SemaDecl.cpp revision bd7eb1c3b2af5cd0a7540c79da85e2ce15a893f4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
31  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
32
33  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
34                 isa<ObjCInterfaceDecl>(IIDecl) ||
35                 isa<TagDecl>(IIDecl)))
36    return IIDecl;
37  return 0;
38}
39
40DeclContext *Sema::getDCParent(DeclContext *DC) {
41  // If CurContext is a ObjC method, getParent() will return NULL.
42  if (isa<ObjCMethodDecl>(DC))
43    return Context.getTranslationUnitDecl();
44
45  // A C++ inline method is parsed *after* the topmost class it was declared in
46  // is fully parsed (it's "complete").
47  // The parsing of a C++ inline method happens at the declaration context of
48  // the topmost (non-nested) class it is declared in.
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
51    DC = MD->getParent();
52    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
53      DC = RD;
54
55    // Return the declaration context of the topmost class the inline method is
56    // declared in.
57    return DC;
58  }
59
60  return DC->getParent();
61}
62
63void Sema::PushDeclContext(DeclContext *DC) {
64  assert(getDCParent(DC) == CurContext &&
65       "The next DeclContext should be directly contained in the current one.");
66  CurContext = DC;
67}
68
69void Sema::PopDeclContext() {
70  assert(CurContext && "DeclContext imbalance!");
71  CurContext = getDCParent(CurContext);
72}
73
74/// Add this decl to the scope shadowed decl chains.
75void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
76  S->AddDecl(D);
77
78  // C++ [basic.scope]p4:
79  //   -- exactly one declaration shall declare a class name or
80  //   enumeration name that is not a typedef name and the other
81  //   declarations shall all refer to the same object or
82  //   enumerator, or all refer to functions and function templates;
83  //   in this case the class name or enumeration name is hidden.
84  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
85    // We are pushing the name of a tag (enum or class).
86    IdentifierResolver::iterator
87        I = IdResolver.begin(TD->getIdentifier(),
88                             TD->getDeclContext(), false/*LookInParentCtx*/);
89    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
90      // There is already a declaration with the same name in the same
91      // scope. It must be found before we find the new declaration,
92      // so swap the order on the shadowed declaration chain.
93
94      IdResolver.AddShadowedDecl(TD, *I);
95      return;
96    }
97  }
98  IdResolver.AddDecl(D);
99}
100
101void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
102  if (S->decl_empty()) return;
103  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
104
105  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
106       I != E; ++I) {
107    Decl *TmpD = static_cast<Decl*>(*I);
108    assert(TmpD && "This decl didn't get pushed??");
109
110    if (isa<CXXFieldDecl>(TmpD)) continue;
111
112    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
113    ScopedDecl *D = cast<ScopedDecl>(TmpD);
114
115    IdentifierInfo *II = D->getIdentifier();
116    if (!II) continue;
117
118    // We only want to remove the decls from the identifier decl chains for
119    // local scopes, when inside a function/method.
120    if (S->getFnParent() != 0)
121      IdResolver.RemoveDecl(D);
122
123    // Chain this decl to the containing DeclContext.
124    D->setNext(CurContext->getDeclChain());
125    CurContext->setDeclChain(D);
126  }
127}
128
129/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
130/// return 0 if one not found.
131ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
132  // The third "scope" argument is 0 since we aren't enabling lazy built-in
133  // creation from this context.
134  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
135
136  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
137}
138
139/// LookupDecl - Look up the inner-most declaration in the specified
140/// namespace.
141Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
142                       Scope *S, bool enableLazyBuiltinCreation) {
143  if (II == 0) return 0;
144  unsigned NS = NSI;
145  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
146    NS |= Decl::IDNS_Tag;
147
148  // Scan up the scope chain looking for a decl that matches this identifier
149  // that is in the appropriate namespace.  This search should not take long, as
150  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
151  for (IdentifierResolver::iterator
152       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
153    if ((*I)->getIdentifierNamespace() & NS)
154      return *I;
155
156  // If we didn't find a use of this identifier, and if the identifier
157  // corresponds to a compiler builtin, create the decl object for the builtin
158  // now, injecting it into translation unit scope, and return it.
159  if (NS & Decl::IDNS_Ordinary) {
160    if (enableLazyBuiltinCreation) {
161      // If this is a builtin on this (or all) targets, create the decl.
162      if (unsigned BuiltinID = II->getBuiltinID())
163        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
164    }
165    if (getLangOptions().ObjC1) {
166      // @interface and @compatibility_alias introduce typedef-like names.
167      // Unlike typedef's, they can only be introduced at file-scope (and are
168      // therefore not scoped decls). They can, however, be shadowed by
169      // other names in IDNS_Ordinary.
170      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
171      if (IDI != ObjCInterfaceDecls.end())
172        return IDI->second;
173      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
174      if (I != ObjCAliasDecls.end())
175        return I->second->getClassInterface();
176    }
177  }
178  return 0;
179}
180
181void Sema::InitBuiltinVaListType() {
182  if (!Context.getBuiltinVaListType().isNull())
183    return;
184
185  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
186  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
187  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
188  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
189}
190
191/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
192/// lazily create a decl for it.
193ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
194                                      Scope *S) {
195  Builtin::ID BID = (Builtin::ID)bid;
196
197  if (Context.BuiltinInfo.hasVAListUse(BID))
198    InitBuiltinVaListType();
199
200  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
201  FunctionDecl *New = FunctionDecl::Create(Context,
202                                           Context.getTranslationUnitDecl(),
203                                           SourceLocation(), II, R,
204                                           FunctionDecl::Extern, false, 0);
205
206  // Create Decl objects for each parameter, adding them to the
207  // FunctionDecl.
208  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
209    llvm::SmallVector<ParmVarDecl*, 16> Params;
210    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
211      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
212                                           FT->getArgType(i), VarDecl::None, 0,
213                                           0));
214    New->setParams(&Params[0], Params.size());
215  }
216
217
218
219  // TUScope is the translation-unit scope to insert this function into.
220  PushOnScopeChains(New, TUScope);
221  return New;
222}
223
224/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
225/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
226/// situation, merging decls or emitting diagnostics as appropriate.
227///
228TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
229  // Allow multiple definitions for ObjC built-in typedefs.
230  // FIXME: Verify the underlying types are equivalent!
231  if (getLangOptions().ObjC1) {
232    const IdentifierInfo *typeIdent = New->getIdentifier();
233    if (typeIdent == Ident_id) {
234      Context.setObjCIdType(New);
235      return New;
236    } else if (typeIdent == Ident_Class) {
237      Context.setObjCClassType(New);
238      return New;
239    } else if (typeIdent == Ident_SEL) {
240      Context.setObjCSelType(New);
241      return New;
242    } else if (typeIdent == Ident_Protocol) {
243      Context.setObjCProtoType(New->getUnderlyingType());
244      return New;
245    }
246    // Fall through - the typedef name was not a builtin type.
247  }
248  // Verify the old decl was also a typedef.
249  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
250  if (!Old) {
251    Diag(New->getLocation(), diag::err_redefinition_different_kind,
252         New->getName());
253    Diag(OldD->getLocation(), diag::err_previous_definition);
254    return New;
255  }
256
257  // If the typedef types are not identical, reject them in all languages and
258  // with any extensions enabled.
259  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
260      Context.getCanonicalType(Old->getUnderlyingType()) !=
261      Context.getCanonicalType(New->getUnderlyingType())) {
262    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
263         New->getUnderlyingType().getAsString(),
264         Old->getUnderlyingType().getAsString());
265    Diag(Old->getLocation(), diag::err_previous_definition);
266    return Old;
267  }
268
269  if (getLangOptions().Microsoft) return New;
270
271  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
272  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
273  // *either* declaration is in a system header. The code below implements
274  // this adhoc compatibility rule. FIXME: The following code will not
275  // work properly when compiling ".i" files (containing preprocessed output).
276  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
277    SourceManager &SrcMgr = Context.getSourceManager();
278    if (SrcMgr.isInSystemHeader(Old->getLocation()))
279      return New;
280    if (SrcMgr.isInSystemHeader(New->getLocation()))
281      return New;
282  }
283
284  Diag(New->getLocation(), diag::err_redefinition, New->getName());
285  Diag(Old->getLocation(), diag::err_previous_definition);
286  return New;
287}
288
289/// DeclhasAttr - returns true if decl Declaration already has the target
290/// attribute.
291static bool DeclHasAttr(const Decl *decl, const Attr *target) {
292  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
293    if (attr->getKind() == target->getKind())
294      return true;
295
296  return false;
297}
298
299/// MergeAttributes - append attributes from the Old decl to the New one.
300static void MergeAttributes(Decl *New, Decl *Old) {
301  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
302
303  while (attr) {
304     tmp = attr;
305     attr = attr->getNext();
306
307    if (!DeclHasAttr(New, tmp)) {
308       New->addAttr(tmp);
309    } else {
310       tmp->setNext(0);
311       delete(tmp);
312    }
313  }
314
315  Old->invalidateAttrs();
316}
317
318/// MergeFunctionDecl - We just parsed a function 'New' from
319/// declarator D which has the same name and scope as a previous
320/// declaration 'Old'.  Figure out how to resolve this situation,
321/// merging decls or emitting diagnostics as appropriate.
322/// Redeclaration will be set true if thisNew is a redeclaration OldD.
323FunctionDecl *
324Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
325  Redeclaration = false;
326  // Verify the old decl was also a function.
327  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
328  if (!Old) {
329    Diag(New->getLocation(), diag::err_redefinition_different_kind,
330         New->getName());
331    Diag(OldD->getLocation(), diag::err_previous_definition);
332    return New;
333  }
334
335  QualType OldQType = Context.getCanonicalType(Old->getType());
336  QualType NewQType = Context.getCanonicalType(New->getType());
337
338  // C++ [dcl.fct]p3:
339  //   All declarations for a function shall agree exactly in both the
340  //   return type and the parameter-type-list.
341  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
342    MergeAttributes(New, Old);
343    Redeclaration = true;
344    return MergeCXXFunctionDecl(New, Old);
345  }
346
347  // C: Function types need to be compatible, not identical. This handles
348  // duplicate function decls like "void f(int); void f(enum X);" properly.
349  if (!getLangOptions().CPlusPlus &&
350      Context.typesAreCompatible(OldQType, NewQType)) {
351    MergeAttributes(New, Old);
352    Redeclaration = true;
353    return New;
354  }
355
356  // A function that has already been declared has been redeclared or defined
357  // with a different type- show appropriate diagnostic
358  diag::kind PrevDiag;
359  if (Old->isThisDeclarationADefinition())
360    PrevDiag = diag::err_previous_definition;
361  else if (Old->isImplicit())
362    PrevDiag = diag::err_previous_implicit_declaration;
363  else
364    PrevDiag = diag::err_previous_declaration;
365
366  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
367  // TODO: This is totally simplistic.  It should handle merging functions
368  // together etc, merging extern int X; int X; ...
369  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
370  Diag(Old->getLocation(), PrevDiag);
371  return New;
372}
373
374/// Predicate for C "tentative" external object definitions (C99 6.9.2).
375static bool isTentativeDefinition(VarDecl *VD) {
376  if (VD->isFileVarDecl())
377    return (!VD->getInit() &&
378            (VD->getStorageClass() == VarDecl::None ||
379             VD->getStorageClass() == VarDecl::Static));
380  return false;
381}
382
383/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
384/// when dealing with C "tentative" external object definitions (C99 6.9.2).
385void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
386  bool VDIsTentative = isTentativeDefinition(VD);
387  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
388
389  for (IdentifierResolver::iterator
390       I = IdResolver.begin(VD->getIdentifier(),
391                            VD->getDeclContext(), false/*LookInParentCtx*/),
392       E = IdResolver.end(); I != E; ++I) {
393    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
394      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
395
396      // Handle the following case:
397      //   int a[10];
398      //   int a[];   - the code below makes sure we set the correct type.
399      //   int a[11]; - this is an error, size isn't 10.
400      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
401          OldDecl->getType()->isConstantArrayType())
402        VD->setType(OldDecl->getType());
403
404      // Check for "tentative" definitions. We can't accomplish this in
405      // MergeVarDecl since the initializer hasn't been attached.
406      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
407        continue;
408
409      // Handle __private_extern__ just like extern.
410      if (OldDecl->getStorageClass() != VarDecl::Extern &&
411          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
412          VD->getStorageClass() != VarDecl::Extern &&
413          VD->getStorageClass() != VarDecl::PrivateExtern) {
414        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
415        Diag(OldDecl->getLocation(), diag::err_previous_definition);
416      }
417    }
418  }
419}
420
421/// MergeVarDecl - We just parsed a variable 'New' which has the same name
422/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
423/// situation, merging decls or emitting diagnostics as appropriate.
424///
425/// Tentative definition rules (C99 6.9.2p2) are checked by
426/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
427/// definitions here, since the initializer hasn't been attached.
428///
429VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
430  // Verify the old decl was also a variable.
431  VarDecl *Old = dyn_cast<VarDecl>(OldD);
432  if (!Old) {
433    Diag(New->getLocation(), diag::err_redefinition_different_kind,
434         New->getName());
435    Diag(OldD->getLocation(), diag::err_previous_definition);
436    return New;
437  }
438
439  MergeAttributes(New, Old);
440
441  // Verify the types match.
442  QualType OldCType = Context.getCanonicalType(Old->getType());
443  QualType NewCType = Context.getCanonicalType(New->getType());
444  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
445    Diag(New->getLocation(), diag::err_redefinition, New->getName());
446    Diag(Old->getLocation(), diag::err_previous_definition);
447    return New;
448  }
449  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
450  if (New->getStorageClass() == VarDecl::Static &&
451      (Old->getStorageClass() == VarDecl::None ||
452       Old->getStorageClass() == VarDecl::Extern)) {
453    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
454    Diag(Old->getLocation(), diag::err_previous_definition);
455    return New;
456  }
457  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
458  if (New->getStorageClass() != VarDecl::Static &&
459      Old->getStorageClass() == VarDecl::Static) {
460    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
461    Diag(Old->getLocation(), diag::err_previous_definition);
462    return New;
463  }
464  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
465  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
466    Diag(New->getLocation(), diag::err_redefinition, New->getName());
467    Diag(Old->getLocation(), diag::err_previous_definition);
468  }
469  return New;
470}
471
472/// CheckParmsForFunctionDef - Check that the parameters of the given
473/// function are appropriate for the definition of a function. This
474/// takes care of any checks that cannot be performed on the
475/// declaration itself, e.g., that the types of each of the function
476/// parameters are complete.
477bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
478  bool HasInvalidParm = false;
479  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
480    ParmVarDecl *Param = FD->getParamDecl(p);
481
482    // C99 6.7.5.3p4: the parameters in a parameter type list in a
483    // function declarator that is part of a function definition of
484    // that function shall not have incomplete type.
485    if (Param->getType()->isIncompleteType() &&
486        !Param->isInvalidDecl()) {
487      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
488           Param->getType().getAsString());
489      Param->setInvalidDecl();
490      HasInvalidParm = true;
491    }
492  }
493
494  return HasInvalidParm;
495}
496
497/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
498/// no declarator (e.g. "struct foo;") is parsed.
499Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
500  // TODO: emit error on 'int;' or 'const enum foo;'.
501  // TODO: emit error on 'typedef int;'
502  // if (!DS.isMissingDeclaratorOk()) Diag(...);
503
504  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
505}
506
507bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
508  // Get the type before calling CheckSingleAssignmentConstraints(), since
509  // it can promote the expression.
510  QualType InitType = Init->getType();
511
512  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
513  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
514                                  InitType, Init, "initializing");
515}
516
517bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
518  const ArrayType *AT = Context.getAsArrayType(DeclT);
519
520  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
521    // C99 6.7.8p14. We have an array of character type with unknown size
522    // being initialized to a string literal.
523    llvm::APSInt ConstVal(32);
524    ConstVal = strLiteral->getByteLength() + 1;
525    // Return a new array type (C99 6.7.8p22).
526    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
527                                         ArrayType::Normal, 0);
528  } else {
529    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
530    // C99 6.7.8p14. We have an array of character type with known size.
531    // FIXME: Avoid truncation for 64-bit length strings.
532    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
533      Diag(strLiteral->getSourceRange().getBegin(),
534           diag::warn_initializer_string_for_char_array_too_long,
535           strLiteral->getSourceRange());
536  }
537  // Set type from "char *" to "constant array of char".
538  strLiteral->setType(DeclT);
539  // For now, we always return false (meaning success).
540  return false;
541}
542
543StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
544  const ArrayType *AT = Context.getAsArrayType(DeclType);
545  if (AT && AT->getElementType()->isCharType()) {
546    return dyn_cast<StringLiteral>(Init);
547  }
548  return 0;
549}
550
551bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
552  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
553  // of unknown size ("[]") or an object type that is not a variable array type.
554  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
555    return Diag(VAT->getSizeExpr()->getLocStart(),
556                diag::err_variable_object_no_init,
557                VAT->getSizeExpr()->getSourceRange());
558
559  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
560  if (!InitList) {
561    // FIXME: Handle wide strings
562    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
563      return CheckStringLiteralInit(strLiteral, DeclType);
564
565    if (DeclType->isArrayType())
566      return Diag(Init->getLocStart(),
567                  diag::err_array_init_list_required,
568                  Init->getSourceRange());
569
570    return CheckSingleInitializer(Init, DeclType);
571  }
572
573  InitListChecker CheckInitList(this, InitList, DeclType);
574  return CheckInitList.HadError();
575}
576
577Sema::DeclTy *
578Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
579  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
580  IdentifierInfo *II = D.getIdentifier();
581
582  // All of these full declarators require an identifier.  If it doesn't have
583  // one, the ParsedFreeStandingDeclSpec action should be used.
584  if (II == 0) {
585    Diag(D.getDeclSpec().getSourceRange().getBegin(),
586         diag::err_declarator_need_ident,
587         D.getDeclSpec().getSourceRange(), D.getSourceRange());
588    return 0;
589  }
590
591  // The scope passed in may not be a decl scope.  Zip up the scope tree until
592  // we find one that is.
593  while ((S->getFlags() & Scope::DeclScope) == 0)
594    S = S->getParent();
595
596  // See if this is a redefinition of a variable in the same scope.
597  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
598  ScopedDecl *New;
599  bool InvalidDecl = false;
600
601  // In C++, the previous declaration we find might be a tag type
602  // (class or enum). In this case, the new declaration will hide the
603  // tag type.
604  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
605    PrevDecl = 0;
606
607  QualType R = GetTypeForDeclarator(D, S);
608  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
609
610  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
611    // Check that there are no default arguments (C++ only).
612    if (getLangOptions().CPlusPlus)
613      CheckExtraCXXDefaultArguments(D);
614
615    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
616    if (!NewTD) return 0;
617
618    // Handle attributes prior to checking for duplicates in MergeVarDecl
619    ProcessDeclAttributes(NewTD, D);
620    // Merge the decl with the existing one if appropriate. If the decl is
621    // in an outer scope, it isn't the same thing.
622    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
623      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
624      if (NewTD == 0) return 0;
625    }
626    New = NewTD;
627    if (S->getFnParent() == 0) {
628      // C99 6.7.7p2: If a typedef name specifies a variably modified type
629      // then it shall have block scope.
630      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
631        // FIXME: Diagnostic needs to be fixed.
632        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
633        InvalidDecl = true;
634      }
635    }
636  } else if (R.getTypePtr()->isFunctionType()) {
637    FunctionDecl::StorageClass SC = FunctionDecl::None;
638    switch (D.getDeclSpec().getStorageClassSpec()) {
639      default: assert(0 && "Unknown storage class!");
640      case DeclSpec::SCS_auto:
641      case DeclSpec::SCS_register:
642        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
643             R.getAsString());
644        InvalidDecl = true;
645        break;
646      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
647      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
648      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
649      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
650    }
651
652    bool isInline = D.getDeclSpec().isInlineSpecified();
653    FunctionDecl *NewFD;
654    if (D.getContext() == Declarator::MemberContext) {
655      // This is a C++ method declaration.
656      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
657                                    D.getIdentifierLoc(), II, R,
658                                    (SC == FunctionDecl::Static), isInline,
659                                    LastDeclarator);
660    } else {
661      NewFD = FunctionDecl::Create(Context, CurContext,
662                                   D.getIdentifierLoc(),
663                                   II, R, SC, isInline,
664                                   LastDeclarator);
665    }
666    // Handle attributes.
667    ProcessDeclAttributes(NewFD, D);
668
669    // Handle GNU asm-label extension (encoded as an attribute).
670    if (Expr *E = (Expr*) D.getAsmLabel()) {
671      // The parser guarantees this is a string.
672      StringLiteral *SE = cast<StringLiteral>(E);
673      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
674                                                  SE->getByteLength())));
675    }
676
677    // Copy the parameter declarations from the declarator D to
678    // the function declaration NewFD, if they are available.
679    if (D.getNumTypeObjects() > 0) {
680      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
681
682      // Create Decl objects for each parameter, adding them to the
683      // FunctionDecl.
684      llvm::SmallVector<ParmVarDecl*, 16> Params;
685
686      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
687      // function that takes no arguments, not a function that takes a
688      // single void argument.
689      // We let through "const void" here because Sema::GetTypeForDeclarator
690      // already checks for that case.
691      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
692          FTI.ArgInfo[0].Param &&
693          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
694        // empty arg list, don't push any params.
695        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
696
697        // In C++, the empty parameter-type-list must be spelled "void"; a
698        // typedef of void is not permitted.
699        if (getLangOptions().CPlusPlus &&
700            Param->getType().getUnqualifiedType() != Context.VoidTy) {
701          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
702        }
703
704      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
705        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
706          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
707      }
708
709      NewFD->setParams(&Params[0], Params.size());
710    }
711
712    // Merge the decl with the existing one if appropriate. Since C functions
713    // are in a flat namespace, make sure we consider decls in outer scopes.
714    if (PrevDecl &&
715        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
716      bool Redeclaration = false;
717      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
718      if (NewFD == 0) return 0;
719      if (Redeclaration) {
720        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
721      }
722    }
723    New = NewFD;
724
725    // In C++, check default arguments now that we have merged decls.
726    if (getLangOptions().CPlusPlus)
727      CheckCXXDefaultArguments(NewFD);
728  } else {
729    // Check that there are no default arguments (C++ only).
730    if (getLangOptions().CPlusPlus)
731      CheckExtraCXXDefaultArguments(D);
732
733    if (R.getTypePtr()->isObjCInterfaceType()) {
734      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
735           D.getIdentifier()->getName());
736      InvalidDecl = true;
737    }
738
739    VarDecl *NewVD;
740    VarDecl::StorageClass SC;
741    switch (D.getDeclSpec().getStorageClassSpec()) {
742    default: assert(0 && "Unknown storage class!");
743    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
744    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
745    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
746    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
747    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
748    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
749    }
750    if (D.getContext() == Declarator::MemberContext) {
751      assert(SC == VarDecl::Static && "Invalid storage class for member!");
752      // This is a static data member for a C++ class.
753      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
754                                      D.getIdentifierLoc(), II,
755                                      R, LastDeclarator);
756    } else {
757      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
758      if (S->getFnParent() == 0) {
759        // C99 6.9p2: The storage-class specifiers auto and register shall not
760        // appear in the declaration specifiers in an external declaration.
761        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
762          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
763               R.getAsString());
764          InvalidDecl = true;
765        }
766      }
767        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
768                                II, R, SC, LastDeclarator);
769        NewVD->setThreadSpecified(ThreadSpecified);
770    }
771    // Handle attributes prior to checking for duplicates in MergeVarDecl
772    ProcessDeclAttributes(NewVD, D);
773
774    // Handle GNU asm-label extension (encoded as an attribute).
775    if (Expr *E = (Expr*) D.getAsmLabel()) {
776      // The parser guarantees this is a string.
777      StringLiteral *SE = cast<StringLiteral>(E);
778      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
779                                                  SE->getByteLength())));
780    }
781
782    // Emit an error if an address space was applied to decl with local storage.
783    // This includes arrays of objects with address space qualifiers, but not
784    // automatic variables that point to other address spaces.
785    // ISO/IEC TR 18037 S5.1.2
786    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
787      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
788      InvalidDecl = true;
789    }
790    // Merge the decl with the existing one if appropriate. If the decl is
791    // in an outer scope, it isn't the same thing.
792    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
793      NewVD = MergeVarDecl(NewVD, PrevDecl);
794      if (NewVD == 0) return 0;
795    }
796    New = NewVD;
797  }
798
799  // If this has an identifier, add it to the scope stack.
800  if (II)
801    PushOnScopeChains(New, S);
802  // If any semantic error occurred, mark the decl as invalid.
803  if (D.getInvalidType() || InvalidDecl)
804    New->setInvalidDecl();
805
806  return New;
807}
808
809bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
810  switch (Init->getStmtClass()) {
811  default:
812    Diag(Init->getExprLoc(),
813         diag::err_init_element_not_constant, Init->getSourceRange());
814    return true;
815  case Expr::ParenExprClass: {
816    const ParenExpr* PE = cast<ParenExpr>(Init);
817    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
818  }
819  case Expr::CompoundLiteralExprClass:
820    return cast<CompoundLiteralExpr>(Init)->isFileScope();
821  case Expr::DeclRefExprClass: {
822    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
823    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
824      if (VD->hasGlobalStorage())
825        return false;
826      Diag(Init->getExprLoc(),
827           diag::err_init_element_not_constant, Init->getSourceRange());
828      return true;
829    }
830    if (isa<FunctionDecl>(D))
831      return false;
832    Diag(Init->getExprLoc(),
833         diag::err_init_element_not_constant, Init->getSourceRange());
834    return true;
835  }
836  case Expr::MemberExprClass: {
837    const MemberExpr *M = cast<MemberExpr>(Init);
838    if (M->isArrow())
839      return CheckAddressConstantExpression(M->getBase());
840    return CheckAddressConstantExpressionLValue(M->getBase());
841  }
842  case Expr::ArraySubscriptExprClass: {
843    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
844    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
845    return CheckAddressConstantExpression(ASE->getBase()) ||
846           CheckArithmeticConstantExpression(ASE->getIdx());
847  }
848  case Expr::StringLiteralClass:
849  case Expr::PredefinedExprClass:
850    return false;
851  case Expr::UnaryOperatorClass: {
852    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
853
854    // C99 6.6p9
855    if (Exp->getOpcode() == UnaryOperator::Deref)
856      return CheckAddressConstantExpression(Exp->getSubExpr());
857
858    Diag(Init->getExprLoc(),
859         diag::err_init_element_not_constant, Init->getSourceRange());
860    return true;
861  }
862  }
863}
864
865bool Sema::CheckAddressConstantExpression(const Expr* Init) {
866  switch (Init->getStmtClass()) {
867  default:
868    Diag(Init->getExprLoc(),
869         diag::err_init_element_not_constant, Init->getSourceRange());
870    return true;
871  case Expr::ParenExprClass: {
872    const ParenExpr* PE = cast<ParenExpr>(Init);
873    return CheckAddressConstantExpression(PE->getSubExpr());
874  }
875  case Expr::StringLiteralClass:
876  case Expr::ObjCStringLiteralClass:
877    return false;
878  case Expr::CallExprClass: {
879    const CallExpr *CE = cast<CallExpr>(Init);
880    if (CE->isBuiltinConstantExpr())
881      return false;
882    Diag(Init->getExprLoc(),
883         diag::err_init_element_not_constant, Init->getSourceRange());
884    return true;
885  }
886  case Expr::UnaryOperatorClass: {
887    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
888
889    // C99 6.6p9
890    if (Exp->getOpcode() == UnaryOperator::AddrOf)
891      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
892
893    if (Exp->getOpcode() == UnaryOperator::Extension)
894      return CheckAddressConstantExpression(Exp->getSubExpr());
895
896    Diag(Init->getExprLoc(),
897         diag::err_init_element_not_constant, Init->getSourceRange());
898    return true;
899  }
900  case Expr::BinaryOperatorClass: {
901    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
902    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
903
904    Expr *PExp = Exp->getLHS();
905    Expr *IExp = Exp->getRHS();
906    if (IExp->getType()->isPointerType())
907      std::swap(PExp, IExp);
908
909    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
910    return CheckAddressConstantExpression(PExp) ||
911           CheckArithmeticConstantExpression(IExp);
912  }
913  case Expr::ImplicitCastExprClass:
914  case Expr::ExplicitCastExprClass: {
915    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
916    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
917      // Check for implicit promotion
918      if (SubExpr->getType()->isFunctionType() ||
919          SubExpr->getType()->isArrayType())
920        return CheckAddressConstantExpressionLValue(SubExpr);
921    }
922
923    // Check for pointer->pointer cast
924    if (SubExpr->getType()->isPointerType())
925      return CheckAddressConstantExpression(SubExpr);
926
927    if (SubExpr->getType()->isIntegralType()) {
928      // Check for the special-case of a pointer->int->pointer cast;
929      // this isn't standard, but some code requires it. See
930      // PR2720 for an example.
931      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
932        if (SubCast->getSubExpr()->getType()->isPointerType()) {
933          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
934          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
935          if (IntWidth >= PointerWidth) {
936            return CheckAddressConstantExpression(SubCast->getSubExpr());
937          }
938        }
939      }
940    }
941    if (SubExpr->getType()->isArithmeticType()) {
942      return CheckArithmeticConstantExpression(SubExpr);
943    }
944
945    Diag(Init->getExprLoc(),
946         diag::err_init_element_not_constant, Init->getSourceRange());
947    return true;
948  }
949  case Expr::ConditionalOperatorClass: {
950    // FIXME: Should we pedwarn here?
951    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
952    if (!Exp->getCond()->getType()->isArithmeticType()) {
953      Diag(Init->getExprLoc(),
954           diag::err_init_element_not_constant, Init->getSourceRange());
955      return true;
956    }
957    if (CheckArithmeticConstantExpression(Exp->getCond()))
958      return true;
959    if (Exp->getLHS() &&
960        CheckAddressConstantExpression(Exp->getLHS()))
961      return true;
962    return CheckAddressConstantExpression(Exp->getRHS());
963  }
964  case Expr::AddrLabelExprClass:
965    return false;
966  }
967}
968
969static const Expr* FindExpressionBaseAddress(const Expr* E);
970
971static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
972  switch (E->getStmtClass()) {
973  default:
974    return E;
975  case Expr::ParenExprClass: {
976    const ParenExpr* PE = cast<ParenExpr>(E);
977    return FindExpressionBaseAddressLValue(PE->getSubExpr());
978  }
979  case Expr::MemberExprClass: {
980    const MemberExpr *M = cast<MemberExpr>(E);
981    if (M->isArrow())
982      return FindExpressionBaseAddress(M->getBase());
983    return FindExpressionBaseAddressLValue(M->getBase());
984  }
985  case Expr::ArraySubscriptExprClass: {
986    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
987    return FindExpressionBaseAddress(ASE->getBase());
988  }
989  case Expr::UnaryOperatorClass: {
990    const UnaryOperator *Exp = cast<UnaryOperator>(E);
991
992    if (Exp->getOpcode() == UnaryOperator::Deref)
993      return FindExpressionBaseAddress(Exp->getSubExpr());
994
995    return E;
996  }
997  }
998}
999
1000static const Expr* FindExpressionBaseAddress(const Expr* E) {
1001  switch (E->getStmtClass()) {
1002  default:
1003    return E;
1004  case Expr::ParenExprClass: {
1005    const ParenExpr* PE = cast<ParenExpr>(E);
1006    return FindExpressionBaseAddress(PE->getSubExpr());
1007  }
1008  case Expr::UnaryOperatorClass: {
1009    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1010
1011    // C99 6.6p9
1012    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1013      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1014
1015    if (Exp->getOpcode() == UnaryOperator::Extension)
1016      return FindExpressionBaseAddress(Exp->getSubExpr());
1017
1018    return E;
1019  }
1020  case Expr::BinaryOperatorClass: {
1021    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1022
1023    Expr *PExp = Exp->getLHS();
1024    Expr *IExp = Exp->getRHS();
1025    if (IExp->getType()->isPointerType())
1026      std::swap(PExp, IExp);
1027
1028    return FindExpressionBaseAddress(PExp);
1029  }
1030  case Expr::ImplicitCastExprClass: {
1031    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1032
1033    // Check for implicit promotion
1034    if (SubExpr->getType()->isFunctionType() ||
1035        SubExpr->getType()->isArrayType())
1036      return FindExpressionBaseAddressLValue(SubExpr);
1037
1038    // Check for pointer->pointer cast
1039    if (SubExpr->getType()->isPointerType())
1040      return FindExpressionBaseAddress(SubExpr);
1041
1042    // We assume that we have an arithmetic expression here;
1043    // if we don't, we'll figure it out later
1044    return 0;
1045  }
1046  case Expr::ExplicitCastExprClass: {
1047    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1048
1049    // Check for pointer->pointer cast
1050    if (SubExpr->getType()->isPointerType())
1051      return FindExpressionBaseAddress(SubExpr);
1052
1053    // We assume that we have an arithmetic expression here;
1054    // if we don't, we'll figure it out later
1055    return 0;
1056  }
1057  }
1058}
1059
1060bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1061  switch (Init->getStmtClass()) {
1062  default:
1063    Diag(Init->getExprLoc(),
1064         diag::err_init_element_not_constant, Init->getSourceRange());
1065    return true;
1066  case Expr::ParenExprClass: {
1067    const ParenExpr* PE = cast<ParenExpr>(Init);
1068    return CheckArithmeticConstantExpression(PE->getSubExpr());
1069  }
1070  case Expr::FloatingLiteralClass:
1071  case Expr::IntegerLiteralClass:
1072  case Expr::CharacterLiteralClass:
1073  case Expr::ImaginaryLiteralClass:
1074  case Expr::TypesCompatibleExprClass:
1075  case Expr::CXXBoolLiteralExprClass:
1076    return false;
1077  case Expr::CallExprClass: {
1078    const CallExpr *CE = cast<CallExpr>(Init);
1079    if (CE->isBuiltinConstantExpr())
1080      return false;
1081    Diag(Init->getExprLoc(),
1082         diag::err_init_element_not_constant, Init->getSourceRange());
1083    return true;
1084  }
1085  case Expr::DeclRefExprClass: {
1086    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1087    if (isa<EnumConstantDecl>(D))
1088      return false;
1089    Diag(Init->getExprLoc(),
1090         diag::err_init_element_not_constant, Init->getSourceRange());
1091    return true;
1092  }
1093  case Expr::CompoundLiteralExprClass:
1094    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1095    // but vectors are allowed to be magic.
1096    if (Init->getType()->isVectorType())
1097      return false;
1098    Diag(Init->getExprLoc(),
1099         diag::err_init_element_not_constant, Init->getSourceRange());
1100    return true;
1101  case Expr::UnaryOperatorClass: {
1102    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1103
1104    switch (Exp->getOpcode()) {
1105    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1106    // See C99 6.6p3.
1107    default:
1108      Diag(Init->getExprLoc(),
1109           diag::err_init_element_not_constant, Init->getSourceRange());
1110      return true;
1111    case UnaryOperator::SizeOf:
1112    case UnaryOperator::AlignOf:
1113    case UnaryOperator::OffsetOf:
1114      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1115      // See C99 6.5.3.4p2 and 6.6p3.
1116      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1117        return false;
1118      Diag(Init->getExprLoc(),
1119           diag::err_init_element_not_constant, Init->getSourceRange());
1120      return true;
1121    case UnaryOperator::Extension:
1122    case UnaryOperator::LNot:
1123    case UnaryOperator::Plus:
1124    case UnaryOperator::Minus:
1125    case UnaryOperator::Not:
1126      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1127    }
1128  }
1129  case Expr::SizeOfAlignOfTypeExprClass: {
1130    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1131    // Special check for void types, which are allowed as an extension
1132    if (Exp->getArgumentType()->isVoidType())
1133      return false;
1134    // alignof always evaluates to a constant.
1135    // FIXME: is sizeof(int[3.0]) a constant expression?
1136    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1137      Diag(Init->getExprLoc(),
1138           diag::err_init_element_not_constant, Init->getSourceRange());
1139      return true;
1140    }
1141    return false;
1142  }
1143  case Expr::BinaryOperatorClass: {
1144    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1145
1146    if (Exp->getLHS()->getType()->isArithmeticType() &&
1147        Exp->getRHS()->getType()->isArithmeticType()) {
1148      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1149             CheckArithmeticConstantExpression(Exp->getRHS());
1150    }
1151
1152    if (Exp->getLHS()->getType()->isPointerType() &&
1153        Exp->getRHS()->getType()->isPointerType()) {
1154      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1155      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1156
1157      // Only allow a null (constant integer) base; we could
1158      // allow some additional cases if necessary, but this
1159      // is sufficient to cover offsetof-like constructs.
1160      if (!LHSBase && !RHSBase) {
1161        return CheckAddressConstantExpression(Exp->getLHS()) ||
1162               CheckAddressConstantExpression(Exp->getRHS());
1163      }
1164    }
1165
1166    Diag(Init->getExprLoc(),
1167         diag::err_init_element_not_constant, Init->getSourceRange());
1168    return true;
1169  }
1170  case Expr::ImplicitCastExprClass:
1171  case Expr::ExplicitCastExprClass: {
1172    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1173    if (SubExpr->getType()->isArithmeticType())
1174      return CheckArithmeticConstantExpression(SubExpr);
1175
1176    if (SubExpr->getType()->isPointerType()) {
1177      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1178      // If the pointer has a null base, this is an offsetof-like construct
1179      if (!Base)
1180        return CheckAddressConstantExpression(SubExpr);
1181    }
1182
1183    Diag(Init->getExprLoc(),
1184         diag::err_init_element_not_constant, Init->getSourceRange());
1185    return true;
1186  }
1187  case Expr::ConditionalOperatorClass: {
1188    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1189    if (CheckArithmeticConstantExpression(Exp->getCond()))
1190      return true;
1191    if (Exp->getLHS() &&
1192        CheckArithmeticConstantExpression(Exp->getLHS()))
1193      return true;
1194    return CheckArithmeticConstantExpression(Exp->getRHS());
1195  }
1196  }
1197}
1198
1199bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1200  Init = Init->IgnoreParens();
1201
1202  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1203  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1204    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1205
1206  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1207    return CheckForConstantInitializer(e->getInitializer(), DclT);
1208
1209  if (Init->getType()->isReferenceType()) {
1210    // FIXME: Work out how the heck reference types work
1211    return false;
1212#if 0
1213    // A reference is constant if the address of the expression
1214    // is constant
1215    // We look through initlists here to simplify
1216    // CheckAddressConstantExpressionLValue.
1217    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1218      assert(Exp->getNumInits() > 0 &&
1219             "Refernce initializer cannot be empty");
1220      Init = Exp->getInit(0);
1221    }
1222    return CheckAddressConstantExpressionLValue(Init);
1223#endif
1224  }
1225
1226  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1227    unsigned numInits = Exp->getNumInits();
1228    for (unsigned i = 0; i < numInits; i++) {
1229      // FIXME: Need to get the type of the declaration for C++,
1230      // because it could be a reference?
1231      if (CheckForConstantInitializer(Exp->getInit(i),
1232                                      Exp->getInit(i)->getType()))
1233        return true;
1234    }
1235    return false;
1236  }
1237
1238  if (Init->isNullPointerConstant(Context))
1239    return false;
1240  if (Init->getType()->isArithmeticType()) {
1241    QualType InitTy = Context.getCanonicalType(Init->getType())
1242                             .getUnqualifiedType();
1243    if (InitTy == Context.BoolTy) {
1244      // Special handling for pointers implicitly cast to bool;
1245      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1246      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1247        Expr* SubE = ICE->getSubExpr();
1248        if (SubE->getType()->isPointerType() ||
1249            SubE->getType()->isArrayType() ||
1250            SubE->getType()->isFunctionType()) {
1251          return CheckAddressConstantExpression(Init);
1252        }
1253      }
1254    } else if (InitTy->isIntegralType()) {
1255      Expr* SubE = 0;
1256      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1257        SubE = CE->getSubExpr();
1258      // Special check for pointer cast to int; we allow as an extension
1259      // an address constant cast to an integer if the integer
1260      // is of an appropriate width (this sort of code is apparently used
1261      // in some places).
1262      // FIXME: Add pedwarn?
1263      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1264      if (SubE && (SubE->getType()->isPointerType() ||
1265                   SubE->getType()->isArrayType() ||
1266                   SubE->getType()->isFunctionType())) {
1267        unsigned IntWidth = Context.getTypeSize(Init->getType());
1268        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1269        if (IntWidth >= PointerWidth)
1270          return CheckAddressConstantExpression(Init);
1271      }
1272    }
1273
1274    return CheckArithmeticConstantExpression(Init);
1275  }
1276
1277  if (Init->getType()->isPointerType())
1278    return CheckAddressConstantExpression(Init);
1279
1280  // An array type at the top level that isn't an init-list must
1281  // be a string literal
1282  if (Init->getType()->isArrayType())
1283    return false;
1284
1285  if (Init->getType()->isFunctionType())
1286    return false;
1287
1288  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1289       Init->getSourceRange());
1290  return true;
1291}
1292
1293void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1294  Decl *RealDecl = static_cast<Decl *>(dcl);
1295  Expr *Init = static_cast<Expr *>(init);
1296  assert(Init && "missing initializer");
1297
1298  // If there is no declaration, there was an error parsing it.  Just ignore
1299  // the initializer.
1300  if (RealDecl == 0) {
1301    delete Init;
1302    return;
1303  }
1304
1305  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1306  if (!VDecl) {
1307    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1308         diag::err_illegal_initializer);
1309    RealDecl->setInvalidDecl();
1310    return;
1311  }
1312  // Get the decls type and save a reference for later, since
1313  // CheckInitializerTypes may change it.
1314  QualType DclT = VDecl->getType(), SavT = DclT;
1315  if (VDecl->isBlockVarDecl()) {
1316    VarDecl::StorageClass SC = VDecl->getStorageClass();
1317    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1318      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1319      VDecl->setInvalidDecl();
1320    } else if (!VDecl->isInvalidDecl()) {
1321      if (CheckInitializerTypes(Init, DclT))
1322        VDecl->setInvalidDecl();
1323
1324      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1325      if (!getLangOptions().CPlusPlus) {
1326        if (SC == VarDecl::Static) // C99 6.7.8p4.
1327          CheckForConstantInitializer(Init, DclT);
1328      }
1329    }
1330  } else if (VDecl->isFileVarDecl()) {
1331    if (VDecl->getStorageClass() == VarDecl::Extern)
1332      Diag(VDecl->getLocation(), diag::warn_extern_init);
1333    if (!VDecl->isInvalidDecl())
1334      if (CheckInitializerTypes(Init, DclT))
1335        VDecl->setInvalidDecl();
1336
1337    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1338    if (!getLangOptions().CPlusPlus) {
1339      // C99 6.7.8p4. All file scoped initializers need to be constant.
1340      CheckForConstantInitializer(Init, DclT);
1341    }
1342  }
1343  // If the type changed, it means we had an incomplete type that was
1344  // completed by the initializer. For example:
1345  //   int ary[] = { 1, 3, 5 };
1346  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1347  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1348    VDecl->setType(DclT);
1349    Init->setType(DclT);
1350  }
1351
1352  // Attach the initializer to the decl.
1353  VDecl->setInit(Init);
1354  return;
1355}
1356
1357/// The declarators are chained together backwards, reverse the list.
1358Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1359  // Often we have single declarators, handle them quickly.
1360  Decl *GroupDecl = static_cast<Decl*>(group);
1361  if (GroupDecl == 0)
1362    return 0;
1363
1364  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1365  ScopedDecl *NewGroup = 0;
1366  if (Group->getNextDeclarator() == 0)
1367    NewGroup = Group;
1368  else { // reverse the list.
1369    while (Group) {
1370      ScopedDecl *Next = Group->getNextDeclarator();
1371      Group->setNextDeclarator(NewGroup);
1372      NewGroup = Group;
1373      Group = Next;
1374    }
1375  }
1376  // Perform semantic analysis that depends on having fully processed both
1377  // the declarator and initializer.
1378  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1379    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1380    if (!IDecl)
1381      continue;
1382    QualType T = IDecl->getType();
1383
1384    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1385    // static storage duration, it shall not have a variable length array.
1386    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1387        IDecl->getStorageClass() == VarDecl::Static) {
1388      if (T->isVariableArrayType()) {
1389        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1390        IDecl->setInvalidDecl();
1391      }
1392    }
1393    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1394    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1395    if (IDecl->isBlockVarDecl() &&
1396        IDecl->getStorageClass() != VarDecl::Extern) {
1397      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1398        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1399             T.getAsString());
1400        IDecl->setInvalidDecl();
1401      }
1402    }
1403    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1404    // object that has file scope without an initializer, and without a
1405    // storage-class specifier or with the storage-class specifier "static",
1406    // constitutes a tentative definition. Note: A tentative definition with
1407    // external linkage is valid (C99 6.2.2p5).
1408    if (isTentativeDefinition(IDecl)) {
1409      if (T->isIncompleteArrayType()) {
1410        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1411        // array to be completed. Don't issue a diagnostic.
1412      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1413        // C99 6.9.2p3: If the declaration of an identifier for an object is
1414        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1415        // declared type shall not be an incomplete type.
1416        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1417             T.getAsString());
1418        IDecl->setInvalidDecl();
1419      }
1420    }
1421    if (IDecl->isFileVarDecl())
1422      CheckForFileScopedRedefinitions(S, IDecl);
1423  }
1424  return NewGroup;
1425}
1426
1427/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1428/// to introduce parameters into function prototype scope.
1429Sema::DeclTy *
1430Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1431  const DeclSpec &DS = D.getDeclSpec();
1432
1433  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1434  VarDecl::StorageClass StorageClass = VarDecl::None;
1435  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1436    StorageClass = VarDecl::Register;
1437  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1438    Diag(DS.getStorageClassSpecLoc(),
1439         diag::err_invalid_storage_class_in_func_decl);
1440    D.getMutableDeclSpec().ClearStorageClassSpecs();
1441  }
1442  if (DS.isThreadSpecified()) {
1443    Diag(DS.getThreadSpecLoc(),
1444         diag::err_invalid_storage_class_in_func_decl);
1445    D.getMutableDeclSpec().ClearStorageClassSpecs();
1446  }
1447
1448  // Check that there are no default arguments inside the type of this
1449  // parameter (C++ only).
1450  if (getLangOptions().CPlusPlus)
1451    CheckExtraCXXDefaultArguments(D);
1452
1453  // In this context, we *do not* check D.getInvalidType(). If the declarator
1454  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1455  // though it will not reflect the user specified type.
1456  QualType parmDeclType = GetTypeForDeclarator(D, S);
1457
1458  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1459
1460  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1461  // Can this happen for params?  We already checked that they don't conflict
1462  // among each other.  Here they can only shadow globals, which is ok.
1463  IdentifierInfo *II = D.getIdentifier();
1464  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1465    if (S->isDeclScope(PrevDecl)) {
1466      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1467           dyn_cast<NamedDecl>(PrevDecl)->getName());
1468
1469      // Recover by removing the name
1470      II = 0;
1471      D.SetIdentifier(0, D.getIdentifierLoc());
1472    }
1473  }
1474
1475  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1476  // Doing the promotion here has a win and a loss. The win is the type for
1477  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1478  // code generator). The loss is the orginal type isn't preserved. For example:
1479  //
1480  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1481  //    int blockvardecl[5];
1482  //    sizeof(parmvardecl);  // size == 4
1483  //    sizeof(blockvardecl); // size == 20
1484  // }
1485  //
1486  // For expressions, all implicit conversions are captured using the
1487  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1488  //
1489  // FIXME: If a source translation tool needs to see the original type, then
1490  // we need to consider storing both types (in ParmVarDecl)...
1491  //
1492  if (parmDeclType->isArrayType()) {
1493    // int x[restrict 4] ->  int *restrict
1494    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1495  } else if (parmDeclType->isFunctionType())
1496    parmDeclType = Context.getPointerType(parmDeclType);
1497
1498  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1499                                         D.getIdentifierLoc(), II,
1500                                         parmDeclType, StorageClass,
1501                                         0, 0);
1502
1503  if (D.getInvalidType())
1504    New->setInvalidDecl();
1505
1506  if (II)
1507    PushOnScopeChains(New, S);
1508
1509  ProcessDeclAttributes(New, D);
1510  return New;
1511
1512}
1513
1514Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1515  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1516  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1517         "Not a function declarator!");
1518  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1519
1520  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1521  // for a K&R function.
1522  if (!FTI.hasPrototype) {
1523    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1524      if (FTI.ArgInfo[i].Param == 0) {
1525        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1526             FTI.ArgInfo[i].Ident->getName());
1527        // Implicitly declare the argument as type 'int' for lack of a better
1528        // type.
1529        DeclSpec DS;
1530        const char* PrevSpec; // unused
1531        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1532                           PrevSpec);
1533        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1534        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1535        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1536      }
1537    }
1538  } else {
1539    // FIXME: Diagnose arguments without names in C.
1540  }
1541
1542  Scope *GlobalScope = FnBodyScope->getParent();
1543
1544  // See if this is a redefinition.
1545  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1546                             GlobalScope);
1547  if (PrevDcl && isDeclInScope(PrevDcl, CurContext)) {
1548    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1549      const FunctionDecl *Definition;
1550      if (FD->getBody(Definition)) {
1551        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1552             D.getIdentifier()->getName());
1553        Diag(Definition->getLocation(), diag::err_previous_definition);
1554      }
1555    }
1556  }
1557
1558  return ActOnStartOfFunctionDef(FnBodyScope,
1559                                 ActOnDeclarator(GlobalScope, D, 0));
1560}
1561
1562Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1563  Decl *decl = static_cast<Decl*>(D);
1564  FunctionDecl *FD = cast<FunctionDecl>(decl);
1565  PushDeclContext(FD);
1566
1567  // Check the validity of our function parameters
1568  CheckParmsForFunctionDef(FD);
1569
1570  // Introduce our parameters into the function scope
1571  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1572    ParmVarDecl *Param = FD->getParamDecl(p);
1573    // If this has an identifier, add it to the scope stack.
1574    if (Param->getIdentifier())
1575      PushOnScopeChains(Param, FnBodyScope);
1576  }
1577
1578  return FD;
1579}
1580
1581Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1582  Decl *dcl = static_cast<Decl *>(D);
1583  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1584    FD->setBody((Stmt*)Body);
1585    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1586  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1587    MD->setBody((Stmt*)Body);
1588  } else
1589    return 0;
1590  PopDeclContext();
1591  // Verify and clean out per-function state.
1592
1593  // Check goto/label use.
1594  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1595       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1596    // Verify that we have no forward references left.  If so, there was a goto
1597    // or address of a label taken, but no definition of it.  Label fwd
1598    // definitions are indicated with a null substmt.
1599    if (I->second->getSubStmt() == 0) {
1600      LabelStmt *L = I->second;
1601      // Emit error.
1602      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1603
1604      // At this point, we have gotos that use the bogus label.  Stitch it into
1605      // the function body so that they aren't leaked and that the AST is well
1606      // formed.
1607      if (Body) {
1608        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1609        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1610      } else {
1611        // The whole function wasn't parsed correctly, just delete this.
1612        delete L;
1613      }
1614    }
1615  }
1616  LabelMap.clear();
1617
1618  return D;
1619}
1620
1621/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1622/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1623ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1624                                           IdentifierInfo &II, Scope *S) {
1625  // Extension in C99.  Legal in C90, but warn about it.
1626  if (getLangOptions().C99)
1627    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1628  else
1629    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1630
1631  // FIXME: handle stuff like:
1632  // void foo() { extern float X(); }
1633  // void bar() { X(); }  <-- implicit decl for X in another scope.
1634
1635  // Set a Declarator for the implicit definition: int foo();
1636  const char *Dummy;
1637  DeclSpec DS;
1638  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1639  Error = Error; // Silence warning.
1640  assert(!Error && "Error setting up implicit decl!");
1641  Declarator D(DS, Declarator::BlockContext);
1642  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1643  D.SetIdentifier(&II, Loc);
1644
1645  // Insert this function into translation-unit scope.
1646
1647  DeclContext *PrevDC = CurContext;
1648  CurContext = Context.getTranslationUnitDecl();
1649
1650  FunctionDecl *FD =
1651    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1652  FD->setImplicit();
1653
1654  CurContext = PrevDC;
1655
1656  return FD;
1657}
1658
1659
1660TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1661                                    ScopedDecl *LastDeclarator) {
1662  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1663  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1664
1665  // Scope manipulation handled by caller.
1666  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1667                                           D.getIdentifierLoc(),
1668                                           D.getIdentifier(),
1669                                           T, LastDeclarator);
1670  if (D.getInvalidType())
1671    NewTD->setInvalidDecl();
1672  return NewTD;
1673}
1674
1675/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1676/// former case, Name will be non-null.  In the later case, Name will be null.
1677/// TagType indicates what kind of tag this is. TK indicates whether this is a
1678/// reference/declaration/definition of a tag.
1679Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1680                             SourceLocation KWLoc, IdentifierInfo *Name,
1681                             SourceLocation NameLoc, AttributeList *Attr) {
1682  // If this is a use of an existing tag, it must have a name.
1683  assert((Name != 0 || TK == TK_Definition) &&
1684         "Nameless record must be a definition!");
1685
1686  TagDecl::TagKind Kind;
1687  switch (TagType) {
1688  default: assert(0 && "Unknown tag type!");
1689  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1690  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1691  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1692  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1693  }
1694
1695  // Two code paths: a new one for structs/unions/classes where we create
1696  //   separate decls for forward declarations, and an old (eventually to
1697  //   be removed) code path for enums.
1698  if (Kind != TagDecl::TK_enum)
1699    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1700
1701  // If this is a named struct, check to see if there was a previous forward
1702  // declaration or definition.
1703  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1704  ScopedDecl *PrevDecl =
1705    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1706
1707  if (PrevDecl) {
1708    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1709            "unexpected Decl type");
1710    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1711      // If this is a use of a previous tag, or if the tag is already declared
1712      // in the same scope (so that the definition/declaration completes or
1713      // rementions the tag), reuse the decl.
1714      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1715        // Make sure that this wasn't declared as an enum and now used as a
1716        // struct or something similar.
1717        if (PrevTagDecl->getTagKind() != Kind) {
1718          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1719          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1720          // Recover by making this an anonymous redefinition.
1721          Name = 0;
1722          PrevDecl = 0;
1723        } else {
1724          // If this is a use or a forward declaration, we're good.
1725          if (TK != TK_Definition)
1726            return PrevDecl;
1727
1728          // Diagnose attempts to redefine a tag.
1729          if (PrevTagDecl->isDefinition()) {
1730            Diag(NameLoc, diag::err_redefinition, Name->getName());
1731            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1732            // If this is a redefinition, recover by making this struct be
1733            // anonymous, which will make any later references get the previous
1734            // definition.
1735            Name = 0;
1736          } else {
1737            // Okay, this is definition of a previously declared or referenced
1738            // tag. Move the location of the decl to be the definition site.
1739            PrevDecl->setLocation(NameLoc);
1740            return PrevDecl;
1741          }
1742        }
1743      }
1744      // If we get here, this is a definition of a new struct type in a nested
1745      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1746      // type.
1747    } else {
1748      // PrevDecl is a namespace.
1749      if (isDeclInScope(PrevDecl, CurContext, S)) {
1750        // The tag name clashes with a namespace name, issue an error and
1751        // recover by making this tag be anonymous.
1752        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1753        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1754        Name = 0;
1755      }
1756    }
1757  }
1758
1759  // If there is an identifier, use the location of the identifier as the
1760  // location of the decl, otherwise use the location of the struct/union
1761  // keyword.
1762  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1763
1764  // Otherwise, if this is the first time we've seen this tag, create the decl.
1765  TagDecl *New;
1766  if (Kind == TagDecl::TK_enum) {
1767    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1768    // enum X { A, B, C } D;    D should chain to X.
1769    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1770    // If this is an undefined enum, warn.
1771    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1772  } else {
1773    // struct/union/class
1774
1775    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1776    // struct X { int A; } D;    D should chain to X.
1777    if (getLangOptions().CPlusPlus)
1778      // FIXME: Look for a way to use RecordDecl for simple structs.
1779      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1780    else
1781      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1782  }
1783
1784  // If this has an identifier, add it to the scope stack.
1785  if (Name) {
1786    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1787    // we find one that is.
1788    while ((S->getFlags() & Scope::DeclScope) == 0)
1789      S = S->getParent();
1790
1791    // Add it to the decl chain.
1792    PushOnScopeChains(New, S);
1793  }
1794
1795  if (Attr)
1796    ProcessDeclAttributeList(New, Attr);
1797  return New;
1798}
1799
1800/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
1801///  the logic for enums, we create separate decls for forward declarations.
1802///  This is called by ActOnTag, but eventually will replace its logic.
1803Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
1804                             SourceLocation KWLoc, IdentifierInfo *Name,
1805                             SourceLocation NameLoc, AttributeList *Attr) {
1806
1807  // If this is a named struct, check to see if there was a previous forward
1808  // declaration or definition.
1809  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1810  ScopedDecl *PrevDecl =
1811    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1812
1813  if (PrevDecl) {
1814    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1815           "unexpected Decl type");
1816
1817    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1818      // If this is a use of a previous tag, or if the tag is already declared
1819      // in the same scope (so that the definition/declaration completes or
1820      // rementions the tag), reuse the decl.
1821      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1822        // Make sure that this wasn't declared as an enum and now used as a
1823        // struct or something similar.
1824        if (PrevTagDecl->getTagKind() != Kind) {
1825          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1826          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1827          // Recover by making this an anonymous redefinition.
1828          Name = 0;
1829          PrevDecl = 0;
1830        } else {
1831          // If this is a use, return the original decl.
1832
1833          // FIXME: In the future, return a variant or some other clue
1834          //  for the consumer of this Decl to know it doesn't own it.
1835          //  For our current ASTs this shouldn't be a problem, but will
1836          //  need to be changed with DeclGroups.
1837          if (TK == TK_Reference)
1838            return PrevDecl;
1839
1840          // The new decl is a definition?
1841          if (TK == TK_Definition) {
1842            // Diagnose attempts to redefine a tag.
1843            if (RecordDecl* DefRecord =
1844                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
1845              Diag(NameLoc, diag::err_redefinition, Name->getName());
1846              Diag(DefRecord->getLocation(), diag::err_previous_definition);
1847              // If this is a redefinition, recover by making this struct be
1848              // anonymous, which will make any later references get the previous
1849              // definition.
1850              Name = 0;
1851              PrevDecl = 0;
1852            }
1853            // Okay, this is definition of a previously declared or referenced
1854            // tag.  We're going to create a new Decl.
1855          }
1856        }
1857        // If we get here we have (another) forward declaration.  Just create
1858        // a new decl.
1859      }
1860      else {
1861        // If we get here, this is a definition of a new struct type in a nested
1862        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
1863        // new decl/type.  We set PrevDecl to NULL so that the Records
1864        // have distinct types.
1865        PrevDecl = 0;
1866      }
1867    } else {
1868      // PrevDecl is a namespace.
1869      if (isDeclInScope(PrevDecl, CurContext, S)) {
1870        // The tag name clashes with a namespace name, issue an error and
1871        // recover by making this tag be anonymous.
1872        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1873        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1874        Name = 0;
1875      }
1876    }
1877  }
1878
1879  // If there is an identifier, use the location of the identifier as the
1880  // location of the decl, otherwise use the location of the struct/union
1881  // keyword.
1882  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1883
1884  // Otherwise, if this is the first time we've seen this tag, create the decl.
1885  TagDecl *New;
1886
1887  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1888  // struct X { int A; } D;    D should chain to X.
1889  if (getLangOptions().CPlusPlus)
1890    // FIXME: Look for a way to use RecordDecl for simple structs.
1891    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1892                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
1893  else
1894    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1895                             dyn_cast_or_null<RecordDecl>(PrevDecl));
1896
1897  // If this has an identifier, add it to the scope stack.
1898  if ((TK == TK_Definition || !PrevDecl) && Name) {
1899    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1900    // we find one that is.
1901    while ((S->getFlags() & Scope::DeclScope) == 0)
1902      S = S->getParent();
1903
1904    // Add it to the decl chain.
1905    PushOnScopeChains(New, S);
1906  }
1907
1908  if (Attr)
1909    ProcessDeclAttributeList(New, Attr);
1910
1911  return New;
1912}
1913
1914
1915/// Collect the instance variables declared in an Objective-C object.  Used in
1916/// the creation of structures from objects using the @defs directive.
1917static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
1918                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
1919  if (Class->getSuperClass())
1920    CollectIvars(Class->getSuperClass(), Ctx, ivars);
1921
1922  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1923  for (ObjCInterfaceDecl::ivar_iterator
1924        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
1925
1926    ObjCIvarDecl* ID = *I;
1927    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
1928                                                ID->getIdentifier(),
1929                                                ID->getType(),
1930                                                ID->getBitWidth()));
1931  }
1932}
1933
1934/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1935/// instance variables of ClassName into Decls.
1936void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
1937                     IdentifierInfo *ClassName,
1938                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
1939  // Check that ClassName is a valid class
1940  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
1941  if (!Class) {
1942    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
1943    return;
1944  }
1945  // Collect the instance variables
1946  CollectIvars(Class, Context, Decls);
1947}
1948
1949QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1950  // This method tries to turn a variable array into a constant
1951  // array even when the size isn't an ICE.  This is necessary
1952  // for compatibility with code that depends on gcc's buggy
1953  // constant expression folding, like struct {char x[(int)(char*)2];}
1954  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1955    APValue Result;
1956    if (VLATy->getSizeExpr() &&
1957        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
1958      llvm::APSInt &Res = Result.getInt();
1959      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1960        return Context.getConstantArrayType(VLATy->getElementType(),
1961                                            Res, ArrayType::Normal, 0);
1962    }
1963  }
1964  return QualType();
1965}
1966
1967/// ActOnField - Each field of a struct/union/class is passed into this in order
1968/// to create a FieldDecl object for it.
1969Sema::DeclTy *Sema::ActOnField(Scope *S,
1970                               SourceLocation DeclStart,
1971                               Declarator &D, ExprTy *BitfieldWidth) {
1972  IdentifierInfo *II = D.getIdentifier();
1973  Expr *BitWidth = (Expr*)BitfieldWidth;
1974  SourceLocation Loc = DeclStart;
1975  if (II) Loc = D.getIdentifierLoc();
1976
1977  // FIXME: Unnamed fields can be handled in various different ways, for
1978  // example, unnamed unions inject all members into the struct namespace!
1979
1980  if (BitWidth) {
1981    // TODO: Validate.
1982    //printf("WARNING: BITFIELDS IGNORED!\n");
1983
1984    // 6.7.2.1p3
1985    // 6.7.2.1p4
1986
1987  } else {
1988    // Not a bitfield.
1989
1990    // validate II.
1991
1992  }
1993
1994  QualType T = GetTypeForDeclarator(D, S);
1995  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1996  bool InvalidDecl = false;
1997
1998  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1999  // than a variably modified type.
2000  if (T->isVariablyModifiedType()) {
2001    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2002    if (!FixedTy.isNull()) {
2003      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2004      T = FixedTy;
2005    } else {
2006      // FIXME: This diagnostic needs work
2007      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2008      InvalidDecl = true;
2009    }
2010  }
2011  // FIXME: Chain fielddecls together.
2012  FieldDecl *NewFD;
2013
2014  if (getLangOptions().CPlusPlus) {
2015    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2016    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2017                                 Loc, II, T, BitWidth);
2018    if (II)
2019      PushOnScopeChains(NewFD, S);
2020  }
2021  else
2022    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2023
2024  ProcessDeclAttributes(NewFD, D);
2025
2026  if (D.getInvalidType() || InvalidDecl)
2027    NewFD->setInvalidDecl();
2028  return NewFD;
2029}
2030
2031/// TranslateIvarVisibility - Translate visibility from a token ID to an
2032///  AST enum value.
2033static ObjCIvarDecl::AccessControl
2034TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2035  switch (ivarVisibility) {
2036    case tok::objc_private: return ObjCIvarDecl::Private;
2037    case tok::objc_public: return ObjCIvarDecl::Public;
2038    case tok::objc_protected: return ObjCIvarDecl::Protected;
2039    case tok::objc_package: return ObjCIvarDecl::Package;
2040    default: assert(false && "Unknown visitibility kind");
2041  }
2042}
2043
2044/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2045/// in order to create an IvarDecl object for it.
2046Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2047                              SourceLocation DeclStart,
2048                              Declarator &D, ExprTy *BitfieldWidth,
2049                              tok::ObjCKeywordKind Visibility) {
2050  IdentifierInfo *II = D.getIdentifier();
2051  Expr *BitWidth = (Expr*)BitfieldWidth;
2052  SourceLocation Loc = DeclStart;
2053  if (II) Loc = D.getIdentifierLoc();
2054
2055  // FIXME: Unnamed fields can be handled in various different ways, for
2056  // example, unnamed unions inject all members into the struct namespace!
2057
2058
2059  if (BitWidth) {
2060    // TODO: Validate.
2061    //printf("WARNING: BITFIELDS IGNORED!\n");
2062
2063    // 6.7.2.1p3
2064    // 6.7.2.1p4
2065
2066  } else {
2067    // Not a bitfield.
2068
2069    // validate II.
2070
2071  }
2072
2073  QualType T = GetTypeForDeclarator(D, S);
2074  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2075  bool InvalidDecl = false;
2076
2077  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2078  // than a variably modified type.
2079  if (T->isVariablyModifiedType()) {
2080    // FIXME: This diagnostic needs work
2081    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2082    InvalidDecl = true;
2083  }
2084
2085  // Get the visibility (access control) for this ivar.
2086  ObjCIvarDecl::AccessControl ac =
2087    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2088                                        : ObjCIvarDecl::None;
2089
2090  // Construct the decl.
2091  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2092                                             (Expr *)BitfieldWidth);
2093
2094  // Process attributes attached to the ivar.
2095  ProcessDeclAttributes(NewID, D);
2096
2097  if (D.getInvalidType() || InvalidDecl)
2098    NewID->setInvalidDecl();
2099
2100  return NewID;
2101}
2102
2103void Sema::ActOnFields(Scope* S,
2104                       SourceLocation RecLoc, DeclTy *RecDecl,
2105                       DeclTy **Fields, unsigned NumFields,
2106                       SourceLocation LBrac, SourceLocation RBrac) {
2107  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2108  assert(EnclosingDecl && "missing record or interface decl");
2109  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2110
2111  if (Record)
2112    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2113      // Diagnose code like:
2114      //     struct S { struct S {} X; };
2115      // We discover this when we complete the outer S.  Reject and ignore the
2116      // outer S.
2117      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2118           DefRecord->getKindName());
2119      Diag(RecLoc, diag::err_previous_definition);
2120      Record->setInvalidDecl();
2121      return;
2122    }
2123
2124  // Verify that all the fields are okay.
2125  unsigned NumNamedMembers = 0;
2126  llvm::SmallVector<FieldDecl*, 32> RecFields;
2127  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2128
2129  for (unsigned i = 0; i != NumFields; ++i) {
2130
2131    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2132    assert(FD && "missing field decl");
2133
2134    // Remember all fields.
2135    RecFields.push_back(FD);
2136
2137    // Get the type for the field.
2138    Type *FDTy = FD->getType().getTypePtr();
2139
2140    // C99 6.7.2.1p2 - A field may not be a function type.
2141    if (FDTy->isFunctionType()) {
2142      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2143           FD->getName());
2144      FD->setInvalidDecl();
2145      EnclosingDecl->setInvalidDecl();
2146      continue;
2147    }
2148    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2149    if (FDTy->isIncompleteType()) {
2150      if (!Record) {  // Incomplete ivar type is always an error.
2151        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2152        FD->setInvalidDecl();
2153        EnclosingDecl->setInvalidDecl();
2154        continue;
2155      }
2156      if (i != NumFields-1 ||                   // ... that the last member ...
2157          !Record->isStruct() ||  // ... of a structure ...
2158          !FDTy->isArrayType()) {         //... may have incomplete array type.
2159        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2160        FD->setInvalidDecl();
2161        EnclosingDecl->setInvalidDecl();
2162        continue;
2163      }
2164      if (NumNamedMembers < 1) {  //... must have more than named member ...
2165        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2166             FD->getName());
2167        FD->setInvalidDecl();
2168        EnclosingDecl->setInvalidDecl();
2169        continue;
2170      }
2171      // Okay, we have a legal flexible array member at the end of the struct.
2172      if (Record)
2173        Record->setHasFlexibleArrayMember(true);
2174    }
2175    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2176    /// field of another structure or the element of an array.
2177    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2178      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2179        // If this is a member of a union, then entire union becomes "flexible".
2180        if (Record && Record->isUnion()) {
2181          Record->setHasFlexibleArrayMember(true);
2182        } else {
2183          // If this is a struct/class and this is not the last element, reject
2184          // it.  Note that GCC supports variable sized arrays in the middle of
2185          // structures.
2186          if (i != NumFields-1) {
2187            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2188                 FD->getName());
2189            FD->setInvalidDecl();
2190            EnclosingDecl->setInvalidDecl();
2191            continue;
2192          }
2193          // We support flexible arrays at the end of structs in other structs
2194          // as an extension.
2195          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2196               FD->getName());
2197          if (Record)
2198            Record->setHasFlexibleArrayMember(true);
2199        }
2200      }
2201    }
2202    /// A field cannot be an Objective-c object
2203    if (FDTy->isObjCInterfaceType()) {
2204      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2205           FD->getName());
2206      FD->setInvalidDecl();
2207      EnclosingDecl->setInvalidDecl();
2208      continue;
2209    }
2210    // Keep track of the number of named members.
2211    if (IdentifierInfo *II = FD->getIdentifier()) {
2212      // Detect duplicate member names.
2213      if (!FieldIDs.insert(II)) {
2214        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2215        // Find the previous decl.
2216        SourceLocation PrevLoc;
2217        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2218          assert(i != e && "Didn't find previous def!");
2219          if (RecFields[i]->getIdentifier() == II) {
2220            PrevLoc = RecFields[i]->getLocation();
2221            break;
2222          }
2223        }
2224        Diag(PrevLoc, diag::err_previous_definition);
2225        FD->setInvalidDecl();
2226        EnclosingDecl->setInvalidDecl();
2227        continue;
2228      }
2229      ++NumNamedMembers;
2230    }
2231  }
2232
2233  // Okay, we successfully defined 'Record'.
2234  if (Record) {
2235    Record->defineBody(Context, &RecFields[0], RecFields.size());
2236    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2237    // Sema::ActOnFinishCXXClassDef.
2238    if (!isa<CXXRecordDecl>(Record))
2239      Consumer.HandleTagDeclDefinition(Record);
2240  } else {
2241    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2242    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2243      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2244    else if (ObjCImplementationDecl *IMPDecl =
2245               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2246      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2247      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2248      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2249    }
2250  }
2251}
2252
2253Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2254                                      DeclTy *lastEnumConst,
2255                                      SourceLocation IdLoc, IdentifierInfo *Id,
2256                                      SourceLocation EqualLoc, ExprTy *val) {
2257  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2258  EnumConstantDecl *LastEnumConst =
2259    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2260  Expr *Val = static_cast<Expr*>(val);
2261
2262  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2263  // we find one that is.
2264  while ((S->getFlags() & Scope::DeclScope) == 0)
2265    S = S->getParent();
2266
2267  // Verify that there isn't already something declared with this name in this
2268  // scope.
2269  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2270    // When in C++, we may get a TagDecl with the same name; in this case the
2271    // enum constant will 'hide' the tag.
2272    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2273           "Received TagDecl when not in C++!");
2274    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2275      if (isa<EnumConstantDecl>(PrevDecl))
2276        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2277      else
2278        Diag(IdLoc, diag::err_redefinition, Id->getName());
2279      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2280      delete Val;
2281      return 0;
2282    }
2283  }
2284
2285  llvm::APSInt EnumVal(32);
2286  QualType EltTy;
2287  if (Val) {
2288    // Make sure to promote the operand type to int.
2289    UsualUnaryConversions(Val);
2290
2291    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2292    SourceLocation ExpLoc;
2293    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2294      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2295           Id->getName());
2296      delete Val;
2297      Val = 0;  // Just forget about it.
2298    } else {
2299      EltTy = Val->getType();
2300    }
2301  }
2302
2303  if (!Val) {
2304    if (LastEnumConst) {
2305      // Assign the last value + 1.
2306      EnumVal = LastEnumConst->getInitVal();
2307      ++EnumVal;
2308
2309      // Check for overflow on increment.
2310      if (EnumVal < LastEnumConst->getInitVal())
2311        Diag(IdLoc, diag::warn_enum_value_overflow);
2312
2313      EltTy = LastEnumConst->getType();
2314    } else {
2315      // First value, set to zero.
2316      EltTy = Context.IntTy;
2317      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2318    }
2319  }
2320
2321  EnumConstantDecl *New =
2322    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2323                             Val, EnumVal,
2324                             LastEnumConst);
2325
2326  // Register this decl in the current scope stack.
2327  PushOnScopeChains(New, S);
2328  return New;
2329}
2330
2331// FIXME: For consistency with ActOnFields(), we should have the parser
2332// pass in the source location for the left/right braces.
2333void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2334                         DeclTy **Elements, unsigned NumElements) {
2335  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2336
2337  if (Enum && Enum->isDefinition()) {
2338    // Diagnose code like:
2339    //   enum e0 {
2340    //     E0 = sizeof(enum e0 { E1 })
2341    //   };
2342    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2343         Enum->getName());
2344    Diag(EnumLoc, diag::err_previous_definition);
2345    Enum->setInvalidDecl();
2346    return;
2347  }
2348  // TODO: If the result value doesn't fit in an int, it must be a long or long
2349  // long value.  ISO C does not support this, but GCC does as an extension,
2350  // emit a warning.
2351  unsigned IntWidth = Context.Target.getIntWidth();
2352
2353  // Verify that all the values are okay, compute the size of the values, and
2354  // reverse the list.
2355  unsigned NumNegativeBits = 0;
2356  unsigned NumPositiveBits = 0;
2357
2358  // Keep track of whether all elements have type int.
2359  bool AllElementsInt = true;
2360
2361  EnumConstantDecl *EltList = 0;
2362  for (unsigned i = 0; i != NumElements; ++i) {
2363    EnumConstantDecl *ECD =
2364      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2365    if (!ECD) continue;  // Already issued a diagnostic.
2366
2367    // If the enum value doesn't fit in an int, emit an extension warning.
2368    const llvm::APSInt &InitVal = ECD->getInitVal();
2369    assert(InitVal.getBitWidth() >= IntWidth &&
2370           "Should have promoted value to int");
2371    if (InitVal.getBitWidth() > IntWidth) {
2372      llvm::APSInt V(InitVal);
2373      V.trunc(IntWidth);
2374      V.extend(InitVal.getBitWidth());
2375      if (V != InitVal)
2376        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2377             InitVal.toString(10));
2378    }
2379
2380    // Keep track of the size of positive and negative values.
2381    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2382      NumPositiveBits = std::max(NumPositiveBits,
2383                                 (unsigned)InitVal.getActiveBits());
2384    else
2385      NumNegativeBits = std::max(NumNegativeBits,
2386                                 (unsigned)InitVal.getMinSignedBits());
2387
2388    // Keep track of whether every enum element has type int (very commmon).
2389    if (AllElementsInt)
2390      AllElementsInt = ECD->getType() == Context.IntTy;
2391
2392    ECD->setNextDeclarator(EltList);
2393    EltList = ECD;
2394  }
2395
2396  // Figure out the type that should be used for this enum.
2397  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2398  QualType BestType;
2399  unsigned BestWidth;
2400
2401  if (NumNegativeBits) {
2402    // If there is a negative value, figure out the smallest integer type (of
2403    // int/long/longlong) that fits.
2404    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2405      BestType = Context.IntTy;
2406      BestWidth = IntWidth;
2407    } else {
2408      BestWidth = Context.Target.getLongWidth();
2409
2410      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2411        BestType = Context.LongTy;
2412      else {
2413        BestWidth = Context.Target.getLongLongWidth();
2414
2415        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2416          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2417        BestType = Context.LongLongTy;
2418      }
2419    }
2420  } else {
2421    // If there is no negative value, figure out which of uint, ulong, ulonglong
2422    // fits.
2423    if (NumPositiveBits <= IntWidth) {
2424      BestType = Context.UnsignedIntTy;
2425      BestWidth = IntWidth;
2426    } else if (NumPositiveBits <=
2427               (BestWidth = Context.Target.getLongWidth())) {
2428      BestType = Context.UnsignedLongTy;
2429    } else {
2430      BestWidth = Context.Target.getLongLongWidth();
2431      assert(NumPositiveBits <= BestWidth &&
2432             "How could an initializer get larger than ULL?");
2433      BestType = Context.UnsignedLongLongTy;
2434    }
2435  }
2436
2437  // Loop over all of the enumerator constants, changing their types to match
2438  // the type of the enum if needed.
2439  for (unsigned i = 0; i != NumElements; ++i) {
2440    EnumConstantDecl *ECD =
2441      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2442    if (!ECD) continue;  // Already issued a diagnostic.
2443
2444    // Standard C says the enumerators have int type, but we allow, as an
2445    // extension, the enumerators to be larger than int size.  If each
2446    // enumerator value fits in an int, type it as an int, otherwise type it the
2447    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2448    // that X has type 'int', not 'unsigned'.
2449    if (ECD->getType() == Context.IntTy) {
2450      // Make sure the init value is signed.
2451      llvm::APSInt IV = ECD->getInitVal();
2452      IV.setIsSigned(true);
2453      ECD->setInitVal(IV);
2454      continue;  // Already int type.
2455    }
2456
2457    // Determine whether the value fits into an int.
2458    llvm::APSInt InitVal = ECD->getInitVal();
2459    bool FitsInInt;
2460    if (InitVal.isUnsigned() || !InitVal.isNegative())
2461      FitsInInt = InitVal.getActiveBits() < IntWidth;
2462    else
2463      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2464
2465    // If it fits into an integer type, force it.  Otherwise force it to match
2466    // the enum decl type.
2467    QualType NewTy;
2468    unsigned NewWidth;
2469    bool NewSign;
2470    if (FitsInInt) {
2471      NewTy = Context.IntTy;
2472      NewWidth = IntWidth;
2473      NewSign = true;
2474    } else if (ECD->getType() == BestType) {
2475      // Already the right type!
2476      continue;
2477    } else {
2478      NewTy = BestType;
2479      NewWidth = BestWidth;
2480      NewSign = BestType->isSignedIntegerType();
2481    }
2482
2483    // Adjust the APSInt value.
2484    InitVal.extOrTrunc(NewWidth);
2485    InitVal.setIsSigned(NewSign);
2486    ECD->setInitVal(InitVal);
2487
2488    // Adjust the Expr initializer and type.
2489    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2490    ECD->setType(NewTy);
2491  }
2492
2493  Enum->defineElements(EltList, BestType);
2494  Consumer.HandleTagDeclDefinition(Enum);
2495}
2496
2497Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2498                                          ExprTy *expr) {
2499  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2500
2501  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2502}
2503
2504Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2505                                     SourceLocation LBrace,
2506                                     SourceLocation RBrace,
2507                                     const char *Lang,
2508                                     unsigned StrSize,
2509                                     DeclTy *D) {
2510  LinkageSpecDecl::LanguageIDs Language;
2511  Decl *dcl = static_cast<Decl *>(D);
2512  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2513    Language = LinkageSpecDecl::lang_c;
2514  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2515    Language = LinkageSpecDecl::lang_cxx;
2516  else {
2517    Diag(Loc, diag::err_bad_language);
2518    return 0;
2519  }
2520
2521  // FIXME: Add all the various semantics of linkage specifications
2522  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2523}
2524