SemaDecl.cpp revision c1cc6dccd42b91a2ebb397415940da91dbf36103
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/AST/ExprCXX.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/DenseSet.h"
34using namespace clang;
35
36Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
37  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
38
39  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
40                 isa<ObjCInterfaceDecl>(IIDecl) ||
41                 isa<TagDecl>(IIDecl)))
42    return IIDecl;
43  return 0;
44}
45
46void Sema::PushDeclContext(DeclContext *DC) {
47  assert( ( (isa<ObjCMethodDecl>(DC) && isa<TranslationUnitDecl>(CurContext))
48            || DC->getParent() == CurContext ) &&
49      "The next DeclContext should be directly contained in the current one.");
50  CurContext = DC;
51}
52
53void Sema::PopDeclContext() {
54  assert(CurContext && "DeclContext imbalance!");
55  // If CurContext is a ObjC method, getParent() will return NULL.
56  CurContext = isa<ObjCMethodDecl>(CurContext)
57               ? Context.getTranslationUnitDecl()
58                 :  CurContext->getParent();
59}
60
61/// Add this decl to the scope shadowed decl chains.
62void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
63  S->AddDecl(D);
64
65  // C++ [basic.scope]p4:
66  //   -- exactly one declaration shall declare a class name or
67  //   enumeration name that is not a typedef name and the other
68  //   declarations shall all refer to the same object or
69  //   enumerator, or all refer to functions and function templates;
70  //   in this case the class name or enumeration name is hidden.
71  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
72    // We are pushing the name of a tag (enum or class).
73    IdentifierResolver::ctx_iterator
74      CIT = IdResolver.ctx_begin(TD->getIdentifier(), TD->getDeclContext());
75    if (CIT != IdResolver.ctx_end(TD->getIdentifier()) &&
76        IdResolver.isDeclInScope(*CIT, TD->getDeclContext(), S)) {
77      // There is already a declaration with the same name in the same
78      // scope. It must be found before we find the new declaration,
79      // so swap the order on the shadowed declaration chain.
80
81      IdResolver.AddShadowedDecl(TD, *CIT);
82      return;
83    }
84  }
85
86  IdResolver.AddDecl(D);
87}
88
89void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
90  if (S->decl_empty()) return;
91  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
92
93  // We only want to remove the decls from the identifier decl chains for local
94  // scopes, when inside a function/method.
95  if (S->getFnParent() == 0)
96    return;
97
98  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
99       I != E; ++I) {
100    Decl *TmpD = static_cast<Decl*>(*I);
101    assert(TmpD && "This decl didn't get pushed??");
102    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
103    assert(D && "This decl isn't a ScopedDecl?");
104
105    IdentifierInfo *II = D->getIdentifier();
106    if (!II) continue;
107
108    // Unlink this decl from the identifier.
109    IdResolver.RemoveDecl(D);
110
111    // This will have to be revisited for C++: there we want to nest stuff in
112    // namespace decls etc.  Even for C, we might want a top-level translation
113    // unit decl or something.
114    if (!CurFunctionDecl)
115      continue;
116
117    // Chain this decl to the containing function, it now owns the memory for
118    // the decl.
119    D->setNext(CurFunctionDecl->getDeclChain());
120    CurFunctionDecl->setDeclChain(D);
121  }
122}
123
124/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
125/// return 0 if one not found.
126ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
127  // The third "scope" argument is 0 since we aren't enabling lazy built-in
128  // creation from this context.
129  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
130
131  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
132}
133
134/// LookupDecl - Look up the inner-most declaration in the specified
135/// namespace.
136Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
137                       Scope *S, bool enableLazyBuiltinCreation) {
138  if (II == 0) return 0;
139  unsigned NS = NSI;
140  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
141    NS |= Decl::IDNS_Tag;
142
143  // Scan up the scope chain looking for a decl that matches this identifier
144  // that is in the appropriate namespace.  This search should not take long, as
145  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
146  for (IdentifierResolver::iterator
147       I = IdResolver.begin(II, CurContext), E = IdResolver.end(II); I != E; ++I)
148    if ((*I)->getIdentifierNamespace() & NS)
149      return *I;
150
151  // If we didn't find a use of this identifier, and if the identifier
152  // corresponds to a compiler builtin, create the decl object for the builtin
153  // now, injecting it into translation unit scope, and return it.
154  if (NS & Decl::IDNS_Ordinary) {
155    if (enableLazyBuiltinCreation) {
156      // If this is a builtin on this (or all) targets, create the decl.
157      if (unsigned BuiltinID = II->getBuiltinID())
158        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
159    }
160    if (getLangOptions().ObjC1) {
161      // @interface and @compatibility_alias introduce typedef-like names.
162      // Unlike typedef's, they can only be introduced at file-scope (and are
163      // therefore not scoped decls). They can, however, be shadowed by
164      // other names in IDNS_Ordinary.
165      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
166      if (IDI != ObjCInterfaceDecls.end())
167        return IDI->second;
168      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
169      if (I != ObjCAliasDecls.end())
170        return I->second->getClassInterface();
171    }
172  }
173  return 0;
174}
175
176void Sema::InitBuiltinVaListType() {
177  if (!Context.getBuiltinVaListType().isNull())
178    return;
179
180  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
181  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
182  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
183  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
184}
185
186/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
187/// lazily create a decl for it.
188ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
189                                      Scope *S) {
190  Builtin::ID BID = (Builtin::ID)bid;
191
192  if (BID == Builtin::BI__builtin_va_start ||
193      BID == Builtin::BI__builtin_va_copy ||
194      BID == Builtin::BI__builtin_va_end)
195    InitBuiltinVaListType();
196
197  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
198  FunctionDecl *New = FunctionDecl::Create(Context,
199                                           Context.getTranslationUnitDecl(),
200                                           SourceLocation(), II, R,
201                                           FunctionDecl::Extern, false, 0);
202
203  // Create Decl objects for each parameter, adding them to the
204  // FunctionDecl.
205  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
206    llvm::SmallVector<ParmVarDecl*, 16> Params;
207    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
208      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
209                                           FT->getArgType(i), VarDecl::None, 0,
210                                           0));
211    New->setParams(&Params[0], Params.size());
212  }
213
214
215
216  // TUScope is the translation-unit scope to insert this function into.
217  PushOnScopeChains(New, TUScope);
218  return New;
219}
220
221/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
222/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
223/// situation, merging decls or emitting diagnostics as appropriate.
224///
225TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
226  // Verify the old decl was also a typedef.
227  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
228  if (!Old) {
229    Diag(New->getLocation(), diag::err_redefinition_different_kind,
230         New->getName());
231    Diag(OldD->getLocation(), diag::err_previous_definition);
232    return New;
233  }
234
235  // Allow multiple definitions for ObjC built-in typedefs.
236  // FIXME: Verify the underlying types are equivalent!
237  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
238    return Old;
239
240  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
241  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
242  // *either* declaration is in a system header. The code below implements
243  // this adhoc compatibility rule. FIXME: The following code will not
244  // work properly when compiling ".i" files (containing preprocessed output).
245  SourceManager &SrcMgr = Context.getSourceManager();
246  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
247  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
248  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
249  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
250  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
251
252  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
253  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
254       NewDirType != DirectoryLookup::NormalHeaderDir) ||
255      getLangOptions().Microsoft)
256    return New;
257
258  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
259  // TODO: This is totally simplistic.  It should handle merging functions
260  // together etc, merging extern int X; int X; ...
261  Diag(New->getLocation(), diag::err_redefinition, New->getName());
262  Diag(Old->getLocation(), diag::err_previous_definition);
263  return New;
264}
265
266/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
267static bool DeclHasAttr(const Decl *decl, const Attr *target) {
268  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
269    if (attr->getKind() == target->getKind())
270      return true;
271
272  return false;
273}
274
275/// MergeAttributes - append attributes from the Old decl to the New one.
276static void MergeAttributes(Decl *New, Decl *Old) {
277  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
278
279// FIXME: fix this code to cleanup the Old attrs correctly
280  while (attr) {
281     tmp = attr;
282     attr = attr->getNext();
283
284    if (!DeclHasAttr(New, tmp)) {
285       New->addAttr(tmp);
286    } else {
287       tmp->setNext(0);
288       delete(tmp);
289    }
290  }
291}
292
293/// MergeFunctionDecl - We just parsed a function 'New' from
294/// declarator D which has the same name and scope as a previous
295/// declaration 'Old'.  Figure out how to resolve this situation,
296/// merging decls or emitting diagnostics as appropriate.
297/// Redeclaration will be set true if thisNew is a redeclaration OldD.
298FunctionDecl *
299Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
300  Redeclaration = false;
301  // Verify the old decl was also a function.
302  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
303  if (!Old) {
304    Diag(New->getLocation(), diag::err_redefinition_different_kind,
305         New->getName());
306    Diag(OldD->getLocation(), diag::err_previous_definition);
307    return New;
308  }
309
310  QualType OldQType = Context.getCanonicalType(Old->getType());
311  QualType NewQType = Context.getCanonicalType(New->getType());
312
313  // C++ [dcl.fct]p3:
314  //   All declarations for a function shall agree exactly in both the
315  //   return type and the parameter-type-list.
316  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
317    MergeAttributes(New, Old);
318    Redeclaration = true;
319    return MergeCXXFunctionDecl(New, Old);
320  }
321
322  // C: Function types need to be compatible, not identical. This handles
323  // duplicate function decls like "void f(int); void f(enum X);" properly.
324  if (!getLangOptions().CPlusPlus &&
325      Context.functionTypesAreCompatible(OldQType, NewQType)) {
326    MergeAttributes(New, Old);
327    Redeclaration = true;
328    return New;
329  }
330
331  // A function that has already been declared has been redeclared or defined
332  // with a different type- show appropriate diagnostic
333  diag::kind PrevDiag;
334  if (Old->isThisDeclarationADefinition())
335    PrevDiag = diag::err_previous_definition;
336  else if (Old->isImplicit())
337    PrevDiag = diag::err_previous_implicit_declaration;
338  else
339    PrevDiag = diag::err_previous_declaration;
340
341  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
342  // TODO: This is totally simplistic.  It should handle merging functions
343  // together etc, merging extern int X; int X; ...
344  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
345  Diag(Old->getLocation(), PrevDiag);
346  return New;
347}
348
349/// equivalentArrayTypes - Used to determine whether two array types are
350/// equivalent.
351/// We need to check this explicitly as an incomplete array definition is
352/// considered a VariableArrayType, so will not match a complete array
353/// definition that would be otherwise equivalent.
354static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
355  const ArrayType *NewAT = NewQType->getAsArrayType();
356  const ArrayType *OldAT = OldQType->getAsArrayType();
357
358  if (!NewAT || !OldAT)
359    return false;
360
361  // If either (or both) array types in incomplete we need to strip off the
362  // outer VariableArrayType.  Once the outer VAT is removed the remaining
363  // types must be identical if the array types are to be considered
364  // equivalent.
365  // eg. int[][1] and int[1][1] become
366  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
367  // removing the outermost VAT gives
368  //     CAT(1, int) and CAT(1, int)
369  // which are equal, therefore the array types are equivalent.
370  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
371    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
372      return false;
373    NewQType = NewAT->getElementType().getCanonicalType();
374    OldQType = OldAT->getElementType().getCanonicalType();
375  }
376
377  return NewQType == OldQType;
378}
379
380/// MergeVarDecl - We just parsed a variable 'New' which has the same name
381/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
382/// situation, merging decls or emitting diagnostics as appropriate.
383///
384/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
385/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
386///
387VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
388  // Verify the old decl was also a variable.
389  VarDecl *Old = dyn_cast<VarDecl>(OldD);
390  if (!Old) {
391    Diag(New->getLocation(), diag::err_redefinition_different_kind,
392         New->getName());
393    Diag(OldD->getLocation(), diag::err_previous_definition);
394    return New;
395  }
396
397  MergeAttributes(New, Old);
398
399  // Verify the types match.
400  QualType OldCType = Context.getCanonicalType(Old->getType());
401  QualType NewCType = Context.getCanonicalType(New->getType());
402  if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) {
403    Diag(New->getLocation(), diag::err_redefinition, New->getName());
404    Diag(Old->getLocation(), diag::err_previous_definition);
405    return New;
406  }
407  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
408  if (New->getStorageClass() == VarDecl::Static &&
409      (Old->getStorageClass() == VarDecl::None ||
410       Old->getStorageClass() == VarDecl::Extern)) {
411    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
412    Diag(Old->getLocation(), diag::err_previous_definition);
413    return New;
414  }
415  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
416  if (New->getStorageClass() != VarDecl::Static &&
417      Old->getStorageClass() == VarDecl::Static) {
418    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
419    Diag(Old->getLocation(), diag::err_previous_definition);
420    return New;
421  }
422  // We've verified the types match, now handle "tentative" definitions.
423  if (Old->isFileVarDecl() && New->isFileVarDecl()) {
424    // Handle C "tentative" external object definitions (C99 6.9.2).
425    bool OldIsTentative = false;
426    bool NewIsTentative = false;
427
428    if (!Old->getInit() &&
429        (Old->getStorageClass() == VarDecl::None ||
430         Old->getStorageClass() == VarDecl::Static))
431      OldIsTentative = true;
432
433    // FIXME: this check doesn't work (since the initializer hasn't been
434    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
435    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
436    // thrown out the old decl.
437    if (!New->getInit() &&
438        (New->getStorageClass() == VarDecl::None ||
439         New->getStorageClass() == VarDecl::Static))
440      ; // change to NewIsTentative = true; once the code is moved.
441
442    if (NewIsTentative || OldIsTentative)
443      return New;
444  }
445  // Handle __private_extern__ just like extern.
446  if (Old->getStorageClass() != VarDecl::Extern &&
447      Old->getStorageClass() != VarDecl::PrivateExtern &&
448      New->getStorageClass() != VarDecl::Extern &&
449      New->getStorageClass() != VarDecl::PrivateExtern) {
450    Diag(New->getLocation(), diag::err_redefinition, New->getName());
451    Diag(Old->getLocation(), diag::err_previous_definition);
452  }
453  return New;
454}
455
456/// CheckParmsForFunctionDef - Check that the parameters of the given
457/// function are appropriate for the definition of a function. This
458/// takes care of any checks that cannot be performed on the
459/// declaration itself, e.g., that the types of each of the function
460/// parameters are complete.
461bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
462  bool HasInvalidParm = false;
463  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
464    ParmVarDecl *Param = FD->getParamDecl(p);
465
466    // C99 6.7.5.3p4: the parameters in a parameter type list in a
467    // function declarator that is part of a function definition of
468    // that function shall not have incomplete type.
469    if (Param->getType()->isIncompleteType() &&
470        !Param->isInvalidDecl()) {
471      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
472           Param->getType().getAsString());
473      Param->setInvalidDecl();
474      HasInvalidParm = true;
475    }
476  }
477
478  return HasInvalidParm;
479}
480
481/// CreateImplicitParameter - Creates an implicit function parameter
482/// in the scope S and with the given type. This routine is used, for
483/// example, to create the implicit "self" parameter in an Objective-C
484/// method.
485ParmVarDecl *
486Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
487                              SourceLocation IdLoc, QualType Type) {
488  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, IdLoc, Id, Type,
489                                         VarDecl::None, 0, 0);
490  if (Id)
491    PushOnScopeChains(New, S);
492
493  return New;
494}
495
496/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
497/// no declarator (e.g. "struct foo;") is parsed.
498Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
499  // TODO: emit error on 'int;' or 'const enum foo;'.
500  // TODO: emit error on 'typedef int;'
501  // if (!DS.isMissingDeclaratorOk()) Diag(...);
502
503  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
504}
505
506bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
507  // Get the type before calling CheckSingleAssignmentConstraints(), since
508  // it can promote the expression.
509  QualType InitType = Init->getType();
510
511  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
512  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
513                                  InitType, Init, "initializing");
514}
515
516bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
517                         QualType ElementType) {
518  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
519  if (CheckSingleInitializer(expr, ElementType))
520    return true; // types weren't compatible.
521
522  if (savExpr != expr) // The type was promoted, update initializer list.
523    IList->setInit(slot, expr);
524  return false;
525}
526
527bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
528  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
529    // C99 6.7.8p14. We have an array of character type with unknown size
530    // being initialized to a string literal.
531    llvm::APSInt ConstVal(32);
532    ConstVal = strLiteral->getByteLength() + 1;
533    // Return a new array type (C99 6.7.8p22).
534    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
535                                         ArrayType::Normal, 0);
536  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
537    // C99 6.7.8p14. We have an array of character type with known size.
538    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
539      Diag(strLiteral->getSourceRange().getBegin(),
540           diag::warn_initializer_string_for_char_array_too_long,
541           strLiteral->getSourceRange());
542  } else {
543    assert(0 && "HandleStringLiteralInit(): Invalid array type");
544  }
545  // Set type from "char *" to "constant array of char".
546  strLiteral->setType(DeclT);
547  // For now, we always return false (meaning success).
548  return false;
549}
550
551StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
552  const ArrayType *AT = DeclType->getAsArrayType();
553  if (AT && AT->getElementType()->isCharType()) {
554    return dyn_cast<StringLiteral>(Init);
555  }
556  return 0;
557}
558
559// CheckInitializerListTypes - Checks the types of elements of an initializer
560// list. This function is recursive: it calls itself to initialize subelements
561// of aggregate types.  Note that the topLevel parameter essentially refers to
562// whether this expression "owns" the initializer list passed in, or if this
563// initialization is taking elements out of a parent initializer.  Each
564// call to this function adds zero or more to startIndex, reports any errors,
565// and returns true if it found any inconsistent types.
566bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
567                                     bool topLevel, unsigned& startIndex) {
568  bool hadError = false;
569
570  if (DeclType->isScalarType()) {
571    // The simplest case: initializing a single scalar
572    if (topLevel) {
573      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
574           IList->getSourceRange());
575    }
576    if (startIndex < IList->getNumInits()) {
577      Expr* expr = IList->getInit(startIndex);
578      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
579        // FIXME: Should an error be reported here instead?
580        unsigned newIndex = 0;
581        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
582      } else {
583        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
584      }
585      ++startIndex;
586    }
587    // FIXME: Should an error be reported for empty initializer list + scalar?
588  } else if (DeclType->isVectorType()) {
589    if (startIndex < IList->getNumInits()) {
590      const VectorType *VT = DeclType->getAsVectorType();
591      int maxElements = VT->getNumElements();
592      QualType elementType = VT->getElementType();
593
594      for (int i = 0; i < maxElements; ++i) {
595        // Don't attempt to go past the end of the init list
596        if (startIndex >= IList->getNumInits())
597          break;
598        Expr* expr = IList->getInit(startIndex);
599        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
600          unsigned newIndex = 0;
601          hadError |= CheckInitializerListTypes(SubInitList, elementType,
602                                                true, newIndex);
603          ++startIndex;
604        } else {
605          hadError |= CheckInitializerListTypes(IList, elementType,
606                                                false, startIndex);
607        }
608      }
609    }
610  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
611    if (DeclType->isStructureType() || DeclType->isUnionType()) {
612      if (startIndex < IList->getNumInits() && !topLevel &&
613          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
614                                     DeclType)) {
615        // We found a compatible struct; per the standard, this initializes the
616        // struct.  (The C standard technically says that this only applies for
617        // initializers for declarations with automatic scope; however, this
618        // construct is unambiguous anyway because a struct cannot contain
619        // a type compatible with itself. We'll output an error when we check
620        // if the initializer is constant.)
621        // FIXME: Is a call to CheckSingleInitializer required here?
622        ++startIndex;
623      } else {
624        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
625
626        // If the record is invalid, some of it's members are invalid. To avoid
627        // confusion, we forgo checking the intializer for the entire record.
628        if (structDecl->isInvalidDecl())
629          return true;
630
631        // If structDecl is a forward declaration, this loop won't do anything;
632        // That's okay, because an error should get printed out elsewhere. It
633        // might be worthwhile to skip over the rest of the initializer, though.
634        int numMembers = structDecl->getNumMembers() -
635                         structDecl->hasFlexibleArrayMember();
636        for (int i = 0; i < numMembers; i++) {
637          // Don't attempt to go past the end of the init list
638          if (startIndex >= IList->getNumInits())
639            break;
640          FieldDecl * curField = structDecl->getMember(i);
641          if (!curField->getIdentifier()) {
642            // Don't initialize unnamed fields, e.g. "int : 20;"
643            continue;
644          }
645          QualType fieldType = curField->getType();
646          Expr* expr = IList->getInit(startIndex);
647          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
648            unsigned newStart = 0;
649            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
650                                                  true, newStart);
651            ++startIndex;
652          } else {
653            hadError |= CheckInitializerListTypes(IList, fieldType,
654                                                  false, startIndex);
655          }
656          if (DeclType->isUnionType())
657            break;
658        }
659        // FIXME: Implement flexible array initialization GCC extension (it's a
660        // really messy extension to implement, unfortunately...the necessary
661        // information isn't actually even here!)
662      }
663    } else if (DeclType->isArrayType()) {
664      // Check for the special-case of initializing an array with a string.
665      if (startIndex < IList->getNumInits()) {
666        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
667                                                     DeclType)) {
668          CheckStringLiteralInit(lit, DeclType);
669          ++startIndex;
670          if (topLevel && startIndex < IList->getNumInits()) {
671            // We have leftover initializers; warn
672            Diag(IList->getInit(startIndex)->getLocStart(),
673                 diag::err_excess_initializers_in_char_array_initializer,
674                 IList->getInit(startIndex)->getSourceRange());
675          }
676          return false;
677        }
678      }
679      int maxElements;
680      if (DeclType->isIncompleteArrayType()) {
681        // FIXME: use a proper constant
682        maxElements = 0x7FFFFFFF;
683      } else if (const VariableArrayType *VAT =
684                                DeclType->getAsVariableArrayType()) {
685        // Check for VLAs; in standard C it would be possible to check this
686        // earlier, but I don't know where clang accepts VLAs (gcc accepts
687        // them in all sorts of strange places).
688        Diag(VAT->getSizeExpr()->getLocStart(),
689             diag::err_variable_object_no_init,
690             VAT->getSizeExpr()->getSourceRange());
691        hadError = true;
692        maxElements = 0x7FFFFFFF;
693      } else {
694        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
695        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
696      }
697      QualType elementType = DeclType->getAsArrayType()->getElementType();
698      int numElements = 0;
699      for (int i = 0; i < maxElements; ++i, ++numElements) {
700        // Don't attempt to go past the end of the init list
701        if (startIndex >= IList->getNumInits())
702          break;
703        Expr* expr = IList->getInit(startIndex);
704        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
705          unsigned newIndex = 0;
706          hadError |= CheckInitializerListTypes(SubInitList, elementType,
707                                                true, newIndex);
708          ++startIndex;
709        } else {
710          hadError |= CheckInitializerListTypes(IList, elementType,
711                                                false, startIndex);
712        }
713      }
714      if (DeclType->isIncompleteArrayType()) {
715        // If this is an incomplete array type, the actual type needs to
716        // be calculated here
717        if (numElements == 0) {
718          // Sizing an array implicitly to zero is not allowed
719          // (It could in theory be allowed, but it doesn't really matter.)
720          Diag(IList->getLocStart(),
721               diag::err_at_least_one_initializer_needed_to_size_array);
722          hadError = true;
723        } else {
724          llvm::APSInt ConstVal(32);
725          ConstVal = numElements;
726          DeclType = Context.getConstantArrayType(elementType, ConstVal,
727                                                  ArrayType::Normal, 0);
728        }
729      }
730    } else {
731      assert(0 && "Aggregate that isn't a function or array?!");
732    }
733  } else {
734    // In C, all types are either scalars or aggregates, but
735    // additional handling is needed here for C++ (and possibly others?).
736    assert(0 && "Unsupported initializer type");
737  }
738
739  // If this init list is a base list, we set the type; an initializer doesn't
740  // fundamentally have a type, but this makes the ASTs a bit easier to read
741  if (topLevel)
742    IList->setType(DeclType);
743
744  if (topLevel && startIndex < IList->getNumInits()) {
745    // We have leftover initializers; warn
746    Diag(IList->getInit(startIndex)->getLocStart(),
747         diag::warn_excess_initializers,
748         IList->getInit(startIndex)->getSourceRange());
749  }
750  return hadError;
751}
752
753bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
754  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
755  // of unknown size ("[]") or an object type that is not a variable array type.
756  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
757    return Diag(VAT->getSizeExpr()->getLocStart(),
758                diag::err_variable_object_no_init,
759                VAT->getSizeExpr()->getSourceRange());
760
761  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
762  if (!InitList) {
763    // FIXME: Handle wide strings
764    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
765      return CheckStringLiteralInit(strLiteral, DeclType);
766
767    if (DeclType->isArrayType())
768      return Diag(Init->getLocStart(),
769                  diag::err_array_init_list_required,
770                  Init->getSourceRange());
771
772    return CheckSingleInitializer(Init, DeclType);
773  }
774#if 0
775  unsigned newIndex = 0;
776  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
777#else
778  InitListChecker CheckInitList(this, InitList, DeclType);
779  return CheckInitList.HadError();
780#endif
781}
782
783Sema::DeclTy *
784Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
785  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
786  IdentifierInfo *II = D.getIdentifier();
787
788  // All of these full declarators require an identifier.  If it doesn't have
789  // one, the ParsedFreeStandingDeclSpec action should be used.
790  if (II == 0) {
791    Diag(D.getDeclSpec().getSourceRange().getBegin(),
792         diag::err_declarator_need_ident,
793         D.getDeclSpec().getSourceRange(), D.getSourceRange());
794    return 0;
795  }
796
797  // The scope passed in may not be a decl scope.  Zip up the scope tree until
798  // we find one that is.
799  while ((S->getFlags() & Scope::DeclScope) == 0)
800    S = S->getParent();
801
802  // See if this is a redefinition of a variable in the same scope.
803  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
804  ScopedDecl *New;
805  bool InvalidDecl = false;
806
807  // In C++, the previous declaration we find might be a tag type
808  // (class or enum). In this case, the new declaration will hide the
809  // tag type.
810  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
811    PrevDecl = 0;
812
813  QualType R = GetTypeForDeclarator(D, S);
814  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
815
816  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
817    // Check that there are no default arguments (C++ only).
818    if (getLangOptions().CPlusPlus)
819      CheckExtraCXXDefaultArguments(D);
820
821    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
822    if (!NewTD) return 0;
823
824    // Handle attributes prior to checking for duplicates in MergeVarDecl
825    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
826                         D.getAttributes());
827    // Merge the decl with the existing one if appropriate. If the decl is
828    // in an outer scope, it isn't the same thing.
829    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
830      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
831      if (NewTD == 0) return 0;
832    }
833    New = NewTD;
834    if (S->getFnParent() == 0) {
835      // C99 6.7.7p2: If a typedef name specifies a variably modified type
836      // then it shall have block scope.
837      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
838        // FIXME: Diagnostic needs to be fixed.
839        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
840        InvalidDecl = true;
841      }
842    }
843  } else if (R.getTypePtr()->isFunctionType()) {
844    FunctionDecl::StorageClass SC = FunctionDecl::None;
845    switch (D.getDeclSpec().getStorageClassSpec()) {
846      default: assert(0 && "Unknown storage class!");
847      case DeclSpec::SCS_auto:
848      case DeclSpec::SCS_register:
849        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
850             R.getAsString());
851        InvalidDecl = true;
852        break;
853      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
854      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
855      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
856      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
857    }
858
859    bool isInline = D.getDeclSpec().isInlineSpecified();
860    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
861                                               D.getIdentifierLoc(),
862                                               II, R, SC, isInline,
863                                               LastDeclarator);
864    // Handle attributes.
865    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
866                         D.getAttributes());
867
868    // Copy the parameter declarations from the declarator D to
869    // the function declaration NewFD, if they are available.
870    if (D.getNumTypeObjects() > 0 &&
871        D.getTypeObject(0).Fun.hasPrototype) {
872      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
873
874      // Create Decl objects for each parameter, adding them to the
875      // FunctionDecl.
876      llvm::SmallVector<ParmVarDecl*, 16> Params;
877
878      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
879      // function that takes no arguments, not a function that takes a
880      // single void argument.
881      // We let through "const void" here because Sema::GetTypeForDeclarator
882      // already checks for that case.
883      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
884          FTI.ArgInfo[0].Param &&
885          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
886        // empty arg list, don't push any params.
887        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
888
889        // In C++, the empty parameter-type-list must be spelled "void"; a
890        // typedef of void is not permitted.
891        if (getLangOptions().CPlusPlus &&
892            Param->getType().getUnqualifiedType() != Context.VoidTy) {
893          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
894        }
895
896      } else {
897        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
898          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
899      }
900
901      NewFD->setParams(&Params[0], Params.size());
902    }
903
904    // Merge the decl with the existing one if appropriate. Since C functions
905    // are in a flat namespace, make sure we consider decls in outer scopes.
906    if (PrevDecl &&
907        (!getLangOptions().CPlusPlus ||
908         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
909      bool Redeclaration = false;
910      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
911      if (NewFD == 0) return 0;
912      if (Redeclaration) {
913        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
914      }
915    }
916    New = NewFD;
917
918    // In C++, check default arguments now that we have merged decls.
919    if (getLangOptions().CPlusPlus)
920      CheckCXXDefaultArguments(NewFD);
921  } else {
922    // Check that there are no default arguments (C++ only).
923    if (getLangOptions().CPlusPlus)
924      CheckExtraCXXDefaultArguments(D);
925
926    if (R.getTypePtr()->isObjCInterfaceType()) {
927      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
928           D.getIdentifier()->getName());
929      InvalidDecl = true;
930    }
931
932    VarDecl *NewVD;
933    VarDecl::StorageClass SC;
934    switch (D.getDeclSpec().getStorageClassSpec()) {
935    default: assert(0 && "Unknown storage class!");
936    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
937    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
938    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
939    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
940    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
941    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
942    }
943    if (S->getFnParent() == 0) {
944      // C99 6.9p2: The storage-class specifiers auto and register shall not
945      // appear in the declaration specifiers in an external declaration.
946      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
947        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
948             R.getAsString());
949        InvalidDecl = true;
950      }
951      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
952                              II, R, SC, LastDeclarator);
953    } else {
954      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
955                              II, R, SC, LastDeclarator);
956    }
957    // Handle attributes prior to checking for duplicates in MergeVarDecl
958    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
959                         D.getAttributes());
960
961    // Emit an error if an address space was applied to decl with local storage.
962    // This includes arrays of objects with address space qualifiers, but not
963    // automatic variables that point to other address spaces.
964    // ISO/IEC TR 18037 S5.1.2
965    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
966      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
967      InvalidDecl = true;
968    }
969    // Merge the decl with the existing one if appropriate. If the decl is
970    // in an outer scope, it isn't the same thing.
971    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
972      NewVD = MergeVarDecl(NewVD, PrevDecl);
973      if (NewVD == 0) return 0;
974    }
975    New = NewVD;
976  }
977
978  // If this has an identifier, add it to the scope stack.
979  if (II)
980    PushOnScopeChains(New, S);
981  // If any semantic error occurred, mark the decl as invalid.
982  if (D.getInvalidType() || InvalidDecl)
983    New->setInvalidDecl();
984
985  return New;
986}
987
988bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
989  switch (Init->getStmtClass()) {
990  default:
991    Diag(Init->getExprLoc(),
992         diag::err_init_element_not_constant, Init->getSourceRange());
993    return true;
994  case Expr::ParenExprClass: {
995    const ParenExpr* PE = cast<ParenExpr>(Init);
996    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
997  }
998  case Expr::CompoundLiteralExprClass:
999    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1000  case Expr::DeclRefExprClass: {
1001    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1002    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1003      if (VD->hasGlobalStorage())
1004        return false;
1005      Diag(Init->getExprLoc(),
1006           diag::err_init_element_not_constant, Init->getSourceRange());
1007      return true;
1008    }
1009    if (isa<FunctionDecl>(D))
1010      return false;
1011    Diag(Init->getExprLoc(),
1012         diag::err_init_element_not_constant, Init->getSourceRange());
1013    return true;
1014  }
1015  case Expr::MemberExprClass: {
1016    const MemberExpr *M = cast<MemberExpr>(Init);
1017    if (M->isArrow())
1018      return CheckAddressConstantExpression(M->getBase());
1019    return CheckAddressConstantExpressionLValue(M->getBase());
1020  }
1021  case Expr::ArraySubscriptExprClass: {
1022    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1023    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1024    return CheckAddressConstantExpression(ASE->getBase()) ||
1025           CheckArithmeticConstantExpression(ASE->getIdx());
1026  }
1027  case Expr::StringLiteralClass:
1028  case Expr::PreDefinedExprClass:
1029    return false;
1030  case Expr::UnaryOperatorClass: {
1031    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1032
1033    // C99 6.6p9
1034    if (Exp->getOpcode() == UnaryOperator::Deref)
1035      return CheckAddressConstantExpression(Exp->getSubExpr());
1036
1037    Diag(Init->getExprLoc(),
1038         diag::err_init_element_not_constant, Init->getSourceRange());
1039    return true;
1040  }
1041  }
1042}
1043
1044bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1045  switch (Init->getStmtClass()) {
1046  default:
1047    Diag(Init->getExprLoc(),
1048         diag::err_init_element_not_constant, Init->getSourceRange());
1049    return true;
1050  case Expr::ParenExprClass: {
1051    const ParenExpr* PE = cast<ParenExpr>(Init);
1052    return CheckAddressConstantExpression(PE->getSubExpr());
1053  }
1054  case Expr::StringLiteralClass:
1055  case Expr::ObjCStringLiteralClass:
1056    return false;
1057  case Expr::CallExprClass: {
1058    const CallExpr *CE = cast<CallExpr>(Init);
1059    if (CE->isBuiltinConstantExpr())
1060      return false;
1061    Diag(Init->getExprLoc(),
1062         diag::err_init_element_not_constant, Init->getSourceRange());
1063    return true;
1064  }
1065  case Expr::UnaryOperatorClass: {
1066    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1067
1068    // C99 6.6p9
1069    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1070      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1071
1072    if (Exp->getOpcode() == UnaryOperator::Extension)
1073      return CheckAddressConstantExpression(Exp->getSubExpr());
1074
1075    Diag(Init->getExprLoc(),
1076         diag::err_init_element_not_constant, Init->getSourceRange());
1077    return true;
1078  }
1079  case Expr::BinaryOperatorClass: {
1080    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1081    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1082
1083    Expr *PExp = Exp->getLHS();
1084    Expr *IExp = Exp->getRHS();
1085    if (IExp->getType()->isPointerType())
1086      std::swap(PExp, IExp);
1087
1088    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1089    return CheckAddressConstantExpression(PExp) ||
1090           CheckArithmeticConstantExpression(IExp);
1091  }
1092  case Expr::ImplicitCastExprClass: {
1093    const Expr* SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1094
1095    // Check for implicit promotion
1096    if (SubExpr->getType()->isFunctionType() ||
1097        SubExpr->getType()->isArrayType())
1098      return CheckAddressConstantExpressionLValue(SubExpr);
1099
1100    // Check for pointer->pointer cast
1101    if (SubExpr->getType()->isPointerType())
1102      return CheckAddressConstantExpression(SubExpr);
1103
1104    if (SubExpr->getType()->isArithmeticType())
1105      return CheckArithmeticConstantExpression(SubExpr);
1106
1107    Diag(Init->getExprLoc(),
1108         diag::err_init_element_not_constant, Init->getSourceRange());
1109    return true;
1110  }
1111  case Expr::CastExprClass: {
1112    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1113
1114    // Check for pointer->pointer cast
1115    if (SubExpr->getType()->isPointerType())
1116      return CheckAddressConstantExpression(SubExpr);
1117
1118    // FIXME: Should we pedwarn for (int*)(0+0)?
1119    if (SubExpr->getType()->isArithmeticType())
1120      return CheckArithmeticConstantExpression(SubExpr);
1121
1122    Diag(Init->getExprLoc(),
1123         diag::err_init_element_not_constant, Init->getSourceRange());
1124    return true;
1125  }
1126  case Expr::ConditionalOperatorClass: {
1127    // FIXME: Should we pedwarn here?
1128    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1129    if (!Exp->getCond()->getType()->isArithmeticType()) {
1130      Diag(Init->getExprLoc(),
1131           diag::err_init_element_not_constant, Init->getSourceRange());
1132      return true;
1133    }
1134    if (CheckArithmeticConstantExpression(Exp->getCond()))
1135      return true;
1136    if (Exp->getLHS() &&
1137        CheckAddressConstantExpression(Exp->getLHS()))
1138      return true;
1139    return CheckAddressConstantExpression(Exp->getRHS());
1140  }
1141  case Expr::AddrLabelExprClass:
1142    return false;
1143  }
1144}
1145
1146bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1147  switch (Init->getStmtClass()) {
1148  default:
1149    Diag(Init->getExprLoc(),
1150         diag::err_init_element_not_constant, Init->getSourceRange());
1151    return true;
1152  case Expr::ParenExprClass: {
1153    const ParenExpr* PE = cast<ParenExpr>(Init);
1154    return CheckArithmeticConstantExpression(PE->getSubExpr());
1155  }
1156  case Expr::FloatingLiteralClass:
1157  case Expr::IntegerLiteralClass:
1158  case Expr::CharacterLiteralClass:
1159  case Expr::ImaginaryLiteralClass:
1160  case Expr::TypesCompatibleExprClass:
1161  case Expr::CXXBoolLiteralExprClass:
1162    return false;
1163  case Expr::CallExprClass: {
1164    const CallExpr *CE = cast<CallExpr>(Init);
1165    if (CE->isBuiltinConstantExpr())
1166      return false;
1167    Diag(Init->getExprLoc(),
1168         diag::err_init_element_not_constant, Init->getSourceRange());
1169    return true;
1170  }
1171  case Expr::DeclRefExprClass: {
1172    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1173    if (isa<EnumConstantDecl>(D))
1174      return false;
1175    Diag(Init->getExprLoc(),
1176         diag::err_init_element_not_constant, Init->getSourceRange());
1177    return true;
1178  }
1179  case Expr::CompoundLiteralExprClass:
1180    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1181    // but vectors are allowed to be magic.
1182    if (Init->getType()->isVectorType())
1183      return false;
1184    Diag(Init->getExprLoc(),
1185         diag::err_init_element_not_constant, Init->getSourceRange());
1186    return true;
1187  case Expr::UnaryOperatorClass: {
1188    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1189
1190    switch (Exp->getOpcode()) {
1191    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1192    // See C99 6.6p3.
1193    default:
1194      Diag(Init->getExprLoc(),
1195           diag::err_init_element_not_constant, Init->getSourceRange());
1196      return true;
1197    case UnaryOperator::SizeOf:
1198    case UnaryOperator::AlignOf:
1199    case UnaryOperator::OffsetOf:
1200      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1201      // See C99 6.5.3.4p2 and 6.6p3.
1202      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1203        return false;
1204      Diag(Init->getExprLoc(),
1205           diag::err_init_element_not_constant, Init->getSourceRange());
1206      return true;
1207    case UnaryOperator::Extension:
1208    case UnaryOperator::LNot:
1209    case UnaryOperator::Plus:
1210    case UnaryOperator::Minus:
1211    case UnaryOperator::Not:
1212      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1213    }
1214  }
1215  case Expr::SizeOfAlignOfTypeExprClass: {
1216    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1217    // Special check for void types, which are allowed as an extension
1218    if (Exp->getArgumentType()->isVoidType())
1219      return false;
1220    // alignof always evaluates to a constant.
1221    // FIXME: is sizeof(int[3.0]) a constant expression?
1222    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1223      Diag(Init->getExprLoc(),
1224           diag::err_init_element_not_constant, Init->getSourceRange());
1225      return true;
1226    }
1227    return false;
1228  }
1229  case Expr::BinaryOperatorClass: {
1230    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1231
1232    if (Exp->getLHS()->getType()->isArithmeticType() &&
1233        Exp->getRHS()->getType()->isArithmeticType()) {
1234      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1235             CheckArithmeticConstantExpression(Exp->getRHS());
1236    }
1237
1238    Diag(Init->getExprLoc(),
1239         diag::err_init_element_not_constant, Init->getSourceRange());
1240    return true;
1241  }
1242  case Expr::ImplicitCastExprClass:
1243  case Expr::CastExprClass: {
1244    const Expr *SubExpr;
1245    if (const CastExpr *C = dyn_cast<CastExpr>(Init)) {
1246      SubExpr = C->getSubExpr();
1247    } else {
1248      SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1249    }
1250
1251    if (SubExpr->getType()->isArithmeticType())
1252      return CheckArithmeticConstantExpression(SubExpr);
1253
1254    Diag(Init->getExprLoc(),
1255         diag::err_init_element_not_constant, Init->getSourceRange());
1256    return true;
1257  }
1258  case Expr::ConditionalOperatorClass: {
1259    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1260    if (CheckArithmeticConstantExpression(Exp->getCond()))
1261      return true;
1262    if (Exp->getLHS() &&
1263        CheckArithmeticConstantExpression(Exp->getLHS()))
1264      return true;
1265    return CheckArithmeticConstantExpression(Exp->getRHS());
1266  }
1267  }
1268}
1269
1270bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1271  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1272  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1273    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1274
1275  if (Init->getType()->isReferenceType()) {
1276    // FIXME: Work out how the heck reference types work
1277    return false;
1278#if 0
1279    // A reference is constant if the address of the expression
1280    // is constant
1281    // We look through initlists here to simplify
1282    // CheckAddressConstantExpressionLValue.
1283    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1284      assert(Exp->getNumInits() > 0 &&
1285             "Refernce initializer cannot be empty");
1286      Init = Exp->getInit(0);
1287    }
1288    return CheckAddressConstantExpressionLValue(Init);
1289#endif
1290  }
1291
1292  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1293    unsigned numInits = Exp->getNumInits();
1294    for (unsigned i = 0; i < numInits; i++) {
1295      // FIXME: Need to get the type of the declaration for C++,
1296      // because it could be a reference?
1297      if (CheckForConstantInitializer(Exp->getInit(i),
1298                                      Exp->getInit(i)->getType()))
1299        return true;
1300    }
1301    return false;
1302  }
1303
1304  if (Init->isNullPointerConstant(Context))
1305    return false;
1306  if (Init->getType()->isArithmeticType()) {
1307    QualType InitTy = Init->getType().getCanonicalType().getUnqualifiedType();
1308    if (InitTy == Context.BoolTy) {
1309      // Special handling for pointers implicitly cast to bool;
1310      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1311      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1312        Expr* SubE = ICE->getSubExpr();
1313        if (SubE->getType()->isPointerType() ||
1314            SubE->getType()->isArrayType() ||
1315            SubE->getType()->isFunctionType()) {
1316          return CheckAddressConstantExpression(Init);
1317        }
1318      }
1319    } else if (InitTy->isIntegralType()) {
1320      Expr* SubE = 0;
1321      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init))
1322        SubE = ICE->getSubExpr();
1323      else if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1324        SubE = CE->getSubExpr();
1325      // Special check for pointer cast to int; we allow as an extension
1326      // an address constant cast to an integer if the integer
1327      // is of an appropriate width (this sort of code is apparently used
1328      // in some places).
1329      // FIXME: Add pedwarn?
1330      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1331      if (SubE && (SubE->getType()->isPointerType() ||
1332                   SubE->getType()->isArrayType() ||
1333                   SubE->getType()->isFunctionType())) {
1334        unsigned IntWidth = Context.getTypeSize(Init->getType());
1335        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1336        if (IntWidth >= PointerWidth)
1337          return CheckAddressConstantExpression(Init);
1338      }
1339    }
1340
1341    return CheckArithmeticConstantExpression(Init);
1342  }
1343
1344  if (Init->getType()->isPointerType())
1345    return CheckAddressConstantExpression(Init);
1346
1347  // An array type at the top level that isn't an init-list must
1348  // be a string literal
1349  if (Init->getType()->isArrayType())
1350    return false;
1351
1352  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1353       Init->getSourceRange());
1354  return true;
1355}
1356
1357void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1358  Decl *RealDecl = static_cast<Decl *>(dcl);
1359  Expr *Init = static_cast<Expr *>(init);
1360  assert(Init && "missing initializer");
1361
1362  // If there is no declaration, there was an error parsing it.  Just ignore
1363  // the initializer.
1364  if (RealDecl == 0) {
1365    delete Init;
1366    return;
1367  }
1368
1369  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1370  if (!VDecl) {
1371    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1372         diag::err_illegal_initializer);
1373    RealDecl->setInvalidDecl();
1374    return;
1375  }
1376  // Get the decls type and save a reference for later, since
1377  // CheckInitializerTypes may change it.
1378  QualType DclT = VDecl->getType(), SavT = DclT;
1379  if (VDecl->isBlockVarDecl()) {
1380    VarDecl::StorageClass SC = VDecl->getStorageClass();
1381    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1382      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1383      VDecl->setInvalidDecl();
1384    } else if (!VDecl->isInvalidDecl()) {
1385      if (CheckInitializerTypes(Init, DclT))
1386        VDecl->setInvalidDecl();
1387      if (SC == VarDecl::Static) // C99 6.7.8p4.
1388        CheckForConstantInitializer(Init, DclT);
1389    }
1390  } else if (VDecl->isFileVarDecl()) {
1391    if (VDecl->getStorageClass() == VarDecl::Extern)
1392      Diag(VDecl->getLocation(), diag::warn_extern_init);
1393    if (!VDecl->isInvalidDecl())
1394      if (CheckInitializerTypes(Init, DclT))
1395        VDecl->setInvalidDecl();
1396
1397    // C99 6.7.8p4. All file scoped initializers need to be constant.
1398    CheckForConstantInitializer(Init, DclT);
1399  }
1400  // If the type changed, it means we had an incomplete type that was
1401  // completed by the initializer. For example:
1402  //   int ary[] = { 1, 3, 5 };
1403  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1404  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1405    VDecl->setType(DclT);
1406    Init->setType(DclT);
1407  }
1408
1409  // Attach the initializer to the decl.
1410  VDecl->setInit(Init);
1411  return;
1412}
1413
1414/// The declarators are chained together backwards, reverse the list.
1415Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1416  // Often we have single declarators, handle them quickly.
1417  Decl *GroupDecl = static_cast<Decl*>(group);
1418  if (GroupDecl == 0)
1419    return 0;
1420
1421  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1422  ScopedDecl *NewGroup = 0;
1423  if (Group->getNextDeclarator() == 0)
1424    NewGroup = Group;
1425  else { // reverse the list.
1426    while (Group) {
1427      ScopedDecl *Next = Group->getNextDeclarator();
1428      Group->setNextDeclarator(NewGroup);
1429      NewGroup = Group;
1430      Group = Next;
1431    }
1432  }
1433  // Perform semantic analysis that depends on having fully processed both
1434  // the declarator and initializer.
1435  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1436    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1437    if (!IDecl)
1438      continue;
1439    QualType T = IDecl->getType();
1440
1441    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1442    // static storage duration, it shall not have a variable length array.
1443    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1444        IDecl->getStorageClass() == VarDecl::Static) {
1445      if (T->getAsVariableArrayType()) {
1446        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1447        IDecl->setInvalidDecl();
1448      }
1449    }
1450    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1451    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1452    if (IDecl->isBlockVarDecl() &&
1453        IDecl->getStorageClass() != VarDecl::Extern) {
1454      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1455        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1456             T.getAsString());
1457        IDecl->setInvalidDecl();
1458      }
1459    }
1460    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1461    // object that has file scope without an initializer, and without a
1462    // storage-class specifier or with the storage-class specifier "static",
1463    // constitutes a tentative definition. Note: A tentative definition with
1464    // external linkage is valid (C99 6.2.2p5).
1465    if (IDecl && !IDecl->getInit() &&
1466        (IDecl->getStorageClass() == VarDecl::Static ||
1467         IDecl->getStorageClass() == VarDecl::None)) {
1468      if (T->isIncompleteArrayType()) {
1469        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1470        // array to be completed. Don't issue a diagnostic.
1471      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1472        // C99 6.9.2p3: If the declaration of an identifier for an object is
1473        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1474        // declared type shall not be an incomplete type.
1475        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1476             T.getAsString());
1477        IDecl->setInvalidDecl();
1478      }
1479    }
1480  }
1481  return NewGroup;
1482}
1483
1484/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1485/// to introduce parameters into function prototype scope.
1486Sema::DeclTy *
1487Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1488  DeclSpec &DS = D.getDeclSpec();
1489
1490  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1491  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1492      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1493    Diag(DS.getStorageClassSpecLoc(),
1494         diag::err_invalid_storage_class_in_func_decl);
1495    DS.ClearStorageClassSpecs();
1496  }
1497  if (DS.isThreadSpecified()) {
1498    Diag(DS.getThreadSpecLoc(),
1499         diag::err_invalid_storage_class_in_func_decl);
1500    DS.ClearStorageClassSpecs();
1501  }
1502
1503  // Check that there are no default arguments inside the type of this
1504  // parameter (C++ only).
1505  if (getLangOptions().CPlusPlus)
1506    CheckExtraCXXDefaultArguments(D);
1507
1508  // In this context, we *do not* check D.getInvalidType(). If the declarator
1509  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1510  // though it will not reflect the user specified type.
1511  QualType parmDeclType = GetTypeForDeclarator(D, S);
1512
1513  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1514
1515  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1516  // Can this happen for params?  We already checked that they don't conflict
1517  // among each other.  Here they can only shadow globals, which is ok.
1518  IdentifierInfo *II = D.getIdentifier();
1519  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1520    if (S->isDeclScope(PrevDecl)) {
1521      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1522           dyn_cast<NamedDecl>(PrevDecl)->getName());
1523
1524      // Recover by removing the name
1525      II = 0;
1526      D.SetIdentifier(0, D.getIdentifierLoc());
1527    }
1528  }
1529
1530  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1531  // Doing the promotion here has a win and a loss. The win is the type for
1532  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1533  // code generator). The loss is the orginal type isn't preserved. For example:
1534  //
1535  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1536  //    int blockvardecl[5];
1537  //    sizeof(parmvardecl);  // size == 4
1538  //    sizeof(blockvardecl); // size == 20
1539  // }
1540  //
1541  // For expressions, all implicit conversions are captured using the
1542  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1543  //
1544  // FIXME: If a source translation tool needs to see the original type, then
1545  // we need to consider storing both types (in ParmVarDecl)...
1546  //
1547  if (parmDeclType->isArrayType()) {
1548    // int x[restrict 4] ->  int *restrict
1549    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1550  } else if (parmDeclType->isFunctionType())
1551    parmDeclType = Context.getPointerType(parmDeclType);
1552
1553  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1554                                         D.getIdentifierLoc(), II,
1555                                         parmDeclType, VarDecl::None,
1556                                         0, 0);
1557
1558  if (D.getInvalidType())
1559    New->setInvalidDecl();
1560
1561  if (II)
1562    PushOnScopeChains(New, S);
1563
1564  HandleDeclAttributes(New, D.getDeclSpec().getAttributes(),
1565                       D.getAttributes());
1566  return New;
1567
1568}
1569
1570Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1571  assert(CurFunctionDecl == 0 && "Function parsing confused");
1572  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1573         "Not a function declarator!");
1574  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1575
1576  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1577  // for a K&R function.
1578  if (!FTI.hasPrototype) {
1579    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1580      if (FTI.ArgInfo[i].Param == 0) {
1581        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1582             FTI.ArgInfo[i].Ident->getName());
1583        // Implicitly declare the argument as type 'int' for lack of a better
1584        // type.
1585        DeclSpec DS;
1586        const char* PrevSpec; // unused
1587        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1588                           PrevSpec);
1589        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1590        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1591        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1592      }
1593    }
1594
1595    // Since this is a function definition, act as though we have information
1596    // about the arguments.
1597    if (FTI.NumArgs)
1598      FTI.hasPrototype = true;
1599  } else {
1600    // FIXME: Diagnose arguments without names in C.
1601  }
1602
1603  Scope *GlobalScope = FnBodyScope->getParent();
1604
1605  // See if this is a redefinition.
1606  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1607                             GlobalScope);
1608  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1609    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1610      const FunctionDecl *Definition;
1611      if (FD->getBody(Definition)) {
1612        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1613             D.getIdentifier()->getName());
1614        Diag(Definition->getLocation(), diag::err_previous_definition);
1615      }
1616    }
1617  }
1618  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1619  FunctionDecl *FD = cast<FunctionDecl>(decl);
1620  CurFunctionDecl = FD;
1621  PushDeclContext(FD);
1622
1623  // Check the validity of our function parameters
1624  CheckParmsForFunctionDef(FD);
1625
1626  // Introduce our parameters into the function scope
1627  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1628    ParmVarDecl *Param = FD->getParamDecl(p);
1629    // If this has an identifier, add it to the scope stack.
1630    if (Param->getIdentifier())
1631      PushOnScopeChains(Param, FnBodyScope);
1632  }
1633
1634  return FD;
1635}
1636
1637Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1638  Decl *dcl = static_cast<Decl *>(D);
1639  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1640    FD->setBody((Stmt*)Body);
1641    assert(FD == CurFunctionDecl && "Function parsing confused");
1642    CurFunctionDecl = 0;
1643  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1644    MD->setBody((Stmt*)Body);
1645    CurMethodDecl = 0;
1646  }
1647  PopDeclContext();
1648  // Verify and clean out per-function state.
1649
1650  // Check goto/label use.
1651  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1652       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1653    // Verify that we have no forward references left.  If so, there was a goto
1654    // or address of a label taken, but no definition of it.  Label fwd
1655    // definitions are indicated with a null substmt.
1656    if (I->second->getSubStmt() == 0) {
1657      LabelStmt *L = I->second;
1658      // Emit error.
1659      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1660
1661      // At this point, we have gotos that use the bogus label.  Stitch it into
1662      // the function body so that they aren't leaked and that the AST is well
1663      // formed.
1664      if (Body) {
1665        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1666        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1667      } else {
1668        // The whole function wasn't parsed correctly, just delete this.
1669        delete L;
1670      }
1671    }
1672  }
1673  LabelMap.clear();
1674
1675  return D;
1676}
1677
1678/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1679/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1680ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1681                                           IdentifierInfo &II, Scope *S) {
1682  // Extension in C99.  Legal in C90, but warn about it.
1683  if (getLangOptions().C99)
1684    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1685  else
1686    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1687
1688  // FIXME: handle stuff like:
1689  // void foo() { extern float X(); }
1690  // void bar() { X(); }  <-- implicit decl for X in another scope.
1691
1692  // Set a Declarator for the implicit definition: int foo();
1693  const char *Dummy;
1694  DeclSpec DS;
1695  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1696  Error = Error; // Silence warning.
1697  assert(!Error && "Error setting up implicit decl!");
1698  Declarator D(DS, Declarator::BlockContext);
1699  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1700  D.SetIdentifier(&II, Loc);
1701
1702  // Insert this function into translation-unit scope.
1703
1704  DeclContext *PrevDC = CurContext;
1705  CurContext = Context.getTranslationUnitDecl();
1706
1707  FunctionDecl *FD =
1708    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1709  FD->setImplicit();
1710
1711  CurContext = PrevDC;
1712
1713  return FD;
1714}
1715
1716
1717TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1718                                    ScopedDecl *LastDeclarator) {
1719  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1720  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1721
1722  // Scope manipulation handled by caller.
1723  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1724                                           D.getIdentifierLoc(),
1725                                           D.getIdentifier(),
1726                                           T, LastDeclarator);
1727  if (D.getInvalidType())
1728    NewTD->setInvalidDecl();
1729  return NewTD;
1730}
1731
1732/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1733/// former case, Name will be non-null.  In the later case, Name will be null.
1734/// TagType indicates what kind of tag this is. TK indicates whether this is a
1735/// reference/declaration/definition of a tag.
1736Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1737                             SourceLocation KWLoc, IdentifierInfo *Name,
1738                             SourceLocation NameLoc, AttributeList *Attr) {
1739  // If this is a use of an existing tag, it must have a name.
1740  assert((Name != 0 || TK == TK_Definition) &&
1741         "Nameless record must be a definition!");
1742
1743  Decl::Kind Kind;
1744  switch (TagType) {
1745  default: assert(0 && "Unknown tag type!");
1746  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1747  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1748  case DeclSpec::TST_class:  Kind = Decl::Class; break;
1749  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1750  }
1751
1752  // If this is a named struct, check to see if there was a previous forward
1753  // declaration or definition.
1754  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1755  if (ScopedDecl *PrevDecl =
1756          dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1757
1758    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1759            "unexpected Decl type");
1760    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1761      // If this is a use of a previous tag, or if the tag is already declared in
1762      // the same scope (so that the definition/declaration completes or
1763      // rementions the tag), reuse the decl.
1764      if (TK == TK_Reference ||
1765          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1766        // Make sure that this wasn't declared as an enum and now used as a struct
1767        // or something similar.
1768        if (PrevDecl->getKind() != Kind) {
1769          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1770          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1771        }
1772
1773        // If this is a use or a forward declaration, we're good.
1774        if (TK != TK_Definition)
1775          return PrevDecl;
1776
1777        // Diagnose attempts to redefine a tag.
1778        if (PrevTagDecl->isDefinition()) {
1779          Diag(NameLoc, diag::err_redefinition, Name->getName());
1780          Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1781          // If this is a redefinition, recover by making this struct be
1782          // anonymous, which will make any later references get the previous
1783          // definition.
1784          Name = 0;
1785        } else {
1786          // Okay, this is definition of a previously declared or referenced tag.
1787          // Move the location of the decl to be the definition site.
1788          PrevDecl->setLocation(NameLoc);
1789          return PrevDecl;
1790        }
1791      }
1792      // If we get here, this is a definition of a new struct type in a nested
1793      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1794      // type.
1795    } else {
1796      // The tag name clashes with a namespace name, issue an error and recover
1797      // by making this tag be anonymous.
1798      Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1799      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1800      Name = 0;
1801    }
1802  }
1803
1804  // If there is an identifier, use the location of the identifier as the
1805  // location of the decl, otherwise use the location of the struct/union
1806  // keyword.
1807  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1808
1809  // Otherwise, if this is the first time we've seen this tag, create the decl.
1810  TagDecl *New;
1811  switch (Kind) {
1812  default: assert(0 && "Unknown tag kind!");
1813  case Decl::Enum:
1814    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1815    // enum X { A, B, C } D;    D should chain to X.
1816    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1817    // If this is an undefined enum, warn.
1818    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1819    break;
1820  case Decl::Union:
1821  case Decl::Struct:
1822  case Decl::Class:
1823    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1824    // struct X { int A; } D;    D should chain to X.
1825    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1826    break;
1827  }
1828
1829  // If this has an identifier, add it to the scope stack.
1830  if (Name) {
1831    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1832    // we find one that is.
1833    while ((S->getFlags() & Scope::DeclScope) == 0)
1834      S = S->getParent();
1835
1836    // Add it to the decl chain.
1837    PushOnScopeChains(New, S);
1838  }
1839
1840  HandleDeclAttributes(New, Attr, 0);
1841  return New;
1842}
1843
1844/// ActOnField - Each field of a struct/union/class is passed into this in order
1845/// to create a FieldDecl object for it.
1846Sema::DeclTy *Sema::ActOnField(Scope *S,
1847                               SourceLocation DeclStart,
1848                               Declarator &D, ExprTy *BitfieldWidth) {
1849  IdentifierInfo *II = D.getIdentifier();
1850  Expr *BitWidth = (Expr*)BitfieldWidth;
1851  SourceLocation Loc = DeclStart;
1852  if (II) Loc = D.getIdentifierLoc();
1853
1854  // FIXME: Unnamed fields can be handled in various different ways, for
1855  // example, unnamed unions inject all members into the struct namespace!
1856
1857
1858  if (BitWidth) {
1859    // TODO: Validate.
1860    //printf("WARNING: BITFIELDS IGNORED!\n");
1861
1862    // 6.7.2.1p3
1863    // 6.7.2.1p4
1864
1865  } else {
1866    // Not a bitfield.
1867
1868    // validate II.
1869
1870  }
1871
1872  QualType T = GetTypeForDeclarator(D, S);
1873  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1874  bool InvalidDecl = false;
1875
1876  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1877  // than a variably modified type.
1878  if (T->isVariablyModifiedType()) {
1879    // FIXME: This diagnostic needs work
1880    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1881    InvalidDecl = true;
1882  }
1883  // FIXME: Chain fielddecls together.
1884  FieldDecl *NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1885
1886  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1887                       D.getAttributes());
1888
1889  if (D.getInvalidType() || InvalidDecl)
1890    NewFD->setInvalidDecl();
1891  return NewFD;
1892}
1893
1894/// TranslateIvarVisibility - Translate visibility from a token ID to an
1895///  AST enum value.
1896static ObjCIvarDecl::AccessControl
1897TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1898  switch (ivarVisibility) {
1899    case tok::objc_private: return ObjCIvarDecl::Private;
1900    case tok::objc_public: return ObjCIvarDecl::Public;
1901    case tok::objc_protected: return ObjCIvarDecl::Protected;
1902    case tok::objc_package: return ObjCIvarDecl::Package;
1903    default: assert(false && "Unknown visitibility kind");
1904  }
1905}
1906
1907/// ActOnIvar - Each ivar field of an objective-c class is passed into this
1908/// in order to create an IvarDecl object for it.
1909Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1910                              SourceLocation DeclStart,
1911                              Declarator &D, ExprTy *BitfieldWidth,
1912                              tok::ObjCKeywordKind Visibility) {
1913  IdentifierInfo *II = D.getIdentifier();
1914  Expr *BitWidth = (Expr*)BitfieldWidth;
1915  SourceLocation Loc = DeclStart;
1916  if (II) Loc = D.getIdentifierLoc();
1917
1918  // FIXME: Unnamed fields can be handled in various different ways, for
1919  // example, unnamed unions inject all members into the struct namespace!
1920
1921
1922  if (BitWidth) {
1923    // TODO: Validate.
1924    //printf("WARNING: BITFIELDS IGNORED!\n");
1925
1926    // 6.7.2.1p3
1927    // 6.7.2.1p4
1928
1929  } else {
1930    // Not a bitfield.
1931
1932    // validate II.
1933
1934  }
1935
1936  QualType T = GetTypeForDeclarator(D, S);
1937  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1938  bool InvalidDecl = false;
1939
1940  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1941  // than a variably modified type.
1942  if (T->isVariablyModifiedType()) {
1943    // FIXME: This diagnostic needs work
1944    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1945    InvalidDecl = true;
1946  }
1947
1948  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T);
1949
1950  HandleDeclAttributes(NewID, D.getDeclSpec().getAttributes(),
1951                       D.getAttributes());
1952
1953  if (D.getInvalidType() || InvalidDecl)
1954    NewID->setInvalidDecl();
1955  // If we have visibility info, make sure the AST is set accordingly.
1956  if (Visibility != tok::objc_not_keyword)
1957    NewID->setAccessControl(TranslateIvarVisibility(Visibility));
1958  return NewID;
1959}
1960
1961void Sema::ActOnFields(Scope* S,
1962                       SourceLocation RecLoc, DeclTy *RecDecl,
1963                       DeclTy **Fields, unsigned NumFields,
1964                       SourceLocation LBrac, SourceLocation RBrac) {
1965  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1966  assert(EnclosingDecl && "missing record or interface decl");
1967  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1968
1969  if (Record && Record->isDefinition()) {
1970    // Diagnose code like:
1971    //     struct S { struct S {} X; };
1972    // We discover this when we complete the outer S.  Reject and ignore the
1973    // outer S.
1974    Diag(Record->getLocation(), diag::err_nested_redefinition,
1975         Record->getKindName());
1976    Diag(RecLoc, diag::err_previous_definition);
1977    Record->setInvalidDecl();
1978    return;
1979  }
1980  // Verify that all the fields are okay.
1981  unsigned NumNamedMembers = 0;
1982  llvm::SmallVector<FieldDecl*, 32> RecFields;
1983  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1984
1985  for (unsigned i = 0; i != NumFields; ++i) {
1986
1987    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1988    assert(FD && "missing field decl");
1989
1990    // Remember all fields.
1991    RecFields.push_back(FD);
1992
1993    // Get the type for the field.
1994    Type *FDTy = FD->getType().getTypePtr();
1995
1996    // C99 6.7.2.1p2 - A field may not be a function type.
1997    if (FDTy->isFunctionType()) {
1998      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1999           FD->getName());
2000      FD->setInvalidDecl();
2001      EnclosingDecl->setInvalidDecl();
2002      continue;
2003    }
2004    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2005    if (FDTy->isIncompleteType()) {
2006      if (!Record) {  // Incomplete ivar type is always an error.
2007        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2008        FD->setInvalidDecl();
2009        EnclosingDecl->setInvalidDecl();
2010        continue;
2011      }
2012      if (i != NumFields-1 ||                   // ... that the last member ...
2013          Record->getKind() != Decl::Struct ||  // ... of a structure ...
2014          !FDTy->isArrayType()) {         //... may have incomplete array type.
2015        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2016        FD->setInvalidDecl();
2017        EnclosingDecl->setInvalidDecl();
2018        continue;
2019      }
2020      if (NumNamedMembers < 1) {  //... must have more than named member ...
2021        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2022             FD->getName());
2023        FD->setInvalidDecl();
2024        EnclosingDecl->setInvalidDecl();
2025        continue;
2026      }
2027      // Okay, we have a legal flexible array member at the end of the struct.
2028      if (Record)
2029        Record->setHasFlexibleArrayMember(true);
2030    }
2031    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2032    /// field of another structure or the element of an array.
2033    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2034      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2035        // If this is a member of a union, then entire union becomes "flexible".
2036        if (Record && Record->getKind() == Decl::Union) {
2037          Record->setHasFlexibleArrayMember(true);
2038        } else {
2039          // If this is a struct/class and this is not the last element, reject
2040          // it.  Note that GCC supports variable sized arrays in the middle of
2041          // structures.
2042          if (i != NumFields-1) {
2043            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2044                 FD->getName());
2045            FD->setInvalidDecl();
2046            EnclosingDecl->setInvalidDecl();
2047            continue;
2048          }
2049          // We support flexible arrays at the end of structs in other structs
2050          // as an extension.
2051          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2052               FD->getName());
2053          if (Record)
2054            Record->setHasFlexibleArrayMember(true);
2055        }
2056      }
2057    }
2058    /// A field cannot be an Objective-c object
2059    if (FDTy->isObjCInterfaceType()) {
2060      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2061           FD->getName());
2062      FD->setInvalidDecl();
2063      EnclosingDecl->setInvalidDecl();
2064      continue;
2065    }
2066    // Keep track of the number of named members.
2067    if (IdentifierInfo *II = FD->getIdentifier()) {
2068      // Detect duplicate member names.
2069      if (!FieldIDs.insert(II)) {
2070        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2071        // Find the previous decl.
2072        SourceLocation PrevLoc;
2073        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2074          assert(i != e && "Didn't find previous def!");
2075          if (RecFields[i]->getIdentifier() == II) {
2076            PrevLoc = RecFields[i]->getLocation();
2077            break;
2078          }
2079        }
2080        Diag(PrevLoc, diag::err_previous_definition);
2081        FD->setInvalidDecl();
2082        EnclosingDecl->setInvalidDecl();
2083        continue;
2084      }
2085      ++NumNamedMembers;
2086    }
2087  }
2088
2089  // Okay, we successfully defined 'Record'.
2090  if (Record) {
2091    Record->defineBody(&RecFields[0], RecFields.size());
2092    Consumer.HandleTagDeclDefinition(Record);
2093  } else {
2094    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2095    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2096      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2097    else if (ObjCImplementationDecl *IMPDecl =
2098               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2099      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2100      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2101      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2102    }
2103  }
2104}
2105
2106Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2107                                      DeclTy *lastEnumConst,
2108                                      SourceLocation IdLoc, IdentifierInfo *Id,
2109                                      SourceLocation EqualLoc, ExprTy *val) {
2110  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2111  EnumConstantDecl *LastEnumConst =
2112    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2113  Expr *Val = static_cast<Expr*>(val);
2114
2115  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2116  // we find one that is.
2117  while ((S->getFlags() & Scope::DeclScope) == 0)
2118    S = S->getParent();
2119
2120  // Verify that there isn't already something declared with this name in this
2121  // scope.
2122  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2123    if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2124      if (isa<EnumConstantDecl>(PrevDecl))
2125        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2126      else
2127        Diag(IdLoc, diag::err_redefinition, Id->getName());
2128      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2129      delete Val;
2130      return 0;
2131    }
2132  }
2133
2134  llvm::APSInt EnumVal(32);
2135  QualType EltTy;
2136  if (Val) {
2137    // Make sure to promote the operand type to int.
2138    UsualUnaryConversions(Val);
2139
2140    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2141    SourceLocation ExpLoc;
2142    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2143      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2144           Id->getName());
2145      delete Val;
2146      Val = 0;  // Just forget about it.
2147    } else {
2148      EltTy = Val->getType();
2149    }
2150  }
2151
2152  if (!Val) {
2153    if (LastEnumConst) {
2154      // Assign the last value + 1.
2155      EnumVal = LastEnumConst->getInitVal();
2156      ++EnumVal;
2157
2158      // Check for overflow on increment.
2159      if (EnumVal < LastEnumConst->getInitVal())
2160        Diag(IdLoc, diag::warn_enum_value_overflow);
2161
2162      EltTy = LastEnumConst->getType();
2163    } else {
2164      // First value, set to zero.
2165      EltTy = Context.IntTy;
2166      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2167    }
2168  }
2169
2170  EnumConstantDecl *New =
2171    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2172                             Val, EnumVal,
2173                             LastEnumConst);
2174
2175  // Register this decl in the current scope stack.
2176  PushOnScopeChains(New, S);
2177  return New;
2178}
2179
2180void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2181                         DeclTy **Elements, unsigned NumElements) {
2182  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2183  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
2184
2185  // TODO: If the result value doesn't fit in an int, it must be a long or long
2186  // long value.  ISO C does not support this, but GCC does as an extension,
2187  // emit a warning.
2188  unsigned IntWidth = Context.Target.getIntWidth();
2189
2190  // Verify that all the values are okay, compute the size of the values, and
2191  // reverse the list.
2192  unsigned NumNegativeBits = 0;
2193  unsigned NumPositiveBits = 0;
2194
2195  // Keep track of whether all elements have type int.
2196  bool AllElementsInt = true;
2197
2198  EnumConstantDecl *EltList = 0;
2199  for (unsigned i = 0; i != NumElements; ++i) {
2200    EnumConstantDecl *ECD =
2201      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2202    if (!ECD) continue;  // Already issued a diagnostic.
2203
2204    // If the enum value doesn't fit in an int, emit an extension warning.
2205    const llvm::APSInt &InitVal = ECD->getInitVal();
2206    assert(InitVal.getBitWidth() >= IntWidth &&
2207           "Should have promoted value to int");
2208    if (InitVal.getBitWidth() > IntWidth) {
2209      llvm::APSInt V(InitVal);
2210      V.trunc(IntWidth);
2211      V.extend(InitVal.getBitWidth());
2212      if (V != InitVal)
2213        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2214             InitVal.toString());
2215    }
2216
2217    // Keep track of the size of positive and negative values.
2218    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2219      NumPositiveBits = std::max(NumPositiveBits,
2220                                 (unsigned)InitVal.getActiveBits());
2221    else
2222      NumNegativeBits = std::max(NumNegativeBits,
2223                                 (unsigned)InitVal.getMinSignedBits());
2224
2225    // Keep track of whether every enum element has type int (very commmon).
2226    if (AllElementsInt)
2227      AllElementsInt = ECD->getType() == Context.IntTy;
2228
2229    ECD->setNextDeclarator(EltList);
2230    EltList = ECD;
2231  }
2232
2233  // Figure out the type that should be used for this enum.
2234  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2235  QualType BestType;
2236  unsigned BestWidth;
2237
2238  if (NumNegativeBits) {
2239    // If there is a negative value, figure out the smallest integer type (of
2240    // int/long/longlong) that fits.
2241    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2242      BestType = Context.IntTy;
2243      BestWidth = IntWidth;
2244    } else {
2245      BestWidth = Context.Target.getLongWidth();
2246
2247      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2248        BestType = Context.LongTy;
2249      else {
2250        BestWidth = Context.Target.getLongLongWidth();
2251
2252        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2253          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2254        BestType = Context.LongLongTy;
2255      }
2256    }
2257  } else {
2258    // If there is no negative value, figure out which of uint, ulong, ulonglong
2259    // fits.
2260    if (NumPositiveBits <= IntWidth) {
2261      BestType = Context.UnsignedIntTy;
2262      BestWidth = IntWidth;
2263    } else if (NumPositiveBits <=
2264               (BestWidth = Context.Target.getLongWidth())) {
2265      BestType = Context.UnsignedLongTy;
2266    } else {
2267      BestWidth = Context.Target.getLongLongWidth();
2268      assert(NumPositiveBits <= BestWidth &&
2269             "How could an initializer get larger than ULL?");
2270      BestType = Context.UnsignedLongLongTy;
2271    }
2272  }
2273
2274  // Loop over all of the enumerator constants, changing their types to match
2275  // the type of the enum if needed.
2276  for (unsigned i = 0; i != NumElements; ++i) {
2277    EnumConstantDecl *ECD =
2278      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2279    if (!ECD) continue;  // Already issued a diagnostic.
2280
2281    // Standard C says the enumerators have int type, but we allow, as an
2282    // extension, the enumerators to be larger than int size.  If each
2283    // enumerator value fits in an int, type it as an int, otherwise type it the
2284    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2285    // that X has type 'int', not 'unsigned'.
2286    if (ECD->getType() == Context.IntTy) {
2287      // Make sure the init value is signed.
2288      llvm::APSInt IV = ECD->getInitVal();
2289      IV.setIsSigned(true);
2290      ECD->setInitVal(IV);
2291      continue;  // Already int type.
2292    }
2293
2294    // Determine whether the value fits into an int.
2295    llvm::APSInt InitVal = ECD->getInitVal();
2296    bool FitsInInt;
2297    if (InitVal.isUnsigned() || !InitVal.isNegative())
2298      FitsInInt = InitVal.getActiveBits() < IntWidth;
2299    else
2300      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2301
2302    // If it fits into an integer type, force it.  Otherwise force it to match
2303    // the enum decl type.
2304    QualType NewTy;
2305    unsigned NewWidth;
2306    bool NewSign;
2307    if (FitsInInt) {
2308      NewTy = Context.IntTy;
2309      NewWidth = IntWidth;
2310      NewSign = true;
2311    } else if (ECD->getType() == BestType) {
2312      // Already the right type!
2313      continue;
2314    } else {
2315      NewTy = BestType;
2316      NewWidth = BestWidth;
2317      NewSign = BestType->isSignedIntegerType();
2318    }
2319
2320    // Adjust the APSInt value.
2321    InitVal.extOrTrunc(NewWidth);
2322    InitVal.setIsSigned(NewSign);
2323    ECD->setInitVal(InitVal);
2324
2325    // Adjust the Expr initializer and type.
2326    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2327    ECD->setType(NewTy);
2328  }
2329
2330  Enum->defineElements(EltList, BestType);
2331  Consumer.HandleTagDeclDefinition(Enum);
2332}
2333
2334Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2335                                          ExprTy *expr) {
2336  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2337
2338  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2339}
2340
2341Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2342                                     SourceLocation LBrace,
2343                                     SourceLocation RBrace,
2344                                     const char *Lang,
2345                                     unsigned StrSize,
2346                                     DeclTy *D) {
2347  LinkageSpecDecl::LanguageIDs Language;
2348  Decl *dcl = static_cast<Decl *>(D);
2349  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2350    Language = LinkageSpecDecl::lang_c;
2351  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2352    Language = LinkageSpecDecl::lang_cxx;
2353  else {
2354    Diag(Loc, diag::err_bad_language);
2355    return 0;
2356  }
2357
2358  // FIXME: Add all the various semantics of linkage specifications
2359  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2360}
2361
2362void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
2363
2364  switch (Attr->getKind()) {
2365  case AttributeList::AT_vector_size:
2366    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2367      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
2368      if (!newType.isNull()) // install the new vector type into the decl
2369        vDecl->setType(newType);
2370    }
2371    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2372      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
2373                                                   Attr);
2374      if (!newType.isNull()) // install the new vector type into the decl
2375        tDecl->setUnderlyingType(newType);
2376    }
2377    break;
2378  case AttributeList::AT_ext_vector_type:
2379    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
2380      HandleExtVectorTypeAttribute(tDecl, Attr);
2381    else
2382      Diag(Attr->getLoc(),
2383           diag::err_typecheck_ext_vector_not_typedef);
2384    break;
2385  case AttributeList::AT_address_space:
2386    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2387      QualType newType = HandleAddressSpaceTypeAttribute(
2388                                                  tDecl->getUnderlyingType(),
2389                                                  Attr);
2390      tDecl->setUnderlyingType(newType);
2391    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2392      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
2393                                                         Attr);
2394      // install the new addr spaced type into the decl
2395      vDecl->setType(newType);
2396    }
2397    break;
2398  case AttributeList::AT_mode:
2399    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2400      QualType newType = HandleModeTypeAttribute(tDecl->getUnderlyingType(),
2401                                                 Attr);
2402      tDecl->setUnderlyingType(newType);
2403    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2404      QualType newType = HandleModeTypeAttribute(vDecl->getType(), Attr);
2405      vDecl->setType(newType);
2406    }
2407    // FIXME: Diagnostic?
2408    break;
2409  case AttributeList::AT_deprecated:
2410    HandleDeprecatedAttribute(New, Attr);
2411    break;
2412  case AttributeList::AT_visibility:
2413    HandleVisibilityAttribute(New, Attr);
2414    break;
2415  case AttributeList::AT_weak:
2416    HandleWeakAttribute(New, Attr);
2417    break;
2418  case AttributeList::AT_dllimport:
2419    HandleDLLImportAttribute(New, Attr);
2420    break;
2421  case AttributeList::AT_dllexport:
2422    HandleDLLExportAttribute(New, Attr);
2423    break;
2424  case AttributeList::AT_nothrow:
2425    HandleNothrowAttribute(New, Attr);
2426    break;
2427  case AttributeList::AT_stdcall:
2428    HandleStdCallAttribute(New, Attr);
2429    break;
2430  case AttributeList::AT_fastcall:
2431    HandleFastCallAttribute(New, Attr);
2432    break;
2433  case AttributeList::AT_aligned:
2434    HandleAlignedAttribute(New, Attr);
2435    break;
2436  case AttributeList::AT_packed:
2437    HandlePackedAttribute(New, Attr);
2438    break;
2439  case AttributeList::AT_annotate:
2440    HandleAnnotateAttribute(New, Attr);
2441    break;
2442  case AttributeList::AT_noreturn:
2443    HandleNoReturnAttribute(New, Attr);
2444    break;
2445  case AttributeList::AT_format:
2446    HandleFormatAttribute(New, Attr);
2447    break;
2448  case AttributeList::AT_transparent_union:
2449    HandleTransparentUnionAttribute(New, Attr);
2450    break;
2451  default:
2452#if 0
2453    // TODO: when we have the full set of attributes, warn about unknown ones.
2454    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
2455         Attr->getName()->getName());
2456#endif
2457    break;
2458  }
2459}
2460
2461void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
2462                                AttributeList *declarator_postfix) {
2463  while (declspec_prefix) {
2464    HandleDeclAttribute(New, declspec_prefix);
2465    declspec_prefix = declspec_prefix->getNext();
2466  }
2467  while (declarator_postfix) {
2468    HandleDeclAttribute(New, declarator_postfix);
2469    declarator_postfix = declarator_postfix->getNext();
2470  }
2471}
2472
2473void Sema::HandleExtVectorTypeAttribute(TypedefDecl *tDecl,
2474                                        AttributeList *rawAttr) {
2475  QualType curType = tDecl->getUnderlyingType();
2476  // check the attribute arguments.
2477  if (rawAttr->getNumArgs() != 1) {
2478    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2479         std::string("1"));
2480    return;
2481  }
2482  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2483  llvm::APSInt vecSize(32);
2484  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2485    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2486         "ext_vector_type", sizeExpr->getSourceRange());
2487    return;
2488  }
2489  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2490  // in conjunction with complex types (pointers, arrays, functions, etc.).
2491  Type *canonType = curType.getCanonicalType().getTypePtr();
2492  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2493    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2494         curType.getCanonicalType().getAsString());
2495    return;
2496  }
2497  // unlike gcc's vector_size attribute, the size is specified as the
2498  // number of elements, not the number of bytes.
2499  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2500
2501  if (vectorSize == 0) {
2502    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2503         sizeExpr->getSourceRange());
2504    return;
2505  }
2506  // Instantiate/Install the vector type, the number of elements is > 0.
2507  tDecl->setUnderlyingType(Context.getExtVectorType(curType, vectorSize));
2508  // Remember this typedef decl, we will need it later for diagnostics.
2509  ExtVectorDecls.push_back(tDecl);
2510}
2511
2512QualType Sema::HandleVectorTypeAttribute(QualType curType,
2513                                         AttributeList *rawAttr) {
2514  // check the attribute arugments.
2515  if (rawAttr->getNumArgs() != 1) {
2516    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2517         std::string("1"));
2518    return QualType();
2519  }
2520  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2521  llvm::APSInt vecSize(32);
2522  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2523    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2524         "vector_size", sizeExpr->getSourceRange());
2525    return QualType();
2526  }
2527  // navigate to the base type - we need to provide for vector pointers,
2528  // vector arrays, and functions returning vectors.
2529  Type *canonType = curType.getCanonicalType().getTypePtr();
2530
2531  if (canonType->isPointerType() || canonType->isArrayType() ||
2532      canonType->isFunctionType()) {
2533    assert(0 && "HandleVector(): Complex type construction unimplemented");
2534    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
2535        do {
2536          if (PointerType *PT = dyn_cast<PointerType>(canonType))
2537            canonType = PT->getPointeeType().getTypePtr();
2538          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
2539            canonType = AT->getElementType().getTypePtr();
2540          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
2541            canonType = FT->getResultType().getTypePtr();
2542        } while (canonType->isPointerType() || canonType->isArrayType() ||
2543                 canonType->isFunctionType());
2544    */
2545  }
2546  // the base type must be integer or float.
2547  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2548    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2549         curType.getCanonicalType().getAsString());
2550    return QualType();
2551  }
2552  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
2553  // vecSize is specified in bytes - convert to bits.
2554  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
2555
2556  // the vector size needs to be an integral multiple of the type size.
2557  if (vectorSize % typeSize) {
2558    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
2559         sizeExpr->getSourceRange());
2560    return QualType();
2561  }
2562  if (vectorSize == 0) {
2563    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2564         sizeExpr->getSourceRange());
2565    return QualType();
2566  }
2567  // Instantiate the vector type, the number of elements is > 0, and not
2568  // required to be a power of 2, unlike GCC.
2569  return Context.getVectorType(curType, vectorSize/typeSize);
2570}
2571
2572void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
2573  // check the attribute arguments.
2574  if (rawAttr->getNumArgs() > 0) {
2575    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2576         std::string("0"));
2577    return;
2578  }
2579
2580  if (TagDecl *TD = dyn_cast<TagDecl>(d))
2581    TD->addAttr(new PackedAttr);
2582  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
2583    // If the alignment is less than or equal to 8 bits, the packed attribute
2584    // has no effect.
2585    if (!FD->getType()->isIncompleteType() &&
2586        Context.getTypeAlign(FD->getType()) <= 8)
2587      Diag(rawAttr->getLoc(),
2588           diag::warn_attribute_ignored_for_field_of_type,
2589           rawAttr->getName()->getName(), FD->getType().getAsString());
2590    else
2591      FD->addAttr(new PackedAttr);
2592  } else
2593    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2594         rawAttr->getName()->getName());
2595}
2596
2597void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2598  // check the attribute arguments.
2599  if (rawAttr->getNumArgs() != 0) {
2600    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2601         std::string("0"));
2602    return;
2603  }
2604
2605  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2606
2607  if (!Fn) {
2608    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2609         "noreturn", "function");
2610    return;
2611  }
2612
2613  d->addAttr(new NoReturnAttr());
2614}
2615
2616void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2617  // check the attribute arguments.
2618  if (rawAttr->getNumArgs() != 0) {
2619    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2620         std::string("0"));
2621    return;
2622  }
2623
2624  d->addAttr(new DeprecatedAttr());
2625}
2626
2627void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2628  // check the attribute arguments.
2629  if (rawAttr->getNumArgs() != 1) {
2630    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2631         std::string("1"));
2632    return;
2633  }
2634
2635  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2636  Arg = Arg->IgnoreParenCasts();
2637  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2638
2639  if (Str == 0 || Str->isWide()) {
2640    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2641         "visibility", std::string("1"));
2642    return;
2643  }
2644
2645  const char *TypeStr = Str->getStrData();
2646  unsigned TypeLen = Str->getByteLength();
2647  VisibilityAttr::VisibilityTypes type;
2648
2649  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2650    type = VisibilityAttr::DefaultVisibility;
2651  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2652    type = VisibilityAttr::HiddenVisibility;
2653  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2654    type = VisibilityAttr::HiddenVisibility; // FIXME
2655  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2656    type = VisibilityAttr::ProtectedVisibility;
2657  else {
2658    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2659           "visibility", TypeStr);
2660    return;
2661  }
2662
2663  d->addAttr(new VisibilityAttr(type));
2664}
2665
2666void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2667  // check the attribute arguments.
2668  if (rawAttr->getNumArgs() != 0) {
2669    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2670         std::string("0"));
2671    return;
2672  }
2673
2674  d->addAttr(new WeakAttr());
2675}
2676
2677void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2678  // check the attribute arguments.
2679  if (rawAttr->getNumArgs() != 0) {
2680    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2681         std::string("0"));
2682    return;
2683  }
2684
2685  d->addAttr(new DLLImportAttr());
2686}
2687
2688void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2689  // check the attribute arguments.
2690  if (rawAttr->getNumArgs() != 0) {
2691    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2692         std::string("0"));
2693    return;
2694  }
2695
2696  d->addAttr(new DLLExportAttr());
2697}
2698
2699void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2700  // check the attribute arguments.
2701  if (rawAttr->getNumArgs() != 0) {
2702    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2703         std::string("0"));
2704    return;
2705  }
2706
2707  d->addAttr(new StdCallAttr());
2708}
2709
2710void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2711  // check the attribute arguments.
2712  if (rawAttr->getNumArgs() != 0) {
2713    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2714         std::string("0"));
2715    return;
2716  }
2717
2718  d->addAttr(new FastCallAttr());
2719}
2720
2721void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2722  // check the attribute arguments.
2723  if (rawAttr->getNumArgs() != 0) {
2724    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2725         std::string("0"));
2726    return;
2727  }
2728
2729  d->addAttr(new NoThrowAttr());
2730}
2731
2732static const FunctionTypeProto *getFunctionProto(Decl *d) {
2733  QualType Ty;
2734
2735  if (ValueDecl *decl = dyn_cast<ValueDecl>(d))
2736    Ty = decl->getType();
2737  else if (FieldDecl *decl = dyn_cast<FieldDecl>(d))
2738    Ty = decl->getType();
2739  else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
2740    Ty = decl->getUnderlyingType();
2741  else
2742    return 0;
2743
2744  if (Ty->isFunctionPointerType()) {
2745    const PointerType *PtrTy = Ty->getAsPointerType();
2746    Ty = PtrTy->getPointeeType();
2747  }
2748
2749  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2750    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2751
2752  return 0;
2753}
2754
2755static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
2756  if (!T->isPointerType())
2757    return false;
2758
2759  T = T->getAsPointerType()->getPointeeType().getCanonicalType();
2760  ObjCInterfaceType* ClsT = dyn_cast<ObjCInterfaceType>(T.getTypePtr());
2761
2762  if (!ClsT)
2763    return false;
2764
2765  IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
2766
2767  // FIXME: Should we walk the chain of classes?
2768  return ClsName == &Ctx.Idents.get("NSString") ||
2769         ClsName == &Ctx.Idents.get("NSMutableString");
2770}
2771
2772/// Handle __attribute__((format(type,idx,firstarg))) attributes
2773/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2774void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2775
2776  if (!rawAttr->getParameterName()) {
2777    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2778           "format", std::string("1"));
2779    return;
2780  }
2781
2782  if (rawAttr->getNumArgs() != 2) {
2783    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2784         std::string("3"));
2785    return;
2786  }
2787
2788  // GCC ignores the format attribute on K&R style function
2789  // prototypes, so we ignore it as well
2790  const FunctionTypeProto *proto = getFunctionProto(d);
2791
2792  if (!proto) {
2793    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2794           "format", "function");
2795    return;
2796  }
2797
2798  // FIXME: in C++ the implicit 'this' function parameter also counts.
2799  // this is needed in order to be compatible with GCC
2800  // the index must start in 1 and the limit is numargs+1
2801  unsigned NumArgs  = proto->getNumArgs();
2802  unsigned FirstIdx = 1;
2803
2804  const char *Format = rawAttr->getParameterName()->getName();
2805  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2806
2807  // Normalize the argument, __foo__ becomes foo.
2808  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2809      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2810    Format += 2;
2811    FormatLen -= 4;
2812  }
2813
2814  bool Supported = false;
2815  bool is_NSString = false;
2816  bool is_strftime = false;
2817
2818  switch (FormatLen) {
2819    default: break;
2820    case 5:
2821      Supported = !memcmp(Format, "scanf", 5);
2822      break;
2823    case 6:
2824      Supported = !memcmp(Format, "printf", 6);
2825      break;
2826    case 7:
2827      Supported = !memcmp(Format, "strfmon", 7);
2828      break;
2829    case 8:
2830      Supported = (is_strftime = !memcmp(Format, "strftime", 8)) ||
2831                  (is_NSString = !memcmp(Format, "NSString", 8));
2832      break;
2833  }
2834
2835  if (!Supported) {
2836    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2837           "format", rawAttr->getParameterName()->getName());
2838    return;
2839  }
2840
2841  // checks for the 2nd argument
2842  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2843  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2844  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2845    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2846           "format", std::string("2"), IdxExpr->getSourceRange());
2847    return;
2848  }
2849
2850  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2851    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2852           "format", std::string("2"), IdxExpr->getSourceRange());
2853    return;
2854  }
2855
2856  // FIXME: Do we need to bounds check?
2857  unsigned ArgIdx = Idx.getZExtValue() - 1;
2858
2859  // make sure the format string is really a string
2860  QualType Ty = proto->getArgType(ArgIdx);
2861
2862  if (is_NSString) {
2863    // FIXME: do we need to check if the type is NSString*?  What are
2864    //  the semantics?
2865    if (!isNSStringType(Ty, Context)) {
2866      // FIXME: Should highlight the actual expression that has the
2867      // wrong type.
2868      Diag(rawAttr->getLoc(), diag::err_format_attribute_not_NSString,
2869           IdxExpr->getSourceRange());
2870      return;
2871    }
2872  }
2873  else if (!Ty->isPointerType() ||
2874      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2875    // FIXME: Should highlight the actual expression that has the
2876    // wrong type.
2877    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2878         IdxExpr->getSourceRange());
2879    return;
2880  }
2881
2882  // check the 3rd argument
2883  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2884  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2885  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2886    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2887           "format", std::string("3"), FirstArgExpr->getSourceRange());
2888    return;
2889  }
2890
2891  // check if the function is variadic if the 3rd argument non-zero
2892  if (FirstArg != 0) {
2893    if (proto->isVariadic()) {
2894      ++NumArgs; // +1 for ...
2895    } else {
2896      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2897      return;
2898    }
2899  }
2900
2901  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2902  // the input is just the current time + the format string
2903  if (is_strftime) {
2904    if (FirstArg != 0) {
2905      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2906             FirstArgExpr->getSourceRange());
2907      return;
2908    }
2909  // if 0 it disables parameter checking (to use with e.g. va_list)
2910  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2911    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2912           "format", std::string("3"), FirstArgExpr->getSourceRange());
2913    return;
2914  }
2915
2916  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2917                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2918}
2919
2920void Sema::HandleTransparentUnionAttribute(Decl *d, AttributeList *rawAttr) {
2921  // check the attribute arguments.
2922  if (rawAttr->getNumArgs() != 0) {
2923    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2924         std::string("0"));
2925    return;
2926  }
2927
2928  TypeDecl *decl = dyn_cast<TypeDecl>(d);
2929
2930  if (!decl || !Context.getTypeDeclType(decl)->isUnionType()) {
2931    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2932         "transparent_union", "union");
2933    return;
2934  }
2935
2936  //QualType QTy = Context.getTypeDeclType(decl);
2937  //const RecordType *Ty = QTy->getAsUnionType();
2938
2939// FIXME
2940// Ty->addAttr(new TransparentUnionAttr());
2941}
2942
2943void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2944  // check the attribute arguments.
2945  if (rawAttr->getNumArgs() != 1) {
2946    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2947         std::string("1"));
2948    return;
2949  }
2950  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2951  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2952
2953  // Make sure that there is a string literal as the annotation's single
2954  // argument.
2955  if (!SE) {
2956    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2957    return;
2958  }
2959  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2960                                          SE->getByteLength())));
2961}
2962
2963void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2964{
2965  // check the attribute arguments.
2966  if (rawAttr->getNumArgs() > 1) {
2967    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2968         std::string("1"));
2969    return;
2970  }
2971
2972  unsigned Align = 0;
2973
2974  if (rawAttr->getNumArgs() == 0) {
2975    // FIXME: This should be the target specific maximum alignment.
2976    // (For now we just use 128 bits which is the maximum on X86.
2977    Align = 128;
2978    return;
2979  } else {
2980    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2981    llvm::APSInt alignment(32);
2982    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2983      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2984           "aligned", alignmentExpr->getSourceRange());
2985      return;
2986    }
2987
2988    Align = alignment.getZExtValue() * 8;
2989  }
2990
2991  d->addAttr(new AlignedAttr(Align));
2992}
2993