {
1573    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1574      << Name.getAsString();
1575    return 0;
1576  }
1577
1578  if (DC->isRecord()) {
1579    // This is a static data member for a C++ class.
1580    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1581                                    D.getIdentifierLoc(), II,
1582                                    R);
1583  } else {
1584    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1585    if (S->getFnParent() == 0) {
1586      // C99 6.9p2: The storage-class specifiers auto and register shall not
1587      // appear in the declaration specifiers in an external declaration.
1588      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1589        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1590        InvalidDecl = true;
1591      }
1592    }
1593    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1594                            II, R, SC,
1595                            // FIXME: Move to DeclGroup...
1596                            D.getDeclSpec().getSourceRange().getBegin());
1597    NewVD->setThreadSpecified(ThreadSpecified);
1598  }
1599  NewVD->setNextDeclarator(LastDeclarator);
1600
1601  // Handle attributes prior to checking for duplicates in MergeVarDecl
1602  ProcessDeclAttributes(NewVD, D);
1603
1604  // Handle GNU asm-label extension (encoded as an attribute).
1605  if (Expr *E = (Expr*) D.getAsmLabel()) {
1606    // The parser guarantees this is a string.
1607    StringLiteral *SE = cast<StringLiteral>(E);
1608    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1609                                                SE->getByteLength())));
1610  }
1611
1612  // Emit an error if an address space was applied to decl with local storage.
1613  // This includes arrays of objects with address space qualifiers, but not
1614  // automatic variables that point to other address spaces.
1615  // ISO/IEC TR 18037 S5.1.2
1616  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1617    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1618    InvalidDecl = true;
1619  }
1620
1621  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1622    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1623  }
1624
1625  // If name lookup finds a previous declaration that is not in the
1626  // same scope as the new declaration, this may still be an
1627  // acceptable redeclaration.
1628  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1629      !(NewVD->hasLinkage() &&
1630        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1631    PrevDecl = 0;
1632
1633  // Merge the decl with the existing one if appropriate.
1634  if (PrevDecl) {
1635    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1636      // The user tried to define a non-static data member
1637      // out-of-line (C++ [dcl.meaning]p1).
1638      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1639        << D.getCXXScopeSpec().getRange();
1640      NewVD->Destroy(Context);
1641      return 0;
1642    }
1643
1644    Redeclaration = true;
1645    if (MergeVarDecl(NewVD, PrevDecl))
1646      InvalidDecl = true;
1647
1648    if (D.getCXXScopeSpec().isSet()) {
1649      // No previous declaration in the qualifying scope.
1650      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1651        << Name << D.getCXXScopeSpec().getRange();
1652      InvalidDecl = true;
1653    }
1654  }
1655
1656  // If this is a locally-scoped extern variable in C, inject a
1657  // declaration into translation unit scope so that all external
1658  // declarations are visible.
1659  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod() &&
1660      NewVD->hasLinkage())
1661    InjectLocallyScopedExternalDeclaration(NewVD);
1662
1663  return NewVD;
1664}
1665
1666NamedDecl*
1667Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1668                              QualType R, Decl *LastDeclarator,
1669                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1670                              bool& InvalidDecl, bool &Redeclaration) {
1671  assert(R.getTypePtr()->isFunctionType());
1672
1673  DeclarationName Name = GetNameForDeclarator(D);
1674  FunctionDecl::StorageClass SC = FunctionDecl::None;
1675  switch (D.getDeclSpec().getStorageClassSpec()) {
1676  default: assert(0 && "Unknown storage class!");
1677  case DeclSpec::SCS_auto:
1678  case DeclSpec::SCS_register:
1679  case DeclSpec::SCS_mutable:
1680    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1681         diag::err_typecheck_sclass_func);
1682    InvalidDecl = true;
1683    break;
1684  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1685  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1686  case DeclSpec::SCS_static: {
1687    if (DC->getLookupContext()->isFunctionOrMethod()) {
1688      // C99 6.7.1p5:
1689      //   The declaration of an identifier for a function that has
1690      //   block scope shall have no explicit storage-class specifier
1691      //   other than extern
1692      // See also (C++ [dcl.stc]p4).
1693      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1694           diag::err_static_block_func);
1695      SC = FunctionDecl::None;
1696    } else
1697      SC = FunctionDecl::Static;
1698    break;
1699  }
1700  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1701  }
1702
1703  bool isInline = D.getDeclSpec().isInlineSpecified();
1704  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1705  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1706
1707  FunctionDecl *NewFD;
1708  if (D.getKind() == Declarator::DK_Constructor) {
1709    // This is a C++ constructor declaration.
1710    assert(DC->isRecord() &&
1711           "Constructors can only be declared in a member context");
1712
1713    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1714
1715    // Create the new declaration
1716    NewFD = CXXConstructorDecl::Create(Context,
1717                                       cast<CXXRecordDecl>(DC),
1718                                       D.getIdentifierLoc(), Name, R,
1719                                       isExplicit, isInline,
1720                                       /*isImplicitlyDeclared=*/false);
1721
1722    if (InvalidDecl)
1723      NewFD->setInvalidDecl();
1724  } else if (D.getKind() == Declarator::DK_Destructor) {
1725    // This is a C++ destructor declaration.
1726    if (DC->isRecord()) {
1727      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1728
1729      NewFD = CXXDestructorDecl::Create(Context,
1730                                        cast<CXXRecordDecl>(DC),
1731                                        D.getIdentifierLoc(), Name, R,
1732                                        isInline,
1733                                        /*isImplicitlyDeclared=*/false);
1734
1735      if (InvalidDecl)
1736        NewFD->setInvalidDecl();
1737    } else {
1738      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1739
1740      // Create a FunctionDecl to satisfy the function definition parsing
1741      // code path.
1742      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1743                                   Name, R, SC, isInline,
1744                                   /*hasPrototype=*/true,
1745                                   // FIXME: Move to DeclGroup...
1746                                   D.getDeclSpec().getSourceRange().getBegin());
1747      InvalidDecl = true;
1748      NewFD->setInvalidDecl();
1749    }
1750  } else if (D.getKind() == Declarator::DK_Conversion) {
1751    if (!DC->isRecord()) {
1752      Diag(D.getIdentifierLoc(),
1753           diag::err_conv_function_not_member);
1754      return 0;
1755    } else {
1756      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1757
1758      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1759                                        D.getIdentifierLoc(), Name, R,
1760                                        isInline, isExplicit);
1761
1762      if (InvalidDecl)
1763        NewFD->setInvalidDecl();
1764    }
1765  } else if (DC->isRecord()) {
1766    // This is a C++ method declaration.
1767    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1768                                  D.getIdentifierLoc(), Name, R,
1769                                  (SC == FunctionDecl::Static), isInline);
1770  } else {
1771    NewFD = FunctionDecl::Create(Context, DC,
1772                                 D.getIdentifierLoc(),
1773                                 Name, R, SC, isInline,
1774                                 /*hasPrototype=*/
1775                                   (getLangOptions().CPlusPlus ||
1776                                    (D.getNumTypeObjects() &&
1777                                     D.getTypeObject(0).Fun.hasPrototype)),
1778                                 // FIXME: Move to DeclGroup...
1779                                 D.getDeclSpec().getSourceRange().getBegin());
1780  }
1781  NewFD->setNextDeclarator(LastDeclarator);
1782
1783  // Set the lexical context. If the declarator has a C++
1784  // scope specifier, the lexical context will be different
1785  // from the semantic context.
1786  NewFD->setLexicalDeclContext(CurContext);
1787
1788  // Handle GNU asm-label extension (encoded as an attribute).
1789  if (Expr *E = (Expr*) D.getAsmLabel()) {
1790    // The parser guarantees this is a string.
1791    StringLiteral *SE = cast<StringLiteral>(E);
1792    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1793                                                SE->getByteLength())));
1794  }
1795
1796  // Copy the parameter declarations from the declarator D to
1797  // the function declaration NewFD, if they are available.
1798  if (D.getNumTypeObjects() > 0) {
1799    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1800
1801    // Create Decl objects for each parameter, adding them to the
1802    // FunctionDecl.
1803    llvm::SmallVector<ParmVarDecl*, 16> Params;
1804
1805    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1806    // function that takes no arguments, not a function that takes a
1807    // single void argument.
1808    // We let through "const void" here because Sema::GetTypeForDeclarator
1809    // already checks for that case.
1810    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1811        FTI.ArgInfo[0].Param &&
1812        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1813      // empty arg list, don't push any params.
1814      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1815
1816      // In C++, the empty parameter-type-list must be spelled "void"; a
1817      // typedef of void is not permitted.
1818      if (getLangOptions().CPlusPlus &&
1819          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1820        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1821      }
1822    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1823      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1824        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1825    }
1826
1827    NewFD->setParams(Context, &Params[0], Params.size());
1828  } else if (R->getAsTypedefType()) {
1829    // When we're declaring a function with a typedef, as in the
1830    // following example, we'll need to synthesize (unnamed)
1831    // parameters for use in the declaration.
1832    //
1833    // @code
1834    // typedef void fn(int);
1835    // fn f;
1836    // @endcode
1837    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1838    if (!FT) {
1839      // This is a typedef of a function with no prototype, so we
1840      // don't need to do anything.
1841    } else if ((FT->getNumArgs() == 0) ||
1842               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1843                FT->getArgType(0)->isVoidType())) {
1844      // This is a zero-argument function. We don't need to do anything.
1845    } else {
1846      // Synthesize a parameter for each argument type.
1847      llvm::SmallVector<ParmVarDecl*, 16> Params;
1848      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1849           ArgType != FT->arg_type_end(); ++ArgType) {
1850        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1851                                                 SourceLocation(), 0,
1852                                                 *ArgType, VarDecl::None,
1853                                                 0);
1854        Param->setImplicit();
1855        Params.push_back(Param);
1856      }
1857
1858      NewFD->setParams(Context, &Params[0], Params.size());
1859    }
1860  }
1861
1862  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1863    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1864  else if (isa<CXXDestructorDecl>(NewFD)) {
1865    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1866    Record->setUserDeclaredDestructor(true);
1867    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1868    // user-defined destructor.
1869    Record->setPOD(false);
1870  } else if (CXXConversionDecl *Conversion =
1871             dyn_cast<CXXConversionDecl>(NewFD))
1872    ActOnConversionDeclarator(Conversion);
1873
1874  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1875  if (NewFD->isOverloadedOperator() &&
1876      CheckOverloadedOperatorDeclaration(NewFD))
1877    NewFD->setInvalidDecl();
1878
1879  // If name lookup finds a previous declaration that is not in the
1880  // same scope as the new declaration, this may still be an
1881  // acceptable redeclaration.
1882  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1883      !(NewFD->hasLinkage() &&
1884        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1885    PrevDecl = 0;
1886
1887  // Merge or overload the declaration with an existing declaration of
1888  // the same name, if appropriate.
1889  bool OverloadableAttrRequired = false;
1890  if (PrevDecl) {
1891    // Determine whether NewFD is an overload of PrevDecl or
1892    // a declaration that requires merging. If it's an overload,
1893    // there's no more work to do here; we'll just add the new
1894    // function to the scope.
1895    OverloadedFunctionDecl::function_iterator MatchedDecl;
1896
1897    if (!getLangOptions().CPlusPlus &&
1898        AllowOverloadingOfFunction(PrevDecl, Context)) {
1899      OverloadableAttrRequired = true;
1900
1901      // Functions marked "overloadable" must have a prototype (that
1902      // we can't get through declaration merging).
1903      if (!R->getAsFunctionProtoType()) {
1904        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1905          << NewFD;
1906        InvalidDecl = true;
1907        Redeclaration = true;
1908
1909        // Turn this into a variadic function with no parameters.
1910        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1911                                    0, 0, true, 0);
1912        NewFD->setType(R);
1913      }
1914    }
1915
1916    if (PrevDecl &&
1917        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1918         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1919      Redeclaration = true;
1920      Decl *OldDecl = PrevDecl;
1921
1922      // If PrevDecl was an overloaded function, extract the
1923      // FunctionDecl that matched.
1924      if (isa<OverloadedFunctionDecl>(PrevDecl))
1925        OldDecl = *MatchedDecl;
1926
1927      // NewFD and PrevDecl represent declarations that need to be
1928      // merged.
1929      if (MergeFunctionDecl(NewFD, OldDecl))
1930        InvalidDecl = true;
1931
1932      if (!InvalidDecl) {
1933        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1934
1935        // An out-of-line member function declaration must also be a
1936        // definition (C++ [dcl.meaning]p1).
1937        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1938            !InvalidDecl) {
1939          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1940            << D.getCXXScopeSpec().getRange();
1941          NewFD->setInvalidDecl();
1942        }
1943      }
1944    }
1945  }
1946
1947  if (D.getCXXScopeSpec().isSet() &&
1948      (!PrevDecl || !Redeclaration)) {
1949    // The user tried to provide an out-of-line definition for a
1950    // function that is a member of a class or namespace, but there
1951    // was no such member function declared (C++ [class.mfct]p2,
1952    // C++ [namespace.memdef]p2). For example:
1953    //
1954    // class X {
1955    //   void f() const;
1956    // };
1957    //
1958    // void X::f() { } // ill-formed
1959    //
1960    // Complain about this problem, and attempt to suggest close
1961    // matches (e.g., those that differ only in cv-qualifiers and
1962    // whether the parameter types are references).
1963    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1964      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1965    InvalidDecl = true;
1966
1967    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1968                                            true);
1969    assert(!Prev.isAmbiguous() &&
1970           "Cannot have an ambiguity in previous-declaration lookup");
1971    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1972         Func != FuncEnd; ++Func) {
1973      if (isa<FunctionDecl>(*Func) &&
1974          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1975        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1976    }
1977
1978    PrevDecl = 0;
1979  }
1980
1981  // Handle attributes. We need to have merged decls when handling attributes
1982  // (for example to check for conflicts, etc).
1983  ProcessDeclAttributes(NewFD, D);
1984  AddKnownFunctionAttributes(NewFD);
1985
1986  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1987    // If a function name is overloadable in C, then every function
1988    // with that name must be marked "overloadable".
1989    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1990      << Redeclaration << NewFD;
1991    if (PrevDecl)
1992      Diag(PrevDecl->getLocation(),
1993           diag::note_attribute_overloadable_prev_overload);
1994    NewFD->addAttr(new OverloadableAttr);
1995  }
1996
1997  if (getLangOptions().CPlusPlus) {
1998    // In C++, check default arguments now that we have merged decls. Unless
1999    // the lexical context is the class, because in this case this is done
2000    // during delayed parsing anyway.
2001    if (!CurContext->isRecord())
2002      CheckCXXDefaultArguments(NewFD);
2003
2004    // An out-of-line member function declaration must also be a
2005    // definition (C++ [dcl.meaning]p1).
2006    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2007      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2008        << D.getCXXScopeSpec().getRange();
2009      InvalidDecl = true;
2010    }
2011  }
2012
2013  // If this is a locally-scoped function in C, inject a declaration
2014  // into translation unit scope so that all external declarations are
2015  // visible.
2016  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod())
2017    InjectLocallyScopedExternalDeclaration(NewFD);
2018
2019  return NewFD;
2020}
2021
2022bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2023  // FIXME: Need strict checking.  In C89, we need to check for
2024  // any assignment, increment, decrement, function-calls, or
2025  // commas outside of a sizeof.  In C99, it's the same list,
2026  // except that the aforementioned are allowed in unevaluated
2027  // expressions.  Everything else falls under the
2028  // "may accept other forms of constant expressions" exception.
2029  // (We never end up here for C++, so the constant expression
2030  // rules there don't matter.)
2031  if (Init->isConstantInitializer(Context))
2032    return false;
2033  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2034    << Init->getSourceRange();
2035  return true;
2036}
2037
2038void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2039  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2040}
2041
2042/// AddInitializerToDecl - Adds the initializer Init to the
2043/// declaration dcl. If DirectInit is true, this is C++ direct
2044/// initialization rather than copy initialization.
2045void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2046  Decl *RealDecl = static_cast<Decl *>(dcl);
2047  // If there is no declaration, there was an error parsing it.  Just ignore
2048  // the initializer.
2049  if (RealDecl == 0)
2050    return;
2051
2052  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2053  if (!VDecl) {
2054    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2055    RealDecl->setInvalidDecl();
2056    return;
2057  }
2058
2059  // Take ownership of the expression, now that we're sure we have somewhere
2060  // to put it.
2061  Expr *Init = static_cast<Expr *>(init.release());
2062  assert(Init && "missing initializer");
2063
2064  // Get the decls type and save a reference for later, since
2065  // CheckInitializerTypes may change it.
2066  QualType DclT = VDecl->getType(), SavT = DclT;
2067  if (VDecl->isBlockVarDecl()) {
2068    VarDecl::StorageClass SC = VDecl->getStorageClass();
2069    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2070      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2071      VDecl->setInvalidDecl();
2072    } else if (!VDecl->isInvalidDecl()) {
2073      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2074                                VDecl->getDeclName(), DirectInit))
2075        VDecl->setInvalidDecl();
2076
2077      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2078      // Don't check invalid declarations to avoid emitting useless diagnostics.
2079      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2080        if (SC == VarDecl::Static) // C99 6.7.8p4.
2081          CheckForConstantInitializer(Init, DclT);
2082      }
2083    }
2084  } else if (VDecl->isFileVarDecl()) {
2085    if (VDecl->getStorageClass() == VarDecl::Extern)
2086      Diag(VDecl->getLocation(), diag::warn_extern_init);
2087    if (!VDecl->isInvalidDecl())
2088      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2089                                VDecl->getDeclName(), DirectInit))
2090        VDecl->setInvalidDecl();
2091
2092    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2093    // Don't check invalid declarations to avoid emitting useless diagnostics.
2094    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2095      // C99 6.7.8p4. All file scoped initializers need to be constant.
2096      CheckForConstantInitializer(Init, DclT);
2097    }
2098  }
2099  // If the type changed, it means we had an incomplete type that was
2100  // completed by the initializer. For example:
2101  //   int ary[] = { 1, 3, 5 };
2102  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2103  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2104    VDecl->setType(DclT);
2105    Init->setType(DclT);
2106  }
2107
2108  // Attach the initializer to the decl.
2109  VDecl->setInit(Init);
2110  return;
2111}
2112
2113void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2114  Decl *RealDecl = static_cast<Decl *>(dcl);
2115
2116  // If there is no declaration, there was an error parsing it. Just ignore it.
2117  if (RealDecl == 0)
2118    return;
2119
2120  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2121    QualType Type = Var->getType();
2122    // C++ [dcl.init.ref]p3:
2123    //   The initializer can be omitted for a reference only in a
2124    //   parameter declaration (8.3.5), in the declaration of a
2125    //   function return type, in the declaration of a class member
2126    //   within its class declaration (9.2), and where the extern
2127    //   specifier is explicitly used.
2128    if (Type->isReferenceType() &&
2129        Var->getStorageClass() != VarDecl::Extern &&
2130        Var->getStorageClass() != VarDecl::PrivateExtern) {
2131      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2132        << Var->getDeclName()
2133        << SourceRange(Var->getLocation(), Var->getLocation());
2134      Var->setInvalidDecl();
2135      return;
2136    }
2137
2138    // C++ [dcl.init]p9:
2139    //
2140    //   If no initializer is specified for an object, and the object
2141    //   is of (possibly cv-qualified) non-POD class type (or array
2142    //   thereof), the object shall be default-initialized; if the
2143    //   object is of const-qualified type, the underlying class type
2144    //   shall have a user-declared default constructor.
2145    if (getLangOptions().CPlusPlus) {
2146      QualType InitType = Type;
2147      if (const ArrayType *Array = Context.getAsArrayType(Type))
2148        InitType = Array->getElementType();
2149      if (Var->getStorageClass() != VarDecl::Extern &&
2150          Var->getStorageClass() != VarDecl::PrivateExtern &&
2151          InitType->isRecordType()) {
2152        const CXXConstructorDecl *Constructor
2153          = PerformInitializationByConstructor(InitType, 0, 0,
2154                                               Var->getLocation(),
2155                                               SourceRange(Var->getLocation(),
2156                                                           Var->getLocation()),
2157                                               Var->getDeclName(),
2158                                               IK_Default);
2159        if (!Constructor)
2160          Var->setInvalidDecl();
2161      }
2162    }
2163
2164#if 0
2165    // FIXME: Temporarily disabled because we are not properly parsing
2166    // linkage specifications on declarations, e.g.,
2167    //
2168    //   extern "C" const CGPoint CGPointerZero;
2169    //
2170    // C++ [dcl.init]p9:
2171    //
2172    //     If no initializer is specified for an object, and the
2173    //     object is of (possibly cv-qualified) non-POD class type (or
2174    //     array thereof), the object shall be default-initialized; if
2175    //     the object is of const-qualified type, the underlying class
2176    //     type shall have a user-declared default
2177    //     constructor. Otherwise, if no initializer is specified for
2178    //     an object, the object and its subobjects, if any, have an
2179    //     indeterminate initial value; if the object or any of its
2180    //     subobjects are of const-qualified type, the program is
2181    //     ill-formed.
2182    //
2183    // This isn't technically an error in C, so we don't diagnose it.
2184    //
2185    // FIXME: Actually perform the POD/user-defined default
2186    // constructor check.
2187    if (getLangOptions().CPlusPlus &&
2188        Context.getCanonicalType(Type).isConstQualified() &&
2189        Var->getStorageClass() != VarDecl::Extern)
2190      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2191        << Var->getName()
2192        << SourceRange(Var->getLocation(), Var->getLocation());
2193#endif
2194  }
2195}
2196
2197/// The declarators are chained together backwards, reverse the list.
2198Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2199  // Often we have single declarators, handle them quickly.
2200  Decl *Group = static_cast<Decl*>(group);
2201  if (Group == 0)
2202    return 0;
2203
2204  Decl *NewGroup = 0;
2205  if (Group->getNextDeclarator() == 0)
2206    NewGroup = Group;
2207  else { // reverse the list.
2208    while (Group) {
2209      Decl *Next = Group->getNextDeclarator();
2210      Group->setNextDeclarator(NewGroup);
2211      NewGroup = Group;
2212      Group = Next;
2213    }
2214  }
2215  // Perform semantic analysis that depends on having fully processed both
2216  // the declarator and initializer.
2217  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2218    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2219    if (!IDecl)
2220      continue;
2221    QualType T = IDecl->getType();
2222
2223    bool isIllegalVLA = T->isVariableArrayType() && IDecl->hasGlobalStorage();
2224    bool isIllegalVM = T->isVariablyModifiedType() && IDecl->hasLinkage();
2225    if (isIllegalVLA || isIllegalVM) {
2226      bool SizeIsNegative;
2227      QualType FixedTy =
2228          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2229      if (!FixedTy.isNull()) {
2230        Diag(IDecl->getLocation(), diag::warn_illegal_constant_array_size);
2231        IDecl->setType(FixedTy);
2232      } else if (T->isVariableArrayType()) {
2233        IDecl->setInvalidDecl();
2234
2235        const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2236        // FIXME: This won't give the correct result for
2237        // int a[10][n];
2238        SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2239
2240        if (IDecl->isFileVarDecl())
2241          Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope)
2242            << SizeRange;
2243        else if (IDecl->getStorageClass() == VarDecl::Static)
2244          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2245            << SizeRange;
2246        else
2247          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2248              << SizeRange;
2249      } else {
2250        IDecl->setInvalidDecl();
2251
2252        if (IDecl->isFileVarDecl())
2253          Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2254        else
2255          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2256      }
2257    }
2258
2259    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2260    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2261    if (IDecl->isBlockVarDecl() &&
2262        IDecl->getStorageClass() != VarDecl::Extern) {
2263      if (!IDecl->isInvalidDecl() &&
2264          DiagnoseIncompleteType(IDecl->getLocation(), T,
2265                                 diag::err_typecheck_decl_incomplete_type))
2266        IDecl->setInvalidDecl();
2267    }
2268    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2269    // object that has file scope without an initializer, and without a
2270    // storage-class specifier or with the storage-class specifier "static",
2271    // constitutes a tentative definition. Note: A tentative definition with
2272    // external linkage is valid (C99 6.2.2p5).
2273    if (isTentativeDefinition(IDecl)) {
2274      if (T->isIncompleteArrayType()) {
2275        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2276        // array to be completed. Don't issue a diagnostic.
2277      } else if (!IDecl->isInvalidDecl() &&
2278                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2279                                        diag::err_typecheck_decl_incomplete_type))
2280        // C99 6.9.2p3: If the declaration of an identifier for an object is
2281        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2282        // declared type shall not be an incomplete type.
2283        IDecl->setInvalidDecl();
2284    }
2285    if (IDecl->isFileVarDecl())
2286      CheckForFileScopedRedefinitions(S, IDecl);
2287  }
2288  return NewGroup;
2289}
2290
2291/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2292/// to introduce parameters into function prototype scope.
2293Sema::DeclTy *
2294Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2295  const DeclSpec &DS = D.getDeclSpec();
2296
2297  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2298  VarDecl::StorageClass StorageClass = VarDecl::None;
2299  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2300    StorageClass = VarDecl::Register;
2301  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2302    Diag(DS.getStorageClassSpecLoc(),
2303         diag::err_invalid_storage_class_in_func_decl);
2304    D.getMutableDeclSpec().ClearStorageClassSpecs();
2305  }
2306  if (DS.isThreadSpecified()) {
2307    Diag(DS.getThreadSpecLoc(),
2308         diag::err_invalid_storage_class_in_func_decl);
2309    D.getMutableDeclSpec().ClearStorageClassSpecs();
2310  }
2311
2312  // Check that there are no default arguments inside the type of this
2313  // parameter (C++ only).
2314  if (getLangOptions().CPlusPlus)
2315    CheckExtraCXXDefaultArguments(D);
2316
2317  // In this context, we *do not* check D.getInvalidType(). If the declarator
2318  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2319  // though it will not reflect the user specified type.
2320  QualType parmDeclType = GetTypeForDeclarator(D, S);
2321
2322  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2323
2324  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2325  // Can this happen for params?  We already checked that they don't conflict
2326  // among each other.  Here they can only shadow globals, which is ok.
2327  IdentifierInfo *II = D.getIdentifier();
2328  if (II) {
2329    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2330      if (PrevDecl->isTemplateParameter()) {
2331        // Maybe we will complain about the shadowed template parameter.
2332        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2333        // Just pretend that we didn't see the previous declaration.
2334        PrevDecl = 0;
2335      } else if (S->isDeclScope(PrevDecl)) {
2336        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2337
2338        // Recover by removing the name
2339        II = 0;
2340        D.SetIdentifier(0, D.getIdentifierLoc());
2341      }
2342    }
2343  }
2344
2345  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2346  // Doing the promotion here has a win and a loss. The win is the type for
2347  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2348  // code generator). The loss is the orginal type isn't preserved. For example:
2349  //
2350  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2351  //    int blockvardecl[5];
2352  //    sizeof(parmvardecl);  // size == 4
2353  //    sizeof(blockvardecl); // size == 20
2354  // }
2355  //
2356  // For expressions, all implicit conversions are captured using the
2357  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2358  //
2359  // FIXME: If a source translation tool needs to see the original type, then
2360  // we need to consider storing both types (in ParmVarDecl)...
2361  //
2362  if (parmDeclType->isArrayType()) {
2363    // int x[restrict 4] ->  int *restrict
2364    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2365  } else if (parmDeclType->isFunctionType())
2366    parmDeclType = Context.getPointerType(parmDeclType);
2367
2368  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2369                                         D.getIdentifierLoc(), II,
2370                                         parmDeclType, StorageClass,
2371                                         0);
2372
2373  if (D.getInvalidType())
2374    New->setInvalidDecl();
2375
2376  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2377  if (D.getCXXScopeSpec().isSet()) {
2378    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2379      << D.getCXXScopeSpec().getRange();
2380    New->setInvalidDecl();
2381  }
2382  // Parameter declarators cannot be interface types. All ObjC objects are
2383  // passed by reference.
2384  if (parmDeclType->isObjCInterfaceType()) {
2385    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2386         << "passed";
2387    New->setInvalidDecl();
2388  }
2389
2390  // Add the parameter declaration into this scope.
2391  S->AddDecl(New);
2392  if (II)
2393    IdResolver.AddDecl(New);
2394
2395  ProcessDeclAttributes(New, D);
2396  return New;
2397
2398}
2399
2400void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2401  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2402         "Not a function declarator!");
2403  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2404
2405  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2406  // for a K&R function.
2407  if (!FTI.hasPrototype) {
2408    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2409      if (FTI.ArgInfo[i].Param == 0) {
2410        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2411          << FTI.ArgInfo[i].Ident;
2412        // Implicitly declare the argument as type 'int' for lack of a better
2413        // type.
2414        DeclSpec DS;
2415        const char* PrevSpec; // unused
2416        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2417                           PrevSpec);
2418        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2419        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2420        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2421      }
2422    }
2423  }
2424}
2425
2426Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2427  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2428  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2429         "Not a function declarator!");
2430  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2431
2432  if (FTI.hasPrototype) {
2433    // FIXME: Diagnose arguments without names in C.
2434  }
2435
2436  Scope *ParentScope = FnBodyScope->getParent();
2437
2438  return ActOnStartOfFunctionDef(FnBodyScope,
2439                                 ActOnDeclarator(ParentScope, D, 0,
2440                                                 /*IsFunctionDefinition=*/true));
2441}
2442
2443Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2444  Decl *decl = static_cast<Decl*>(D);
2445  FunctionDecl *FD = cast<FunctionDecl>(decl);
2446
2447  // See if this is a redefinition.
2448  const FunctionDecl *Definition;
2449  if (FD->getBody(Definition)) {
2450    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2451    Diag(Definition->getLocation(), diag::note_previous_definition);
2452  }
2453
2454  // Builtin functions cannot be defined.
2455  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2456    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2457      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2458      FD->setInvalidDecl();
2459    }
2460  }
2461
2462  PushDeclContext(FnBodyScope, FD);
2463
2464  // Check the validity of our function parameters
2465  CheckParmsForFunctionDef(FD);
2466
2467  // Introduce our parameters into the function scope
2468  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2469    ParmVarDecl *Param = FD->getParamDecl(p);
2470    Param->setOwningFunction(FD);
2471
2472    // If this has an identifier, add it to the scope stack.
2473    if (Param->getIdentifier())
2474      PushOnScopeChains(Param, FnBodyScope);
2475  }
2476
2477  // Checking attributes of current function definition
2478  // dllimport attribute.
2479  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2480    // dllimport attribute cannot be applied to definition.
2481    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2482      Diag(FD->getLocation(),
2483           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2484        << "dllimport";
2485      FD->setInvalidDecl();
2486      return FD;
2487    } else {
2488      // If a symbol previously declared dllimport is later defined, the
2489      // attribute is ignored in subsequent references, and a warning is
2490      // emitted.
2491      Diag(FD->getLocation(),
2492           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2493        << FD->getNameAsCString() << "dllimport";
2494    }
2495  }
2496  return FD;
2497}
2498
2499static bool StatementCreatesScope(Stmt* S) {
2500  bool result = false;
2501  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2502    for (DeclStmt::decl_iterator i = DS->decl_begin();
2503         i != DS->decl_end(); ++i) {
2504      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2505        result |= D->getType()->isVariablyModifiedType();
2506      }
2507    }
2508  }
2509
2510  return result;
2511}
2512
2513void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2514                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2515                                    std::vector<void*>& ScopeStack,
2516                                    Stmt* CurStmt,
2517                                    Stmt* ParentCompoundStmt) {
2518  for (Stmt::child_iterator i = CurStmt->child_begin();
2519       i != CurStmt->child_end(); ++i) {
2520    if (!*i) continue;
2521    if (StatementCreatesScope(*i))  {
2522      ScopeStack.push_back(*i);
2523      PopScopeMap[*i] = ParentCompoundStmt;
2524    } else if (isa<LabelStmt>(CurStmt)) {
2525      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2526    }
2527    if (isa<DeclStmt>(*i)) continue;
2528    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2529    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2530                             *i, CurCompound);
2531  }
2532
2533  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2534    ScopeStack.pop_back();
2535  }
2536}
2537
2538void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2539                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2540                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2541                                   std::vector<void*>& ScopeStack,
2542                                   Stmt* CurStmt) {
2543  for (Stmt::child_iterator i = CurStmt->child_begin();
2544       i != CurStmt->child_end(); ++i) {
2545    if (!*i) continue;
2546    if (StatementCreatesScope(*i))  {
2547      ScopeStack.push_back(*i);
2548    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2549      void* LScope = LabelScopeMap[GS->getLabel()];
2550      if (LScope) {
2551        bool foundScopeInStack = false;
2552        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2553          if (LScope == ScopeStack[i-1]) {
2554            foundScopeInStack = true;
2555            break;
2556          }
2557        }
2558        if (!foundScopeInStack) {
2559          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2560        }
2561      }
2562    }
2563    if (isa<DeclStmt>(*i)) continue;
2564    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, *i);
2565  }
2566
2567  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2568    ScopeStack.pop_back();
2569  }
2570}
2571
2572Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2573  Decl *dcl = static_cast<Decl *>(D);
2574  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2575  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2576    FD->setBody(Body);
2577    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2578  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2579    assert(MD == getCurMethodDecl() && "Method parsing confused");
2580    MD->setBody((Stmt*)Body);
2581  } else {
2582    Body->Destroy(Context);
2583    return 0;
2584  }
2585  PopDeclContext();
2586  // Verify and clean out per-function state.
2587
2588  bool HaveLabels = !LabelMap.empty();
2589  // Check goto/label use.
2590  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2591       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2592    // Verify that we have no forward references left.  If so, there was a goto
2593    // or address of a label taken, but no definition of it.  Label fwd
2594    // definitions are indicated with a null substmt.
2595    if (I->second->getSubStmt() == 0) {
2596      LabelStmt *L = I->second;
2597      // Emit error.
2598      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2599
2600      // At this point, we have gotos that use the bogus label.  Stitch it into
2601      // the function body so that they aren't leaked and that the AST is well
2602      // formed.
2603      if (Body) {
2604#if 0
2605        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2606        // and the AST is malformed anyway.  We should just blow away 'L'.
2607        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2608        cast<CompoundStmt>(Body)->push_back(L);
2609#else
2610        L->Destroy(Context);
2611#endif
2612      } else {
2613        // The whole function wasn't parsed correctly, just delete this.
2614        L->Destroy(Context);
2615      }
2616    }
2617  }
2618  LabelMap.clear();
2619
2620  if (!Body) return D;
2621
2622  if (HaveLabels) {
2623    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2624    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2625    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2626    std::vector<void*> ScopeStack;
2627    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2628    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2629  }
2630
2631  return D;
2632}
2633
2634/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2635/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2636NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2637                                          IdentifierInfo &II, Scope *S) {
2638  // Extension in C99.  Legal in C90, but warn about it.
2639  if (getLangOptions().C99)
2640    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2641  else
2642    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2643
2644  // FIXME: handle stuff like:
2645  // void foo() { extern float X(); }
2646  // void bar() { X(); }  <-- implicit decl for X in another scope.
2647
2648  // Set a Declarator for the implicit definition: int foo();
2649  const char *Dummy;
2650  DeclSpec DS;
2651  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2652  Error = Error; // Silence warning.
2653  assert(!Error && "Error setting up implicit decl!");
2654  Declarator D(DS, Declarator::BlockContext);
2655  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2656                                             0, 0, 0, Loc, D),
2657                SourceLocation());
2658  D.SetIdentifier(&II, Loc);
2659
2660  // Insert this function into translation-unit scope.
2661
2662  DeclContext *PrevDC = CurContext;
2663  CurContext = Context.getTranslationUnitDecl();
2664
2665  FunctionDecl *FD =
2666    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2667  FD->setImplicit();
2668
2669  CurContext = PrevDC;
2670
2671  AddKnownFunctionAttributes(FD);
2672
2673  return FD;
2674}
2675
2676/// \brief Adds any function attributes that we know a priori based on
2677/// the declaration of this function.
2678///
2679/// These attributes can apply both to implicitly-declared builtins
2680/// (like __builtin___printf_chk) or to library-declared functions
2681/// like NSLog or printf.
2682void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2683  if (FD->isInvalidDecl())
2684    return;
2685
2686  // If this is a built-in function, map its builtin attributes to
2687  // actual attributes.
2688  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2689    // Handle printf-formatting attributes.
2690    unsigned FormatIdx;
2691    bool HasVAListArg;
2692    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2693      if (!FD->getAttr<FormatAttr>())
2694        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2695    }
2696
2697    // Mark const if we don't care about errno and that is the only
2698    // thing preventing the function from being const. This allows
2699    // IRgen to use LLVM intrinsics for such functions.
2700    if (!getLangOptions().MathErrno &&
2701        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2702      if (!FD->getAttr<ConstAttr>())
2703        FD->addAttr(new ConstAttr());
2704    }
2705  }
2706
2707  IdentifierInfo *Name = FD->getIdentifier();
2708  if (!Name)
2709    return;
2710  if ((!getLangOptions().CPlusPlus &&
2711       FD->getDeclContext()->isTranslationUnit()) ||
2712      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2713       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2714       LinkageSpecDecl::lang_c)) {
2715    // Okay: this could be a libc/libm/Objective-C function we know
2716    // about.
2717  } else
2718    return;
2719
2720  unsigned KnownID;
2721  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2722    if (KnownFunctionIDs[KnownID] == Name)
2723      break;
2724
2725  switch (KnownID) {
2726  case id_NSLog:
2727  case id_NSLogv:
2728    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2729      // FIXME: We known better than our headers.
2730      const_cast<FormatAttr *>(Format)->setType("printf");
2731    } else
2732      FD->addAttr(new FormatAttr("printf", 1, 2));
2733    break;
2734
2735  case id_asprintf:
2736  case id_vasprintf:
2737    if (!FD->getAttr<FormatAttr>())
2738      FD->addAttr(new FormatAttr("printf", 2, 3));
2739    break;
2740
2741  default:
2742    // Unknown function or known function without any attributes to
2743    // add. Do nothing.
2744    break;
2745  }
2746}
2747
2748TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2749                                    Decl *LastDeclarator) {
2750  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2751  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2752
2753  // Scope manipulation handled by caller.
2754  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2755                                           D.getIdentifierLoc(),
2756                                           D.getIdentifier(),
2757                                           T);
2758  NewTD->setNextDeclarator(LastDeclarator);
2759  if (D.getInvalidType())
2760    NewTD->setInvalidDecl();
2761  return NewTD;
2762}
2763
2764/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2765/// former case, Name will be non-null.  In the later case, Name will be null.
2766/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2767/// reference/declaration/definition of a tag.
2768Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2769                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2770                             IdentifierInfo *Name, SourceLocation NameLoc,
2771                             AttributeList *Attr) {
2772  // If this is not a definition, it must have a name.
2773  assert((Name != 0 || TK == TK_Definition) &&
2774         "Nameless record must be a definition!");
2775
2776  TagDecl::TagKind Kind;
2777  switch (TagSpec) {
2778  default: assert(0 && "Unknown tag type!");
2779  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2780  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2781  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2782  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2783  }
2784
2785  DeclContext *SearchDC = CurContext;
2786  DeclContext *DC = CurContext;
2787  NamedDecl *PrevDecl = 0;
2788
2789  bool Invalid = false;
2790
2791  if (Name && SS.isNotEmpty()) {
2792    // We have a nested-name tag ('struct foo::bar').
2793
2794    // Check for invalid 'foo::'.
2795    if (SS.isInvalid()) {
2796      Name = 0;
2797      goto CreateNewDecl;
2798    }
2799
2800    DC = static_cast<DeclContext*>(SS.getScopeRep());
2801    SearchDC = DC;
2802    // Look-up name inside 'foo::'.
2803    PrevDecl = dyn_cast_or_null<TagDecl>(
2804                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2805
2806    // A tag 'foo::bar' must already exist.
2807    if (PrevDecl == 0) {
2808      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2809      Name = 0;
2810      goto CreateNewDecl;
2811    }
2812  } else if (Name) {
2813    // If this is a named struct, check to see if there was a previous forward
2814    // declaration or definition.
2815    // FIXME: We're looking into outer scopes here, even when we
2816    // shouldn't be. Doing so can result in ambiguities that we
2817    // shouldn't be diagnosing.
2818    LookupResult R = LookupName(S, Name, LookupTagName,
2819                                /*RedeclarationOnly=*/(TK != TK_Reference));
2820    if (R.isAmbiguous()) {
2821      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2822      // FIXME: This is not best way to recover from case like:
2823      //
2824      // struct S s;
2825      //
2826      // causes needless err_ovl_no_viable_function_in_init latter.
2827      Name = 0;
2828      PrevDecl = 0;
2829      Invalid = true;
2830    }
2831    else
2832      PrevDecl = R;
2833
2834    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2835      // FIXME: This makes sure that we ignore the contexts associated
2836      // with C structs, unions, and enums when looking for a matching
2837      // tag declaration or definition. See the similar lookup tweak
2838      // in Sema::LookupName; is there a better way to deal with this?
2839      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2840        SearchDC = SearchDC->getParent();
2841    }
2842  }
2843
2844  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2845    // Maybe we will complain about the shadowed template parameter.
2846    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2847    // Just pretend that we didn't see the previous declaration.
2848    PrevDecl = 0;
2849  }
2850
2851  if (PrevDecl) {
2852    // Check whether the previous declaration is usable.
2853    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2854
2855    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2856      // If this is a use of a previous tag, or if the tag is already declared
2857      // in the same scope (so that the definition/declaration completes or
2858      // rementions the tag), reuse the decl.
2859      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2860        // Make sure that this wasn't declared as an enum and now used as a
2861        // struct or something similar.
2862        if (PrevTagDecl->getTagKind() != Kind) {
2863          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2864          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2865          // Recover by making this an anonymous redefinition.
2866          Name = 0;
2867          PrevDecl = 0;
2868          Invalid = true;
2869        } else {
2870          // If this is a use, just return the declaration we found.
2871
2872          // FIXME: In the future, return a variant or some other clue
2873          // for the consumer of this Decl to know it doesn't own it.
2874          // For our current ASTs this shouldn't be a problem, but will
2875          // need to be changed with DeclGroups.
2876          if (TK == TK_Reference)
2877            return PrevDecl;
2878
2879          // Diagnose attempts to redefine a tag.
2880          if (TK == TK_Definition) {
2881            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2882              Diag(NameLoc, diag::err_redefinition) << Name;
2883              Diag(Def->getLocation(), diag::note_previous_definition);
2884              // If this is a redefinition, recover by making this
2885              // struct be anonymous, which will make any later
2886              // references get the previous definition.
2887              Name = 0;
2888              PrevDecl = 0;
2889              Invalid = true;
2890            } else {
2891              // If the type is currently being defined, complain
2892              // about a nested redefinition.
2893              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2894              if (Tag->isBeingDefined()) {
2895                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2896                Diag(PrevTagDecl->getLocation(),
2897                     diag::note_previous_definition);
2898                Name = 0;
2899                PrevDecl = 0;
2900                Invalid = true;
2901              }
2902            }
2903
2904            // Okay, this is definition of a previously declared or referenced
2905            // tag PrevDecl. We're going to create a new Decl for it.
2906          }
2907        }
2908        // If we get here we have (another) forward declaration or we
2909        // have a definition.  Just create a new decl.
2910      } else {
2911        // If we get here, this is a definition of a new tag type in a nested
2912        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2913        // new decl/type.  We set PrevDecl to NULL so that the entities
2914        // have distinct types.
2915        PrevDecl = 0;
2916      }
2917      // If we get here, we're going to create a new Decl. If PrevDecl
2918      // is non-NULL, it's a definition of the tag declared by
2919      // PrevDecl. If it's NULL, we have a new definition.
2920    } else {
2921      // PrevDecl is a namespace, template, or anything else
2922      // that lives in the IDNS_Tag identifier namespace.
2923      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2924        // The tag name clashes with a namespace name, issue an error and
2925        // recover by making this tag be anonymous.
2926        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2927        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2928        Name = 0;
2929        PrevDecl = 0;
2930        Invalid = true;
2931      } else {
2932        // The existing declaration isn't relevant to us; we're in a
2933        // new scope, so clear out the previous declaration.
2934        PrevDecl = 0;
2935      }
2936    }
2937  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2938             (Kind != TagDecl::TK_enum))  {
2939    // C++ [basic.scope.pdecl]p5:
2940    //   -- for an elaborated-type-specifier of the form
2941    //
2942    //          class-key identifier
2943    //
2944    //      if the elaborated-type-specifier is used in the
2945    //      decl-specifier-seq or parameter-declaration-clause of a
2946    //      function defined in namespace scope, the identifier is
2947    //      declared as a class-name in the namespace that contains
2948    //      the declaration; otherwise, except as a friend
2949    //      declaration, the identifier is declared in the smallest
2950    //      non-class, non-function-prototype scope that contains the
2951    //      declaration.
2952    //
2953    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2954    // C structs and unions.
2955
2956    // Find the context where we'll be declaring the tag.
2957    // FIXME: We would like to maintain the current DeclContext as the
2958    // lexical context,
2959    while (SearchDC->isRecord())
2960      SearchDC = SearchDC->getParent();
2961
2962    // Find the scope where we'll be declaring the tag.
2963    while (S->isClassScope() ||
2964           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2965           ((S->getFlags() & Scope::DeclScope) == 0) ||
2966           (S->getEntity() &&
2967            ((DeclContext *)S->getEntity())->isTransparentContext()))
2968      S = S->getParent();
2969  }
2970
2971CreateNewDecl:
2972
2973  // If there is an identifier, use the location of the identifier as the
2974  // location of the decl, otherwise use the location of the struct/union
2975  // keyword.
2976  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2977
2978  // Otherwise, create a new declaration. If there is a previous
2979  // declaration of the same entity, the two will be linked via
2980  // PrevDecl.
2981  TagDecl *New;
2982
2983  if (Kind == TagDecl::TK_enum) {
2984    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2985    // enum X { A, B, C } D;    D should chain to X.
2986    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
2987                           cast_or_null<EnumDecl>(PrevDecl));
2988    // If this is an undefined enum, warn.
2989    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2990  } else {
2991    // struct/union/class
2992
2993    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2994    // struct X { int A; } D;    D should chain to X.
2995    if (getLangOptions().CPlusPlus)
2996      // FIXME: Look for a way to use RecordDecl for simple structs.
2997      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
2998                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2999    else
3000      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3001                               cast_or_null<RecordDecl>(PrevDecl));
3002  }
3003
3004  if (Kind != TagDecl::TK_enum) {
3005    // Handle #pragma pack: if the #pragma pack stack has non-default
3006    // alignment, make up a packed attribute for this decl. These
3007    // attributes are checked when the ASTContext lays out the
3008    // structure.
3009    //
3010    // It is important for implementing the correct semantics that this
3011    // happen here (in act on tag decl). The #pragma pack stack is
3012    // maintained as a result of parser callbacks which can occur at
3013    // many points during the parsing of a struct declaration (because
3014    // the #pragma tokens are effectively skipped over during the
3015    // parsing of the struct).
3016    if (unsigned Alignment = getPragmaPackAlignment())
3017      New->addAttr(new PackedAttr(Alignment * 8));
3018  }
3019
3020  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3021    // C++ [dcl.typedef]p3:
3022    //   [...] Similarly, in a given scope, a class or enumeration
3023    //   shall not be declared with the same name as a typedef-name
3024    //   that is declared in that scope and refers to a type other
3025    //   than the class or enumeration itself.
3026    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3027    TypedefDecl *PrevTypedef = 0;
3028    if (Lookup.getKind() == LookupResult::Found)
3029      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3030
3031    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3032        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3033          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3034      Diag(Loc, diag::err_tag_definition_of_typedef)
3035        << Context.getTypeDeclType(New)
3036        << PrevTypedef->getUnderlyingType();
3037      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3038      Invalid = true;
3039    }
3040  }
3041
3042  if (Invalid)
3043    New->setInvalidDecl();
3044
3045  if (Attr)
3046    ProcessDeclAttributeList(New, Attr);
3047
3048  // If we're declaring or defining a tag in function prototype scope
3049  // in C, note that this type can only be used within the function.
3050  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3051    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3052
3053  // Set the lexical context. If the tag has a C++ scope specifier, the
3054  // lexical context will be different from the semantic context.
3055  New->setLexicalDeclContext(CurContext);
3056
3057  if (TK == TK_Definition)
3058    New->startDefinition();
3059
3060  // If this has an identifier, add it to the scope stack.
3061  if (Name) {
3062    S = getNonFieldDeclScope(S);
3063    PushOnScopeChains(New, S);
3064  } else {
3065    CurContext->addDecl(New);
3066  }
3067
3068  return New;
3069}
3070
3071void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3072  AdjustDeclIfTemplate(TagD);
3073  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3074
3075  // Enter the tag context.
3076  PushDeclContext(S, Tag);
3077
3078  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3079    FieldCollector->StartClass();
3080
3081    if (Record->getIdentifier()) {
3082      // C++ [class]p2:
3083      //   [...] The class-name is also inserted into the scope of the
3084      //   class itself; this is known as the injected-class-name. For
3085      //   purposes of access checking, the injected-class-name is treated
3086      //   as if it were a public member name.
3087      RecordDecl *InjectedClassName
3088        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3089                                CurContext, Record->getLocation(),
3090                                Record->getIdentifier(), Record);
3091      InjectedClassName->setImplicit();
3092      PushOnScopeChains(InjectedClassName, S);
3093    }
3094  }
3095}
3096
3097void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3098  AdjustDeclIfTemplate(TagD);
3099  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3100
3101  if (isa<CXXRecordDecl>(Tag))
3102    FieldCollector->FinishClass();
3103
3104  // Exit this scope of this tag's definition.
3105  PopDeclContext();
3106
3107  // Notify the consumer that we've defined a tag.
3108  Consumer.HandleTagDeclDefinition(Tag);
3109}
3110
3111bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3112                          QualType FieldTy, const Expr *BitWidth) {
3113  // FIXME: 6.7.2.1p4 - verify the field type.
3114
3115  llvm::APSInt Value;
3116  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3117    return true;
3118
3119  // Zero-width bitfield is ok for anonymous field.
3120  if (Value == 0 && FieldName)
3121    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3122
3123  if (Value.isNegative())
3124    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3125
3126  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3127  // FIXME: We won't need the 0 size once we check that the field type is valid.
3128  if (TypeSize && Value.getZExtValue() > TypeSize)
3129    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3130       << FieldName << (unsigned)TypeSize;
3131
3132  return false;
3133}
3134
3135/// ActOnField - Each field of a struct/union/class is passed into this in order
3136/// to create a FieldDecl object for it.
3137Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3138                               SourceLocation DeclStart,
3139                               Declarator &D, ExprTy *BitfieldWidth) {
3140  IdentifierInfo *II = D.getIdentifier();
3141  Expr *BitWidth = (Expr*)BitfieldWidth;
3142  SourceLocation Loc = DeclStart;
3143  RecordDecl *Record = (RecordDecl *)TagD;
3144  if (II) Loc = D.getIdentifierLoc();
3145
3146  // FIXME: Unnamed fields can be handled in various different ways, for
3147  // example, unnamed unions inject all members into the struct namespace!
3148
3149  QualType T = GetTypeForDeclarator(D, S);
3150  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3151  bool InvalidDecl = false;
3152
3153  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3154  // than a variably modified type.
3155  if (T->isVariablyModifiedType()) {
3156    bool SizeIsNegative;
3157    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3158                                                           SizeIsNegative);
3159    if (!FixedTy.isNull()) {
3160      Diag(Loc, diag::warn_illegal_constant_array_size);
3161      T = FixedTy;
3162    } else {
3163      if (SizeIsNegative)
3164        Diag(Loc, diag::err_typecheck_negative_array_size);
3165      else
3166        Diag(Loc, diag::err_typecheck_field_variable_size);
3167      T = Context.IntTy;
3168      InvalidDecl = true;
3169    }
3170  }
3171
3172  if (BitWidth) {
3173    if (VerifyBitField(Loc, II, T, BitWidth))
3174      InvalidDecl = true;
3175  } else {
3176    // Not a bitfield.
3177
3178    // validate II.
3179
3180  }
3181
3182  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3183                                       Loc, II, T, BitWidth,
3184                                       D.getDeclSpec().getStorageClassSpec() ==
3185                                       DeclSpec::SCS_mutable);
3186
3187  if (II) {
3188    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3189    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3190        && !isa<TagDecl>(PrevDecl)) {
3191      Diag(Loc, diag::err_duplicate_member) << II;
3192      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3193      NewFD->setInvalidDecl();
3194      Record->setInvalidDecl();
3195    }
3196  }
3197
3198  if (getLangOptions().CPlusPlus) {
3199    CheckExtraCXXDefaultArguments(D);
3200    if (!T->isPODType())
3201      cast<CXXRecordDecl>(Record)->setPOD(false);
3202  }
3203
3204  ProcessDeclAttributes(NewFD, D);
3205  if (T.isObjCGCWeak())
3206    Diag(Loc, diag::warn_attribute_weak_on_field);
3207
3208  if (D.getInvalidType() || InvalidDecl)
3209    NewFD->setInvalidDecl();
3210
3211  if (II) {
3212    PushOnScopeChains(NewFD, S);
3213  } else
3214    Record->addDecl(NewFD);
3215
3216  return NewFD;
3217}
3218
3219/// TranslateIvarVisibility - Translate visibility from a token ID to an
3220///  AST enum value.
3221static ObjCIvarDecl::AccessControl
3222TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3223  switch (ivarVisibility) {
3224  default: assert(0 && "Unknown visitibility kind");
3225  case tok::objc_private: return ObjCIvarDecl::Private;
3226  case tok::objc_public: return ObjCIvarDecl::Public;
3227  case tok::objc_protected: return ObjCIvarDecl::Protected;
3228  case tok::objc_package: return ObjCIvarDecl::Package;
3229  }
3230}
3231
3232/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3233/// in order to create an IvarDecl object for it.
3234Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3235                              SourceLocation DeclStart,
3236                              Declarator &D, ExprTy *BitfieldWidth,
3237                              tok::ObjCKeywordKind Visibility) {
3238
3239  IdentifierInfo *II = D.getIdentifier();
3240  Expr *BitWidth = (Expr*)BitfieldWidth;
3241  SourceLocation Loc = DeclStart;
3242  if (II) Loc = D.getIdentifierLoc();
3243
3244  // FIXME: Unnamed fields can be handled in various different ways, for
3245  // example, unnamed unions inject all members into the struct namespace!
3246
3247  QualType T = GetTypeForDeclarator(D, S);
3248  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3249  bool InvalidDecl = false;
3250
3251  if (BitWidth) {
3252    // 6.7.2.1p3, 6.7.2.1p4
3253    if (VerifyBitField(Loc, II, T, BitWidth))
3254      InvalidDecl = true;
3255  } else {
3256    // Not a bitfield.
3257
3258    // validate II.
3259
3260  }
3261
3262  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3263  // than a variably modified type.
3264  if (T->isVariablyModifiedType()) {
3265    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3266    InvalidDecl = true;
3267  }
3268
3269  // Get the visibility (access control) for this ivar.
3270  ObjCIvarDecl::AccessControl ac =
3271    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3272                                        : ObjCIvarDecl::None;
3273
3274  // Construct the decl.
3275  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3276                                             (Expr *)BitfieldWidth);
3277
3278  if (II) {
3279    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3280    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3281        && !isa<TagDecl>(PrevDecl)) {
3282      Diag(Loc, diag::err_duplicate_member) << II;
3283      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3284      NewID->setInvalidDecl();
3285    }
3286  }
3287
3288  // Process attributes attached to the ivar.
3289  ProcessDeclAttributes(NewID, D);
3290
3291  if (D.getInvalidType() || InvalidDecl)
3292    NewID->setInvalidDecl();
3293
3294  if (II) {
3295    // FIXME: When interfaces are DeclContexts, we'll need to add
3296    // these to the interface.
3297    S->AddDecl(NewID);
3298    IdResolver.AddDecl(NewID);
3299  }
3300
3301  return NewID;
3302}
3303
3304void Sema::ActOnFields(Scope* S,
3305                       SourceLocation RecLoc, DeclTy *RecDecl,
3306                       DeclTy **Fields, unsigned NumFields,
3307                       SourceLocation LBrac, SourceLocation RBrac,
3308                       AttributeList *Attr) {
3309  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3310  assert(EnclosingDecl && "missing record or interface decl");
3311
3312  // If the decl this is being inserted into is invalid, then it may be a
3313  // redeclaration or some other bogus case.  Don't try to add fields to it.
3314  if (EnclosingDecl->isInvalidDecl()) {
3315    // FIXME: Deallocate fields?
3316    return;
3317  }
3318
3319
3320  // Verify that all the fields are okay.
3321  unsigned NumNamedMembers = 0;
3322  llvm::SmallVector<FieldDecl*, 32> RecFields;
3323
3324  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3325  for (unsigned i = 0; i != NumFields; ++i) {
3326    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3327    assert(FD && "missing field decl");
3328
3329    // Get the type for the field.
3330    Type *FDTy = FD->getType().getTypePtr();
3331
3332    if (!FD->isAnonymousStructOrUnion()) {
3333      // Remember all fields written by the user.
3334      RecFields.push_back(FD);
3335    }
3336
3337    // C99 6.7.2.1p2 - A field may not be a function type.
3338    if (FDTy->isFunctionType()) {
3339      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3340        << FD->getDeclName();
3341      FD->setInvalidDecl();
3342      EnclosingDecl->setInvalidDecl();
3343      continue;
3344    }
3345    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3346    if (FDTy->isIncompleteType()) {
3347      if (!Record) {  // Incomplete ivar type is always an error.
3348        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3349                               diag::err_field_incomplete);
3350        FD->setInvalidDecl();
3351        EnclosingDecl->setInvalidDecl();
3352        continue;
3353      }
3354      if (i != NumFields-1 ||                   // ... that the last member ...
3355          !Record->isStruct() ||  // ... of a structure ...
3356          !FDTy->isArrayType()) {         //... may have incomplete array type.
3357        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3358                               diag::err_field_incomplete);
3359        FD->setInvalidDecl();
3360        EnclosingDecl->setInvalidDecl();
3361        continue;
3362      }
3363      if (NumNamedMembers < 1) {  //... must have more than named member ...
3364        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3365          << FD->getDeclName();
3366        FD->setInvalidDecl();
3367        EnclosingDecl->setInvalidDecl();
3368        continue;
3369      }
3370      // Okay, we have a legal flexible array member at the end of the struct.
3371      if (Record)
3372        Record->setHasFlexibleArrayMember(true);
3373    }
3374    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3375    /// field of another structure or the element of an array.
3376    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3377      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3378        // If this is a member of a union, then entire union becomes "flexible".
3379        if (Record && Record->isUnion()) {
3380          Record->setHasFlexibleArrayMember(true);
3381        } else {
3382          // If this is a struct/class and this is not the last element, reject
3383          // it.  Note that GCC supports variable sized arrays in the middle of
3384          // structures.
3385          if (i != NumFields-1) {
3386            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3387              << FD->getDeclName();
3388            FD->setInvalidDecl();
3389            EnclosingDecl->setInvalidDecl();
3390            continue;
3391          }
3392          // We support flexible arrays at the end of structs in other structs
3393          // as an extension.
3394          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3395            << FD->getDeclName();
3396          if (Record)
3397            Record->setHasFlexibleArrayMember(true);
3398        }
3399      }
3400    }
3401    /// A field cannot be an Objective-c object
3402    if (FDTy->isObjCInterfaceType()) {
3403      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3404      FD->setInvalidDecl();
3405      EnclosingDecl->setInvalidDecl();
3406      continue;
3407    }
3408    // Keep track of the number of named members.
3409    if (FD->getIdentifier())
3410      ++NumNamedMembers;
3411  }
3412
3413  // Okay, we successfully defined 'Record'.
3414  if (Record) {
3415    Record->completeDefinition(Context);
3416  } else {
3417    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3418    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3419      ID->setIVarList(ClsFields, RecFields.size(), Context);
3420      ID->setLocEnd(RBrac);
3421
3422      // Must enforce the rule that ivars in the base classes may not be
3423      // duplicates.
3424      if (ID->getSuperClass()) {
3425        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3426             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3427          ObjCIvarDecl* Ivar = (*IVI);
3428          IdentifierInfo *II = Ivar->getIdentifier();
3429          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3430          if (prevIvar) {
3431            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3432            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3433          }
3434        }
3435      }
3436    } else if (ObjCImplementationDecl *IMPDecl =
3437                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3438      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3439      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3440      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3441    }
3442  }
3443
3444  if (Attr)
3445    ProcessDeclAttributeList(Record, Attr);
3446}
3447
3448Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3449                                      DeclTy *lastEnumConst,
3450                                      SourceLocation IdLoc, IdentifierInfo *Id,
3451                                      SourceLocation EqualLoc, ExprTy *val) {
3452  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3453  EnumConstantDecl *LastEnumConst =
3454    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3455  Expr *Val = static_cast<Expr*>(val);
3456
3457  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3458  // we find one that is.
3459  S = getNonFieldDeclScope(S);
3460
3461  // Verify that there isn't already something declared with this name in this
3462  // scope.
3463  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3464  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3465    // Maybe we will complain about the shadowed template parameter.
3466    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3467    // Just pretend that we didn't see the previous declaration.
3468    PrevDecl = 0;
3469  }
3470
3471  if (PrevDecl) {
3472    // When in C++, we may get a TagDecl with the same name; in this case the
3473    // enum constant will 'hide' the tag.
3474    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3475           "Received TagDecl when not in C++!");
3476    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3477      if (isa<EnumConstantDecl>(PrevDecl))
3478        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3479      else
3480        Diag(IdLoc, diag::err_redefinition) << Id;
3481      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3482      Val->Destroy(Context);
3483      return 0;
3484    }
3485  }
3486
3487  llvm::APSInt EnumVal(32);
3488  QualType EltTy;
3489  if (Val) {
3490    // Make sure to promote the operand type to int.
3491    UsualUnaryConversions(Val);
3492
3493    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3494    SourceLocation ExpLoc;
3495    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3496      Val->Destroy(Context);
3497      Val = 0;  // Just forget about it.
3498    } else {
3499      EltTy = Val->getType();
3500    }
3501  }
3502
3503  if (!Val) {
3504    if (LastEnumConst) {
3505      // Assign the last value + 1.
3506      EnumVal = LastEnumConst->getInitVal();
3507      ++EnumVal;
3508
3509      // Check for overflow on increment.
3510      if (EnumVal < LastEnumConst->getInitVal())
3511        Diag(IdLoc, diag::warn_enum_value_overflow);
3512
3513      EltTy = LastEnumConst->getType();
3514    } else {
3515      // First value, set to zero.
3516      EltTy = Context.IntTy;
3517      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3518    }
3519  }
3520
3521  EnumConstantDecl *New =
3522    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3523                             Val, EnumVal);
3524
3525  // Register this decl in the current scope stack.
3526  PushOnScopeChains(New, S);
3527
3528  return New;
3529}
3530
3531// FIXME: For consistency with ActOnFields(), we should have the parser
3532// pass in the source location for the left/right braces.
3533void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3534                         DeclTy **Elements, unsigned NumElements) {
3535  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3536  QualType EnumType = Context.getTypeDeclType(Enum);
3537
3538  // TODO: If the result value doesn't fit in an int, it must be a long or long
3539  // long value.  ISO C does not support this, but GCC does as an extension,
3540  // emit a warning.
3541  unsigned IntWidth = Context.Target.getIntWidth();
3542
3543  // Verify that all the values are okay, compute the size of the values, and
3544  // reverse the list.
3545  unsigned NumNegativeBits = 0;
3546  unsigned NumPositiveBits = 0;
3547
3548  // Keep track of whether all elements have type int.
3549  bool AllElementsInt = true;
3550
3551  for (unsigned i = 0; i != NumElements; ++i) {
3552    EnumConstantDecl *ECD =
3553      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3554    if (!ECD) continue;  // Already issued a diagnostic.
3555
3556    // If the enum value doesn't fit in an int, emit an extension warning.
3557    const llvm::APSInt &InitVal = ECD->getInitVal();
3558    assert(InitVal.getBitWidth() >= IntWidth &&
3559           "Should have promoted value to int");
3560    if (InitVal.getBitWidth() > IntWidth) {
3561      llvm::APSInt V(InitVal);
3562      V.trunc(IntWidth);
3563      V.extend(InitVal.getBitWidth());
3564      if (V != InitVal)
3565        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3566          << InitVal.toString(10);
3567    }
3568
3569    // Keep track of the size of positive and negative values.
3570    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3571      NumPositiveBits = std::max(NumPositiveBits,
3572                                 (unsigned)InitVal.getActiveBits());
3573    else
3574      NumNegativeBits = std::max(NumNegativeBits,
3575                                 (unsigned)InitVal.getMinSignedBits());
3576
3577    // Keep track of whether every enum element has type int (very commmon).
3578    if (AllElementsInt)
3579      AllElementsInt = ECD->getType() == Context.IntTy;
3580  }
3581
3582  // Figure out the type that should be used for this enum.
3583  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3584  QualType BestType;
3585  unsigned BestWidth;
3586
3587  if (NumNegativeBits) {
3588    // If there is a negative value, figure out the smallest integer type (of
3589    // int/long/longlong) that fits.
3590    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3591      BestType = Context.IntTy;
3592      BestWidth = IntWidth;
3593    } else {
3594      BestWidth = Context.Target.getLongWidth();
3595
3596      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3597        BestType = Context.LongTy;
3598      else {
3599        BestWidth = Context.Target.getLongLongWidth();
3600
3601        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3602          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3603        BestType = Context.LongLongTy;
3604      }
3605    }
3606  } else {
3607    // If there is no negative value, figure out which of uint, ulong, ulonglong
3608    // fits.
3609    if (NumPositiveBits <= IntWidth) {
3610      BestType = Context.UnsignedIntTy;
3611      BestWidth = IntWidth;
3612    } else if (NumPositiveBits <=
3613               (BestWidth = Context.Target.getLongWidth())) {
3614      BestType = Context.UnsignedLongTy;
3615    } else {
3616      BestWidth = Context.Target.getLongLongWidth();
3617      assert(NumPositiveBits <= BestWidth &&
3618             "How could an initializer get larger than ULL?");
3619      BestType = Context.UnsignedLongLongTy;
3620    }
3621  }
3622
3623  // Loop over all of the enumerator constants, changing their types to match
3624  // the type of the enum if needed.
3625  for (unsigned i = 0; i != NumElements; ++i) {
3626    EnumConstantDecl *ECD =
3627      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3628    if (!ECD) continue;  // Already issued a diagnostic.
3629
3630    // Standard C says the enumerators have int type, but we allow, as an
3631    // extension, the enumerators to be larger than int size.  If each
3632    // enumerator value fits in an int, type it as an int, otherwise type it the
3633    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3634    // that X has type 'int', not 'unsigned'.
3635    if (ECD->getType() == Context.IntTy) {
3636      // Make sure the init value is signed.
3637      llvm::APSInt IV = ECD->getInitVal();
3638      IV.setIsSigned(true);
3639      ECD->setInitVal(IV);
3640
3641      if (getLangOptions().CPlusPlus)
3642        // C++ [dcl.enum]p4: Following the closing brace of an
3643        // enum-specifier, each enumerator has the type of its
3644        // enumeration.
3645        ECD->setType(EnumType);
3646      continue;  // Already int type.
3647    }
3648
3649    // Determine whether the value fits into an int.
3650    llvm::APSInt InitVal = ECD->getInitVal();
3651    bool FitsInInt;
3652    if (InitVal.isUnsigned() || !InitVal.isNegative())
3653      FitsInInt = InitVal.getActiveBits() < IntWidth;
3654    else
3655      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3656
3657    // If it fits into an integer type, force it.  Otherwise force it to match
3658    // the enum decl type.
3659    QualType NewTy;
3660    unsigned NewWidth;
3661    bool NewSign;
3662    if (FitsInInt) {
3663      NewTy = Context.IntTy;
3664      NewWidth = IntWidth;
3665      NewSign = true;
3666    } else if (ECD->getType() == BestType) {
3667      // Already the right type!
3668      if (getLangOptions().CPlusPlus)
3669        // C++ [dcl.enum]p4: Following the closing brace of an
3670        // enum-specifier, each enumerator has the type of its
3671        // enumeration.
3672        ECD->setType(EnumType);
3673      continue;
3674    } else {
3675      NewTy = BestType;
3676      NewWidth = BestWidth;
3677      NewSign = BestType->isSignedIntegerType();
3678    }
3679
3680    // Adjust the APSInt value.
3681    InitVal.extOrTrunc(NewWidth);
3682    InitVal.setIsSigned(NewSign);
3683    ECD->setInitVal(InitVal);
3684
3685    // Adjust the Expr initializer and type.
3686    if (ECD->getInitExpr())
3687      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3688                                                      /*isLvalue=*/false));
3689    if (getLangOptions().CPlusPlus)
3690      // C++ [dcl.enum]p4: Following the closing brace of an
3691      // enum-specifier, each enumerator has the type of its
3692      // enumeration.
3693      ECD->setType(EnumType);
3694    else
3695      ECD->setType(NewTy);
3696  }
3697
3698  Enum->completeDefinition(Context, BestType);
3699}
3700
3701Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3702                                          ExprArg expr) {
3703  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3704
3705  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3706}
3707
3708