SemaDecl.cpp revision e1e96a6201168c232a06ec81685f948e05fddd39
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isCopyConstructor())
1509      return Sema::CXXCopyConstructor;
1510
1511    if (Ctor->isDefaultConstructor())
1512      return Sema::CXXDefaultConstructor;
1513  }
1514
1515  if (isa<CXXDestructorDecl>(MD))
1516    return Sema::CXXDestructor;
1517
1518  if (MD->isCopyAssignmentOperator())
1519    return Sema::CXXCopyAssignment;
1520
1521  return Sema::CXXInvalid;
1522}
1523
1524/// canRedefineFunction - checks if a function can be redefined. Currently,
1525/// only extern inline functions can be redefined, and even then only in
1526/// GNU89 mode.
1527static bool canRedefineFunction(const FunctionDecl *FD,
1528                                const LangOptions& LangOpts) {
1529  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1530          FD->isInlineSpecified() &&
1531          FD->getStorageClass() == SC_Extern);
1532}
1533
1534/// MergeFunctionDecl - We just parsed a function 'New' from
1535/// declarator D which has the same name and scope as a previous
1536/// declaration 'Old'.  Figure out how to resolve this situation,
1537/// merging decls or emitting diagnostics as appropriate.
1538///
1539/// In C++, New and Old must be declarations that are not
1540/// overloaded. Use IsOverload to determine whether New and Old are
1541/// overloaded, and to select the Old declaration that New should be
1542/// merged with.
1543///
1544/// Returns true if there was an error, false otherwise.
1545bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1546  // Verify the old decl was also a function.
1547  FunctionDecl *Old = 0;
1548  if (FunctionTemplateDecl *OldFunctionTemplate
1549        = dyn_cast<FunctionTemplateDecl>(OldD))
1550    Old = OldFunctionTemplate->getTemplatedDecl();
1551  else
1552    Old = dyn_cast<FunctionDecl>(OldD);
1553  if (!Old) {
1554    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1555      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1556      Diag(Shadow->getTargetDecl()->getLocation(),
1557           diag::note_using_decl_target);
1558      Diag(Shadow->getUsingDecl()->getLocation(),
1559           diag::note_using_decl) << 0;
1560      return true;
1561    }
1562
1563    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1564      << New->getDeclName();
1565    Diag(OldD->getLocation(), diag::note_previous_definition);
1566    return true;
1567  }
1568
1569  // Determine whether the previous declaration was a definition,
1570  // implicit declaration, or a declaration.
1571  diag::kind PrevDiag;
1572  if (Old->isThisDeclarationADefinition())
1573    PrevDiag = diag::note_previous_definition;
1574  else if (Old->isImplicit())
1575    PrevDiag = diag::note_previous_implicit_declaration;
1576  else
1577    PrevDiag = diag::note_previous_declaration;
1578
1579  QualType OldQType = Context.getCanonicalType(Old->getType());
1580  QualType NewQType = Context.getCanonicalType(New->getType());
1581
1582  // Don't complain about this if we're in GNU89 mode and the old function
1583  // is an extern inline function.
1584  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1585      New->getStorageClass() == SC_Static &&
1586      Old->getStorageClass() != SC_Static &&
1587      !canRedefineFunction(Old, getLangOptions())) {
1588    if (getLangOptions().Microsoft) {
1589      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1590      Diag(Old->getLocation(), PrevDiag);
1591    } else {
1592      Diag(New->getLocation(), diag::err_static_non_static) << New;
1593      Diag(Old->getLocation(), PrevDiag);
1594      return true;
1595    }
1596  }
1597
1598  // If a function is first declared with a calling convention, but is
1599  // later declared or defined without one, the second decl assumes the
1600  // calling convention of the first.
1601  //
1602  // For the new decl, we have to look at the NON-canonical type to tell the
1603  // difference between a function that really doesn't have a calling
1604  // convention and one that is declared cdecl. That's because in
1605  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1606  // because it is the default calling convention.
1607  //
1608  // Note also that we DO NOT return at this point, because we still have
1609  // other tests to run.
1610  const FunctionType *OldType = cast<FunctionType>(OldQType);
1611  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1612  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1613  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1614  bool RequiresAdjustment = false;
1615  if (OldTypeInfo.getCC() != CC_Default &&
1616      NewTypeInfo.getCC() == CC_Default) {
1617    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1618    RequiresAdjustment = true;
1619  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1620                                     NewTypeInfo.getCC())) {
1621    // Calling conventions really aren't compatible, so complain.
1622    Diag(New->getLocation(), diag::err_cconv_change)
1623      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1624      << (OldTypeInfo.getCC() == CC_Default)
1625      << (OldTypeInfo.getCC() == CC_Default ? "" :
1626          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1627    Diag(Old->getLocation(), diag::note_previous_declaration);
1628    return true;
1629  }
1630
1631  // FIXME: diagnose the other way around?
1632  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1633    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1634    RequiresAdjustment = true;
1635  }
1636
1637  // Merge regparm attribute.
1638  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1639      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1640    if (NewTypeInfo.getHasRegParm()) {
1641      Diag(New->getLocation(), diag::err_regparm_mismatch)
1642        << NewType->getRegParmType()
1643        << OldType->getRegParmType();
1644      Diag(Old->getLocation(), diag::note_previous_declaration);
1645      return true;
1646    }
1647
1648    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1649    RequiresAdjustment = true;
1650  }
1651
1652  if (RequiresAdjustment) {
1653    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1654    New->setType(QualType(NewType, 0));
1655    NewQType = Context.getCanonicalType(New->getType());
1656  }
1657
1658  if (getLangOptions().CPlusPlus) {
1659    // (C++98 13.1p2):
1660    //   Certain function declarations cannot be overloaded:
1661    //     -- Function declarations that differ only in the return type
1662    //        cannot be overloaded.
1663    QualType OldReturnType = OldType->getResultType();
1664    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1665    QualType ResQT;
1666    if (OldReturnType != NewReturnType) {
1667      if (NewReturnType->isObjCObjectPointerType()
1668          && OldReturnType->isObjCObjectPointerType())
1669        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1670      if (ResQT.isNull()) {
1671        if (New->isCXXClassMember() && New->isOutOfLine())
1672          Diag(New->getLocation(),
1673               diag::err_member_def_does_not_match_ret_type) << New;
1674        else
1675          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1676        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1677        return true;
1678      }
1679      else
1680        NewQType = ResQT;
1681    }
1682
1683    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1684    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1685    if (OldMethod && NewMethod) {
1686      // Preserve triviality.
1687      NewMethod->setTrivial(OldMethod->isTrivial());
1688
1689      bool isFriend = NewMethod->getFriendObjectKind();
1690
1691      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1692        //    -- Member function declarations with the same name and the
1693        //       same parameter types cannot be overloaded if any of them
1694        //       is a static member function declaration.
1695        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1696          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1697          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1698          return true;
1699        }
1700
1701        // C++ [class.mem]p1:
1702        //   [...] A member shall not be declared twice in the
1703        //   member-specification, except that a nested class or member
1704        //   class template can be declared and then later defined.
1705        unsigned NewDiag;
1706        if (isa<CXXConstructorDecl>(OldMethod))
1707          NewDiag = diag::err_constructor_redeclared;
1708        else if (isa<CXXDestructorDecl>(NewMethod))
1709          NewDiag = diag::err_destructor_redeclared;
1710        else if (isa<CXXConversionDecl>(NewMethod))
1711          NewDiag = diag::err_conv_function_redeclared;
1712        else
1713          NewDiag = diag::err_member_redeclared;
1714
1715        Diag(New->getLocation(), NewDiag);
1716        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1717
1718      // Complain if this is an explicit declaration of a special
1719      // member that was initially declared implicitly.
1720      //
1721      // As an exception, it's okay to befriend such methods in order
1722      // to permit the implicit constructor/destructor/operator calls.
1723      } else if (OldMethod->isImplicit()) {
1724        if (isFriend) {
1725          NewMethod->setImplicit();
1726        } else {
1727          Diag(NewMethod->getLocation(),
1728               diag::err_definition_of_implicitly_declared_member)
1729            << New << getSpecialMember(OldMethod);
1730          return true;
1731        }
1732      } else if (OldMethod->isExplicitlyDefaulted()) {
1733        Diag(NewMethod->getLocation(),
1734             diag::err_definition_of_explicitly_defaulted_member)
1735          << getSpecialMember(OldMethod);
1736        return true;
1737      }
1738    }
1739
1740    // (C++98 8.3.5p3):
1741    //   All declarations for a function shall agree exactly in both the
1742    //   return type and the parameter-type-list.
1743    // We also want to respect all the extended bits except noreturn.
1744
1745    // noreturn should now match unless the old type info didn't have it.
1746    QualType OldQTypeForComparison = OldQType;
1747    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1748      assert(OldQType == QualType(OldType, 0));
1749      const FunctionType *OldTypeForComparison
1750        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1751      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1752      assert(OldQTypeForComparison.isCanonical());
1753    }
1754
1755    if (OldQTypeForComparison == NewQType)
1756      return MergeCompatibleFunctionDecls(New, Old);
1757
1758    // Fall through for conflicting redeclarations and redefinitions.
1759  }
1760
1761  // C: Function types need to be compatible, not identical. This handles
1762  // duplicate function decls like "void f(int); void f(enum X);" properly.
1763  if (!getLangOptions().CPlusPlus &&
1764      Context.typesAreCompatible(OldQType, NewQType)) {
1765    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1766    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1767    const FunctionProtoType *OldProto = 0;
1768    if (isa<FunctionNoProtoType>(NewFuncType) &&
1769        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1770      // The old declaration provided a function prototype, but the
1771      // new declaration does not. Merge in the prototype.
1772      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1773      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1774                                                 OldProto->arg_type_end());
1775      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1776                                         ParamTypes.data(), ParamTypes.size(),
1777                                         OldProto->getExtProtoInfo());
1778      New->setType(NewQType);
1779      New->setHasInheritedPrototype();
1780
1781      // Synthesize a parameter for each argument type.
1782      llvm::SmallVector<ParmVarDecl*, 16> Params;
1783      for (FunctionProtoType::arg_type_iterator
1784             ParamType = OldProto->arg_type_begin(),
1785             ParamEnd = OldProto->arg_type_end();
1786           ParamType != ParamEnd; ++ParamType) {
1787        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1788                                                 SourceLocation(),
1789                                                 SourceLocation(), 0,
1790                                                 *ParamType, /*TInfo=*/0,
1791                                                 SC_None, SC_None,
1792                                                 0);
1793        Param->setScopeInfo(0, Params.size());
1794        Param->setImplicit();
1795        Params.push_back(Param);
1796      }
1797
1798      New->setParams(Params.data(), Params.size());
1799    }
1800
1801    return MergeCompatibleFunctionDecls(New, Old);
1802  }
1803
1804  // GNU C permits a K&R definition to follow a prototype declaration
1805  // if the declared types of the parameters in the K&R definition
1806  // match the types in the prototype declaration, even when the
1807  // promoted types of the parameters from the K&R definition differ
1808  // from the types in the prototype. GCC then keeps the types from
1809  // the prototype.
1810  //
1811  // If a variadic prototype is followed by a non-variadic K&R definition,
1812  // the K&R definition becomes variadic.  This is sort of an edge case, but
1813  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1814  // C99 6.9.1p8.
1815  if (!getLangOptions().CPlusPlus &&
1816      Old->hasPrototype() && !New->hasPrototype() &&
1817      New->getType()->getAs<FunctionProtoType>() &&
1818      Old->getNumParams() == New->getNumParams()) {
1819    llvm::SmallVector<QualType, 16> ArgTypes;
1820    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1821    const FunctionProtoType *OldProto
1822      = Old->getType()->getAs<FunctionProtoType>();
1823    const FunctionProtoType *NewProto
1824      = New->getType()->getAs<FunctionProtoType>();
1825
1826    // Determine whether this is the GNU C extension.
1827    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1828                                               NewProto->getResultType());
1829    bool LooseCompatible = !MergedReturn.isNull();
1830    for (unsigned Idx = 0, End = Old->getNumParams();
1831         LooseCompatible && Idx != End; ++Idx) {
1832      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1833      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1834      if (Context.typesAreCompatible(OldParm->getType(),
1835                                     NewProto->getArgType(Idx))) {
1836        ArgTypes.push_back(NewParm->getType());
1837      } else if (Context.typesAreCompatible(OldParm->getType(),
1838                                            NewParm->getType(),
1839                                            /*CompareUnqualified=*/true)) {
1840        GNUCompatibleParamWarning Warn
1841          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1842        Warnings.push_back(Warn);
1843        ArgTypes.push_back(NewParm->getType());
1844      } else
1845        LooseCompatible = false;
1846    }
1847
1848    if (LooseCompatible) {
1849      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1850        Diag(Warnings[Warn].NewParm->getLocation(),
1851             diag::ext_param_promoted_not_compatible_with_prototype)
1852          << Warnings[Warn].PromotedType
1853          << Warnings[Warn].OldParm->getType();
1854        if (Warnings[Warn].OldParm->getLocation().isValid())
1855          Diag(Warnings[Warn].OldParm->getLocation(),
1856               diag::note_previous_declaration);
1857      }
1858
1859      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1860                                           ArgTypes.size(),
1861                                           OldProto->getExtProtoInfo()));
1862      return MergeCompatibleFunctionDecls(New, Old);
1863    }
1864
1865    // Fall through to diagnose conflicting types.
1866  }
1867
1868  // A function that has already been declared has been redeclared or defined
1869  // with a different type- show appropriate diagnostic
1870  if (unsigned BuiltinID = Old->getBuiltinID()) {
1871    // The user has declared a builtin function with an incompatible
1872    // signature.
1873    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1874      // The function the user is redeclaring is a library-defined
1875      // function like 'malloc' or 'printf'. Warn about the
1876      // redeclaration, then pretend that we don't know about this
1877      // library built-in.
1878      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1879      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1880        << Old << Old->getType();
1881      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1882      Old->setInvalidDecl();
1883      return false;
1884    }
1885
1886    PrevDiag = diag::note_previous_builtin_declaration;
1887  }
1888
1889  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1890  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1891  return true;
1892}
1893
1894/// \brief Completes the merge of two function declarations that are
1895/// known to be compatible.
1896///
1897/// This routine handles the merging of attributes and other
1898/// properties of function declarations form the old declaration to
1899/// the new declaration, once we know that New is in fact a
1900/// redeclaration of Old.
1901///
1902/// \returns false
1903bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1904  // Merge the attributes
1905  mergeDeclAttributes(New, Old, Context);
1906
1907  // Merge the storage class.
1908  if (Old->getStorageClass() != SC_Extern &&
1909      Old->getStorageClass() != SC_None)
1910    New->setStorageClass(Old->getStorageClass());
1911
1912  // Merge "pure" flag.
1913  if (Old->isPure())
1914    New->setPure();
1915
1916  // Merge attributes from the parameters.  These can mismatch with K&R
1917  // declarations.
1918  if (New->getNumParams() == Old->getNumParams())
1919    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1920      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1921                               Context);
1922
1923  if (getLangOptions().CPlusPlus)
1924    return MergeCXXFunctionDecl(New, Old);
1925
1926  return false;
1927}
1928
1929void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1930                                const ObjCMethodDecl *oldMethod) {
1931  // Merge the attributes.
1932  mergeDeclAttributes(newMethod, oldMethod, Context);
1933
1934  // Merge attributes from the parameters.
1935  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1936         ni = newMethod->param_begin(), ne = newMethod->param_end();
1937       ni != ne; ++ni, ++oi)
1938    mergeParamDeclAttributes(*ni, *oi, Context);
1939}
1940
1941/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1942/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1943/// emitting diagnostics as appropriate.
1944///
1945/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1946/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1947/// check them before the initializer is attached.
1948///
1949void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1950  if (New->isInvalidDecl() || Old->isInvalidDecl())
1951    return;
1952
1953  QualType MergedT;
1954  if (getLangOptions().CPlusPlus) {
1955    AutoType *AT = New->getType()->getContainedAutoType();
1956    if (AT && !AT->isDeduced()) {
1957      // We don't know what the new type is until the initializer is attached.
1958      return;
1959    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1960      // These could still be something that needs exception specs checked.
1961      return MergeVarDeclExceptionSpecs(New, Old);
1962    }
1963    // C++ [basic.link]p10:
1964    //   [...] the types specified by all declarations referring to a given
1965    //   object or function shall be identical, except that declarations for an
1966    //   array object can specify array types that differ by the presence or
1967    //   absence of a major array bound (8.3.4).
1968    else if (Old->getType()->isIncompleteArrayType() &&
1969             New->getType()->isArrayType()) {
1970      CanQual<ArrayType> OldArray
1971        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1972      CanQual<ArrayType> NewArray
1973        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1974      if (OldArray->getElementType() == NewArray->getElementType())
1975        MergedT = New->getType();
1976    } else if (Old->getType()->isArrayType() &&
1977             New->getType()->isIncompleteArrayType()) {
1978      CanQual<ArrayType> OldArray
1979        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1980      CanQual<ArrayType> NewArray
1981        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1982      if (OldArray->getElementType() == NewArray->getElementType())
1983        MergedT = Old->getType();
1984    } else if (New->getType()->isObjCObjectPointerType()
1985               && Old->getType()->isObjCObjectPointerType()) {
1986        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1987                                                        Old->getType());
1988    }
1989  } else {
1990    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1991  }
1992  if (MergedT.isNull()) {
1993    Diag(New->getLocation(), diag::err_redefinition_different_type)
1994      << New->getDeclName();
1995    Diag(Old->getLocation(), diag::note_previous_definition);
1996    return New->setInvalidDecl();
1997  }
1998  New->setType(MergedT);
1999}
2000
2001/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2002/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2003/// situation, merging decls or emitting diagnostics as appropriate.
2004///
2005/// Tentative definition rules (C99 6.9.2p2) are checked by
2006/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2007/// definitions here, since the initializer hasn't been attached.
2008///
2009void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2010  // If the new decl is already invalid, don't do any other checking.
2011  if (New->isInvalidDecl())
2012    return;
2013
2014  // Verify the old decl was also a variable.
2015  VarDecl *Old = 0;
2016  if (!Previous.isSingleResult() ||
2017      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2018    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2019      << New->getDeclName();
2020    Diag(Previous.getRepresentativeDecl()->getLocation(),
2021         diag::note_previous_definition);
2022    return New->setInvalidDecl();
2023  }
2024
2025  // C++ [class.mem]p1:
2026  //   A member shall not be declared twice in the member-specification [...]
2027  //
2028  // Here, we need only consider static data members.
2029  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2030    Diag(New->getLocation(), diag::err_duplicate_member)
2031      << New->getIdentifier();
2032    Diag(Old->getLocation(), diag::note_previous_declaration);
2033    New->setInvalidDecl();
2034  }
2035
2036  mergeDeclAttributes(New, Old, Context);
2037
2038  // Merge the types.
2039  MergeVarDeclTypes(New, Old);
2040  if (New->isInvalidDecl())
2041    return;
2042
2043  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2044  if (New->getStorageClass() == SC_Static &&
2045      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2046    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2047    Diag(Old->getLocation(), diag::note_previous_definition);
2048    return New->setInvalidDecl();
2049  }
2050  // C99 6.2.2p4:
2051  //   For an identifier declared with the storage-class specifier
2052  //   extern in a scope in which a prior declaration of that
2053  //   identifier is visible,23) if the prior declaration specifies
2054  //   internal or external linkage, the linkage of the identifier at
2055  //   the later declaration is the same as the linkage specified at
2056  //   the prior declaration. If no prior declaration is visible, or
2057  //   if the prior declaration specifies no linkage, then the
2058  //   identifier has external linkage.
2059  if (New->hasExternalStorage() && Old->hasLinkage())
2060    /* Okay */;
2061  else if (New->getStorageClass() != SC_Static &&
2062           Old->getStorageClass() == SC_Static) {
2063    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2064    Diag(Old->getLocation(), diag::note_previous_definition);
2065    return New->setInvalidDecl();
2066  }
2067
2068  // Check if extern is followed by non-extern and vice-versa.
2069  if (New->hasExternalStorage() &&
2070      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2071    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2072    Diag(Old->getLocation(), diag::note_previous_definition);
2073    return New->setInvalidDecl();
2074  }
2075  if (Old->hasExternalStorage() &&
2076      !New->hasLinkage() && New->isLocalVarDecl()) {
2077    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2078    Diag(Old->getLocation(), diag::note_previous_definition);
2079    return New->setInvalidDecl();
2080  }
2081
2082  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2083
2084  // FIXME: The test for external storage here seems wrong? We still
2085  // need to check for mismatches.
2086  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2087      // Don't complain about out-of-line definitions of static members.
2088      !(Old->getLexicalDeclContext()->isRecord() &&
2089        !New->getLexicalDeclContext()->isRecord())) {
2090    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2091    Diag(Old->getLocation(), diag::note_previous_definition);
2092    return New->setInvalidDecl();
2093  }
2094
2095  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2096    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2097    Diag(Old->getLocation(), diag::note_previous_definition);
2098  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2099    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2100    Diag(Old->getLocation(), diag::note_previous_definition);
2101  }
2102
2103  // C++ doesn't have tentative definitions, so go right ahead and check here.
2104  const VarDecl *Def;
2105  if (getLangOptions().CPlusPlus &&
2106      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2107      (Def = Old->getDefinition())) {
2108    Diag(New->getLocation(), diag::err_redefinition)
2109      << New->getDeclName();
2110    Diag(Def->getLocation(), diag::note_previous_definition);
2111    New->setInvalidDecl();
2112    return;
2113  }
2114  // c99 6.2.2 P4.
2115  // For an identifier declared with the storage-class specifier extern in a
2116  // scope in which a prior declaration of that identifier is visible, if
2117  // the prior declaration specifies internal or external linkage, the linkage
2118  // of the identifier at the later declaration is the same as the linkage
2119  // specified at the prior declaration.
2120  // FIXME. revisit this code.
2121  if (New->hasExternalStorage() &&
2122      Old->getLinkage() == InternalLinkage &&
2123      New->getDeclContext() == Old->getDeclContext())
2124    New->setStorageClass(Old->getStorageClass());
2125
2126  // Keep a chain of previous declarations.
2127  New->setPreviousDeclaration(Old);
2128
2129  // Inherit access appropriately.
2130  New->setAccess(Old->getAccess());
2131}
2132
2133/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2134/// no declarator (e.g. "struct foo;") is parsed.
2135Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2136                                       DeclSpec &DS) {
2137  return ParsedFreeStandingDeclSpec(S, AS, DS,
2138                                    MultiTemplateParamsArg(*this, 0, 0));
2139}
2140
2141/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2142/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2143/// parameters to cope with template friend declarations.
2144Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2145                                       DeclSpec &DS,
2146                                       MultiTemplateParamsArg TemplateParams) {
2147  Decl *TagD = 0;
2148  TagDecl *Tag = 0;
2149  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2150      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2151      DS.getTypeSpecType() == DeclSpec::TST_union ||
2152      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2153    TagD = DS.getRepAsDecl();
2154
2155    if (!TagD) // We probably had an error
2156      return 0;
2157
2158    // Note that the above type specs guarantee that the
2159    // type rep is a Decl, whereas in many of the others
2160    // it's a Type.
2161    Tag = dyn_cast<TagDecl>(TagD);
2162  }
2163
2164  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2165    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2166    // or incomplete types shall not be restrict-qualified."
2167    if (TypeQuals & DeclSpec::TQ_restrict)
2168      Diag(DS.getRestrictSpecLoc(),
2169           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2170           << DS.getSourceRange();
2171  }
2172
2173  if (DS.isFriendSpecified()) {
2174    // If we're dealing with a decl but not a TagDecl, assume that
2175    // whatever routines created it handled the friendship aspect.
2176    if (TagD && !Tag)
2177      return 0;
2178    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2179  }
2180
2181  // Track whether we warned about the fact that there aren't any
2182  // declarators.
2183  bool emittedWarning = false;
2184
2185  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2186    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2187
2188    if (!Record->getDeclName() && Record->isDefinition() &&
2189        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2190      if (getLangOptions().CPlusPlus ||
2191          Record->getDeclContext()->isRecord())
2192        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2193
2194      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2195        << DS.getSourceRange();
2196      emittedWarning = true;
2197    }
2198  }
2199
2200  // Check for Microsoft C extension: anonymous struct.
2201  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2202      CurContext->isRecord() &&
2203      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2204    // Handle 2 kinds of anonymous struct:
2205    //   struct STRUCT;
2206    // and
2207    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2208    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2209    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2210        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2211         DS.getRepAsType().get()->isStructureType())) {
2212      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2213        << DS.getSourceRange();
2214      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2215    }
2216  }
2217
2218  if (getLangOptions().CPlusPlus &&
2219      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2220    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2221      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2222          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2223        Diag(Enum->getLocation(), diag::ext_no_declarators)
2224          << DS.getSourceRange();
2225        emittedWarning = true;
2226      }
2227
2228  // Skip all the checks below if we have a type error.
2229  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2230
2231  if (!DS.isMissingDeclaratorOk()) {
2232    // Warn about typedefs of enums without names, since this is an
2233    // extension in both Microsoft and GNU.
2234    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2235        Tag && isa<EnumDecl>(Tag)) {
2236      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2237        << DS.getSourceRange();
2238      return Tag;
2239    }
2240
2241    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2242      << DS.getSourceRange();
2243    emittedWarning = true;
2244  }
2245
2246  // We're going to complain about a bunch of spurious specifiers;
2247  // only do this if we're declaring a tag, because otherwise we
2248  // should be getting diag::ext_no_declarators.
2249  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2250    return TagD;
2251
2252  // Note that a linkage-specification sets a storage class, but
2253  // 'extern "C" struct foo;' is actually valid and not theoretically
2254  // useless.
2255  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2256    if (!DS.isExternInLinkageSpec())
2257      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2258        << DeclSpec::getSpecifierName(scs);
2259
2260  if (DS.isThreadSpecified())
2261    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2262  if (DS.getTypeQualifiers()) {
2263    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2264      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2265    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2266      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2267    // Restrict is covered above.
2268  }
2269  if (DS.isInlineSpecified())
2270    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2271  if (DS.isVirtualSpecified())
2272    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2273  if (DS.isExplicitSpecified())
2274    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2275
2276  // FIXME: Warn on useless attributes
2277
2278  return TagD;
2279}
2280
2281/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2282/// builds a statement for it and returns it so it is evaluated.
2283StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2284  StmtResult R;
2285  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2286    Expr *Exp = DS.getRepAsExpr();
2287    QualType Ty = Exp->getType();
2288    if (Ty->isPointerType()) {
2289      do
2290        Ty = Ty->getAs<PointerType>()->getPointeeType();
2291      while (Ty->isPointerType());
2292    }
2293    if (Ty->isVariableArrayType()) {
2294      R = ActOnExprStmt(MakeFullExpr(Exp));
2295    }
2296  }
2297  return R;
2298}
2299
2300/// We are trying to inject an anonymous member into the given scope;
2301/// check if there's an existing declaration that can't be overloaded.
2302///
2303/// \return true if this is a forbidden redeclaration
2304static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2305                                         Scope *S,
2306                                         DeclContext *Owner,
2307                                         DeclarationName Name,
2308                                         SourceLocation NameLoc,
2309                                         unsigned diagnostic) {
2310  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2311                 Sema::ForRedeclaration);
2312  if (!SemaRef.LookupName(R, S)) return false;
2313
2314  if (R.getAsSingle<TagDecl>())
2315    return false;
2316
2317  // Pick a representative declaration.
2318  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2319  assert(PrevDecl && "Expected a non-null Decl");
2320
2321  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2322    return false;
2323
2324  SemaRef.Diag(NameLoc, diagnostic) << Name;
2325  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2326
2327  return true;
2328}
2329
2330/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2331/// anonymous struct or union AnonRecord into the owning context Owner
2332/// and scope S. This routine will be invoked just after we realize
2333/// that an unnamed union or struct is actually an anonymous union or
2334/// struct, e.g.,
2335///
2336/// @code
2337/// union {
2338///   int i;
2339///   float f;
2340/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2341///    // f into the surrounding scope.x
2342/// @endcode
2343///
2344/// This routine is recursive, injecting the names of nested anonymous
2345/// structs/unions into the owning context and scope as well.
2346static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2347                                                DeclContext *Owner,
2348                                                RecordDecl *AnonRecord,
2349                                                AccessSpecifier AS,
2350                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2351                                                      bool MSAnonStruct) {
2352  unsigned diagKind
2353    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2354                            : diag::err_anonymous_struct_member_redecl;
2355
2356  bool Invalid = false;
2357
2358  // Look every FieldDecl and IndirectFieldDecl with a name.
2359  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2360                               DEnd = AnonRecord->decls_end();
2361       D != DEnd; ++D) {
2362    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2363        cast<NamedDecl>(*D)->getDeclName()) {
2364      ValueDecl *VD = cast<ValueDecl>(*D);
2365      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2366                                       VD->getLocation(), diagKind)) {
2367        // C++ [class.union]p2:
2368        //   The names of the members of an anonymous union shall be
2369        //   distinct from the names of any other entity in the
2370        //   scope in which the anonymous union is declared.
2371        Invalid = true;
2372      } else {
2373        // C++ [class.union]p2:
2374        //   For the purpose of name lookup, after the anonymous union
2375        //   definition, the members of the anonymous union are
2376        //   considered to have been defined in the scope in which the
2377        //   anonymous union is declared.
2378        unsigned OldChainingSize = Chaining.size();
2379        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2380          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2381               PE = IF->chain_end(); PI != PE; ++PI)
2382            Chaining.push_back(*PI);
2383        else
2384          Chaining.push_back(VD);
2385
2386        assert(Chaining.size() >= 2);
2387        NamedDecl **NamedChain =
2388          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2389        for (unsigned i = 0; i < Chaining.size(); i++)
2390          NamedChain[i] = Chaining[i];
2391
2392        IndirectFieldDecl* IndirectField =
2393          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2394                                    VD->getIdentifier(), VD->getType(),
2395                                    NamedChain, Chaining.size());
2396
2397        IndirectField->setAccess(AS);
2398        IndirectField->setImplicit();
2399        SemaRef.PushOnScopeChains(IndirectField, S);
2400
2401        // That includes picking up the appropriate access specifier.
2402        if (AS != AS_none) IndirectField->setAccess(AS);
2403
2404        Chaining.resize(OldChainingSize);
2405      }
2406    }
2407  }
2408
2409  return Invalid;
2410}
2411
2412/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2413/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2414/// illegal input values are mapped to SC_None.
2415static StorageClass
2416StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2417  switch (StorageClassSpec) {
2418  case DeclSpec::SCS_unspecified:    return SC_None;
2419  case DeclSpec::SCS_extern:         return SC_Extern;
2420  case DeclSpec::SCS_static:         return SC_Static;
2421  case DeclSpec::SCS_auto:           return SC_Auto;
2422  case DeclSpec::SCS_register:       return SC_Register;
2423  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2424    // Illegal SCSs map to None: error reporting is up to the caller.
2425  case DeclSpec::SCS_mutable:        // Fall through.
2426  case DeclSpec::SCS_typedef:        return SC_None;
2427  }
2428  llvm_unreachable("unknown storage class specifier");
2429}
2430
2431/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2432/// a StorageClass. Any error reporting is up to the caller:
2433/// illegal input values are mapped to SC_None.
2434static StorageClass
2435StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2436  switch (StorageClassSpec) {
2437  case DeclSpec::SCS_unspecified:    return SC_None;
2438  case DeclSpec::SCS_extern:         return SC_Extern;
2439  case DeclSpec::SCS_static:         return SC_Static;
2440  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2441    // Illegal SCSs map to None: error reporting is up to the caller.
2442  case DeclSpec::SCS_auto:           // Fall through.
2443  case DeclSpec::SCS_mutable:        // Fall through.
2444  case DeclSpec::SCS_register:       // Fall through.
2445  case DeclSpec::SCS_typedef:        return SC_None;
2446  }
2447  llvm_unreachable("unknown storage class specifier");
2448}
2449
2450/// BuildAnonymousStructOrUnion - Handle the declaration of an
2451/// anonymous structure or union. Anonymous unions are a C++ feature
2452/// (C++ [class.union]) and a GNU C extension; anonymous structures
2453/// are a GNU C and GNU C++ extension.
2454Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2455                                             AccessSpecifier AS,
2456                                             RecordDecl *Record) {
2457  DeclContext *Owner = Record->getDeclContext();
2458
2459  // Diagnose whether this anonymous struct/union is an extension.
2460  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2461    Diag(Record->getLocation(), diag::ext_anonymous_union);
2462  else if (!Record->isUnion())
2463    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2464
2465  // C and C++ require different kinds of checks for anonymous
2466  // structs/unions.
2467  bool Invalid = false;
2468  if (getLangOptions().CPlusPlus) {
2469    const char* PrevSpec = 0;
2470    unsigned DiagID;
2471    // C++ [class.union]p3:
2472    //   Anonymous unions declared in a named namespace or in the
2473    //   global namespace shall be declared static.
2474    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2475        (isa<TranslationUnitDecl>(Owner) ||
2476         (isa<NamespaceDecl>(Owner) &&
2477          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2478      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2479      Invalid = true;
2480
2481      // Recover by adding 'static'.
2482      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2483                             PrevSpec, DiagID, getLangOptions());
2484    }
2485    // C++ [class.union]p3:
2486    //   A storage class is not allowed in a declaration of an
2487    //   anonymous union in a class scope.
2488    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2489             isa<RecordDecl>(Owner)) {
2490      Diag(DS.getStorageClassSpecLoc(),
2491           diag::err_anonymous_union_with_storage_spec);
2492      Invalid = true;
2493
2494      // Recover by removing the storage specifier.
2495      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2496                             PrevSpec, DiagID, getLangOptions());
2497    }
2498
2499    // Ignore const/volatile/restrict qualifiers.
2500    if (DS.getTypeQualifiers()) {
2501      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2502        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2503          << Record->isUnion() << 0
2504          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2505      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2506        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2507          << Record->isUnion() << 1
2508          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2509      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2510        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2511          << Record->isUnion() << 2
2512          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2513
2514      DS.ClearTypeQualifiers();
2515    }
2516
2517    // C++ [class.union]p2:
2518    //   The member-specification of an anonymous union shall only
2519    //   define non-static data members. [Note: nested types and
2520    //   functions cannot be declared within an anonymous union. ]
2521    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2522                                 MemEnd = Record->decls_end();
2523         Mem != MemEnd; ++Mem) {
2524      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2525        // C++ [class.union]p3:
2526        //   An anonymous union shall not have private or protected
2527        //   members (clause 11).
2528        assert(FD->getAccess() != AS_none);
2529        if (FD->getAccess() != AS_public) {
2530          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2531            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2532          Invalid = true;
2533        }
2534
2535        if (CheckNontrivialField(FD))
2536          Invalid = true;
2537      } else if ((*Mem)->isImplicit()) {
2538        // Any implicit members are fine.
2539      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2540        // This is a type that showed up in an
2541        // elaborated-type-specifier inside the anonymous struct or
2542        // union, but which actually declares a type outside of the
2543        // anonymous struct or union. It's okay.
2544      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2545        if (!MemRecord->isAnonymousStructOrUnion() &&
2546            MemRecord->getDeclName()) {
2547          // Visual C++ allows type definition in anonymous struct or union.
2548          if (getLangOptions().Microsoft)
2549            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2550              << (int)Record->isUnion();
2551          else {
2552            // This is a nested type declaration.
2553            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2554              << (int)Record->isUnion();
2555            Invalid = true;
2556          }
2557        }
2558      } else if (isa<AccessSpecDecl>(*Mem)) {
2559        // Any access specifier is fine.
2560      } else {
2561        // We have something that isn't a non-static data
2562        // member. Complain about it.
2563        unsigned DK = diag::err_anonymous_record_bad_member;
2564        if (isa<TypeDecl>(*Mem))
2565          DK = diag::err_anonymous_record_with_type;
2566        else if (isa<FunctionDecl>(*Mem))
2567          DK = diag::err_anonymous_record_with_function;
2568        else if (isa<VarDecl>(*Mem))
2569          DK = diag::err_anonymous_record_with_static;
2570
2571        // Visual C++ allows type definition in anonymous struct or union.
2572        if (getLangOptions().Microsoft &&
2573            DK == diag::err_anonymous_record_with_type)
2574          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2575            << (int)Record->isUnion();
2576        else {
2577          Diag((*Mem)->getLocation(), DK)
2578              << (int)Record->isUnion();
2579          Invalid = true;
2580        }
2581      }
2582    }
2583  }
2584
2585  if (!Record->isUnion() && !Owner->isRecord()) {
2586    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2587      << (int)getLangOptions().CPlusPlus;
2588    Invalid = true;
2589  }
2590
2591  // Mock up a declarator.
2592  Declarator Dc(DS, Declarator::TypeNameContext);
2593  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2594  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2595
2596  // Create a declaration for this anonymous struct/union.
2597  NamedDecl *Anon = 0;
2598  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2599    Anon = FieldDecl::Create(Context, OwningClass,
2600                             DS.getSourceRange().getBegin(),
2601                             Record->getLocation(),
2602                             /*IdentifierInfo=*/0,
2603                             Context.getTypeDeclType(Record),
2604                             TInfo,
2605                             /*BitWidth=*/0, /*Mutable=*/false);
2606    Anon->setAccess(AS);
2607    if (getLangOptions().CPlusPlus)
2608      FieldCollector->Add(cast<FieldDecl>(Anon));
2609  } else {
2610    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2611    assert(SCSpec != DeclSpec::SCS_typedef &&
2612           "Parser allowed 'typedef' as storage class VarDecl.");
2613    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2614    if (SCSpec == DeclSpec::SCS_mutable) {
2615      // mutable can only appear on non-static class members, so it's always
2616      // an error here
2617      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2618      Invalid = true;
2619      SC = SC_None;
2620    }
2621    SCSpec = DS.getStorageClassSpecAsWritten();
2622    VarDecl::StorageClass SCAsWritten
2623      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2624
2625    Anon = VarDecl::Create(Context, Owner,
2626                           DS.getSourceRange().getBegin(),
2627                           Record->getLocation(), /*IdentifierInfo=*/0,
2628                           Context.getTypeDeclType(Record),
2629                           TInfo, SC, SCAsWritten);
2630  }
2631  Anon->setImplicit();
2632
2633  // Add the anonymous struct/union object to the current
2634  // context. We'll be referencing this object when we refer to one of
2635  // its members.
2636  Owner->addDecl(Anon);
2637
2638  // Inject the members of the anonymous struct/union into the owning
2639  // context and into the identifier resolver chain for name lookup
2640  // purposes.
2641  llvm::SmallVector<NamedDecl*, 2> Chain;
2642  Chain.push_back(Anon);
2643
2644  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2645                                          Chain, false))
2646    Invalid = true;
2647
2648  // Mark this as an anonymous struct/union type. Note that we do not
2649  // do this until after we have already checked and injected the
2650  // members of this anonymous struct/union type, because otherwise
2651  // the members could be injected twice: once by DeclContext when it
2652  // builds its lookup table, and once by
2653  // InjectAnonymousStructOrUnionMembers.
2654  Record->setAnonymousStructOrUnion(true);
2655
2656  if (Invalid)
2657    Anon->setInvalidDecl();
2658
2659  return Anon;
2660}
2661
2662/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2663/// Microsoft C anonymous structure.
2664/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2665/// Example:
2666///
2667/// struct A { int a; };
2668/// struct B { struct A; int b; };
2669///
2670/// void foo() {
2671///   B var;
2672///   var.a = 3;
2673/// }
2674///
2675Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2676                                           RecordDecl *Record) {
2677
2678  // If there is no Record, get the record via the typedef.
2679  if (!Record)
2680    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2681
2682  // Mock up a declarator.
2683  Declarator Dc(DS, Declarator::TypeNameContext);
2684  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2685  assert(TInfo && "couldn't build declarator info for anonymous struct");
2686
2687  // Create a declaration for this anonymous struct.
2688  NamedDecl* Anon = FieldDecl::Create(Context,
2689                             cast<RecordDecl>(CurContext),
2690                             DS.getSourceRange().getBegin(),
2691                             DS.getSourceRange().getBegin(),
2692                             /*IdentifierInfo=*/0,
2693                             Context.getTypeDeclType(Record),
2694                             TInfo,
2695                             /*BitWidth=*/0, /*Mutable=*/false);
2696  Anon->setImplicit();
2697
2698  // Add the anonymous struct object to the current context.
2699  CurContext->addDecl(Anon);
2700
2701  // Inject the members of the anonymous struct into the current
2702  // context and into the identifier resolver chain for name lookup
2703  // purposes.
2704  llvm::SmallVector<NamedDecl*, 2> Chain;
2705  Chain.push_back(Anon);
2706
2707  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2708                                          Record->getDefinition(),
2709                                          AS_none, Chain, true))
2710    Anon->setInvalidDecl();
2711
2712  return Anon;
2713}
2714
2715/// GetNameForDeclarator - Determine the full declaration name for the
2716/// given Declarator.
2717DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2718  return GetNameFromUnqualifiedId(D.getName());
2719}
2720
2721/// \brief Retrieves the declaration name from a parsed unqualified-id.
2722DeclarationNameInfo
2723Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2724  DeclarationNameInfo NameInfo;
2725  NameInfo.setLoc(Name.StartLocation);
2726
2727  switch (Name.getKind()) {
2728
2729  case UnqualifiedId::IK_Identifier:
2730    NameInfo.setName(Name.Identifier);
2731    NameInfo.setLoc(Name.StartLocation);
2732    return NameInfo;
2733
2734  case UnqualifiedId::IK_OperatorFunctionId:
2735    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2736                                           Name.OperatorFunctionId.Operator));
2737    NameInfo.setLoc(Name.StartLocation);
2738    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2739      = Name.OperatorFunctionId.SymbolLocations[0];
2740    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2741      = Name.EndLocation.getRawEncoding();
2742    return NameInfo;
2743
2744  case UnqualifiedId::IK_LiteralOperatorId:
2745    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2746                                                           Name.Identifier));
2747    NameInfo.setLoc(Name.StartLocation);
2748    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2749    return NameInfo;
2750
2751  case UnqualifiedId::IK_ConversionFunctionId: {
2752    TypeSourceInfo *TInfo;
2753    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2754    if (Ty.isNull())
2755      return DeclarationNameInfo();
2756    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2757                                               Context.getCanonicalType(Ty)));
2758    NameInfo.setLoc(Name.StartLocation);
2759    NameInfo.setNamedTypeInfo(TInfo);
2760    return NameInfo;
2761  }
2762
2763  case UnqualifiedId::IK_ConstructorName: {
2764    TypeSourceInfo *TInfo;
2765    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2766    if (Ty.isNull())
2767      return DeclarationNameInfo();
2768    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2769                                              Context.getCanonicalType(Ty)));
2770    NameInfo.setLoc(Name.StartLocation);
2771    NameInfo.setNamedTypeInfo(TInfo);
2772    return NameInfo;
2773  }
2774
2775  case UnqualifiedId::IK_ConstructorTemplateId: {
2776    // In well-formed code, we can only have a constructor
2777    // template-id that refers to the current context, so go there
2778    // to find the actual type being constructed.
2779    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2780    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2781      return DeclarationNameInfo();
2782
2783    // Determine the type of the class being constructed.
2784    QualType CurClassType = Context.getTypeDeclType(CurClass);
2785
2786    // FIXME: Check two things: that the template-id names the same type as
2787    // CurClassType, and that the template-id does not occur when the name
2788    // was qualified.
2789
2790    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2791                                    Context.getCanonicalType(CurClassType)));
2792    NameInfo.setLoc(Name.StartLocation);
2793    // FIXME: should we retrieve TypeSourceInfo?
2794    NameInfo.setNamedTypeInfo(0);
2795    return NameInfo;
2796  }
2797
2798  case UnqualifiedId::IK_DestructorName: {
2799    TypeSourceInfo *TInfo;
2800    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2801    if (Ty.isNull())
2802      return DeclarationNameInfo();
2803    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2804                                              Context.getCanonicalType(Ty)));
2805    NameInfo.setLoc(Name.StartLocation);
2806    NameInfo.setNamedTypeInfo(TInfo);
2807    return NameInfo;
2808  }
2809
2810  case UnqualifiedId::IK_TemplateId: {
2811    TemplateName TName = Name.TemplateId->Template.get();
2812    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2813    return Context.getNameForTemplate(TName, TNameLoc);
2814  }
2815
2816  } // switch (Name.getKind())
2817
2818  assert(false && "Unknown name kind");
2819  return DeclarationNameInfo();
2820}
2821
2822/// isNearlyMatchingFunction - Determine whether the C++ functions
2823/// Declaration and Definition are "nearly" matching. This heuristic
2824/// is used to improve diagnostics in the case where an out-of-line
2825/// function definition doesn't match any declaration within
2826/// the class or namespace.
2827static bool isNearlyMatchingFunction(ASTContext &Context,
2828                                     FunctionDecl *Declaration,
2829                                     FunctionDecl *Definition) {
2830  if (Declaration->param_size() != Definition->param_size())
2831    return false;
2832  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2833    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2834    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2835
2836    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2837                                        DefParamTy.getNonReferenceType()))
2838      return false;
2839  }
2840
2841  return true;
2842}
2843
2844/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2845/// declarator needs to be rebuilt in the current instantiation.
2846/// Any bits of declarator which appear before the name are valid for
2847/// consideration here.  That's specifically the type in the decl spec
2848/// and the base type in any member-pointer chunks.
2849static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2850                                                    DeclarationName Name) {
2851  // The types we specifically need to rebuild are:
2852  //   - typenames, typeofs, and decltypes
2853  //   - types which will become injected class names
2854  // Of course, we also need to rebuild any type referencing such a
2855  // type.  It's safest to just say "dependent", but we call out a
2856  // few cases here.
2857
2858  DeclSpec &DS = D.getMutableDeclSpec();
2859  switch (DS.getTypeSpecType()) {
2860  case DeclSpec::TST_typename:
2861  case DeclSpec::TST_typeofType:
2862  case DeclSpec::TST_decltype: {
2863    // Grab the type from the parser.
2864    TypeSourceInfo *TSI = 0;
2865    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2866    if (T.isNull() || !T->isDependentType()) break;
2867
2868    // Make sure there's a type source info.  This isn't really much
2869    // of a waste; most dependent types should have type source info
2870    // attached already.
2871    if (!TSI)
2872      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2873
2874    // Rebuild the type in the current instantiation.
2875    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2876    if (!TSI) return true;
2877
2878    // Store the new type back in the decl spec.
2879    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2880    DS.UpdateTypeRep(LocType);
2881    break;
2882  }
2883
2884  case DeclSpec::TST_typeofExpr: {
2885    Expr *E = DS.getRepAsExpr();
2886    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2887    if (Result.isInvalid()) return true;
2888    DS.UpdateExprRep(Result.get());
2889    break;
2890  }
2891
2892  default:
2893    // Nothing to do for these decl specs.
2894    break;
2895  }
2896
2897  // It doesn't matter what order we do this in.
2898  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2899    DeclaratorChunk &Chunk = D.getTypeObject(I);
2900
2901    // The only type information in the declarator which can come
2902    // before the declaration name is the base type of a member
2903    // pointer.
2904    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2905      continue;
2906
2907    // Rebuild the scope specifier in-place.
2908    CXXScopeSpec &SS = Chunk.Mem.Scope();
2909    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2910      return true;
2911  }
2912
2913  return false;
2914}
2915
2916Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2917                            bool IsFunctionDefinition) {
2918  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2919                          IsFunctionDefinition);
2920}
2921
2922/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2923///   If T is the name of a class, then each of the following shall have a
2924///   name different from T:
2925///     - every static data member of class T;
2926///     - every member function of class T
2927///     - every member of class T that is itself a type;
2928/// \returns true if the declaration name violates these rules.
2929bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2930                                   DeclarationNameInfo NameInfo) {
2931  DeclarationName Name = NameInfo.getName();
2932
2933  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2934    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2935      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2936      return true;
2937    }
2938
2939  return false;
2940}
2941
2942Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2943                             MultiTemplateParamsArg TemplateParamLists,
2944                             bool IsFunctionDefinition) {
2945  // TODO: consider using NameInfo for diagnostic.
2946  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2947  DeclarationName Name = NameInfo.getName();
2948
2949  // All of these full declarators require an identifier.  If it doesn't have
2950  // one, the ParsedFreeStandingDeclSpec action should be used.
2951  if (!Name) {
2952    if (!D.isInvalidType())  // Reject this if we think it is valid.
2953      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2954           diag::err_declarator_need_ident)
2955        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2956    return 0;
2957  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2958    return 0;
2959
2960  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2961  // we find one that is.
2962  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2963         (S->getFlags() & Scope::TemplateParamScope) != 0)
2964    S = S->getParent();
2965
2966  DeclContext *DC = CurContext;
2967  if (D.getCXXScopeSpec().isInvalid())
2968    D.setInvalidType();
2969  else if (D.getCXXScopeSpec().isSet()) {
2970    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2971                                        UPPC_DeclarationQualifier))
2972      return 0;
2973
2974    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2975    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2976    if (!DC) {
2977      // If we could not compute the declaration context, it's because the
2978      // declaration context is dependent but does not refer to a class,
2979      // class template, or class template partial specialization. Complain
2980      // and return early, to avoid the coming semantic disaster.
2981      Diag(D.getIdentifierLoc(),
2982           diag::err_template_qualified_declarator_no_match)
2983        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2984        << D.getCXXScopeSpec().getRange();
2985      return 0;
2986    }
2987    bool IsDependentContext = DC->isDependentContext();
2988
2989    if (!IsDependentContext &&
2990        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2991      return 0;
2992
2993    if (isa<CXXRecordDecl>(DC)) {
2994      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2995        Diag(D.getIdentifierLoc(),
2996             diag::err_member_def_undefined_record)
2997          << Name << DC << D.getCXXScopeSpec().getRange();
2998        D.setInvalidType();
2999      } else if (isa<CXXRecordDecl>(CurContext) &&
3000                 !D.getDeclSpec().isFriendSpecified()) {
3001        // The user provided a superfluous scope specifier inside a class
3002        // definition:
3003        //
3004        // class X {
3005        //   void X::f();
3006        // };
3007        if (CurContext->Equals(DC))
3008          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3009            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3010        else
3011          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3012            << Name << D.getCXXScopeSpec().getRange();
3013
3014        // Pretend that this qualifier was not here.
3015        D.getCXXScopeSpec().clear();
3016      }
3017    }
3018
3019    // Check whether we need to rebuild the type of the given
3020    // declaration in the current instantiation.
3021    if (EnteringContext && IsDependentContext &&
3022        TemplateParamLists.size() != 0) {
3023      ContextRAII SavedContext(*this, DC);
3024      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3025        D.setInvalidType();
3026    }
3027  }
3028
3029  if (DiagnoseClassNameShadow(DC, NameInfo))
3030    // If this is a typedef, we'll end up spewing multiple diagnostics.
3031    // Just return early; it's safer.
3032    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3033      return 0;
3034
3035  NamedDecl *New;
3036
3037  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3038  QualType R = TInfo->getType();
3039
3040  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3041                                      UPPC_DeclarationType))
3042    D.setInvalidType();
3043
3044  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3045                        ForRedeclaration);
3046
3047  // See if this is a redefinition of a variable in the same scope.
3048  if (!D.getCXXScopeSpec().isSet()) {
3049    bool IsLinkageLookup = false;
3050
3051    // If the declaration we're planning to build will be a function
3052    // or object with linkage, then look for another declaration with
3053    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3054    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3055      /* Do nothing*/;
3056    else if (R->isFunctionType()) {
3057      if (CurContext->isFunctionOrMethod() ||
3058          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3059        IsLinkageLookup = true;
3060    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3061      IsLinkageLookup = true;
3062    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3063             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3064      IsLinkageLookup = true;
3065
3066    if (IsLinkageLookup)
3067      Previous.clear(LookupRedeclarationWithLinkage);
3068
3069    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3070  } else { // Something like "int foo::x;"
3071    LookupQualifiedName(Previous, DC);
3072
3073    // Don't consider using declarations as previous declarations for
3074    // out-of-line members.
3075    RemoveUsingDecls(Previous);
3076
3077    // C++ 7.3.1.2p2:
3078    // Members (including explicit specializations of templates) of a named
3079    // namespace can also be defined outside that namespace by explicit
3080    // qualification of the name being defined, provided that the entity being
3081    // defined was already declared in the namespace and the definition appears
3082    // after the point of declaration in a namespace that encloses the
3083    // declarations namespace.
3084    //
3085    // Note that we only check the context at this point. We don't yet
3086    // have enough information to make sure that PrevDecl is actually
3087    // the declaration we want to match. For example, given:
3088    //
3089    //   class X {
3090    //     void f();
3091    //     void f(float);
3092    //   };
3093    //
3094    //   void X::f(int) { } // ill-formed
3095    //
3096    // In this case, PrevDecl will point to the overload set
3097    // containing the two f's declared in X, but neither of them
3098    // matches.
3099
3100    // First check whether we named the global scope.
3101    if (isa<TranslationUnitDecl>(DC)) {
3102      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3103        << Name << D.getCXXScopeSpec().getRange();
3104    } else {
3105      DeclContext *Cur = CurContext;
3106      while (isa<LinkageSpecDecl>(Cur))
3107        Cur = Cur->getParent();
3108      if (!Cur->Encloses(DC)) {
3109        // The qualifying scope doesn't enclose the original declaration.
3110        // Emit diagnostic based on current scope.
3111        SourceLocation L = D.getIdentifierLoc();
3112        SourceRange R = D.getCXXScopeSpec().getRange();
3113        if (isa<FunctionDecl>(Cur))
3114          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3115        else
3116          Diag(L, diag::err_invalid_declarator_scope)
3117            << Name << cast<NamedDecl>(DC) << R;
3118        D.setInvalidType();
3119      }
3120    }
3121  }
3122
3123  if (Previous.isSingleResult() &&
3124      Previous.getFoundDecl()->isTemplateParameter()) {
3125    // Maybe we will complain about the shadowed template parameter.
3126    if (!D.isInvalidType())
3127      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3128                                          Previous.getFoundDecl()))
3129        D.setInvalidType();
3130
3131    // Just pretend that we didn't see the previous declaration.
3132    Previous.clear();
3133  }
3134
3135  // In C++, the previous declaration we find might be a tag type
3136  // (class or enum). In this case, the new declaration will hide the
3137  // tag type. Note that this does does not apply if we're declaring a
3138  // typedef (C++ [dcl.typedef]p4).
3139  if (Previous.isSingleTagDecl() &&
3140      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3141    Previous.clear();
3142
3143  bool Redeclaration = false;
3144  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3145    if (TemplateParamLists.size()) {
3146      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3147      return 0;
3148    }
3149
3150    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3151  } else if (R->isFunctionType()) {
3152    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3153                                  move(TemplateParamLists),
3154                                  IsFunctionDefinition, Redeclaration);
3155  } else {
3156    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3157                                  move(TemplateParamLists),
3158                                  Redeclaration);
3159  }
3160
3161  if (New == 0)
3162    return 0;
3163
3164  // If this has an identifier and is not an invalid redeclaration or
3165  // function template specialization, add it to the scope stack.
3166  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3167    PushOnScopeChains(New, S);
3168
3169  return New;
3170}
3171
3172/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3173/// types into constant array types in certain situations which would otherwise
3174/// be errors (for GCC compatibility).
3175static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3176                                                    ASTContext &Context,
3177                                                    bool &SizeIsNegative,
3178                                                    llvm::APSInt &Oversized) {
3179  // This method tries to turn a variable array into a constant
3180  // array even when the size isn't an ICE.  This is necessary
3181  // for compatibility with code that depends on gcc's buggy
3182  // constant expression folding, like struct {char x[(int)(char*)2];}
3183  SizeIsNegative = false;
3184  Oversized = 0;
3185
3186  if (T->isDependentType())
3187    return QualType();
3188
3189  QualifierCollector Qs;
3190  const Type *Ty = Qs.strip(T);
3191
3192  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3193    QualType Pointee = PTy->getPointeeType();
3194    QualType FixedType =
3195        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3196                                            Oversized);
3197    if (FixedType.isNull()) return FixedType;
3198    FixedType = Context.getPointerType(FixedType);
3199    return Qs.apply(Context, FixedType);
3200  }
3201  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3202    QualType Inner = PTy->getInnerType();
3203    QualType FixedType =
3204        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3205                                            Oversized);
3206    if (FixedType.isNull()) return FixedType;
3207    FixedType = Context.getParenType(FixedType);
3208    return Qs.apply(Context, FixedType);
3209  }
3210
3211  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3212  if (!VLATy)
3213    return QualType();
3214  // FIXME: We should probably handle this case
3215  if (VLATy->getElementType()->isVariablyModifiedType())
3216    return QualType();
3217
3218  Expr::EvalResult EvalResult;
3219  if (!VLATy->getSizeExpr() ||
3220      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3221      !EvalResult.Val.isInt())
3222    return QualType();
3223
3224  // Check whether the array size is negative.
3225  llvm::APSInt &Res = EvalResult.Val.getInt();
3226  if (Res.isSigned() && Res.isNegative()) {
3227    SizeIsNegative = true;
3228    return QualType();
3229  }
3230
3231  // Check whether the array is too large to be addressed.
3232  unsigned ActiveSizeBits
3233    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3234                                              Res);
3235  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3236    Oversized = Res;
3237    return QualType();
3238  }
3239
3240  return Context.getConstantArrayType(VLATy->getElementType(),
3241                                      Res, ArrayType::Normal, 0);
3242}
3243
3244/// \brief Register the given locally-scoped external C declaration so
3245/// that it can be found later for redeclarations
3246void
3247Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3248                                       const LookupResult &Previous,
3249                                       Scope *S) {
3250  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3251         "Decl is not a locally-scoped decl!");
3252  // Note that we have a locally-scoped external with this name.
3253  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3254
3255  if (!Previous.isSingleResult())
3256    return;
3257
3258  NamedDecl *PrevDecl = Previous.getFoundDecl();
3259
3260  // If there was a previous declaration of this variable, it may be
3261  // in our identifier chain. Update the identifier chain with the new
3262  // declaration.
3263  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3264    // The previous declaration was found on the identifer resolver
3265    // chain, so remove it from its scope.
3266    while (S && !S->isDeclScope(PrevDecl))
3267      S = S->getParent();
3268
3269    if (S)
3270      S->RemoveDecl(PrevDecl);
3271  }
3272}
3273
3274/// \brief Diagnose function specifiers on a declaration of an identifier that
3275/// does not identify a function.
3276void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3277  // FIXME: We should probably indicate the identifier in question to avoid
3278  // confusion for constructs like "inline int a(), b;"
3279  if (D.getDeclSpec().isInlineSpecified())
3280    Diag(D.getDeclSpec().getInlineSpecLoc(),
3281         diag::err_inline_non_function);
3282
3283  if (D.getDeclSpec().isVirtualSpecified())
3284    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3285         diag::err_virtual_non_function);
3286
3287  if (D.getDeclSpec().isExplicitSpecified())
3288    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3289         diag::err_explicit_non_function);
3290}
3291
3292NamedDecl*
3293Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3294                             QualType R,  TypeSourceInfo *TInfo,
3295                             LookupResult &Previous, bool &Redeclaration) {
3296  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3297  if (D.getCXXScopeSpec().isSet()) {
3298    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3299      << D.getCXXScopeSpec().getRange();
3300    D.setInvalidType();
3301    // Pretend we didn't see the scope specifier.
3302    DC = CurContext;
3303    Previous.clear();
3304  }
3305
3306  if (getLangOptions().CPlusPlus) {
3307    // Check that there are no default arguments (C++ only).
3308    CheckExtraCXXDefaultArguments(D);
3309  }
3310
3311  DiagnoseFunctionSpecifiers(D);
3312
3313  if (D.getDeclSpec().isThreadSpecified())
3314    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3315
3316  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3317    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3318      << D.getName().getSourceRange();
3319    return 0;
3320  }
3321
3322  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3323  if (!NewTD) return 0;
3324
3325  // Handle attributes prior to checking for duplicates in MergeVarDecl
3326  ProcessDeclAttributes(S, NewTD, D);
3327
3328  CheckTypedefForVariablyModifiedType(S, NewTD);
3329
3330  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3331}
3332
3333void
3334Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3335  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3336  // then it shall have block scope.
3337  // Note that variably modified types must be fixed before merging the decl so
3338  // that redeclarations will match.
3339  QualType T = NewTD->getUnderlyingType();
3340  if (T->isVariablyModifiedType()) {
3341    getCurFunction()->setHasBranchProtectedScope();
3342
3343    if (S->getFnParent() == 0) {
3344      bool SizeIsNegative;
3345      llvm::APSInt Oversized;
3346      QualType FixedTy =
3347          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3348                                              Oversized);
3349      if (!FixedTy.isNull()) {
3350        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3351        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3352      } else {
3353        if (SizeIsNegative)
3354          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3355        else if (T->isVariableArrayType())
3356          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3357        else if (Oversized.getBoolValue())
3358          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3359        else
3360          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3361        NewTD->setInvalidDecl();
3362      }
3363    }
3364  }
3365}
3366
3367
3368/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3369/// declares a typedef-name, either using the 'typedef' type specifier or via
3370/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3371NamedDecl*
3372Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3373                           LookupResult &Previous, bool &Redeclaration) {
3374  // Merge the decl with the existing one if appropriate. If the decl is
3375  // in an outer scope, it isn't the same thing.
3376  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3377                       /*ExplicitInstantiationOrSpecialization=*/false);
3378  if (!Previous.empty()) {
3379    Redeclaration = true;
3380    MergeTypedefNameDecl(NewTD, Previous);
3381  }
3382
3383  // If this is the C FILE type, notify the AST context.
3384  if (IdentifierInfo *II = NewTD->getIdentifier())
3385    if (!NewTD->isInvalidDecl() &&
3386        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3387      if (II->isStr("FILE"))
3388        Context.setFILEDecl(NewTD);
3389      else if (II->isStr("jmp_buf"))
3390        Context.setjmp_bufDecl(NewTD);
3391      else if (II->isStr("sigjmp_buf"))
3392        Context.setsigjmp_bufDecl(NewTD);
3393      else if (II->isStr("__builtin_va_list"))
3394        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3395    }
3396
3397  return NewTD;
3398}
3399
3400/// \brief Determines whether the given declaration is an out-of-scope
3401/// previous declaration.
3402///
3403/// This routine should be invoked when name lookup has found a
3404/// previous declaration (PrevDecl) that is not in the scope where a
3405/// new declaration by the same name is being introduced. If the new
3406/// declaration occurs in a local scope, previous declarations with
3407/// linkage may still be considered previous declarations (C99
3408/// 6.2.2p4-5, C++ [basic.link]p6).
3409///
3410/// \param PrevDecl the previous declaration found by name
3411/// lookup
3412///
3413/// \param DC the context in which the new declaration is being
3414/// declared.
3415///
3416/// \returns true if PrevDecl is an out-of-scope previous declaration
3417/// for a new delcaration with the same name.
3418static bool
3419isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3420                                ASTContext &Context) {
3421  if (!PrevDecl)
3422    return false;
3423
3424  if (!PrevDecl->hasLinkage())
3425    return false;
3426
3427  if (Context.getLangOptions().CPlusPlus) {
3428    // C++ [basic.link]p6:
3429    //   If there is a visible declaration of an entity with linkage
3430    //   having the same name and type, ignoring entities declared
3431    //   outside the innermost enclosing namespace scope, the block
3432    //   scope declaration declares that same entity and receives the
3433    //   linkage of the previous declaration.
3434    DeclContext *OuterContext = DC->getRedeclContext();
3435    if (!OuterContext->isFunctionOrMethod())
3436      // This rule only applies to block-scope declarations.
3437      return false;
3438
3439    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3440    if (PrevOuterContext->isRecord())
3441      // We found a member function: ignore it.
3442      return false;
3443
3444    // Find the innermost enclosing namespace for the new and
3445    // previous declarations.
3446    OuterContext = OuterContext->getEnclosingNamespaceContext();
3447    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3448
3449    // The previous declaration is in a different namespace, so it
3450    // isn't the same function.
3451    if (!OuterContext->Equals(PrevOuterContext))
3452      return false;
3453  }
3454
3455  return true;
3456}
3457
3458static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3459  CXXScopeSpec &SS = D.getCXXScopeSpec();
3460  if (!SS.isSet()) return;
3461  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3462}
3463
3464NamedDecl*
3465Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3466                              QualType R, TypeSourceInfo *TInfo,
3467                              LookupResult &Previous,
3468                              MultiTemplateParamsArg TemplateParamLists,
3469                              bool &Redeclaration) {
3470  DeclarationName Name = GetNameForDeclarator(D).getName();
3471
3472  // Check that there are no default arguments (C++ only).
3473  if (getLangOptions().CPlusPlus)
3474    CheckExtraCXXDefaultArguments(D);
3475
3476  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3477  assert(SCSpec != DeclSpec::SCS_typedef &&
3478         "Parser allowed 'typedef' as storage class VarDecl.");
3479  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3480  if (SCSpec == DeclSpec::SCS_mutable) {
3481    // mutable can only appear on non-static class members, so it's always
3482    // an error here
3483    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3484    D.setInvalidType();
3485    SC = SC_None;
3486  }
3487  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3488  VarDecl::StorageClass SCAsWritten
3489    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3490
3491  IdentifierInfo *II = Name.getAsIdentifierInfo();
3492  if (!II) {
3493    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3494      << Name.getAsString();
3495    return 0;
3496  }
3497
3498  DiagnoseFunctionSpecifiers(D);
3499
3500  if (!DC->isRecord() && S->getFnParent() == 0) {
3501    // C99 6.9p2: The storage-class specifiers auto and register shall not
3502    // appear in the declaration specifiers in an external declaration.
3503    if (SC == SC_Auto || SC == SC_Register) {
3504
3505      // If this is a register variable with an asm label specified, then this
3506      // is a GNU extension.
3507      if (SC == SC_Register && D.getAsmLabel())
3508        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3509      else
3510        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3511      D.setInvalidType();
3512    }
3513  }
3514
3515  bool isExplicitSpecialization = false;
3516  VarDecl *NewVD;
3517  if (!getLangOptions().CPlusPlus) {
3518    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3519                            D.getIdentifierLoc(), II,
3520                            R, TInfo, SC, SCAsWritten);
3521
3522    if (D.isInvalidType())
3523      NewVD->setInvalidDecl();
3524  } else {
3525    if (DC->isRecord() && !CurContext->isRecord()) {
3526      // This is an out-of-line definition of a static data member.
3527      if (SC == SC_Static) {
3528        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3529             diag::err_static_out_of_line)
3530          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3531      } else if (SC == SC_None)
3532        SC = SC_Static;
3533    }
3534    if (SC == SC_Static) {
3535      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3536        if (RD->isLocalClass())
3537          Diag(D.getIdentifierLoc(),
3538               diag::err_static_data_member_not_allowed_in_local_class)
3539            << Name << RD->getDeclName();
3540
3541        // C++ [class.union]p1: If a union contains a static data member,
3542        // the program is ill-formed.
3543        //
3544        // We also disallow static data members in anonymous structs.
3545        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3546          Diag(D.getIdentifierLoc(),
3547               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3548            << Name << RD->isUnion();
3549      }
3550    }
3551
3552    // Match up the template parameter lists with the scope specifier, then
3553    // determine whether we have a template or a template specialization.
3554    isExplicitSpecialization = false;
3555    bool Invalid = false;
3556    if (TemplateParameterList *TemplateParams
3557        = MatchTemplateParametersToScopeSpecifier(
3558                                  D.getDeclSpec().getSourceRange().getBegin(),
3559                                                  D.getIdentifierLoc(),
3560                                                  D.getCXXScopeSpec(),
3561                                                  TemplateParamLists.get(),
3562                                                  TemplateParamLists.size(),
3563                                                  /*never a friend*/ false,
3564                                                  isExplicitSpecialization,
3565                                                  Invalid)) {
3566      if (TemplateParams->size() > 0) {
3567        // There is no such thing as a variable template.
3568        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3569          << II
3570          << SourceRange(TemplateParams->getTemplateLoc(),
3571                         TemplateParams->getRAngleLoc());
3572        return 0;
3573      } else {
3574        // There is an extraneous 'template<>' for this variable. Complain
3575        // about it, but allow the declaration of the variable.
3576        Diag(TemplateParams->getTemplateLoc(),
3577             diag::err_template_variable_noparams)
3578          << II
3579          << SourceRange(TemplateParams->getTemplateLoc(),
3580                         TemplateParams->getRAngleLoc());
3581      }
3582    }
3583
3584    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3585                            D.getIdentifierLoc(), II,
3586                            R, TInfo, SC, SCAsWritten);
3587
3588    // If this decl has an auto type in need of deduction, make a note of the
3589    // Decl so we can diagnose uses of it in its own initializer.
3590    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3591        R->getContainedAutoType())
3592      ParsingInitForAutoVars.insert(NewVD);
3593
3594    if (D.isInvalidType() || Invalid)
3595      NewVD->setInvalidDecl();
3596
3597    SetNestedNameSpecifier(NewVD, D);
3598
3599    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3600      NewVD->setTemplateParameterListsInfo(Context,
3601                                           TemplateParamLists.size(),
3602                                           TemplateParamLists.release());
3603    }
3604  }
3605
3606  if (D.getDeclSpec().isThreadSpecified()) {
3607    if (NewVD->hasLocalStorage())
3608      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3609    else if (!Context.Target.isTLSSupported())
3610      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3611    else
3612      NewVD->setThreadSpecified(true);
3613  }
3614
3615  // Set the lexical context. If the declarator has a C++ scope specifier, the
3616  // lexical context will be different from the semantic context.
3617  NewVD->setLexicalDeclContext(CurContext);
3618
3619  // Handle attributes prior to checking for duplicates in MergeVarDecl
3620  ProcessDeclAttributes(S, NewVD, D);
3621
3622  // Handle GNU asm-label extension (encoded as an attribute).
3623  if (Expr *E = (Expr*)D.getAsmLabel()) {
3624    // The parser guarantees this is a string.
3625    StringLiteral *SE = cast<StringLiteral>(E);
3626    llvm::StringRef Label = SE->getString();
3627    if (S->getFnParent() != 0) {
3628      switch (SC) {
3629      case SC_None:
3630      case SC_Auto:
3631        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3632        break;
3633      case SC_Register:
3634        if (!Context.Target.isValidGCCRegisterName(Label))
3635          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3636        break;
3637      case SC_Static:
3638      case SC_Extern:
3639      case SC_PrivateExtern:
3640        break;
3641      }
3642    }
3643
3644    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3645                                                Context, Label));
3646  }
3647
3648  // Diagnose shadowed variables before filtering for scope.
3649  if (!D.getCXXScopeSpec().isSet())
3650    CheckShadow(S, NewVD, Previous);
3651
3652  // Don't consider existing declarations that are in a different
3653  // scope and are out-of-semantic-context declarations (if the new
3654  // declaration has linkage).
3655  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3656                       isExplicitSpecialization);
3657
3658  if (!getLangOptions().CPlusPlus)
3659    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3660  else {
3661    // Merge the decl with the existing one if appropriate.
3662    if (!Previous.empty()) {
3663      if (Previous.isSingleResult() &&
3664          isa<FieldDecl>(Previous.getFoundDecl()) &&
3665          D.getCXXScopeSpec().isSet()) {
3666        // The user tried to define a non-static data member
3667        // out-of-line (C++ [dcl.meaning]p1).
3668        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3669          << D.getCXXScopeSpec().getRange();
3670        Previous.clear();
3671        NewVD->setInvalidDecl();
3672      }
3673    } else if (D.getCXXScopeSpec().isSet()) {
3674      // No previous declaration in the qualifying scope.
3675      Diag(D.getIdentifierLoc(), diag::err_no_member)
3676        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3677        << D.getCXXScopeSpec().getRange();
3678      NewVD->setInvalidDecl();
3679    }
3680
3681    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3682
3683    // This is an explicit specialization of a static data member. Check it.
3684    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3685        CheckMemberSpecialization(NewVD, Previous))
3686      NewVD->setInvalidDecl();
3687  }
3688
3689  // attributes declared post-definition are currently ignored
3690  // FIXME: This should be handled in attribute merging, not
3691  // here.
3692  if (Previous.isSingleResult()) {
3693    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3694    if (Def && (Def = Def->getDefinition()) &&
3695        Def != NewVD && D.hasAttributes()) {
3696      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3697      Diag(Def->getLocation(), diag::note_previous_definition);
3698    }
3699  }
3700
3701  // If this is a locally-scoped extern C variable, update the map of
3702  // such variables.
3703  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3704      !NewVD->isInvalidDecl())
3705    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3706
3707  // If there's a #pragma GCC visibility in scope, and this isn't a class
3708  // member, set the visibility of this variable.
3709  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3710    AddPushedVisibilityAttribute(NewVD);
3711
3712  MarkUnusedFileScopedDecl(NewVD);
3713
3714  return NewVD;
3715}
3716
3717/// \brief Diagnose variable or built-in function shadowing.  Implements
3718/// -Wshadow.
3719///
3720/// This method is called whenever a VarDecl is added to a "useful"
3721/// scope.
3722///
3723/// \param S the scope in which the shadowing name is being declared
3724/// \param R the lookup of the name
3725///
3726void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3727  // Return if warning is ignored.
3728  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3729        Diagnostic::Ignored)
3730    return;
3731
3732  // Don't diagnose declarations at file scope.
3733  if (D->hasGlobalStorage())
3734    return;
3735
3736  DeclContext *NewDC = D->getDeclContext();
3737
3738  // Only diagnose if we're shadowing an unambiguous field or variable.
3739  if (R.getResultKind() != LookupResult::Found)
3740    return;
3741
3742  NamedDecl* ShadowedDecl = R.getFoundDecl();
3743  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3744    return;
3745
3746  // Fields are not shadowed by variables in C++ static methods.
3747  if (isa<FieldDecl>(ShadowedDecl))
3748    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3749      if (MD->isStatic())
3750        return;
3751
3752  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3753    if (shadowedVar->isExternC()) {
3754      // For shadowing external vars, make sure that we point to the global
3755      // declaration, not a locally scoped extern declaration.
3756      for (VarDecl::redecl_iterator
3757             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3758           I != E; ++I)
3759        if (I->isFileVarDecl()) {
3760          ShadowedDecl = *I;
3761          break;
3762        }
3763    }
3764
3765  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3766
3767  // Only warn about certain kinds of shadowing for class members.
3768  if (NewDC && NewDC->isRecord()) {
3769    // In particular, don't warn about shadowing non-class members.
3770    if (!OldDC->isRecord())
3771      return;
3772
3773    // TODO: should we warn about static data members shadowing
3774    // static data members from base classes?
3775
3776    // TODO: don't diagnose for inaccessible shadowed members.
3777    // This is hard to do perfectly because we might friend the
3778    // shadowing context, but that's just a false negative.
3779  }
3780
3781  // Determine what kind of declaration we're shadowing.
3782  unsigned Kind;
3783  if (isa<RecordDecl>(OldDC)) {
3784    if (isa<FieldDecl>(ShadowedDecl))
3785      Kind = 3; // field
3786    else
3787      Kind = 2; // static data member
3788  } else if (OldDC->isFileContext())
3789    Kind = 1; // global
3790  else
3791    Kind = 0; // local
3792
3793  DeclarationName Name = R.getLookupName();
3794
3795  // Emit warning and note.
3796  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3797  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3798}
3799
3800/// \brief Check -Wshadow without the advantage of a previous lookup.
3801void Sema::CheckShadow(Scope *S, VarDecl *D) {
3802  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3803        Diagnostic::Ignored)
3804    return;
3805
3806  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3807                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3808  LookupName(R, S);
3809  CheckShadow(S, D, R);
3810}
3811
3812/// \brief Perform semantic checking on a newly-created variable
3813/// declaration.
3814///
3815/// This routine performs all of the type-checking required for a
3816/// variable declaration once it has been built. It is used both to
3817/// check variables after they have been parsed and their declarators
3818/// have been translated into a declaration, and to check variables
3819/// that have been instantiated from a template.
3820///
3821/// Sets NewVD->isInvalidDecl() if an error was encountered.
3822void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3823                                    LookupResult &Previous,
3824                                    bool &Redeclaration) {
3825  // If the decl is already known invalid, don't check it.
3826  if (NewVD->isInvalidDecl())
3827    return;
3828
3829  QualType T = NewVD->getType();
3830
3831  if (T->isObjCObjectType()) {
3832    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3833    return NewVD->setInvalidDecl();
3834  }
3835
3836  // Emit an error if an address space was applied to decl with local storage.
3837  // This includes arrays of objects with address space qualifiers, but not
3838  // automatic variables that point to other address spaces.
3839  // ISO/IEC TR 18037 S5.1.2
3840  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3841    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3842    return NewVD->setInvalidDecl();
3843  }
3844
3845  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3846      && !NewVD->hasAttr<BlocksAttr>())
3847    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3848
3849  bool isVM = T->isVariablyModifiedType();
3850  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3851      NewVD->hasAttr<BlocksAttr>())
3852    getCurFunction()->setHasBranchProtectedScope();
3853
3854  if ((isVM && NewVD->hasLinkage()) ||
3855      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3856    bool SizeIsNegative;
3857    llvm::APSInt Oversized;
3858    QualType FixedTy =
3859        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3860                                            Oversized);
3861
3862    if (FixedTy.isNull() && T->isVariableArrayType()) {
3863      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3864      // FIXME: This won't give the correct result for
3865      // int a[10][n];
3866      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3867
3868      if (NewVD->isFileVarDecl())
3869        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3870        << SizeRange;
3871      else if (NewVD->getStorageClass() == SC_Static)
3872        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3873        << SizeRange;
3874      else
3875        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3876        << SizeRange;
3877      return NewVD->setInvalidDecl();
3878    }
3879
3880    if (FixedTy.isNull()) {
3881      if (NewVD->isFileVarDecl())
3882        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3883      else
3884        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3885      return NewVD->setInvalidDecl();
3886    }
3887
3888    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3889    NewVD->setType(FixedTy);
3890  }
3891
3892  if (Previous.empty() && NewVD->isExternC()) {
3893    // Since we did not find anything by this name and we're declaring
3894    // an extern "C" variable, look for a non-visible extern "C"
3895    // declaration with the same name.
3896    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3897      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3898    if (Pos != LocallyScopedExternalDecls.end())
3899      Previous.addDecl(Pos->second);
3900  }
3901
3902  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3903    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3904      << T;
3905    return NewVD->setInvalidDecl();
3906  }
3907
3908  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3909    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3910    return NewVD->setInvalidDecl();
3911  }
3912
3913  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3914    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3915    return NewVD->setInvalidDecl();
3916  }
3917
3918  // Function pointers and references cannot have qualified function type, only
3919  // function pointer-to-members can do that.
3920  QualType Pointee;
3921  unsigned PtrOrRef = 0;
3922  if (const PointerType *Ptr = T->getAs<PointerType>())
3923    Pointee = Ptr->getPointeeType();
3924  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3925    Pointee = Ref->getPointeeType();
3926    PtrOrRef = 1;
3927  }
3928  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3929      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3930    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3931        << PtrOrRef;
3932    return NewVD->setInvalidDecl();
3933  }
3934
3935  if (!Previous.empty()) {
3936    Redeclaration = true;
3937    MergeVarDecl(NewVD, Previous);
3938  }
3939}
3940
3941/// \brief Data used with FindOverriddenMethod
3942struct FindOverriddenMethodData {
3943  Sema *S;
3944  CXXMethodDecl *Method;
3945};
3946
3947/// \brief Member lookup function that determines whether a given C++
3948/// method overrides a method in a base class, to be used with
3949/// CXXRecordDecl::lookupInBases().
3950static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3951                                 CXXBasePath &Path,
3952                                 void *UserData) {
3953  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3954
3955  FindOverriddenMethodData *Data
3956    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3957
3958  DeclarationName Name = Data->Method->getDeclName();
3959
3960  // FIXME: Do we care about other names here too?
3961  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3962    // We really want to find the base class destructor here.
3963    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3964    CanQualType CT = Data->S->Context.getCanonicalType(T);
3965
3966    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3967  }
3968
3969  for (Path.Decls = BaseRecord->lookup(Name);
3970       Path.Decls.first != Path.Decls.second;
3971       ++Path.Decls.first) {
3972    NamedDecl *D = *Path.Decls.first;
3973    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3974      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3975        return true;
3976    }
3977  }
3978
3979  return false;
3980}
3981
3982/// AddOverriddenMethods - See if a method overrides any in the base classes,
3983/// and if so, check that it's a valid override and remember it.
3984bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3985  // Look for virtual methods in base classes that this method might override.
3986  CXXBasePaths Paths;
3987  FindOverriddenMethodData Data;
3988  Data.Method = MD;
3989  Data.S = this;
3990  bool AddedAny = false;
3991  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3992    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3993         E = Paths.found_decls_end(); I != E; ++I) {
3994      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3995        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3996            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3997            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3998          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3999          AddedAny = true;
4000        }
4001      }
4002    }
4003  }
4004
4005  return AddedAny;
4006}
4007
4008static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4009  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4010                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4011  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4012  assert(!Prev.isAmbiguous() &&
4013         "Cannot have an ambiguity in previous-declaration lookup");
4014  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4015       Func != FuncEnd; ++Func) {
4016    if (isa<FunctionDecl>(*Func) &&
4017        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4018      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4019  }
4020}
4021
4022NamedDecl*
4023Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4024                              QualType R, TypeSourceInfo *TInfo,
4025                              LookupResult &Previous,
4026                              MultiTemplateParamsArg TemplateParamLists,
4027                              bool IsFunctionDefinition, bool &Redeclaration) {
4028  assert(R.getTypePtr()->isFunctionType());
4029
4030  // TODO: consider using NameInfo for diagnostic.
4031  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4032  DeclarationName Name = NameInfo.getName();
4033  FunctionDecl::StorageClass SC = SC_None;
4034  switch (D.getDeclSpec().getStorageClassSpec()) {
4035  default: assert(0 && "Unknown storage class!");
4036  case DeclSpec::SCS_auto:
4037  case DeclSpec::SCS_register:
4038  case DeclSpec::SCS_mutable:
4039    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4040         diag::err_typecheck_sclass_func);
4041    D.setInvalidType();
4042    break;
4043  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4044  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4045  case DeclSpec::SCS_static: {
4046    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4047      // C99 6.7.1p5:
4048      //   The declaration of an identifier for a function that has
4049      //   block scope shall have no explicit storage-class specifier
4050      //   other than extern
4051      // See also (C++ [dcl.stc]p4).
4052      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4053           diag::err_static_block_func);
4054      SC = SC_None;
4055    } else
4056      SC = SC_Static;
4057    break;
4058  }
4059  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4060  }
4061
4062  if (D.getDeclSpec().isThreadSpecified())
4063    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4064
4065  // Do not allow returning a objc interface by-value.
4066  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4067    Diag(D.getIdentifierLoc(),
4068         diag::err_object_cannot_be_passed_returned_by_value) << 0
4069    << R->getAs<FunctionType>()->getResultType();
4070    D.setInvalidType();
4071  }
4072
4073  FunctionDecl *NewFD;
4074  bool isInline = D.getDeclSpec().isInlineSpecified();
4075  bool isFriend = false;
4076  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4077  FunctionDecl::StorageClass SCAsWritten
4078    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4079  FunctionTemplateDecl *FunctionTemplate = 0;
4080  bool isExplicitSpecialization = false;
4081  bool isFunctionTemplateSpecialization = false;
4082
4083  if (!getLangOptions().CPlusPlus) {
4084    // Determine whether the function was written with a
4085    // prototype. This true when:
4086    //   - there is a prototype in the declarator, or
4087    //   - the type R of the function is some kind of typedef or other reference
4088    //     to a type name (which eventually refers to a function type).
4089    bool HasPrototype =
4090    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4091    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4092
4093    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4094                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4095                                 HasPrototype);
4096    if (D.isInvalidType())
4097      NewFD->setInvalidDecl();
4098
4099    // Set the lexical context.
4100    NewFD->setLexicalDeclContext(CurContext);
4101    // Filter out previous declarations that don't match the scope.
4102    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4103                         /*ExplicitInstantiationOrSpecialization=*/false);
4104  } else {
4105    isFriend = D.getDeclSpec().isFriendSpecified();
4106    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4107    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4108    bool isVirtualOkay = false;
4109
4110    // Check that the return type is not an abstract class type.
4111    // For record types, this is done by the AbstractClassUsageDiagnoser once
4112    // the class has been completely parsed.
4113    if (!DC->isRecord() &&
4114      RequireNonAbstractType(D.getIdentifierLoc(),
4115                             R->getAs<FunctionType>()->getResultType(),
4116                             diag::err_abstract_type_in_decl,
4117                             AbstractReturnType))
4118      D.setInvalidType();
4119
4120    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4121      // This is a C++ constructor declaration.
4122      assert(DC->isRecord() &&
4123             "Constructors can only be declared in a member context");
4124
4125      R = CheckConstructorDeclarator(D, R, SC);
4126
4127      // Create the new declaration
4128      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4129                                         Context,
4130                                         cast<CXXRecordDecl>(DC),
4131                                         D.getSourceRange().getBegin(),
4132                                         NameInfo, R, TInfo,
4133                                         isExplicit, isInline,
4134                                         /*isImplicitlyDeclared=*/false);
4135
4136      NewFD = NewCD;
4137    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4138      // This is a C++ destructor declaration.
4139      if (DC->isRecord()) {
4140        R = CheckDestructorDeclarator(D, R, SC);
4141
4142        NewFD = CXXDestructorDecl::Create(Context,
4143                                          cast<CXXRecordDecl>(DC),
4144                                          D.getSourceRange().getBegin(),
4145                                          NameInfo, R, TInfo,
4146                                          isInline,
4147                                          /*isImplicitlyDeclared=*/false);
4148        isVirtualOkay = true;
4149      } else {
4150        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4151
4152        // Create a FunctionDecl to satisfy the function definition parsing
4153        // code path.
4154        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4155                                     D.getIdentifierLoc(), Name, R, TInfo,
4156                                     SC, SCAsWritten, isInline,
4157                                     /*hasPrototype=*/true);
4158        D.setInvalidType();
4159      }
4160    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4161      if (!DC->isRecord()) {
4162        Diag(D.getIdentifierLoc(),
4163             diag::err_conv_function_not_member);
4164        return 0;
4165      }
4166
4167      CheckConversionDeclarator(D, R, SC);
4168      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4169                                        D.getSourceRange().getBegin(),
4170                                        NameInfo, R, TInfo,
4171                                        isInline, isExplicit,
4172                                        SourceLocation());
4173
4174      isVirtualOkay = true;
4175    } else if (DC->isRecord()) {
4176      // If the of the function is the same as the name of the record, then this
4177      // must be an invalid constructor that has a return type.
4178      // (The parser checks for a return type and makes the declarator a
4179      // constructor if it has no return type).
4180      // must have an invalid constructor that has a return type
4181      if (Name.getAsIdentifierInfo() &&
4182          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4183        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4184          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4185          << SourceRange(D.getIdentifierLoc());
4186        return 0;
4187      }
4188
4189      bool isStatic = SC == SC_Static;
4190
4191      // [class.free]p1:
4192      // Any allocation function for a class T is a static member
4193      // (even if not explicitly declared static).
4194      if (Name.getCXXOverloadedOperator() == OO_New ||
4195          Name.getCXXOverloadedOperator() == OO_Array_New)
4196        isStatic = true;
4197
4198      // [class.free]p6 Any deallocation function for a class X is a static member
4199      // (even if not explicitly declared static).
4200      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4201          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4202        isStatic = true;
4203
4204      // This is a C++ method declaration.
4205      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4206                                               Context, cast<CXXRecordDecl>(DC),
4207                                               D.getSourceRange().getBegin(),
4208                                               NameInfo, R, TInfo,
4209                                               isStatic, SCAsWritten, isInline,
4210                                               SourceLocation());
4211      NewFD = NewMD;
4212
4213      isVirtualOkay = !isStatic;
4214    } else {
4215      // Determine whether the function was written with a
4216      // prototype. This true when:
4217      //   - we're in C++ (where every function has a prototype),
4218      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4219                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4220                                   true/*HasPrototype*/);
4221    }
4222
4223    if (isFriend && !isInline && IsFunctionDefinition) {
4224      // C++ [class.friend]p5
4225      //   A function can be defined in a friend declaration of a
4226      //   class . . . . Such a function is implicitly inline.
4227      NewFD->setImplicitlyInline();
4228    }
4229
4230    SetNestedNameSpecifier(NewFD, D);
4231    isExplicitSpecialization = false;
4232    isFunctionTemplateSpecialization = false;
4233    if (D.isInvalidType())
4234      NewFD->setInvalidDecl();
4235
4236    // Set the lexical context. If the declarator has a C++
4237    // scope specifier, or is the object of a friend declaration, the
4238    // lexical context will be different from the semantic context.
4239    NewFD->setLexicalDeclContext(CurContext);
4240
4241    // Match up the template parameter lists with the scope specifier, then
4242    // determine whether we have a template or a template specialization.
4243    bool Invalid = false;
4244    if (TemplateParameterList *TemplateParams
4245          = MatchTemplateParametersToScopeSpecifier(
4246                                  D.getDeclSpec().getSourceRange().getBegin(),
4247                                  D.getIdentifierLoc(),
4248                                  D.getCXXScopeSpec(),
4249                                  TemplateParamLists.get(),
4250                                  TemplateParamLists.size(),
4251                                  isFriend,
4252                                  isExplicitSpecialization,
4253                                  Invalid)) {
4254      if (TemplateParams->size() > 0) {
4255        // This is a function template
4256
4257        // Check that we can declare a template here.
4258        if (CheckTemplateDeclScope(S, TemplateParams))
4259          return 0;
4260
4261        // A destructor cannot be a template.
4262        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4263          Diag(NewFD->getLocation(), diag::err_destructor_template);
4264          return 0;
4265        }
4266
4267        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4268                                                        NewFD->getLocation(),
4269                                                        Name, TemplateParams,
4270                                                        NewFD);
4271        FunctionTemplate->setLexicalDeclContext(CurContext);
4272        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4273
4274        // For source fidelity, store the other template param lists.
4275        if (TemplateParamLists.size() > 1) {
4276          NewFD->setTemplateParameterListsInfo(Context,
4277                                               TemplateParamLists.size() - 1,
4278                                               TemplateParamLists.release());
4279        }
4280      } else {
4281        // This is a function template specialization.
4282        isFunctionTemplateSpecialization = true;
4283        // For source fidelity, store all the template param lists.
4284        NewFD->setTemplateParameterListsInfo(Context,
4285                                             TemplateParamLists.size(),
4286                                             TemplateParamLists.release());
4287
4288        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4289        if (isFriend) {
4290          // We want to remove the "template<>", found here.
4291          SourceRange RemoveRange = TemplateParams->getSourceRange();
4292
4293          // If we remove the template<> and the name is not a
4294          // template-id, we're actually silently creating a problem:
4295          // the friend declaration will refer to an untemplated decl,
4296          // and clearly the user wants a template specialization.  So
4297          // we need to insert '<>' after the name.
4298          SourceLocation InsertLoc;
4299          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4300            InsertLoc = D.getName().getSourceRange().getEnd();
4301            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4302          }
4303
4304          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4305            << Name << RemoveRange
4306            << FixItHint::CreateRemoval(RemoveRange)
4307            << FixItHint::CreateInsertion(InsertLoc, "<>");
4308        }
4309      }
4310    }
4311    else {
4312      // All template param lists were matched against the scope specifier:
4313      // this is NOT (an explicit specialization of) a template.
4314      if (TemplateParamLists.size() > 0)
4315        // For source fidelity, store all the template param lists.
4316        NewFD->setTemplateParameterListsInfo(Context,
4317                                             TemplateParamLists.size(),
4318                                             TemplateParamLists.release());
4319    }
4320
4321    if (Invalid) {
4322      NewFD->setInvalidDecl();
4323      if (FunctionTemplate)
4324        FunctionTemplate->setInvalidDecl();
4325    }
4326
4327    // C++ [dcl.fct.spec]p5:
4328    //   The virtual specifier shall only be used in declarations of
4329    //   nonstatic class member functions that appear within a
4330    //   member-specification of a class declaration; see 10.3.
4331    //
4332    if (isVirtual && !NewFD->isInvalidDecl()) {
4333      if (!isVirtualOkay) {
4334        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4335             diag::err_virtual_non_function);
4336      } else if (!CurContext->isRecord()) {
4337        // 'virtual' was specified outside of the class.
4338        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4339             diag::err_virtual_out_of_class)
4340          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4341      } else if (NewFD->getDescribedFunctionTemplate()) {
4342        // C++ [temp.mem]p3:
4343        //  A member function template shall not be virtual.
4344        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4345             diag::err_virtual_member_function_template)
4346          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4347      } else {
4348        // Okay: Add virtual to the method.
4349        NewFD->setVirtualAsWritten(true);
4350      }
4351    }
4352
4353    // C++ [dcl.fct.spec]p3:
4354    //  The inline specifier shall not appear on a block scope function declaration.
4355    if (isInline && !NewFD->isInvalidDecl()) {
4356      if (CurContext->isFunctionOrMethod()) {
4357        // 'inline' is not allowed on block scope function declaration.
4358        Diag(D.getDeclSpec().getInlineSpecLoc(),
4359             diag::err_inline_declaration_block_scope) << Name
4360          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4361      }
4362    }
4363
4364    // C++ [dcl.fct.spec]p6:
4365    //  The explicit specifier shall be used only in the declaration of a
4366    //  constructor or conversion function within its class definition; see 12.3.1
4367    //  and 12.3.2.
4368    if (isExplicit && !NewFD->isInvalidDecl()) {
4369      if (!CurContext->isRecord()) {
4370        // 'explicit' was specified outside of the class.
4371        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4372             diag::err_explicit_out_of_class)
4373          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4374      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4375                 !isa<CXXConversionDecl>(NewFD)) {
4376        // 'explicit' was specified on a function that wasn't a constructor
4377        // or conversion function.
4378        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4379             diag::err_explicit_non_ctor_or_conv_function)
4380          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4381      }
4382    }
4383
4384    // Filter out previous declarations that don't match the scope.
4385    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4386                         isExplicitSpecialization ||
4387                         isFunctionTemplateSpecialization);
4388
4389    if (isFriend) {
4390      // For now, claim that the objects have no previous declaration.
4391      if (FunctionTemplate) {
4392        FunctionTemplate->setObjectOfFriendDecl(false);
4393        FunctionTemplate->setAccess(AS_public);
4394      }
4395      NewFD->setObjectOfFriendDecl(false);
4396      NewFD->setAccess(AS_public);
4397    }
4398
4399    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4400      // A method is implicitly inline if it's defined in its class
4401      // definition.
4402      NewFD->setImplicitlyInline();
4403    }
4404
4405    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4406        !CurContext->isRecord()) {
4407      // C++ [class.static]p1:
4408      //   A data or function member of a class may be declared static
4409      //   in a class definition, in which case it is a static member of
4410      //   the class.
4411
4412      // Complain about the 'static' specifier if it's on an out-of-line
4413      // member function definition.
4414      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4415           diag::err_static_out_of_line)
4416        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4417    }
4418  }
4419
4420  // Handle GNU asm-label extension (encoded as an attribute).
4421  if (Expr *E = (Expr*) D.getAsmLabel()) {
4422    // The parser guarantees this is a string.
4423    StringLiteral *SE = cast<StringLiteral>(E);
4424    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4425                                                SE->getString()));
4426  }
4427
4428  // Copy the parameter declarations from the declarator D to the function
4429  // declaration NewFD, if they are available.  First scavenge them into Params.
4430  llvm::SmallVector<ParmVarDecl*, 16> Params;
4431  if (D.isFunctionDeclarator()) {
4432    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4433
4434    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4435    // function that takes no arguments, not a function that takes a
4436    // single void argument.
4437    // We let through "const void" here because Sema::GetTypeForDeclarator
4438    // already checks for that case.
4439    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4440        FTI.ArgInfo[0].Param &&
4441        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4442      // Empty arg list, don't push any params.
4443      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4444
4445      // In C++, the empty parameter-type-list must be spelled "void"; a
4446      // typedef of void is not permitted.
4447      if (getLangOptions().CPlusPlus &&
4448          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4449        bool IsTypeAlias = false;
4450        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4451          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4452        else if (const TemplateSpecializationType *TST =
4453                   Param->getType()->getAs<TemplateSpecializationType>())
4454          IsTypeAlias = TST->isTypeAlias();
4455        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4456          << IsTypeAlias;
4457      }
4458    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4459      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4460        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4461        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4462        Param->setDeclContext(NewFD);
4463        Params.push_back(Param);
4464
4465        if (Param->isInvalidDecl())
4466          NewFD->setInvalidDecl();
4467      }
4468    }
4469
4470  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4471    // When we're declaring a function with a typedef, typeof, etc as in the
4472    // following example, we'll need to synthesize (unnamed)
4473    // parameters for use in the declaration.
4474    //
4475    // @code
4476    // typedef void fn(int);
4477    // fn f;
4478    // @endcode
4479
4480    // Synthesize a parameter for each argument type.
4481    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4482         AE = FT->arg_type_end(); AI != AE; ++AI) {
4483      ParmVarDecl *Param =
4484        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4485      Param->setScopeInfo(0, Params.size());
4486      Params.push_back(Param);
4487    }
4488  } else {
4489    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4490           "Should not need args for typedef of non-prototype fn");
4491  }
4492  // Finally, we know we have the right number of parameters, install them.
4493  NewFD->setParams(Params.data(), Params.size());
4494
4495  // Process the non-inheritable attributes on this declaration.
4496  ProcessDeclAttributes(S, NewFD, D,
4497                        /*NonInheritable=*/true, /*Inheritable=*/false);
4498
4499  if (!getLangOptions().CPlusPlus) {
4500    // Perform semantic checking on the function declaration.
4501    bool isExplctSpecialization=false;
4502    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4503                             Redeclaration);
4504    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4505            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4506           "previous declaration set still overloaded");
4507  } else {
4508    // If the declarator is a template-id, translate the parser's template
4509    // argument list into our AST format.
4510    bool HasExplicitTemplateArgs = false;
4511    TemplateArgumentListInfo TemplateArgs;
4512    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4513      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4514      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4515      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4516      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4517                                         TemplateId->getTemplateArgs(),
4518                                         TemplateId->NumArgs);
4519      translateTemplateArguments(TemplateArgsPtr,
4520                                 TemplateArgs);
4521      TemplateArgsPtr.release();
4522
4523      HasExplicitTemplateArgs = true;
4524
4525      if (FunctionTemplate) {
4526        // Function template with explicit template arguments.
4527        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4528          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4529
4530        HasExplicitTemplateArgs = false;
4531      } else if (!isFunctionTemplateSpecialization &&
4532                 !D.getDeclSpec().isFriendSpecified()) {
4533        // We have encountered something that the user meant to be a
4534        // specialization (because it has explicitly-specified template
4535        // arguments) but that was not introduced with a "template<>" (or had
4536        // too few of them).
4537        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4538          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4539          << FixItHint::CreateInsertion(
4540                                        D.getDeclSpec().getSourceRange().getBegin(),
4541                                                  "template<> ");
4542        isFunctionTemplateSpecialization = true;
4543      } else {
4544        // "friend void foo<>(int);" is an implicit specialization decl.
4545        isFunctionTemplateSpecialization = true;
4546      }
4547    } else if (isFriend && isFunctionTemplateSpecialization) {
4548      // This combination is only possible in a recovery case;  the user
4549      // wrote something like:
4550      //   template <> friend void foo(int);
4551      // which we're recovering from as if the user had written:
4552      //   friend void foo<>(int);
4553      // Go ahead and fake up a template id.
4554      HasExplicitTemplateArgs = true;
4555        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4556      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4557    }
4558
4559    // If it's a friend (and only if it's a friend), it's possible
4560    // that either the specialized function type or the specialized
4561    // template is dependent, and therefore matching will fail.  In
4562    // this case, don't check the specialization yet.
4563    if (isFunctionTemplateSpecialization && isFriend &&
4564        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4565      assert(HasExplicitTemplateArgs &&
4566             "friend function specialization without template args");
4567      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4568                                                       Previous))
4569        NewFD->setInvalidDecl();
4570    } else if (isFunctionTemplateSpecialization) {
4571      if (CurContext->isDependentContext() && CurContext->isRecord()
4572          && !isFriend && !getLangOptions().Microsoft) {
4573        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4574          << NewFD->getDeclName();
4575        NewFD->setInvalidDecl();
4576        return 0;
4577      } else if (CheckFunctionTemplateSpecialization(NewFD,
4578                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4579                                                     Previous))
4580        NewFD->setInvalidDecl();
4581    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4582      if (CheckMemberSpecialization(NewFD, Previous))
4583          NewFD->setInvalidDecl();
4584    }
4585
4586    // Perform semantic checking on the function declaration.
4587    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4588                             Redeclaration);
4589
4590    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4591            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4592           "previous declaration set still overloaded");
4593
4594    NamedDecl *PrincipalDecl = (FunctionTemplate
4595                                ? cast<NamedDecl>(FunctionTemplate)
4596                                : NewFD);
4597
4598    if (isFriend && Redeclaration) {
4599      AccessSpecifier Access = AS_public;
4600      if (!NewFD->isInvalidDecl())
4601        Access = NewFD->getPreviousDeclaration()->getAccess();
4602
4603      NewFD->setAccess(Access);
4604      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4605
4606      PrincipalDecl->setObjectOfFriendDecl(true);
4607    }
4608
4609    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4610        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4611      PrincipalDecl->setNonMemberOperator();
4612
4613    // If we have a function template, check the template parameter
4614    // list. This will check and merge default template arguments.
4615    if (FunctionTemplate) {
4616      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4617      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4618                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4619                            D.getDeclSpec().isFriendSpecified()
4620                              ? (IsFunctionDefinition
4621                                   ? TPC_FriendFunctionTemplateDefinition
4622                                   : TPC_FriendFunctionTemplate)
4623                              : (D.getCXXScopeSpec().isSet() &&
4624                                 DC && DC->isRecord() &&
4625                                 DC->isDependentContext())
4626                                  ? TPC_ClassTemplateMember
4627                                  : TPC_FunctionTemplate);
4628    }
4629
4630    if (NewFD->isInvalidDecl()) {
4631      // Ignore all the rest of this.
4632    } else if (!Redeclaration) {
4633      // Fake up an access specifier if it's supposed to be a class member.
4634      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4635        NewFD->setAccess(AS_public);
4636
4637      // Qualified decls generally require a previous declaration.
4638      if (D.getCXXScopeSpec().isSet()) {
4639        // ...with the major exception of templated-scope or
4640        // dependent-scope friend declarations.
4641
4642        // TODO: we currently also suppress this check in dependent
4643        // contexts because (1) the parameter depth will be off when
4644        // matching friend templates and (2) we might actually be
4645        // selecting a friend based on a dependent factor.  But there
4646        // are situations where these conditions don't apply and we
4647        // can actually do this check immediately.
4648        if (isFriend &&
4649            (TemplateParamLists.size() ||
4650             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4651             CurContext->isDependentContext())) {
4652              // ignore these
4653            } else {
4654              // The user tried to provide an out-of-line definition for a
4655              // function that is a member of a class or namespace, but there
4656              // was no such member function declared (C++ [class.mfct]p2,
4657              // C++ [namespace.memdef]p2). For example:
4658              //
4659              // class X {
4660              //   void f() const;
4661              // };
4662              //
4663              // void X::f() { } // ill-formed
4664              //
4665              // Complain about this problem, and attempt to suggest close
4666              // matches (e.g., those that differ only in cv-qualifiers and
4667              // whether the parameter types are references).
4668              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4669              << Name << DC << D.getCXXScopeSpec().getRange();
4670              NewFD->setInvalidDecl();
4671
4672              DiagnoseInvalidRedeclaration(*this, NewFD);
4673            }
4674
4675        // Unqualified local friend declarations are required to resolve
4676        // to something.
4677        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4678          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4679          NewFD->setInvalidDecl();
4680          DiagnoseInvalidRedeclaration(*this, NewFD);
4681        }
4682
4683    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4684               !isFriend && !isFunctionTemplateSpecialization &&
4685               !isExplicitSpecialization) {
4686      // An out-of-line member function declaration must also be a
4687      // definition (C++ [dcl.meaning]p1).
4688      // Note that this is not the case for explicit specializations of
4689      // function templates or member functions of class templates, per
4690      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4691      // for compatibility with old SWIG code which likes to generate them.
4692      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4693        << D.getCXXScopeSpec().getRange();
4694    }
4695  }
4696
4697
4698  // Handle attributes. We need to have merged decls when handling attributes
4699  // (for example to check for conflicts, etc).
4700  // FIXME: This needs to happen before we merge declarations. Then,
4701  // let attribute merging cope with attribute conflicts.
4702  ProcessDeclAttributes(S, NewFD, D,
4703                        /*NonInheritable=*/false, /*Inheritable=*/true);
4704
4705  // attributes declared post-definition are currently ignored
4706  // FIXME: This should happen during attribute merging
4707  if (Redeclaration && Previous.isSingleResult()) {
4708    const FunctionDecl *Def;
4709    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4710    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4711      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4712      Diag(Def->getLocation(), diag::note_previous_definition);
4713    }
4714  }
4715
4716  AddKnownFunctionAttributes(NewFD);
4717
4718  if (NewFD->hasAttr<OverloadableAttr>() &&
4719      !NewFD->getType()->getAs<FunctionProtoType>()) {
4720    Diag(NewFD->getLocation(),
4721         diag::err_attribute_overloadable_no_prototype)
4722      << NewFD;
4723
4724    // Turn this into a variadic function with no parameters.
4725    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4726    FunctionProtoType::ExtProtoInfo EPI;
4727    EPI.Variadic = true;
4728    EPI.ExtInfo = FT->getExtInfo();
4729
4730    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4731    NewFD->setType(R);
4732  }
4733
4734  // If there's a #pragma GCC visibility in scope, and this isn't a class
4735  // member, set the visibility of this function.
4736  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4737    AddPushedVisibilityAttribute(NewFD);
4738
4739  // If this is a locally-scoped extern C function, update the
4740  // map of such names.
4741  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4742      && !NewFD->isInvalidDecl())
4743    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4744
4745  // Set this FunctionDecl's range up to the right paren.
4746  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4747
4748  if (getLangOptions().CPlusPlus) {
4749    if (FunctionTemplate) {
4750      if (NewFD->isInvalidDecl())
4751        FunctionTemplate->setInvalidDecl();
4752      return FunctionTemplate;
4753    }
4754  }
4755
4756  MarkUnusedFileScopedDecl(NewFD);
4757
4758  if (getLangOptions().CUDA)
4759    if (IdentifierInfo *II = NewFD->getIdentifier())
4760      if (!NewFD->isInvalidDecl() &&
4761          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4762        if (II->isStr("cudaConfigureCall")) {
4763          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4764            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4765
4766          Context.setcudaConfigureCallDecl(NewFD);
4767        }
4768      }
4769
4770  return NewFD;
4771}
4772
4773/// \brief Perform semantic checking of a new function declaration.
4774///
4775/// Performs semantic analysis of the new function declaration
4776/// NewFD. This routine performs all semantic checking that does not
4777/// require the actual declarator involved in the declaration, and is
4778/// used both for the declaration of functions as they are parsed
4779/// (called via ActOnDeclarator) and for the declaration of functions
4780/// that have been instantiated via C++ template instantiation (called
4781/// via InstantiateDecl).
4782///
4783/// \param IsExplicitSpecialiation whether this new function declaration is
4784/// an explicit specialization of the previous declaration.
4785///
4786/// This sets NewFD->isInvalidDecl() to true if there was an error.
4787void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4788                                    LookupResult &Previous,
4789                                    bool IsExplicitSpecialization,
4790                                    bool &Redeclaration) {
4791  // If NewFD is already known erroneous, don't do any of this checking.
4792  if (NewFD->isInvalidDecl()) {
4793    // If this is a class member, mark the class invalid immediately.
4794    // This avoids some consistency errors later.
4795    if (isa<CXXMethodDecl>(NewFD))
4796      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4797
4798    return;
4799  }
4800
4801  if (NewFD->getResultType()->isVariablyModifiedType()) {
4802    // Functions returning a variably modified type violate C99 6.7.5.2p2
4803    // because all functions have linkage.
4804    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4805    return NewFD->setInvalidDecl();
4806  }
4807
4808  if (NewFD->isMain())
4809    CheckMain(NewFD);
4810
4811  // Check for a previous declaration of this name.
4812  if (Previous.empty() && NewFD->isExternC()) {
4813    // Since we did not find anything by this name and we're declaring
4814    // an extern "C" function, look for a non-visible extern "C"
4815    // declaration with the same name.
4816    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4817      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4818    if (Pos != LocallyScopedExternalDecls.end())
4819      Previous.addDecl(Pos->second);
4820  }
4821
4822  // Merge or overload the declaration with an existing declaration of
4823  // the same name, if appropriate.
4824  if (!Previous.empty()) {
4825    // Determine whether NewFD is an overload of PrevDecl or
4826    // a declaration that requires merging. If it's an overload,
4827    // there's no more work to do here; we'll just add the new
4828    // function to the scope.
4829
4830    NamedDecl *OldDecl = 0;
4831    if (!AllowOverloadingOfFunction(Previous, Context)) {
4832      Redeclaration = true;
4833      OldDecl = Previous.getFoundDecl();
4834    } else {
4835      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4836                            /*NewIsUsingDecl*/ false)) {
4837      case Ovl_Match:
4838        Redeclaration = true;
4839        break;
4840
4841      case Ovl_NonFunction:
4842        Redeclaration = true;
4843        break;
4844
4845      case Ovl_Overload:
4846        Redeclaration = false;
4847        break;
4848      }
4849
4850      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4851        // If a function name is overloadable in C, then every function
4852        // with that name must be marked "overloadable".
4853        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4854          << Redeclaration << NewFD;
4855        NamedDecl *OverloadedDecl = 0;
4856        if (Redeclaration)
4857          OverloadedDecl = OldDecl;
4858        else if (!Previous.empty())
4859          OverloadedDecl = Previous.getRepresentativeDecl();
4860        if (OverloadedDecl)
4861          Diag(OverloadedDecl->getLocation(),
4862               diag::note_attribute_overloadable_prev_overload);
4863        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4864                                                        Context));
4865      }
4866    }
4867
4868    if (Redeclaration) {
4869      // NewFD and OldDecl represent declarations that need to be
4870      // merged.
4871      if (MergeFunctionDecl(NewFD, OldDecl))
4872        return NewFD->setInvalidDecl();
4873
4874      Previous.clear();
4875      Previous.addDecl(OldDecl);
4876
4877      if (FunctionTemplateDecl *OldTemplateDecl
4878                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4879        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4880        FunctionTemplateDecl *NewTemplateDecl
4881          = NewFD->getDescribedFunctionTemplate();
4882        assert(NewTemplateDecl && "Template/non-template mismatch");
4883        if (CXXMethodDecl *Method
4884              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4885          Method->setAccess(OldTemplateDecl->getAccess());
4886          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4887        }
4888
4889        // If this is an explicit specialization of a member that is a function
4890        // template, mark it as a member specialization.
4891        if (IsExplicitSpecialization &&
4892            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4893          NewTemplateDecl->setMemberSpecialization();
4894          assert(OldTemplateDecl->isMemberSpecialization());
4895        }
4896      } else {
4897        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4898          NewFD->setAccess(OldDecl->getAccess());
4899        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4900      }
4901    }
4902  }
4903
4904  // Semantic checking for this function declaration (in isolation).
4905  if (getLangOptions().CPlusPlus) {
4906    // C++-specific checks.
4907    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4908      CheckConstructor(Constructor);
4909    } else if (CXXDestructorDecl *Destructor =
4910                dyn_cast<CXXDestructorDecl>(NewFD)) {
4911      CXXRecordDecl *Record = Destructor->getParent();
4912      QualType ClassType = Context.getTypeDeclType(Record);
4913
4914      // FIXME: Shouldn't we be able to perform this check even when the class
4915      // type is dependent? Both gcc and edg can handle that.
4916      if (!ClassType->isDependentType()) {
4917        DeclarationName Name
4918          = Context.DeclarationNames.getCXXDestructorName(
4919                                        Context.getCanonicalType(ClassType));
4920        if (NewFD->getDeclName() != Name) {
4921          Diag(NewFD->getLocation(), diag::err_destructor_name);
4922          return NewFD->setInvalidDecl();
4923        }
4924      }
4925    } else if (CXXConversionDecl *Conversion
4926               = dyn_cast<CXXConversionDecl>(NewFD)) {
4927      ActOnConversionDeclarator(Conversion);
4928    }
4929
4930    // Find any virtual functions that this function overrides.
4931    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4932      if (!Method->isFunctionTemplateSpecialization() &&
4933          !Method->getDescribedFunctionTemplate()) {
4934        if (AddOverriddenMethods(Method->getParent(), Method)) {
4935          // If the function was marked as "static", we have a problem.
4936          if (NewFD->getStorageClass() == SC_Static) {
4937            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4938              << NewFD->getDeclName();
4939            for (CXXMethodDecl::method_iterator
4940                      Overridden = Method->begin_overridden_methods(),
4941                   OverriddenEnd = Method->end_overridden_methods();
4942                 Overridden != OverriddenEnd;
4943                 ++Overridden) {
4944              Diag((*Overridden)->getLocation(),
4945                   diag::note_overridden_virtual_function);
4946            }
4947          }
4948        }
4949      }
4950    }
4951
4952    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4953    if (NewFD->isOverloadedOperator() &&
4954        CheckOverloadedOperatorDeclaration(NewFD))
4955      return NewFD->setInvalidDecl();
4956
4957    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4958    if (NewFD->getLiteralIdentifier() &&
4959        CheckLiteralOperatorDeclaration(NewFD))
4960      return NewFD->setInvalidDecl();
4961
4962    // In C++, check default arguments now that we have merged decls. Unless
4963    // the lexical context is the class, because in this case this is done
4964    // during delayed parsing anyway.
4965    if (!CurContext->isRecord())
4966      CheckCXXDefaultArguments(NewFD);
4967
4968    // If this function declares a builtin function, check the type of this
4969    // declaration against the expected type for the builtin.
4970    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4971      ASTContext::GetBuiltinTypeError Error;
4972      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4973      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4974        // The type of this function differs from the type of the builtin,
4975        // so forget about the builtin entirely.
4976        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4977      }
4978    }
4979  }
4980}
4981
4982void Sema::CheckMain(FunctionDecl* FD) {
4983  // C++ [basic.start.main]p3:  A program that declares main to be inline
4984  //   or static is ill-formed.
4985  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4986  //   shall not appear in a declaration of main.
4987  // static main is not an error under C99, but we should warn about it.
4988  bool isInline = FD->isInlineSpecified();
4989  bool isStatic = FD->getStorageClass() == SC_Static;
4990  if (isInline || isStatic) {
4991    unsigned diagID = diag::warn_unusual_main_decl;
4992    if (isInline || getLangOptions().CPlusPlus)
4993      diagID = diag::err_unusual_main_decl;
4994
4995    int which = isStatic + (isInline << 1) - 1;
4996    Diag(FD->getLocation(), diagID) << which;
4997  }
4998
4999  QualType T = FD->getType();
5000  assert(T->isFunctionType() && "function decl is not of function type");
5001  const FunctionType* FT = T->getAs<FunctionType>();
5002
5003  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5004    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5005    FD->setInvalidDecl(true);
5006  }
5007
5008  // Treat protoless main() as nullary.
5009  if (isa<FunctionNoProtoType>(FT)) return;
5010
5011  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5012  unsigned nparams = FTP->getNumArgs();
5013  assert(FD->getNumParams() == nparams);
5014
5015  bool HasExtraParameters = (nparams > 3);
5016
5017  // Darwin passes an undocumented fourth argument of type char**.  If
5018  // other platforms start sprouting these, the logic below will start
5019  // getting shifty.
5020  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5021    HasExtraParameters = false;
5022
5023  if (HasExtraParameters) {
5024    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5025    FD->setInvalidDecl(true);
5026    nparams = 3;
5027  }
5028
5029  // FIXME: a lot of the following diagnostics would be improved
5030  // if we had some location information about types.
5031
5032  QualType CharPP =
5033    Context.getPointerType(Context.getPointerType(Context.CharTy));
5034  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5035
5036  for (unsigned i = 0; i < nparams; ++i) {
5037    QualType AT = FTP->getArgType(i);
5038
5039    bool mismatch = true;
5040
5041    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5042      mismatch = false;
5043    else if (Expected[i] == CharPP) {
5044      // As an extension, the following forms are okay:
5045      //   char const **
5046      //   char const * const *
5047      //   char * const *
5048
5049      QualifierCollector qs;
5050      const PointerType* PT;
5051      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5052          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5053          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5054        qs.removeConst();
5055        mismatch = !qs.empty();
5056      }
5057    }
5058
5059    if (mismatch) {
5060      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5061      // TODO: suggest replacing given type with expected type
5062      FD->setInvalidDecl(true);
5063    }
5064  }
5065
5066  if (nparams == 1 && !FD->isInvalidDecl()) {
5067    Diag(FD->getLocation(), diag::warn_main_one_arg);
5068  }
5069
5070  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5071    Diag(FD->getLocation(), diag::err_main_template_decl);
5072    FD->setInvalidDecl();
5073  }
5074}
5075
5076bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5077  // FIXME: Need strict checking.  In C89, we need to check for
5078  // any assignment, increment, decrement, function-calls, or
5079  // commas outside of a sizeof.  In C99, it's the same list,
5080  // except that the aforementioned are allowed in unevaluated
5081  // expressions.  Everything else falls under the
5082  // "may accept other forms of constant expressions" exception.
5083  // (We never end up here for C++, so the constant expression
5084  // rules there don't matter.)
5085  if (Init->isConstantInitializer(Context, false))
5086    return false;
5087  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5088    << Init->getSourceRange();
5089  return true;
5090}
5091
5092namespace {
5093  // Visits an initialization expression to see if OrigDecl is evaluated in
5094  // its own initialization and throws a warning if it does.
5095  class SelfReferenceChecker
5096      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5097    Sema &S;
5098    Decl *OrigDecl;
5099
5100  public:
5101    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5102
5103    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5104                                                    S(S), OrigDecl(OrigDecl) { }
5105
5106    void VisitExpr(Expr *E) {
5107      if (isa<ObjCMessageExpr>(*E)) return;
5108      Inherited::VisitExpr(E);
5109    }
5110
5111    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5112      CheckForSelfReference(E);
5113      Inherited::VisitImplicitCastExpr(E);
5114    }
5115
5116    void CheckForSelfReference(ImplicitCastExpr *E) {
5117      if (E->getCastKind() != CK_LValueToRValue) return;
5118      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5119      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5120      if (!DRE) return;
5121      Decl* ReferenceDecl = DRE->getDecl();
5122      if (OrigDecl != ReferenceDecl) return;
5123      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5124                          Sema::NotForRedeclaration);
5125      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5126        << Result.getLookupName() << OrigDecl->getLocation()
5127        << SubExpr->getSourceRange();
5128    }
5129  };
5130}
5131
5132/// AddInitializerToDecl - Adds the initializer Init to the
5133/// declaration dcl. If DirectInit is true, this is C++ direct
5134/// initialization rather than copy initialization.
5135void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5136                                bool DirectInit, bool TypeMayContainAuto) {
5137  // If there is no declaration, there was an error parsing it.  Just ignore
5138  // the initializer.
5139  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5140    return;
5141
5142  // Check for self-references within variable initializers.
5143  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5144    // Variables declared within a function/method body are handled
5145    // by a dataflow analysis.
5146    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5147      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5148  }
5149  else {
5150    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5151  }
5152
5153  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5154    // With declarators parsed the way they are, the parser cannot
5155    // distinguish between a normal initializer and a pure-specifier.
5156    // Thus this grotesque test.
5157    IntegerLiteral *IL;
5158    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5159        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5160      CheckPureMethod(Method, Init->getSourceRange());
5161    else {
5162      Diag(Method->getLocation(), diag::err_member_function_initialization)
5163        << Method->getDeclName() << Init->getSourceRange();
5164      Method->setInvalidDecl();
5165    }
5166    return;
5167  }
5168
5169  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5170  if (!VDecl) {
5171    if (getLangOptions().CPlusPlus &&
5172        RealDecl->getLexicalDeclContext()->isRecord() &&
5173        isa<NamedDecl>(RealDecl))
5174      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5175    else
5176      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5177    RealDecl->setInvalidDecl();
5178    return;
5179  }
5180
5181  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5182  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5183    TypeSourceInfo *DeducedType = 0;
5184    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5185      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5186        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5187        << Init->getSourceRange();
5188    if (!DeducedType) {
5189      RealDecl->setInvalidDecl();
5190      return;
5191    }
5192    VDecl->setTypeSourceInfo(DeducedType);
5193    VDecl->setType(DeducedType->getType());
5194
5195    // If this is a redeclaration, check that the type we just deduced matches
5196    // the previously declared type.
5197    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5198      MergeVarDeclTypes(VDecl, Old);
5199  }
5200
5201
5202  // A definition must end up with a complete type, which means it must be
5203  // complete with the restriction that an array type might be completed by the
5204  // initializer; note that later code assumes this restriction.
5205  QualType BaseDeclType = VDecl->getType();
5206  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5207    BaseDeclType = Array->getElementType();
5208  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5209                          diag::err_typecheck_decl_incomplete_type)) {
5210    RealDecl->setInvalidDecl();
5211    return;
5212  }
5213
5214  // The variable can not have an abstract class type.
5215  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5216                             diag::err_abstract_type_in_decl,
5217                             AbstractVariableType))
5218    VDecl->setInvalidDecl();
5219
5220  const VarDecl *Def;
5221  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5222    Diag(VDecl->getLocation(), diag::err_redefinition)
5223      << VDecl->getDeclName();
5224    Diag(Def->getLocation(), diag::note_previous_definition);
5225    VDecl->setInvalidDecl();
5226    return;
5227  }
5228
5229  const VarDecl* PrevInit = 0;
5230  if (getLangOptions().CPlusPlus) {
5231    // C++ [class.static.data]p4
5232    //   If a static data member is of const integral or const
5233    //   enumeration type, its declaration in the class definition can
5234    //   specify a constant-initializer which shall be an integral
5235    //   constant expression (5.19). In that case, the member can appear
5236    //   in integral constant expressions. The member shall still be
5237    //   defined in a namespace scope if it is used in the program and the
5238    //   namespace scope definition shall not contain an initializer.
5239    //
5240    // We already performed a redefinition check above, but for static
5241    // data members we also need to check whether there was an in-class
5242    // declaration with an initializer.
5243    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5244      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5245      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5246      return;
5247    }
5248
5249    if (VDecl->hasLocalStorage())
5250      getCurFunction()->setHasBranchProtectedScope();
5251
5252    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5253      VDecl->setInvalidDecl();
5254      return;
5255    }
5256  }
5257
5258  // Capture the variable that is being initialized and the style of
5259  // initialization.
5260  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5261
5262  // FIXME: Poor source location information.
5263  InitializationKind Kind
5264    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5265                                                   Init->getLocStart(),
5266                                                   Init->getLocEnd())
5267                : InitializationKind::CreateCopy(VDecl->getLocation(),
5268                                                 Init->getLocStart());
5269
5270  // Get the decls type and save a reference for later, since
5271  // CheckInitializerTypes may change it.
5272  QualType DclT = VDecl->getType(), SavT = DclT;
5273  if (VDecl->isLocalVarDecl()) {
5274    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5275      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5276      VDecl->setInvalidDecl();
5277    } else if (!VDecl->isInvalidDecl()) {
5278      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5279      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5280                                                MultiExprArg(*this, &Init, 1),
5281                                                &DclT);
5282      if (Result.isInvalid()) {
5283        VDecl->setInvalidDecl();
5284        return;
5285      }
5286
5287      Init = Result.takeAs<Expr>();
5288
5289      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5290      // Don't check invalid declarations to avoid emitting useless diagnostics.
5291      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5292        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5293          CheckForConstantInitializer(Init, DclT);
5294      }
5295    }
5296  } else if (VDecl->isStaticDataMember() &&
5297             VDecl->getLexicalDeclContext()->isRecord()) {
5298    // This is an in-class initialization for a static data member, e.g.,
5299    //
5300    // struct S {
5301    //   static const int value = 17;
5302    // };
5303
5304    // Try to perform the initialization regardless.
5305    if (!VDecl->isInvalidDecl()) {
5306      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5307      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5308                                          MultiExprArg(*this, &Init, 1),
5309                                          &DclT);
5310      if (Result.isInvalid()) {
5311        VDecl->setInvalidDecl();
5312        return;
5313      }
5314
5315      Init = Result.takeAs<Expr>();
5316    }
5317
5318    // C++ [class.mem]p4:
5319    //   A member-declarator can contain a constant-initializer only
5320    //   if it declares a static member (9.4) of const integral or
5321    //   const enumeration type, see 9.4.2.
5322    QualType T = VDecl->getType();
5323
5324    // Do nothing on dependent types.
5325    if (T->isDependentType()) {
5326
5327    // Require constness.
5328    } else if (!T.isConstQualified()) {
5329      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5330        << Init->getSourceRange();
5331      VDecl->setInvalidDecl();
5332
5333    // We allow integer constant expressions in all cases.
5334    } else if (T->isIntegralOrEnumerationType()) {
5335      if (!Init->isValueDependent()) {
5336        // Check whether the expression is a constant expression.
5337        llvm::APSInt Value;
5338        SourceLocation Loc;
5339        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5340          Diag(Loc, diag::err_in_class_initializer_non_constant)
5341            << Init->getSourceRange();
5342          VDecl->setInvalidDecl();
5343        }
5344      }
5345
5346    // We allow floating-point constants as an extension in C++03, and
5347    // C++0x has far more complicated rules that we don't really
5348    // implement fully.
5349    } else {
5350      bool Allowed = false;
5351      if (getLangOptions().CPlusPlus0x) {
5352        Allowed = T->isLiteralType();
5353      } else if (T->isFloatingType()) { // also permits complex, which is ok
5354        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5355          << T << Init->getSourceRange();
5356        Allowed = true;
5357      }
5358
5359      if (!Allowed) {
5360        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5361          << T << Init->getSourceRange();
5362        VDecl->setInvalidDecl();
5363
5364      // TODO: there are probably expressions that pass here that shouldn't.
5365      } else if (!Init->isValueDependent() &&
5366                 !Init->isConstantInitializer(Context, false)) {
5367        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5368          << Init->getSourceRange();
5369        VDecl->setInvalidDecl();
5370      }
5371    }
5372  } else if (VDecl->isFileVarDecl()) {
5373    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5374        (!getLangOptions().CPlusPlus ||
5375         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5376      Diag(VDecl->getLocation(), diag::warn_extern_init);
5377    if (!VDecl->isInvalidDecl()) {
5378      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5379      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5380                                                MultiExprArg(*this, &Init, 1),
5381                                                &DclT);
5382      if (Result.isInvalid()) {
5383        VDecl->setInvalidDecl();
5384        return;
5385      }
5386
5387      Init = Result.takeAs<Expr>();
5388    }
5389
5390    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5391    // Don't check invalid declarations to avoid emitting useless diagnostics.
5392    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5393      // C99 6.7.8p4. All file scoped initializers need to be constant.
5394      CheckForConstantInitializer(Init, DclT);
5395    }
5396  }
5397  // If the type changed, it means we had an incomplete type that was
5398  // completed by the initializer. For example:
5399  //   int ary[] = { 1, 3, 5 };
5400  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5401  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5402    VDecl->setType(DclT);
5403    Init->setType(DclT);
5404  }
5405
5406
5407  // If this variable is a local declaration with record type, make sure it
5408  // doesn't have a flexible member initialization.  We only support this as a
5409  // global/static definition.
5410  if (VDecl->hasLocalStorage())
5411    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5412      if (RT->getDecl()->hasFlexibleArrayMember()) {
5413        // Check whether the initializer tries to initialize the flexible
5414        // array member itself to anything other than an empty initializer list.
5415        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5416          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5417                                         RT->getDecl()->field_end()) - 1;
5418          if (Index < ILE->getNumInits() &&
5419              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5420                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5421            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5422            VDecl->setInvalidDecl();
5423          }
5424        }
5425      }
5426
5427  // Check any implicit conversions within the expression.
5428  CheckImplicitConversions(Init, VDecl->getLocation());
5429
5430  Init = MaybeCreateExprWithCleanups(Init);
5431  // Attach the initializer to the decl.
5432  VDecl->setInit(Init);
5433
5434  CheckCompleteVariableDeclaration(VDecl);
5435}
5436
5437/// ActOnInitializerError - Given that there was an error parsing an
5438/// initializer for the given declaration, try to return to some form
5439/// of sanity.
5440void Sema::ActOnInitializerError(Decl *D) {
5441  // Our main concern here is re-establishing invariants like "a
5442  // variable's type is either dependent or complete".
5443  if (!D || D->isInvalidDecl()) return;
5444
5445  VarDecl *VD = dyn_cast<VarDecl>(D);
5446  if (!VD) return;
5447
5448  // Auto types are meaningless if we can't make sense of the initializer.
5449  if (ParsingInitForAutoVars.count(D)) {
5450    D->setInvalidDecl();
5451    return;
5452  }
5453
5454  QualType Ty = VD->getType();
5455  if (Ty->isDependentType()) return;
5456
5457  // Require a complete type.
5458  if (RequireCompleteType(VD->getLocation(),
5459                          Context.getBaseElementType(Ty),
5460                          diag::err_typecheck_decl_incomplete_type)) {
5461    VD->setInvalidDecl();
5462    return;
5463  }
5464
5465  // Require an abstract type.
5466  if (RequireNonAbstractType(VD->getLocation(), Ty,
5467                             diag::err_abstract_type_in_decl,
5468                             AbstractVariableType)) {
5469    VD->setInvalidDecl();
5470    return;
5471  }
5472
5473  // Don't bother complaining about constructors or destructors,
5474  // though.
5475}
5476
5477void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5478                                  bool TypeMayContainAuto) {
5479  // If there is no declaration, there was an error parsing it. Just ignore it.
5480  if (RealDecl == 0)
5481    return;
5482
5483  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5484    QualType Type = Var->getType();
5485
5486    // C++0x [dcl.spec.auto]p3
5487    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5488      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5489        << Var->getDeclName() << Type;
5490      Var->setInvalidDecl();
5491      return;
5492    }
5493
5494    switch (Var->isThisDeclarationADefinition()) {
5495    case VarDecl::Definition:
5496      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5497        break;
5498
5499      // We have an out-of-line definition of a static data member
5500      // that has an in-class initializer, so we type-check this like
5501      // a declaration.
5502      //
5503      // Fall through
5504
5505    case VarDecl::DeclarationOnly:
5506      // It's only a declaration.
5507
5508      // Block scope. C99 6.7p7: If an identifier for an object is
5509      // declared with no linkage (C99 6.2.2p6), the type for the
5510      // object shall be complete.
5511      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5512          !Var->getLinkage() && !Var->isInvalidDecl() &&
5513          RequireCompleteType(Var->getLocation(), Type,
5514                              diag::err_typecheck_decl_incomplete_type))
5515        Var->setInvalidDecl();
5516
5517      // Make sure that the type is not abstract.
5518      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5519          RequireNonAbstractType(Var->getLocation(), Type,
5520                                 diag::err_abstract_type_in_decl,
5521                                 AbstractVariableType))
5522        Var->setInvalidDecl();
5523      return;
5524
5525    case VarDecl::TentativeDefinition:
5526      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5527      // object that has file scope without an initializer, and without a
5528      // storage-class specifier or with the storage-class specifier "static",
5529      // constitutes a tentative definition. Note: A tentative definition with
5530      // external linkage is valid (C99 6.2.2p5).
5531      if (!Var->isInvalidDecl()) {
5532        if (const IncompleteArrayType *ArrayT
5533                                    = Context.getAsIncompleteArrayType(Type)) {
5534          if (RequireCompleteType(Var->getLocation(),
5535                                  ArrayT->getElementType(),
5536                                  diag::err_illegal_decl_array_incomplete_type))
5537            Var->setInvalidDecl();
5538        } else if (Var->getStorageClass() == SC_Static) {
5539          // C99 6.9.2p3: If the declaration of an identifier for an object is
5540          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5541          // declared type shall not be an incomplete type.
5542          // NOTE: code such as the following
5543          //     static struct s;
5544          //     struct s { int a; };
5545          // is accepted by gcc. Hence here we issue a warning instead of
5546          // an error and we do not invalidate the static declaration.
5547          // NOTE: to avoid multiple warnings, only check the first declaration.
5548          if (Var->getPreviousDeclaration() == 0)
5549            RequireCompleteType(Var->getLocation(), Type,
5550                                diag::ext_typecheck_decl_incomplete_type);
5551        }
5552      }
5553
5554      // Record the tentative definition; we're done.
5555      if (!Var->isInvalidDecl())
5556        TentativeDefinitions.push_back(Var);
5557      return;
5558    }
5559
5560    // Provide a specific diagnostic for uninitialized variable
5561    // definitions with incomplete array type.
5562    if (Type->isIncompleteArrayType()) {
5563      Diag(Var->getLocation(),
5564           diag::err_typecheck_incomplete_array_needs_initializer);
5565      Var->setInvalidDecl();
5566      return;
5567    }
5568
5569    // Provide a specific diagnostic for uninitialized variable
5570    // definitions with reference type.
5571    if (Type->isReferenceType()) {
5572      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5573        << Var->getDeclName()
5574        << SourceRange(Var->getLocation(), Var->getLocation());
5575      Var->setInvalidDecl();
5576      return;
5577    }
5578
5579    // Do not attempt to type-check the default initializer for a
5580    // variable with dependent type.
5581    if (Type->isDependentType())
5582      return;
5583
5584    if (Var->isInvalidDecl())
5585      return;
5586
5587    if (RequireCompleteType(Var->getLocation(),
5588                            Context.getBaseElementType(Type),
5589                            diag::err_typecheck_decl_incomplete_type)) {
5590      Var->setInvalidDecl();
5591      return;
5592    }
5593
5594    // The variable can not have an abstract class type.
5595    if (RequireNonAbstractType(Var->getLocation(), Type,
5596                               diag::err_abstract_type_in_decl,
5597                               AbstractVariableType)) {
5598      Var->setInvalidDecl();
5599      return;
5600    }
5601
5602    const RecordType *Record
5603      = Context.getBaseElementType(Type)->getAs<RecordType>();
5604    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5605        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5606      // C++03 [dcl.init]p9:
5607      //   If no initializer is specified for an object, and the
5608      //   object is of (possibly cv-qualified) non-POD class type (or
5609      //   array thereof), the object shall be default-initialized; if
5610      //   the object is of const-qualified type, the underlying class
5611      //   type shall have a user-declared default
5612      //   constructor. Otherwise, if no initializer is specified for
5613      //   a non- static object, the object and its subobjects, if
5614      //   any, have an indeterminate initial value); if the object
5615      //   or any of its subobjects are of const-qualified type, the
5616      //   program is ill-formed.
5617      // C++0x [dcl.init]p11:
5618      //   If no initializer is specified for an object, the object is
5619      //   default-initialized; [...].
5620    } else {
5621      // Check for jumps past the implicit initializer.  C++0x
5622      // clarifies that this applies to a "variable with automatic
5623      // storage duration", not a "local variable".
5624      // C++0x [stmt.dcl]p3
5625      //   A program that jumps from a point where a variable with automatic
5626      //   storage duration is not ins cope to a point where it is in scope is
5627      //   ill-formed unless the variable has scalar type, class type with a
5628      //   trivial defautl constructor and a trivial destructor, a cv-qualified
5629      //   version of one of these types, or an array of one of the preceding
5630      //   types and is declared without an initializer.
5631      if (getLangOptions().CPlusPlus && Var->hasLocalStorage() && Record) {
5632        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5633        if (!getLangOptions().CPlusPlus0x ||
5634            !CXXRecord->hasTrivialDefaultConstructor() ||
5635            !CXXRecord->hasTrivialDestructor())
5636          getCurFunction()->setHasBranchProtectedScope();
5637      }
5638
5639      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5640      InitializationKind Kind
5641        = InitializationKind::CreateDefault(Var->getLocation());
5642
5643      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5644      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5645                                        MultiExprArg(*this, 0, 0));
5646      if (Init.isInvalid())
5647        Var->setInvalidDecl();
5648      else if (Init.get())
5649        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5650    }
5651
5652    CheckCompleteVariableDeclaration(Var);
5653  }
5654}
5655
5656void Sema::ActOnCXXForRangeDecl(Decl *D) {
5657  VarDecl *VD = dyn_cast<VarDecl>(D);
5658  if (!VD) {
5659    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5660    D->setInvalidDecl();
5661    return;
5662  }
5663
5664  VD->setCXXForRangeDecl(true);
5665
5666  // for-range-declaration cannot be given a storage class specifier.
5667  int Error = -1;
5668  switch (VD->getStorageClassAsWritten()) {
5669  case SC_None:
5670    break;
5671  case SC_Extern:
5672    Error = 0;
5673    break;
5674  case SC_Static:
5675    Error = 1;
5676    break;
5677  case SC_PrivateExtern:
5678    Error = 2;
5679    break;
5680  case SC_Auto:
5681    Error = 3;
5682    break;
5683  case SC_Register:
5684    Error = 4;
5685    break;
5686  }
5687  // FIXME: constexpr isn't allowed here.
5688  //if (DS.isConstexprSpecified())
5689  //  Error = 5;
5690  if (Error != -1) {
5691    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5692      << VD->getDeclName() << Error;
5693    D->setInvalidDecl();
5694  }
5695}
5696
5697void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5698  if (var->isInvalidDecl()) return;
5699
5700  // All the following checks are C++ only.
5701  if (!getLangOptions().CPlusPlus) return;
5702
5703  QualType baseType = Context.getBaseElementType(var->getType());
5704  if (baseType->isDependentType()) return;
5705
5706  // __block variables might require us to capture a copy-initializer.
5707  if (var->hasAttr<BlocksAttr>()) {
5708    // It's currently invalid to ever have a __block variable with an
5709    // array type; should we diagnose that here?
5710
5711    // Regardless, we don't want to ignore array nesting when
5712    // constructing this copy.
5713    QualType type = var->getType();
5714
5715    if (type->isStructureOrClassType()) {
5716      SourceLocation poi = var->getLocation();
5717      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5718      ExprResult result =
5719        PerformCopyInitialization(
5720                        InitializedEntity::InitializeBlock(poi, type, false),
5721                                  poi, Owned(varRef));
5722      if (!result.isInvalid()) {
5723        result = MaybeCreateExprWithCleanups(result);
5724        Expr *init = result.takeAs<Expr>();
5725        Context.setBlockVarCopyInits(var, init);
5726      }
5727    }
5728  }
5729
5730  // Check for global constructors.
5731  if (!var->getDeclContext()->isDependentContext() &&
5732      var->hasGlobalStorage() &&
5733      !var->isStaticLocal() &&
5734      var->getInit() &&
5735      !var->getInit()->isConstantInitializer(Context,
5736                                             baseType->isReferenceType()))
5737    Diag(var->getLocation(), diag::warn_global_constructor)
5738      << var->getInit()->getSourceRange();
5739
5740  // Require the destructor.
5741  if (const RecordType *recordType = baseType->getAs<RecordType>())
5742    FinalizeVarWithDestructor(var, recordType);
5743}
5744
5745/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5746/// any semantic actions necessary after any initializer has been attached.
5747void
5748Sema::FinalizeDeclaration(Decl *ThisDecl) {
5749  // Note that we are no longer parsing the initializer for this declaration.
5750  ParsingInitForAutoVars.erase(ThisDecl);
5751}
5752
5753Sema::DeclGroupPtrTy
5754Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5755                              Decl **Group, unsigned NumDecls) {
5756  llvm::SmallVector<Decl*, 8> Decls;
5757
5758  if (DS.isTypeSpecOwned())
5759    Decls.push_back(DS.getRepAsDecl());
5760
5761  for (unsigned i = 0; i != NumDecls; ++i)
5762    if (Decl *D = Group[i])
5763      Decls.push_back(D);
5764
5765  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5766                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5767}
5768
5769/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5770/// group, performing any necessary semantic checking.
5771Sema::DeclGroupPtrTy
5772Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5773                           bool TypeMayContainAuto) {
5774  // C++0x [dcl.spec.auto]p7:
5775  //   If the type deduced for the template parameter U is not the same in each
5776  //   deduction, the program is ill-formed.
5777  // FIXME: When initializer-list support is added, a distinction is needed
5778  // between the deduced type U and the deduced type which 'auto' stands for.
5779  //   auto a = 0, b = { 1, 2, 3 };
5780  // is legal because the deduced type U is 'int' in both cases.
5781  if (TypeMayContainAuto && NumDecls > 1) {
5782    QualType Deduced;
5783    CanQualType DeducedCanon;
5784    VarDecl *DeducedDecl = 0;
5785    for (unsigned i = 0; i != NumDecls; ++i) {
5786      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5787        AutoType *AT = D->getType()->getContainedAutoType();
5788        // Don't reissue diagnostics when instantiating a template.
5789        if (AT && D->isInvalidDecl())
5790          break;
5791        if (AT && AT->isDeduced()) {
5792          QualType U = AT->getDeducedType();
5793          CanQualType UCanon = Context.getCanonicalType(U);
5794          if (Deduced.isNull()) {
5795            Deduced = U;
5796            DeducedCanon = UCanon;
5797            DeducedDecl = D;
5798          } else if (DeducedCanon != UCanon) {
5799            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5800                 diag::err_auto_different_deductions)
5801              << Deduced << DeducedDecl->getDeclName()
5802              << U << D->getDeclName()
5803              << DeducedDecl->getInit()->getSourceRange()
5804              << D->getInit()->getSourceRange();
5805            D->setInvalidDecl();
5806            break;
5807          }
5808        }
5809      }
5810    }
5811  }
5812
5813  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5814}
5815
5816
5817/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5818/// to introduce parameters into function prototype scope.
5819Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5820  const DeclSpec &DS = D.getDeclSpec();
5821
5822  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5823  VarDecl::StorageClass StorageClass = SC_None;
5824  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5825  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5826    StorageClass = SC_Register;
5827    StorageClassAsWritten = SC_Register;
5828  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5829    Diag(DS.getStorageClassSpecLoc(),
5830         diag::err_invalid_storage_class_in_func_decl);
5831    D.getMutableDeclSpec().ClearStorageClassSpecs();
5832  }
5833
5834  if (D.getDeclSpec().isThreadSpecified())
5835    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5836
5837  DiagnoseFunctionSpecifiers(D);
5838
5839  TagDecl *OwnedDecl = 0;
5840  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5841  QualType parmDeclType = TInfo->getType();
5842
5843  if (getLangOptions().CPlusPlus) {
5844    // Check that there are no default arguments inside the type of this
5845    // parameter.
5846    CheckExtraCXXDefaultArguments(D);
5847
5848    if (OwnedDecl && OwnedDecl->isDefinition()) {
5849      // C++ [dcl.fct]p6:
5850      //   Types shall not be defined in return or parameter types.
5851      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5852        << Context.getTypeDeclType(OwnedDecl);
5853    }
5854
5855    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5856    if (D.getCXXScopeSpec().isSet()) {
5857      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5858        << D.getCXXScopeSpec().getRange();
5859      D.getCXXScopeSpec().clear();
5860    }
5861  }
5862
5863  // Ensure we have a valid name
5864  IdentifierInfo *II = 0;
5865  if (D.hasName()) {
5866    II = D.getIdentifier();
5867    if (!II) {
5868      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5869        << GetNameForDeclarator(D).getName().getAsString();
5870      D.setInvalidType(true);
5871    }
5872  }
5873
5874  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5875  if (II) {
5876    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5877                   ForRedeclaration);
5878    LookupName(R, S);
5879    if (R.isSingleResult()) {
5880      NamedDecl *PrevDecl = R.getFoundDecl();
5881      if (PrevDecl->isTemplateParameter()) {
5882        // Maybe we will complain about the shadowed template parameter.
5883        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5884        // Just pretend that we didn't see the previous declaration.
5885        PrevDecl = 0;
5886      } else if (S->isDeclScope(PrevDecl)) {
5887        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5888        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5889
5890        // Recover by removing the name
5891        II = 0;
5892        D.SetIdentifier(0, D.getIdentifierLoc());
5893        D.setInvalidType(true);
5894      }
5895    }
5896  }
5897
5898  // Temporarily put parameter variables in the translation unit, not
5899  // the enclosing context.  This prevents them from accidentally
5900  // looking like class members in C++.
5901  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5902                                    D.getSourceRange().getBegin(),
5903                                    D.getIdentifierLoc(), II,
5904                                    parmDeclType, TInfo,
5905                                    StorageClass, StorageClassAsWritten);
5906
5907  if (D.isInvalidType())
5908    New->setInvalidDecl();
5909
5910  assert(S->isFunctionPrototypeScope());
5911  assert(S->getFunctionPrototypeDepth() >= 1);
5912  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5913                    S->getNextFunctionPrototypeIndex());
5914
5915  // Add the parameter declaration into this scope.
5916  S->AddDecl(New);
5917  if (II)
5918    IdResolver.AddDecl(New);
5919
5920  ProcessDeclAttributes(S, New, D);
5921
5922  if (New->hasAttr<BlocksAttr>()) {
5923    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5924  }
5925  return New;
5926}
5927
5928/// \brief Synthesizes a variable for a parameter arising from a
5929/// typedef.
5930ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5931                                              SourceLocation Loc,
5932                                              QualType T) {
5933  /* FIXME: setting StartLoc == Loc.
5934     Would it be worth to modify callers so as to provide proper source
5935     location for the unnamed parameters, embedding the parameter's type? */
5936  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5937                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5938                                           SC_None, SC_None, 0);
5939  Param->setImplicit();
5940  return Param;
5941}
5942
5943void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5944                                    ParmVarDecl * const *ParamEnd) {
5945  // Don't diagnose unused-parameter errors in template instantiations; we
5946  // will already have done so in the template itself.
5947  if (!ActiveTemplateInstantiations.empty())
5948    return;
5949
5950  for (; Param != ParamEnd; ++Param) {
5951    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5952        !(*Param)->hasAttr<UnusedAttr>()) {
5953      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5954        << (*Param)->getDeclName();
5955    }
5956  }
5957}
5958
5959void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5960                                                  ParmVarDecl * const *ParamEnd,
5961                                                  QualType ReturnTy,
5962                                                  NamedDecl *D) {
5963  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5964    return;
5965
5966  // Warn if the return value is pass-by-value and larger than the specified
5967  // threshold.
5968  if (ReturnTy->isPODType()) {
5969    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5970    if (Size > LangOpts.NumLargeByValueCopy)
5971      Diag(D->getLocation(), diag::warn_return_value_size)
5972          << D->getDeclName() << Size;
5973  }
5974
5975  // Warn if any parameter is pass-by-value and larger than the specified
5976  // threshold.
5977  for (; Param != ParamEnd; ++Param) {
5978    QualType T = (*Param)->getType();
5979    if (!T->isPODType())
5980      continue;
5981    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5982    if (Size > LangOpts.NumLargeByValueCopy)
5983      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5984          << (*Param)->getDeclName() << Size;
5985  }
5986}
5987
5988ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5989                                  SourceLocation NameLoc, IdentifierInfo *Name,
5990                                  QualType T, TypeSourceInfo *TSInfo,
5991                                  VarDecl::StorageClass StorageClass,
5992                                  VarDecl::StorageClass StorageClassAsWritten) {
5993  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5994                                         adjustParameterType(T), TSInfo,
5995                                         StorageClass, StorageClassAsWritten,
5996                                         0);
5997
5998  // Parameters can not be abstract class types.
5999  // For record types, this is done by the AbstractClassUsageDiagnoser once
6000  // the class has been completely parsed.
6001  if (!CurContext->isRecord() &&
6002      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6003                             AbstractParamType))
6004    New->setInvalidDecl();
6005
6006  // Parameter declarators cannot be interface types. All ObjC objects are
6007  // passed by reference.
6008  if (T->isObjCObjectType()) {
6009    Diag(NameLoc,
6010         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6011    New->setInvalidDecl();
6012  }
6013
6014  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6015  // duration shall not be qualified by an address-space qualifier."
6016  // Since all parameters have automatic store duration, they can not have
6017  // an address space.
6018  if (T.getAddressSpace() != 0) {
6019    Diag(NameLoc, diag::err_arg_with_address_space);
6020    New->setInvalidDecl();
6021  }
6022
6023  return New;
6024}
6025
6026void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6027                                           SourceLocation LocAfterDecls) {
6028  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6029
6030  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6031  // for a K&R function.
6032  if (!FTI.hasPrototype) {
6033    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6034      --i;
6035      if (FTI.ArgInfo[i].Param == 0) {
6036        llvm::SmallString<256> Code;
6037        llvm::raw_svector_ostream(Code) << "  int "
6038                                        << FTI.ArgInfo[i].Ident->getName()
6039                                        << ";\n";
6040        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6041          << FTI.ArgInfo[i].Ident
6042          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6043
6044        // Implicitly declare the argument as type 'int' for lack of a better
6045        // type.
6046        AttributeFactory attrs;
6047        DeclSpec DS(attrs);
6048        const char* PrevSpec; // unused
6049        unsigned DiagID; // unused
6050        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6051                           PrevSpec, DiagID);
6052        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6053        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6054        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6055      }
6056    }
6057  }
6058}
6059
6060Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6061                                         Declarator &D) {
6062  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6063  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6064  Scope *ParentScope = FnBodyScope->getParent();
6065
6066  Decl *DP = HandleDeclarator(ParentScope, D,
6067                              MultiTemplateParamsArg(*this),
6068                              /*IsFunctionDefinition=*/true);
6069  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6070}
6071
6072static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6073  // Don't warn about invalid declarations.
6074  if (FD->isInvalidDecl())
6075    return false;
6076
6077  // Or declarations that aren't global.
6078  if (!FD->isGlobal())
6079    return false;
6080
6081  // Don't warn about C++ member functions.
6082  if (isa<CXXMethodDecl>(FD))
6083    return false;
6084
6085  // Don't warn about 'main'.
6086  if (FD->isMain())
6087    return false;
6088
6089  // Don't warn about inline functions.
6090  if (FD->isInlined())
6091    return false;
6092
6093  // Don't warn about function templates.
6094  if (FD->getDescribedFunctionTemplate())
6095    return false;
6096
6097  // Don't warn about function template specializations.
6098  if (FD->isFunctionTemplateSpecialization())
6099    return false;
6100
6101  bool MissingPrototype = true;
6102  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6103       Prev; Prev = Prev->getPreviousDeclaration()) {
6104    // Ignore any declarations that occur in function or method
6105    // scope, because they aren't visible from the header.
6106    if (Prev->getDeclContext()->isFunctionOrMethod())
6107      continue;
6108
6109    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6110    break;
6111  }
6112
6113  return MissingPrototype;
6114}
6115
6116void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6117  // Don't complain if we're in GNU89 mode and the previous definition
6118  // was an extern inline function.
6119  const FunctionDecl *Definition;
6120  if (FD->isDefined(Definition) &&
6121      !canRedefineFunction(Definition, getLangOptions())) {
6122    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6123        Definition->getStorageClass() == SC_Extern)
6124      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6125        << FD->getDeclName() << getLangOptions().CPlusPlus;
6126    else
6127      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6128    Diag(Definition->getLocation(), diag::note_previous_definition);
6129  }
6130}
6131
6132Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6133  // Clear the last template instantiation error context.
6134  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6135
6136  if (!D)
6137    return D;
6138  FunctionDecl *FD = 0;
6139
6140  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6141    FD = FunTmpl->getTemplatedDecl();
6142  else
6143    FD = cast<FunctionDecl>(D);
6144
6145  // Enter a new function scope
6146  PushFunctionScope();
6147
6148  // See if this is a redefinition.
6149  if (!FD->isLateTemplateParsed())
6150    CheckForFunctionRedefinition(FD);
6151
6152  // Builtin functions cannot be defined.
6153  if (unsigned BuiltinID = FD->getBuiltinID()) {
6154    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6155      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6156      FD->setInvalidDecl();
6157    }
6158  }
6159
6160  // The return type of a function definition must be complete
6161  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6162  QualType ResultType = FD->getResultType();
6163  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6164      !FD->isInvalidDecl() &&
6165      RequireCompleteType(FD->getLocation(), ResultType,
6166                          diag::err_func_def_incomplete_result))
6167    FD->setInvalidDecl();
6168
6169  // GNU warning -Wmissing-prototypes:
6170  //   Warn if a global function is defined without a previous
6171  //   prototype declaration. This warning is issued even if the
6172  //   definition itself provides a prototype. The aim is to detect
6173  //   global functions that fail to be declared in header files.
6174  if (ShouldWarnAboutMissingPrototype(FD))
6175    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6176
6177  if (FnBodyScope)
6178    PushDeclContext(FnBodyScope, FD);
6179
6180  // Check the validity of our function parameters
6181  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6182                           /*CheckParameterNames=*/true);
6183
6184  // Introduce our parameters into the function scope
6185  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6186    ParmVarDecl *Param = FD->getParamDecl(p);
6187    Param->setOwningFunction(FD);
6188
6189    // If this has an identifier, add it to the scope stack.
6190    if (Param->getIdentifier() && FnBodyScope) {
6191      CheckShadow(FnBodyScope, Param);
6192
6193      PushOnScopeChains(Param, FnBodyScope);
6194    }
6195  }
6196
6197  // Checking attributes of current function definition
6198  // dllimport attribute.
6199  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6200  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6201    // dllimport attribute cannot be directly applied to definition.
6202    // Microsoft accepts dllimport for functions defined within class scope.
6203    if (!DA->isInherited() &&
6204        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6205      Diag(FD->getLocation(),
6206           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6207        << "dllimport";
6208      FD->setInvalidDecl();
6209      return FD;
6210    }
6211
6212    // Visual C++ appears to not think this is an issue, so only issue
6213    // a warning when Microsoft extensions are disabled.
6214    if (!LangOpts.Microsoft) {
6215      // If a symbol previously declared dllimport is later defined, the
6216      // attribute is ignored in subsequent references, and a warning is
6217      // emitted.
6218      Diag(FD->getLocation(),
6219           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6220        << FD->getName() << "dllimport";
6221    }
6222  }
6223  return FD;
6224}
6225
6226/// \brief Given the set of return statements within a function body,
6227/// compute the variables that are subject to the named return value
6228/// optimization.
6229///
6230/// Each of the variables that is subject to the named return value
6231/// optimization will be marked as NRVO variables in the AST, and any
6232/// return statement that has a marked NRVO variable as its NRVO candidate can
6233/// use the named return value optimization.
6234///
6235/// This function applies a very simplistic algorithm for NRVO: if every return
6236/// statement in the function has the same NRVO candidate, that candidate is
6237/// the NRVO variable.
6238///
6239/// FIXME: Employ a smarter algorithm that accounts for multiple return
6240/// statements and the lifetimes of the NRVO candidates. We should be able to
6241/// find a maximal set of NRVO variables.
6242static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6243  ReturnStmt **Returns = Scope->Returns.data();
6244
6245  const VarDecl *NRVOCandidate = 0;
6246  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6247    if (!Returns[I]->getNRVOCandidate())
6248      return;
6249
6250    if (!NRVOCandidate)
6251      NRVOCandidate = Returns[I]->getNRVOCandidate();
6252    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6253      return;
6254  }
6255
6256  if (NRVOCandidate)
6257    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6258}
6259
6260Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6261  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6262}
6263
6264Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6265                                    bool IsInstantiation) {
6266  FunctionDecl *FD = 0;
6267  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6268  if (FunTmpl)
6269    FD = FunTmpl->getTemplatedDecl();
6270  else
6271    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6272
6273  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6274  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6275
6276  if (FD) {
6277    FD->setBody(Body);
6278    if (FD->isMain()) {
6279      // C and C++ allow for main to automagically return 0.
6280      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6281      FD->setHasImplicitReturnZero(true);
6282      WP.disableCheckFallThrough();
6283    }
6284
6285    // MSVC permits the use of pure specifier (=0) on function definition,
6286    // defined at class scope, warn about this non standard construct.
6287    if (getLangOptions().Microsoft && FD->isPure())
6288      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6289
6290    if (!FD->isInvalidDecl()) {
6291      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6292      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6293                                             FD->getResultType(), FD);
6294
6295      // If this is a constructor, we need a vtable.
6296      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6297        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6298
6299      ComputeNRVO(Body, getCurFunction());
6300    }
6301
6302    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6303  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6304    assert(MD == getCurMethodDecl() && "Method parsing confused");
6305    MD->setBody(Body);
6306    if (Body)
6307      MD->setEndLoc(Body->getLocEnd());
6308    if (!MD->isInvalidDecl()) {
6309      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6310      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6311                                             MD->getResultType(), MD);
6312    }
6313  } else {
6314    return 0;
6315  }
6316
6317  // Verify and clean out per-function state.
6318  if (Body) {
6319    // C++ constructors that have function-try-blocks can't have return
6320    // statements in the handlers of that block. (C++ [except.handle]p14)
6321    // Verify this.
6322    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6323      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6324
6325    // Verify that that gotos and switch cases don't jump into scopes illegally.
6326    // Verify that that gotos and switch cases don't jump into scopes illegally.
6327    if (getCurFunction()->NeedsScopeChecking() &&
6328        !dcl->isInvalidDecl() &&
6329        !hasAnyErrorsInThisFunction())
6330      DiagnoseInvalidJumps(Body);
6331
6332    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6333      if (!Destructor->getParent()->isDependentType())
6334        CheckDestructor(Destructor);
6335
6336      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6337                                             Destructor->getParent());
6338    }
6339
6340    // If any errors have occurred, clear out any temporaries that may have
6341    // been leftover. This ensures that these temporaries won't be picked up for
6342    // deletion in some later function.
6343    if (PP.getDiagnostics().hasErrorOccurred() ||
6344        PP.getDiagnostics().getSuppressAllDiagnostics())
6345      ExprTemporaries.clear();
6346    else if (!isa<FunctionTemplateDecl>(dcl)) {
6347      // Since the body is valid, issue any analysis-based warnings that are
6348      // enabled.
6349      ActivePolicy = &WP;
6350    }
6351
6352    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6353  }
6354
6355  if (!IsInstantiation)
6356    PopDeclContext();
6357
6358  PopFunctionOrBlockScope(ActivePolicy, dcl);
6359
6360  // If any errors have occurred, clear out any temporaries that may have
6361  // been leftover. This ensures that these temporaries won't be picked up for
6362  // deletion in some later function.
6363  if (getDiagnostics().hasErrorOccurred())
6364    ExprTemporaries.clear();
6365
6366  return dcl;
6367}
6368
6369/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6370/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6371NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6372                                          IdentifierInfo &II, Scope *S) {
6373  // Before we produce a declaration for an implicitly defined
6374  // function, see whether there was a locally-scoped declaration of
6375  // this name as a function or variable. If so, use that
6376  // (non-visible) declaration, and complain about it.
6377  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6378    = LocallyScopedExternalDecls.find(&II);
6379  if (Pos != LocallyScopedExternalDecls.end()) {
6380    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6381    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6382    return Pos->second;
6383  }
6384
6385  // Extension in C99.  Legal in C90, but warn about it.
6386  if (II.getName().startswith("__builtin_"))
6387    Diag(Loc, diag::warn_builtin_unknown) << &II;
6388  else if (getLangOptions().C99)
6389    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6390  else
6391    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6392
6393  // Set a Declarator for the implicit definition: int foo();
6394  const char *Dummy;
6395  AttributeFactory attrFactory;
6396  DeclSpec DS(attrFactory);
6397  unsigned DiagID;
6398  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6399  (void)Error; // Silence warning.
6400  assert(!Error && "Error setting up implicit decl!");
6401  Declarator D(DS, Declarator::BlockContext);
6402  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6403                                             0, 0, true, SourceLocation(),
6404                                             EST_None, SourceLocation(),
6405                                             0, 0, 0, 0, Loc, Loc, D),
6406                DS.getAttributes(),
6407                SourceLocation());
6408  D.SetIdentifier(&II, Loc);
6409
6410  // Insert this function into translation-unit scope.
6411
6412  DeclContext *PrevDC = CurContext;
6413  CurContext = Context.getTranslationUnitDecl();
6414
6415  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6416  FD->setImplicit();
6417
6418  CurContext = PrevDC;
6419
6420  AddKnownFunctionAttributes(FD);
6421
6422  return FD;
6423}
6424
6425/// \brief Adds any function attributes that we know a priori based on
6426/// the declaration of this function.
6427///
6428/// These attributes can apply both to implicitly-declared builtins
6429/// (like __builtin___printf_chk) or to library-declared functions
6430/// like NSLog or printf.
6431void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6432  if (FD->isInvalidDecl())
6433    return;
6434
6435  // If this is a built-in function, map its builtin attributes to
6436  // actual attributes.
6437  if (unsigned BuiltinID = FD->getBuiltinID()) {
6438    // Handle printf-formatting attributes.
6439    unsigned FormatIdx;
6440    bool HasVAListArg;
6441    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6442      if (!FD->getAttr<FormatAttr>())
6443        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6444                                                "printf", FormatIdx+1,
6445                                               HasVAListArg ? 0 : FormatIdx+2));
6446    }
6447    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6448                                             HasVAListArg)) {
6449     if (!FD->getAttr<FormatAttr>())
6450       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6451                                              "scanf", FormatIdx+1,
6452                                              HasVAListArg ? 0 : FormatIdx+2));
6453    }
6454
6455    // Mark const if we don't care about errno and that is the only
6456    // thing preventing the function from being const. This allows
6457    // IRgen to use LLVM intrinsics for such functions.
6458    if (!getLangOptions().MathErrno &&
6459        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6460      if (!FD->getAttr<ConstAttr>())
6461        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6462    }
6463
6464    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6465      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6466    if (Context.BuiltinInfo.isConst(BuiltinID))
6467      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6468  }
6469
6470  IdentifierInfo *Name = FD->getIdentifier();
6471  if (!Name)
6472    return;
6473  if ((!getLangOptions().CPlusPlus &&
6474       FD->getDeclContext()->isTranslationUnit()) ||
6475      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6476       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6477       LinkageSpecDecl::lang_c)) {
6478    // Okay: this could be a libc/libm/Objective-C function we know
6479    // about.
6480  } else
6481    return;
6482
6483  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6484    // FIXME: NSLog and NSLogv should be target specific
6485    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6486      // FIXME: We known better than our headers.
6487      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6488    } else
6489      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6490                                             "printf", 1,
6491                                             Name->isStr("NSLogv") ? 0 : 2));
6492  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6493    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6494    // target-specific builtins, perhaps?
6495    if (!FD->getAttr<FormatAttr>())
6496      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6497                                             "printf", 2,
6498                                             Name->isStr("vasprintf") ? 0 : 3));
6499  }
6500}
6501
6502TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6503                                    TypeSourceInfo *TInfo) {
6504  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6505  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6506
6507  if (!TInfo) {
6508    assert(D.isInvalidType() && "no declarator info for valid type");
6509    TInfo = Context.getTrivialTypeSourceInfo(T);
6510  }
6511
6512  // Scope manipulation handled by caller.
6513  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6514                                           D.getSourceRange().getBegin(),
6515                                           D.getIdentifierLoc(),
6516                                           D.getIdentifier(),
6517                                           TInfo);
6518
6519  // Bail out immediately if we have an invalid declaration.
6520  if (D.isInvalidType()) {
6521    NewTD->setInvalidDecl();
6522    return NewTD;
6523  }
6524
6525  // C++ [dcl.typedef]p8:
6526  //   If the typedef declaration defines an unnamed class (or
6527  //   enum), the first typedef-name declared by the declaration
6528  //   to be that class type (or enum type) is used to denote the
6529  //   class type (or enum type) for linkage purposes only.
6530  // We need to check whether the type was declared in the declaration.
6531  switch (D.getDeclSpec().getTypeSpecType()) {
6532  case TST_enum:
6533  case TST_struct:
6534  case TST_union:
6535  case TST_class: {
6536    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6537
6538    // Do nothing if the tag is not anonymous or already has an
6539    // associated typedef (from an earlier typedef in this decl group).
6540    if (tagFromDeclSpec->getIdentifier()) break;
6541    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6542
6543    // A well-formed anonymous tag must always be a TUK_Definition.
6544    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6545
6546    // The type must match the tag exactly;  no qualifiers allowed.
6547    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6548      break;
6549
6550    // Otherwise, set this is the anon-decl typedef for the tag.
6551    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6552    break;
6553  }
6554
6555  default:
6556    break;
6557  }
6558
6559  return NewTD;
6560}
6561
6562
6563/// \brief Determine whether a tag with a given kind is acceptable
6564/// as a redeclaration of the given tag declaration.
6565///
6566/// \returns true if the new tag kind is acceptable, false otherwise.
6567bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6568                                        TagTypeKind NewTag,
6569                                        SourceLocation NewTagLoc,
6570                                        const IdentifierInfo &Name) {
6571  // C++ [dcl.type.elab]p3:
6572  //   The class-key or enum keyword present in the
6573  //   elaborated-type-specifier shall agree in kind with the
6574  //   declaration to which the name in the elaborated-type-specifier
6575  //   refers. This rule also applies to the form of
6576  //   elaborated-type-specifier that declares a class-name or
6577  //   friend class since it can be construed as referring to the
6578  //   definition of the class. Thus, in any
6579  //   elaborated-type-specifier, the enum keyword shall be used to
6580  //   refer to an enumeration (7.2), the union class-key shall be
6581  //   used to refer to a union (clause 9), and either the class or
6582  //   struct class-key shall be used to refer to a class (clause 9)
6583  //   declared using the class or struct class-key.
6584  TagTypeKind OldTag = Previous->getTagKind();
6585  if (OldTag == NewTag)
6586    return true;
6587
6588  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6589      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6590    // Warn about the struct/class tag mismatch.
6591    bool isTemplate = false;
6592    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6593      isTemplate = Record->getDescribedClassTemplate();
6594
6595    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6596      << (NewTag == TTK_Class)
6597      << isTemplate << &Name
6598      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6599                              OldTag == TTK_Class? "class" : "struct");
6600    Diag(Previous->getLocation(), diag::note_previous_use);
6601    return true;
6602  }
6603  return false;
6604}
6605
6606/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6607/// former case, Name will be non-null.  In the later case, Name will be null.
6608/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6609/// reference/declaration/definition of a tag.
6610Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6611                     SourceLocation KWLoc, CXXScopeSpec &SS,
6612                     IdentifierInfo *Name, SourceLocation NameLoc,
6613                     AttributeList *Attr, AccessSpecifier AS,
6614                     MultiTemplateParamsArg TemplateParameterLists,
6615                     bool &OwnedDecl, bool &IsDependent,
6616                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6617                     TypeResult UnderlyingType) {
6618  // If this is not a definition, it must have a name.
6619  assert((Name != 0 || TUK == TUK_Definition) &&
6620         "Nameless record must be a definition!");
6621  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6622
6623  OwnedDecl = false;
6624  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6625
6626  // FIXME: Check explicit specializations more carefully.
6627  bool isExplicitSpecialization = false;
6628  bool Invalid = false;
6629
6630  // We only need to do this matching if we have template parameters
6631  // or a scope specifier, which also conveniently avoids this work
6632  // for non-C++ cases.
6633  if (TemplateParameterLists.size() > 0 ||
6634      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6635    if (TemplateParameterList *TemplateParams
6636          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6637                                                TemplateParameterLists.get(),
6638                                                TemplateParameterLists.size(),
6639                                                    TUK == TUK_Friend,
6640                                                    isExplicitSpecialization,
6641                                                    Invalid)) {
6642      if (TemplateParams->size() > 0) {
6643        // This is a declaration or definition of a class template (which may
6644        // be a member of another template).
6645
6646        if (Invalid)
6647          return 0;
6648
6649        OwnedDecl = false;
6650        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6651                                               SS, Name, NameLoc, Attr,
6652                                               TemplateParams, AS,
6653                                           TemplateParameterLists.size() - 1,
6654                 (TemplateParameterList**) TemplateParameterLists.release());
6655        return Result.get();
6656      } else {
6657        // The "template<>" header is extraneous.
6658        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6659          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6660        isExplicitSpecialization = true;
6661      }
6662    }
6663  }
6664
6665  // Figure out the underlying type if this a enum declaration. We need to do
6666  // this early, because it's needed to detect if this is an incompatible
6667  // redeclaration.
6668  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6669
6670  if (Kind == TTK_Enum) {
6671    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6672      // No underlying type explicitly specified, or we failed to parse the
6673      // type, default to int.
6674      EnumUnderlying = Context.IntTy.getTypePtr();
6675    else if (UnderlyingType.get()) {
6676      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6677      // integral type; any cv-qualification is ignored.
6678      TypeSourceInfo *TI = 0;
6679      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6680      EnumUnderlying = TI;
6681
6682      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6683
6684      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6685        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6686          << T;
6687        // Recover by falling back to int.
6688        EnumUnderlying = Context.IntTy.getTypePtr();
6689      }
6690
6691      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6692                                          UPPC_FixedUnderlyingType))
6693        EnumUnderlying = Context.IntTy.getTypePtr();
6694
6695    } else if (getLangOptions().Microsoft)
6696      // Microsoft enums are always of int type.
6697      EnumUnderlying = Context.IntTy.getTypePtr();
6698  }
6699
6700  DeclContext *SearchDC = CurContext;
6701  DeclContext *DC = CurContext;
6702  bool isStdBadAlloc = false;
6703
6704  RedeclarationKind Redecl = ForRedeclaration;
6705  if (TUK == TUK_Friend || TUK == TUK_Reference)
6706    Redecl = NotForRedeclaration;
6707
6708  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6709
6710  if (Name && SS.isNotEmpty()) {
6711    // We have a nested-name tag ('struct foo::bar').
6712
6713    // Check for invalid 'foo::'.
6714    if (SS.isInvalid()) {
6715      Name = 0;
6716      goto CreateNewDecl;
6717    }
6718
6719    // If this is a friend or a reference to a class in a dependent
6720    // context, don't try to make a decl for it.
6721    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6722      DC = computeDeclContext(SS, false);
6723      if (!DC) {
6724        IsDependent = true;
6725        return 0;
6726      }
6727    } else {
6728      DC = computeDeclContext(SS, true);
6729      if (!DC) {
6730        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6731          << SS.getRange();
6732        return 0;
6733      }
6734    }
6735
6736    if (RequireCompleteDeclContext(SS, DC))
6737      return 0;
6738
6739    SearchDC = DC;
6740    // Look-up name inside 'foo::'.
6741    LookupQualifiedName(Previous, DC);
6742
6743    if (Previous.isAmbiguous())
6744      return 0;
6745
6746    if (Previous.empty()) {
6747      // Name lookup did not find anything. However, if the
6748      // nested-name-specifier refers to the current instantiation,
6749      // and that current instantiation has any dependent base
6750      // classes, we might find something at instantiation time: treat
6751      // this as a dependent elaborated-type-specifier.
6752      // But this only makes any sense for reference-like lookups.
6753      if (Previous.wasNotFoundInCurrentInstantiation() &&
6754          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6755        IsDependent = true;
6756        return 0;
6757      }
6758
6759      // A tag 'foo::bar' must already exist.
6760      Diag(NameLoc, diag::err_not_tag_in_scope)
6761        << Kind << Name << DC << SS.getRange();
6762      Name = 0;
6763      Invalid = true;
6764      goto CreateNewDecl;
6765    }
6766  } else if (Name) {
6767    // If this is a named struct, check to see if there was a previous forward
6768    // declaration or definition.
6769    // FIXME: We're looking into outer scopes here, even when we
6770    // shouldn't be. Doing so can result in ambiguities that we
6771    // shouldn't be diagnosing.
6772    LookupName(Previous, S);
6773
6774    if (Previous.isAmbiguous() &&
6775        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6776      LookupResult::Filter F = Previous.makeFilter();
6777      while (F.hasNext()) {
6778        NamedDecl *ND = F.next();
6779        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6780          F.erase();
6781      }
6782      F.done();
6783    }
6784
6785    // Note:  there used to be some attempt at recovery here.
6786    if (Previous.isAmbiguous())
6787      return 0;
6788
6789    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6790      // FIXME: This makes sure that we ignore the contexts associated
6791      // with C structs, unions, and enums when looking for a matching
6792      // tag declaration or definition. See the similar lookup tweak
6793      // in Sema::LookupName; is there a better way to deal with this?
6794      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6795        SearchDC = SearchDC->getParent();
6796    }
6797  } else if (S->isFunctionPrototypeScope()) {
6798    // If this is an enum declaration in function prototype scope, set its
6799    // initial context to the translation unit.
6800    SearchDC = Context.getTranslationUnitDecl();
6801  }
6802
6803  if (Previous.isSingleResult() &&
6804      Previous.getFoundDecl()->isTemplateParameter()) {
6805    // Maybe we will complain about the shadowed template parameter.
6806    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6807    // Just pretend that we didn't see the previous declaration.
6808    Previous.clear();
6809  }
6810
6811  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6812      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6813    // This is a declaration of or a reference to "std::bad_alloc".
6814    isStdBadAlloc = true;
6815
6816    if (Previous.empty() && StdBadAlloc) {
6817      // std::bad_alloc has been implicitly declared (but made invisible to
6818      // name lookup). Fill in this implicit declaration as the previous
6819      // declaration, so that the declarations get chained appropriately.
6820      Previous.addDecl(getStdBadAlloc());
6821    }
6822  }
6823
6824  // If we didn't find a previous declaration, and this is a reference
6825  // (or friend reference), move to the correct scope.  In C++, we
6826  // also need to do a redeclaration lookup there, just in case
6827  // there's a shadow friend decl.
6828  if (Name && Previous.empty() &&
6829      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6830    if (Invalid) goto CreateNewDecl;
6831    assert(SS.isEmpty());
6832
6833    if (TUK == TUK_Reference) {
6834      // C++ [basic.scope.pdecl]p5:
6835      //   -- for an elaborated-type-specifier of the form
6836      //
6837      //          class-key identifier
6838      //
6839      //      if the elaborated-type-specifier is used in the
6840      //      decl-specifier-seq or parameter-declaration-clause of a
6841      //      function defined in namespace scope, the identifier is
6842      //      declared as a class-name in the namespace that contains
6843      //      the declaration; otherwise, except as a friend
6844      //      declaration, the identifier is declared in the smallest
6845      //      non-class, non-function-prototype scope that contains the
6846      //      declaration.
6847      //
6848      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6849      // C structs and unions.
6850      //
6851      // It is an error in C++ to declare (rather than define) an enum
6852      // type, including via an elaborated type specifier.  We'll
6853      // diagnose that later; for now, declare the enum in the same
6854      // scope as we would have picked for any other tag type.
6855      //
6856      // GNU C also supports this behavior as part of its incomplete
6857      // enum types extension, while GNU C++ does not.
6858      //
6859      // Find the context where we'll be declaring the tag.
6860      // FIXME: We would like to maintain the current DeclContext as the
6861      // lexical context,
6862      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6863        SearchDC = SearchDC->getParent();
6864
6865      // Find the scope where we'll be declaring the tag.
6866      while (S->isClassScope() ||
6867             (getLangOptions().CPlusPlus &&
6868              S->isFunctionPrototypeScope()) ||
6869             ((S->getFlags() & Scope::DeclScope) == 0) ||
6870             (S->getEntity() &&
6871              ((DeclContext *)S->getEntity())->isTransparentContext()))
6872        S = S->getParent();
6873    } else {
6874      assert(TUK == TUK_Friend);
6875      // C++ [namespace.memdef]p3:
6876      //   If a friend declaration in a non-local class first declares a
6877      //   class or function, the friend class or function is a member of
6878      //   the innermost enclosing namespace.
6879      SearchDC = SearchDC->getEnclosingNamespaceContext();
6880    }
6881
6882    // In C++, we need to do a redeclaration lookup to properly
6883    // diagnose some problems.
6884    if (getLangOptions().CPlusPlus) {
6885      Previous.setRedeclarationKind(ForRedeclaration);
6886      LookupQualifiedName(Previous, SearchDC);
6887    }
6888  }
6889
6890  if (!Previous.empty()) {
6891    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6892
6893    // It's okay to have a tag decl in the same scope as a typedef
6894    // which hides a tag decl in the same scope.  Finding this
6895    // insanity with a redeclaration lookup can only actually happen
6896    // in C++.
6897    //
6898    // This is also okay for elaborated-type-specifiers, which is
6899    // technically forbidden by the current standard but which is
6900    // okay according to the likely resolution of an open issue;
6901    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6902    if (getLangOptions().CPlusPlus) {
6903      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6904        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6905          TagDecl *Tag = TT->getDecl();
6906          if (Tag->getDeclName() == Name &&
6907              Tag->getDeclContext()->getRedeclContext()
6908                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6909            PrevDecl = Tag;
6910            Previous.clear();
6911            Previous.addDecl(Tag);
6912            Previous.resolveKind();
6913          }
6914        }
6915      }
6916    }
6917
6918    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6919      // If this is a use of a previous tag, or if the tag is already declared
6920      // in the same scope (so that the definition/declaration completes or
6921      // rementions the tag), reuse the decl.
6922      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6923          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6924        // Make sure that this wasn't declared as an enum and now used as a
6925        // struct or something similar.
6926        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6927          bool SafeToContinue
6928            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6929               Kind != TTK_Enum);
6930          if (SafeToContinue)
6931            Diag(KWLoc, diag::err_use_with_wrong_tag)
6932              << Name
6933              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6934                                              PrevTagDecl->getKindName());
6935          else
6936            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6937          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6938
6939          if (SafeToContinue)
6940            Kind = PrevTagDecl->getTagKind();
6941          else {
6942            // Recover by making this an anonymous redefinition.
6943            Name = 0;
6944            Previous.clear();
6945            Invalid = true;
6946          }
6947        }
6948
6949        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6950          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6951
6952          // All conflicts with previous declarations are recovered by
6953          // returning the previous declaration.
6954          if (ScopedEnum != PrevEnum->isScoped()) {
6955            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6956              << PrevEnum->isScoped();
6957            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6958            return PrevTagDecl;
6959          }
6960          else if (EnumUnderlying && PrevEnum->isFixed()) {
6961            QualType T;
6962            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6963                T = TI->getType();
6964            else
6965                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6966
6967            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6968              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6969                   diag::err_enum_redeclare_type_mismatch)
6970                << T
6971                << PrevEnum->getIntegerType();
6972              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6973              return PrevTagDecl;
6974            }
6975          }
6976          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6977            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6978              << PrevEnum->isFixed();
6979            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6980            return PrevTagDecl;
6981          }
6982        }
6983
6984        if (!Invalid) {
6985          // If this is a use, just return the declaration we found.
6986
6987          // FIXME: In the future, return a variant or some other clue
6988          // for the consumer of this Decl to know it doesn't own it.
6989          // For our current ASTs this shouldn't be a problem, but will
6990          // need to be changed with DeclGroups.
6991          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6992              TUK == TUK_Friend)
6993            return PrevTagDecl;
6994
6995          // Diagnose attempts to redefine a tag.
6996          if (TUK == TUK_Definition) {
6997            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6998              // If we're defining a specialization and the previous definition
6999              // is from an implicit instantiation, don't emit an error
7000              // here; we'll catch this in the general case below.
7001              if (!isExplicitSpecialization ||
7002                  !isa<CXXRecordDecl>(Def) ||
7003                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7004                                               == TSK_ExplicitSpecialization) {
7005                Diag(NameLoc, diag::err_redefinition) << Name;
7006                Diag(Def->getLocation(), diag::note_previous_definition);
7007                // If this is a redefinition, recover by making this
7008                // struct be anonymous, which will make any later
7009                // references get the previous definition.
7010                Name = 0;
7011                Previous.clear();
7012                Invalid = true;
7013              }
7014            } else {
7015              // If the type is currently being defined, complain
7016              // about a nested redefinition.
7017              const TagType *Tag
7018                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7019              if (Tag->isBeingDefined()) {
7020                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7021                Diag(PrevTagDecl->getLocation(),
7022                     diag::note_previous_definition);
7023                Name = 0;
7024                Previous.clear();
7025                Invalid = true;
7026              }
7027            }
7028
7029            // Okay, this is definition of a previously declared or referenced
7030            // tag PrevDecl. We're going to create a new Decl for it.
7031          }
7032        }
7033        // If we get here we have (another) forward declaration or we
7034        // have a definition.  Just create a new decl.
7035
7036      } else {
7037        // If we get here, this is a definition of a new tag type in a nested
7038        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7039        // new decl/type.  We set PrevDecl to NULL so that the entities
7040        // have distinct types.
7041        Previous.clear();
7042      }
7043      // If we get here, we're going to create a new Decl. If PrevDecl
7044      // is non-NULL, it's a definition of the tag declared by
7045      // PrevDecl. If it's NULL, we have a new definition.
7046
7047
7048    // Otherwise, PrevDecl is not a tag, but was found with tag
7049    // lookup.  This is only actually possible in C++, where a few
7050    // things like templates still live in the tag namespace.
7051    } else {
7052      assert(getLangOptions().CPlusPlus);
7053
7054      // Use a better diagnostic if an elaborated-type-specifier
7055      // found the wrong kind of type on the first
7056      // (non-redeclaration) lookup.
7057      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7058          !Previous.isForRedeclaration()) {
7059        unsigned Kind = 0;
7060        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7061        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7062        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7063        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7064        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7065        Invalid = true;
7066
7067      // Otherwise, only diagnose if the declaration is in scope.
7068      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7069                                isExplicitSpecialization)) {
7070        // do nothing
7071
7072      // Diagnose implicit declarations introduced by elaborated types.
7073      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7074        unsigned Kind = 0;
7075        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7076        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7077        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7078        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7079        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7080        Invalid = true;
7081
7082      // Otherwise it's a declaration.  Call out a particularly common
7083      // case here.
7084      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7085        unsigned Kind = 0;
7086        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7087        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7088          << Name << Kind << TND->getUnderlyingType();
7089        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7090        Invalid = true;
7091
7092      // Otherwise, diagnose.
7093      } else {
7094        // The tag name clashes with something else in the target scope,
7095        // issue an error and recover by making this tag be anonymous.
7096        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7097        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7098        Name = 0;
7099        Invalid = true;
7100      }
7101
7102      // The existing declaration isn't relevant to us; we're in a
7103      // new scope, so clear out the previous declaration.
7104      Previous.clear();
7105    }
7106  }
7107
7108CreateNewDecl:
7109
7110  TagDecl *PrevDecl = 0;
7111  if (Previous.isSingleResult())
7112    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7113
7114  // If there is an identifier, use the location of the identifier as the
7115  // location of the decl, otherwise use the location of the struct/union
7116  // keyword.
7117  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7118
7119  // Otherwise, create a new declaration. If there is a previous
7120  // declaration of the same entity, the two will be linked via
7121  // PrevDecl.
7122  TagDecl *New;
7123
7124  bool IsForwardReference = false;
7125  if (Kind == TTK_Enum) {
7126    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7127    // enum X { A, B, C } D;    D should chain to X.
7128    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7129                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7130                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7131    // If this is an undefined enum, warn.
7132    if (TUK != TUK_Definition && !Invalid) {
7133      TagDecl *Def;
7134      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7135        // C++0x: 7.2p2: opaque-enum-declaration.
7136        // Conflicts are diagnosed above. Do nothing.
7137      }
7138      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7139        Diag(Loc, diag::ext_forward_ref_enum_def)
7140          << New;
7141        Diag(Def->getLocation(), diag::note_previous_definition);
7142      } else {
7143        unsigned DiagID = diag::ext_forward_ref_enum;
7144        if (getLangOptions().Microsoft)
7145          DiagID = diag::ext_ms_forward_ref_enum;
7146        else if (getLangOptions().CPlusPlus)
7147          DiagID = diag::err_forward_ref_enum;
7148        Diag(Loc, DiagID);
7149
7150        // If this is a forward-declared reference to an enumeration, make a
7151        // note of it; we won't actually be introducing the declaration into
7152        // the declaration context.
7153        if (TUK == TUK_Reference)
7154          IsForwardReference = true;
7155      }
7156    }
7157
7158    if (EnumUnderlying) {
7159      EnumDecl *ED = cast<EnumDecl>(New);
7160      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7161        ED->setIntegerTypeSourceInfo(TI);
7162      else
7163        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7164      ED->setPromotionType(ED->getIntegerType());
7165    }
7166
7167  } else {
7168    // struct/union/class
7169
7170    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7171    // struct X { int A; } D;    D should chain to X.
7172    if (getLangOptions().CPlusPlus) {
7173      // FIXME: Look for a way to use RecordDecl for simple structs.
7174      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7175                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7176
7177      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7178        StdBadAlloc = cast<CXXRecordDecl>(New);
7179    } else
7180      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7181                               cast_or_null<RecordDecl>(PrevDecl));
7182  }
7183
7184  // Maybe add qualifier info.
7185  if (SS.isNotEmpty()) {
7186    if (SS.isSet()) {
7187      New->setQualifierInfo(SS.getWithLocInContext(Context));
7188      if (TemplateParameterLists.size() > 0) {
7189        New->setTemplateParameterListsInfo(Context,
7190                                           TemplateParameterLists.size(),
7191                    (TemplateParameterList**) TemplateParameterLists.release());
7192      }
7193    }
7194    else
7195      Invalid = true;
7196  }
7197
7198  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7199    // Add alignment attributes if necessary; these attributes are checked when
7200    // the ASTContext lays out the structure.
7201    //
7202    // It is important for implementing the correct semantics that this
7203    // happen here (in act on tag decl). The #pragma pack stack is
7204    // maintained as a result of parser callbacks which can occur at
7205    // many points during the parsing of a struct declaration (because
7206    // the #pragma tokens are effectively skipped over during the
7207    // parsing of the struct).
7208    AddAlignmentAttributesForRecord(RD);
7209
7210    AddMsStructLayoutForRecord(RD);
7211  }
7212
7213  // If this is a specialization of a member class (of a class template),
7214  // check the specialization.
7215  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7216    Invalid = true;
7217
7218  if (Invalid)
7219    New->setInvalidDecl();
7220
7221  if (Attr)
7222    ProcessDeclAttributeList(S, New, Attr);
7223
7224  // If we're declaring or defining a tag in function prototype scope
7225  // in C, note that this type can only be used within the function.
7226  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7227    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7228
7229  // Set the lexical context. If the tag has a C++ scope specifier, the
7230  // lexical context will be different from the semantic context.
7231  New->setLexicalDeclContext(CurContext);
7232
7233  // Mark this as a friend decl if applicable.
7234  if (TUK == TUK_Friend)
7235    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7236
7237  // Set the access specifier.
7238  if (!Invalid && SearchDC->isRecord())
7239    SetMemberAccessSpecifier(New, PrevDecl, AS);
7240
7241  if (TUK == TUK_Definition)
7242    New->startDefinition();
7243
7244  // If this has an identifier, add it to the scope stack.
7245  if (TUK == TUK_Friend) {
7246    // We might be replacing an existing declaration in the lookup tables;
7247    // if so, borrow its access specifier.
7248    if (PrevDecl)
7249      New->setAccess(PrevDecl->getAccess());
7250
7251    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7252    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7253    if (Name) // can be null along some error paths
7254      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7255        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7256  } else if (Name) {
7257    S = getNonFieldDeclScope(S);
7258    PushOnScopeChains(New, S, !IsForwardReference);
7259    if (IsForwardReference)
7260      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7261
7262  } else {
7263    CurContext->addDecl(New);
7264  }
7265
7266  // If this is the C FILE type, notify the AST context.
7267  if (IdentifierInfo *II = New->getIdentifier())
7268    if (!New->isInvalidDecl() &&
7269        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7270        II->isStr("FILE"))
7271      Context.setFILEDecl(New);
7272
7273  OwnedDecl = true;
7274  return New;
7275}
7276
7277void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7278  AdjustDeclIfTemplate(TagD);
7279  TagDecl *Tag = cast<TagDecl>(TagD);
7280
7281  // Enter the tag context.
7282  PushDeclContext(S, Tag);
7283}
7284
7285void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7286                                           SourceLocation FinalLoc,
7287                                           SourceLocation LBraceLoc) {
7288  AdjustDeclIfTemplate(TagD);
7289  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7290
7291  FieldCollector->StartClass();
7292
7293  if (!Record->getIdentifier())
7294    return;
7295
7296  if (FinalLoc.isValid())
7297    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7298
7299  // C++ [class]p2:
7300  //   [...] The class-name is also inserted into the scope of the
7301  //   class itself; this is known as the injected-class-name. For
7302  //   purposes of access checking, the injected-class-name is treated
7303  //   as if it were a public member name.
7304  CXXRecordDecl *InjectedClassName
7305    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7306                            Record->getLocStart(), Record->getLocation(),
7307                            Record->getIdentifier(),
7308                            /*PrevDecl=*/0,
7309                            /*DelayTypeCreation=*/true);
7310  Context.getTypeDeclType(InjectedClassName, Record);
7311  InjectedClassName->setImplicit();
7312  InjectedClassName->setAccess(AS_public);
7313  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7314      InjectedClassName->setDescribedClassTemplate(Template);
7315  PushOnScopeChains(InjectedClassName, S);
7316  assert(InjectedClassName->isInjectedClassName() &&
7317         "Broken injected-class-name");
7318}
7319
7320void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7321                                    SourceLocation RBraceLoc) {
7322  AdjustDeclIfTemplate(TagD);
7323  TagDecl *Tag = cast<TagDecl>(TagD);
7324  Tag->setRBraceLoc(RBraceLoc);
7325
7326  if (isa<CXXRecordDecl>(Tag))
7327    FieldCollector->FinishClass();
7328
7329  // Exit this scope of this tag's definition.
7330  PopDeclContext();
7331
7332  // Notify the consumer that we've defined a tag.
7333  Consumer.HandleTagDeclDefinition(Tag);
7334}
7335
7336void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7337  AdjustDeclIfTemplate(TagD);
7338  TagDecl *Tag = cast<TagDecl>(TagD);
7339  Tag->setInvalidDecl();
7340
7341  // We're undoing ActOnTagStartDefinition here, not
7342  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7343  // the FieldCollector.
7344
7345  PopDeclContext();
7346}
7347
7348// Note that FieldName may be null for anonymous bitfields.
7349bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7350                          QualType FieldTy, const Expr *BitWidth,
7351                          bool *ZeroWidth) {
7352  // Default to true; that shouldn't confuse checks for emptiness
7353  if (ZeroWidth)
7354    *ZeroWidth = true;
7355
7356  // C99 6.7.2.1p4 - verify the field type.
7357  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7358  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7359    // Handle incomplete types with specific error.
7360    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7361      return true;
7362    if (FieldName)
7363      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7364        << FieldName << FieldTy << BitWidth->getSourceRange();
7365    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7366      << FieldTy << BitWidth->getSourceRange();
7367  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7368                                             UPPC_BitFieldWidth))
7369    return true;
7370
7371  // If the bit-width is type- or value-dependent, don't try to check
7372  // it now.
7373  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7374    return false;
7375
7376  llvm::APSInt Value;
7377  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7378    return true;
7379
7380  if (Value != 0 && ZeroWidth)
7381    *ZeroWidth = false;
7382
7383  // Zero-width bitfield is ok for anonymous field.
7384  if (Value == 0 && FieldName)
7385    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7386
7387  if (Value.isSigned() && Value.isNegative()) {
7388    if (FieldName)
7389      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7390               << FieldName << Value.toString(10);
7391    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7392      << Value.toString(10);
7393  }
7394
7395  if (!FieldTy->isDependentType()) {
7396    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7397    if (Value.getZExtValue() > TypeSize) {
7398      if (!getLangOptions().CPlusPlus) {
7399        if (FieldName)
7400          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7401            << FieldName << (unsigned)Value.getZExtValue()
7402            << (unsigned)TypeSize;
7403
7404        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7405          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7406      }
7407
7408      if (FieldName)
7409        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7410          << FieldName << (unsigned)Value.getZExtValue()
7411          << (unsigned)TypeSize;
7412      else
7413        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7414          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7415    }
7416  }
7417
7418  return false;
7419}
7420
7421/// ActOnField - Each field of a struct/union/class is passed into this in order
7422/// to create a FieldDecl object for it.
7423Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7424                                 SourceLocation DeclStart,
7425                                 Declarator &D, ExprTy *BitfieldWidth) {
7426  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7427                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7428                               AS_public);
7429  return Res;
7430}
7431
7432/// HandleField - Analyze a field of a C struct or a C++ data member.
7433///
7434FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7435                             SourceLocation DeclStart,
7436                             Declarator &D, Expr *BitWidth,
7437                             AccessSpecifier AS) {
7438  IdentifierInfo *II = D.getIdentifier();
7439  SourceLocation Loc = DeclStart;
7440  if (II) Loc = D.getIdentifierLoc();
7441
7442  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7443  QualType T = TInfo->getType();
7444  if (getLangOptions().CPlusPlus) {
7445    CheckExtraCXXDefaultArguments(D);
7446
7447    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7448                                        UPPC_DataMemberType)) {
7449      D.setInvalidType();
7450      T = Context.IntTy;
7451      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7452    }
7453  }
7454
7455  DiagnoseFunctionSpecifiers(D);
7456
7457  if (D.getDeclSpec().isThreadSpecified())
7458    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7459
7460  // Check to see if this name was declared as a member previously
7461  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7462  LookupName(Previous, S);
7463  assert((Previous.empty() || Previous.isOverloadedResult() ||
7464          Previous.isSingleResult())
7465    && "Lookup of member name should be either overloaded, single or null");
7466
7467  // If the name is overloaded then get any declaration else get the single result
7468  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7469    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7470
7471  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7472    // Maybe we will complain about the shadowed template parameter.
7473    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7474    // Just pretend that we didn't see the previous declaration.
7475    PrevDecl = 0;
7476  }
7477
7478  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7479    PrevDecl = 0;
7480
7481  bool Mutable
7482    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7483  SourceLocation TSSL = D.getSourceRange().getBegin();
7484  FieldDecl *NewFD
7485    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7486                     AS, PrevDecl, &D);
7487
7488  if (NewFD->isInvalidDecl())
7489    Record->setInvalidDecl();
7490
7491  if (NewFD->isInvalidDecl() && PrevDecl) {
7492    // Don't introduce NewFD into scope; there's already something
7493    // with the same name in the same scope.
7494  } else if (II) {
7495    PushOnScopeChains(NewFD, S);
7496  } else
7497    Record->addDecl(NewFD);
7498
7499  return NewFD;
7500}
7501
7502/// \brief Build a new FieldDecl and check its well-formedness.
7503///
7504/// This routine builds a new FieldDecl given the fields name, type,
7505/// record, etc. \p PrevDecl should refer to any previous declaration
7506/// with the same name and in the same scope as the field to be
7507/// created.
7508///
7509/// \returns a new FieldDecl.
7510///
7511/// \todo The Declarator argument is a hack. It will be removed once
7512FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7513                                TypeSourceInfo *TInfo,
7514                                RecordDecl *Record, SourceLocation Loc,
7515                                bool Mutable, Expr *BitWidth,
7516                                SourceLocation TSSL,
7517                                AccessSpecifier AS, NamedDecl *PrevDecl,
7518                                Declarator *D) {
7519  IdentifierInfo *II = Name.getAsIdentifierInfo();
7520  bool InvalidDecl = false;
7521  if (D) InvalidDecl = D->isInvalidType();
7522
7523  // If we receive a broken type, recover by assuming 'int' and
7524  // marking this declaration as invalid.
7525  if (T.isNull()) {
7526    InvalidDecl = true;
7527    T = Context.IntTy;
7528  }
7529
7530  QualType EltTy = Context.getBaseElementType(T);
7531  if (!EltTy->isDependentType() &&
7532      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7533    // Fields of incomplete type force their record to be invalid.
7534    Record->setInvalidDecl();
7535    InvalidDecl = true;
7536  }
7537
7538  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7539  // than a variably modified type.
7540  if (!InvalidDecl && T->isVariablyModifiedType()) {
7541    bool SizeIsNegative;
7542    llvm::APSInt Oversized;
7543    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7544                                                           SizeIsNegative,
7545                                                           Oversized);
7546    if (!FixedTy.isNull()) {
7547      Diag(Loc, diag::warn_illegal_constant_array_size);
7548      T = FixedTy;
7549    } else {
7550      if (SizeIsNegative)
7551        Diag(Loc, diag::err_typecheck_negative_array_size);
7552      else if (Oversized.getBoolValue())
7553        Diag(Loc, diag::err_array_too_large)
7554          << Oversized.toString(10);
7555      else
7556        Diag(Loc, diag::err_typecheck_field_variable_size);
7557      InvalidDecl = true;
7558    }
7559  }
7560
7561  // Fields can not have abstract class types
7562  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7563                                             diag::err_abstract_type_in_decl,
7564                                             AbstractFieldType))
7565    InvalidDecl = true;
7566
7567  bool ZeroWidth = false;
7568  // If this is declared as a bit-field, check the bit-field.
7569  if (!InvalidDecl && BitWidth &&
7570      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7571    InvalidDecl = true;
7572    BitWidth = 0;
7573    ZeroWidth = false;
7574  }
7575
7576  // Check that 'mutable' is consistent with the type of the declaration.
7577  if (!InvalidDecl && Mutable) {
7578    unsigned DiagID = 0;
7579    if (T->isReferenceType())
7580      DiagID = diag::err_mutable_reference;
7581    else if (T.isConstQualified())
7582      DiagID = diag::err_mutable_const;
7583
7584    if (DiagID) {
7585      SourceLocation ErrLoc = Loc;
7586      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7587        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7588      Diag(ErrLoc, DiagID);
7589      Mutable = false;
7590      InvalidDecl = true;
7591    }
7592  }
7593
7594  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7595                                       BitWidth, Mutable);
7596  if (InvalidDecl)
7597    NewFD->setInvalidDecl();
7598
7599  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7600    Diag(Loc, diag::err_duplicate_member) << II;
7601    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7602    NewFD->setInvalidDecl();
7603  }
7604
7605  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7606    if (Record->isUnion()) {
7607      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7608        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7609        if (RDecl->getDefinition()) {
7610          // C++ [class.union]p1: An object of a class with a non-trivial
7611          // constructor, a non-trivial copy constructor, a non-trivial
7612          // destructor, or a non-trivial copy assignment operator
7613          // cannot be a member of a union, nor can an array of such
7614          // objects.
7615          // TODO: C++0x alters this restriction significantly.
7616          if (CheckNontrivialField(NewFD))
7617            NewFD->setInvalidDecl();
7618        }
7619      }
7620
7621      // C++ [class.union]p1: If a union contains a member of reference type,
7622      // the program is ill-formed.
7623      if (EltTy->isReferenceType()) {
7624        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7625          << NewFD->getDeclName() << EltTy;
7626        NewFD->setInvalidDecl();
7627      }
7628    }
7629  }
7630
7631  // FIXME: We need to pass in the attributes given an AST
7632  // representation, not a parser representation.
7633  if (D)
7634    // FIXME: What to pass instead of TUScope?
7635    ProcessDeclAttributes(TUScope, NewFD, *D);
7636
7637  if (T.isObjCGCWeak())
7638    Diag(Loc, diag::warn_attribute_weak_on_field);
7639
7640  NewFD->setAccess(AS);
7641  return NewFD;
7642}
7643
7644bool Sema::CheckNontrivialField(FieldDecl *FD) {
7645  assert(FD);
7646  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7647
7648  if (FD->isInvalidDecl())
7649    return true;
7650
7651  QualType EltTy = Context.getBaseElementType(FD->getType());
7652  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7653    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7654    if (RDecl->getDefinition()) {
7655      // We check for copy constructors before constructors
7656      // because otherwise we'll never get complaints about
7657      // copy constructors.
7658
7659      CXXSpecialMember member = CXXInvalid;
7660      if (!RDecl->hasTrivialCopyConstructor())
7661        member = CXXCopyConstructor;
7662      else if (!RDecl->hasTrivialDefaultConstructor())
7663        member = CXXDefaultConstructor;
7664      else if (!RDecl->hasTrivialCopyAssignment())
7665        member = CXXCopyAssignment;
7666      else if (!RDecl->hasTrivialDestructor())
7667        member = CXXDestructor;
7668
7669      if (member != CXXInvalid) {
7670        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7671              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7672        DiagnoseNontrivial(RT, member);
7673        return true;
7674      }
7675    }
7676  }
7677
7678  return false;
7679}
7680
7681/// DiagnoseNontrivial - Given that a class has a non-trivial
7682/// special member, figure out why.
7683void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7684  QualType QT(T, 0U);
7685  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7686
7687  // Check whether the member was user-declared.
7688  switch (member) {
7689  case CXXInvalid:
7690    break;
7691
7692  case CXXDefaultConstructor:
7693    if (RD->hasUserDeclaredConstructor()) {
7694      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7695      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7696        const FunctionDecl *body = 0;
7697        ci->hasBody(body);
7698        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7699          SourceLocation CtorLoc = ci->getLocation();
7700          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7701          return;
7702        }
7703      }
7704
7705      assert(0 && "found no user-declared constructors");
7706      return;
7707    }
7708    break;
7709
7710  case CXXCopyConstructor:
7711    if (RD->hasUserDeclaredCopyConstructor()) {
7712      SourceLocation CtorLoc =
7713        RD->getCopyConstructor(Context, 0)->getLocation();
7714      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7715      return;
7716    }
7717    break;
7718
7719  case CXXCopyAssignment:
7720    if (RD->hasUserDeclaredCopyAssignment()) {
7721      // FIXME: this should use the location of the copy
7722      // assignment, not the type.
7723      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7724      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7725      return;
7726    }
7727    break;
7728
7729  case CXXDestructor:
7730    if (RD->hasUserDeclaredDestructor()) {
7731      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7732      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7733      return;
7734    }
7735    break;
7736  }
7737
7738  typedef CXXRecordDecl::base_class_iterator base_iter;
7739
7740  // Virtual bases and members inhibit trivial copying/construction,
7741  // but not trivial destruction.
7742  if (member != CXXDestructor) {
7743    // Check for virtual bases.  vbases includes indirect virtual bases,
7744    // so we just iterate through the direct bases.
7745    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7746      if (bi->isVirtual()) {
7747        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7748        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7749        return;
7750      }
7751
7752    // Check for virtual methods.
7753    typedef CXXRecordDecl::method_iterator meth_iter;
7754    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7755         ++mi) {
7756      if (mi->isVirtual()) {
7757        SourceLocation MLoc = mi->getSourceRange().getBegin();
7758        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7759        return;
7760      }
7761    }
7762  }
7763
7764  bool (CXXRecordDecl::*hasTrivial)() const;
7765  switch (member) {
7766  case CXXDefaultConstructor:
7767    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7768  case CXXCopyConstructor:
7769    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7770  case CXXCopyAssignment:
7771    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7772  case CXXDestructor:
7773    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7774  default:
7775    assert(0 && "unexpected special member"); return;
7776  }
7777
7778  // Check for nontrivial bases (and recurse).
7779  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7780    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7781    assert(BaseRT && "Don't know how to handle dependent bases");
7782    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7783    if (!(BaseRecTy->*hasTrivial)()) {
7784      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7785      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7786      DiagnoseNontrivial(BaseRT, member);
7787      return;
7788    }
7789  }
7790
7791  // Check for nontrivial members (and recurse).
7792  typedef RecordDecl::field_iterator field_iter;
7793  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7794       ++fi) {
7795    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7796    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7797      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7798
7799      if (!(EltRD->*hasTrivial)()) {
7800        SourceLocation FLoc = (*fi)->getLocation();
7801        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7802        DiagnoseNontrivial(EltRT, member);
7803        return;
7804      }
7805    }
7806  }
7807
7808  assert(0 && "found no explanation for non-trivial member");
7809}
7810
7811/// TranslateIvarVisibility - Translate visibility from a token ID to an
7812///  AST enum value.
7813static ObjCIvarDecl::AccessControl
7814TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7815  switch (ivarVisibility) {
7816  default: assert(0 && "Unknown visitibility kind");
7817  case tok::objc_private: return ObjCIvarDecl::Private;
7818  case tok::objc_public: return ObjCIvarDecl::Public;
7819  case tok::objc_protected: return ObjCIvarDecl::Protected;
7820  case tok::objc_package: return ObjCIvarDecl::Package;
7821  }
7822}
7823
7824/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7825/// in order to create an IvarDecl object for it.
7826Decl *Sema::ActOnIvar(Scope *S,
7827                                SourceLocation DeclStart,
7828                                Decl *IntfDecl,
7829                                Declarator &D, ExprTy *BitfieldWidth,
7830                                tok::ObjCKeywordKind Visibility) {
7831
7832  IdentifierInfo *II = D.getIdentifier();
7833  Expr *BitWidth = (Expr*)BitfieldWidth;
7834  SourceLocation Loc = DeclStart;
7835  if (II) Loc = D.getIdentifierLoc();
7836
7837  // FIXME: Unnamed fields can be handled in various different ways, for
7838  // example, unnamed unions inject all members into the struct namespace!
7839
7840  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7841  QualType T = TInfo->getType();
7842
7843  if (BitWidth) {
7844    // 6.7.2.1p3, 6.7.2.1p4
7845    if (VerifyBitField(Loc, II, T, BitWidth)) {
7846      D.setInvalidType();
7847      BitWidth = 0;
7848    }
7849  } else {
7850    // Not a bitfield.
7851
7852    // validate II.
7853
7854  }
7855  if (T->isReferenceType()) {
7856    Diag(Loc, diag::err_ivar_reference_type);
7857    D.setInvalidType();
7858  }
7859  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7860  // than a variably modified type.
7861  else if (T->isVariablyModifiedType()) {
7862    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7863    D.setInvalidType();
7864  }
7865
7866  // Get the visibility (access control) for this ivar.
7867  ObjCIvarDecl::AccessControl ac =
7868    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7869                                        : ObjCIvarDecl::None;
7870  // Must set ivar's DeclContext to its enclosing interface.
7871  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7872  ObjCContainerDecl *EnclosingContext;
7873  if (ObjCImplementationDecl *IMPDecl =
7874      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7875    if (!LangOpts.ObjCNonFragileABI2) {
7876    // Case of ivar declared in an implementation. Context is that of its class.
7877      EnclosingContext = IMPDecl->getClassInterface();
7878      assert(EnclosingContext && "Implementation has no class interface!");
7879    }
7880    else
7881      EnclosingContext = EnclosingDecl;
7882  } else {
7883    if (ObjCCategoryDecl *CDecl =
7884        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7885      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7886        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7887        return 0;
7888      }
7889    }
7890    EnclosingContext = EnclosingDecl;
7891  }
7892
7893  // Construct the decl.
7894  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7895                                             DeclStart, Loc, II, T,
7896                                             TInfo, ac, (Expr *)BitfieldWidth);
7897
7898  if (II) {
7899    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7900                                           ForRedeclaration);
7901    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7902        && !isa<TagDecl>(PrevDecl)) {
7903      Diag(Loc, diag::err_duplicate_member) << II;
7904      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7905      NewID->setInvalidDecl();
7906    }
7907  }
7908
7909  // Process attributes attached to the ivar.
7910  ProcessDeclAttributes(S, NewID, D);
7911
7912  if (D.isInvalidType())
7913    NewID->setInvalidDecl();
7914
7915  if (II) {
7916    // FIXME: When interfaces are DeclContexts, we'll need to add
7917    // these to the interface.
7918    S->AddDecl(NewID);
7919    IdResolver.AddDecl(NewID);
7920  }
7921
7922  return NewID;
7923}
7924
7925/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7926/// class and class extensions. For every class @interface and class
7927/// extension @interface, if the last ivar is a bitfield of any type,
7928/// then add an implicit `char :0` ivar to the end of that interface.
7929void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7930                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7931  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7932    return;
7933
7934  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7935  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7936
7937  if (!Ivar->isBitField())
7938    return;
7939  uint64_t BitFieldSize =
7940    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7941  if (BitFieldSize == 0)
7942    return;
7943  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7944  if (!ID) {
7945    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7946      if (!CD->IsClassExtension())
7947        return;
7948    }
7949    // No need to add this to end of @implementation.
7950    else
7951      return;
7952  }
7953  // All conditions are met. Add a new bitfield to the tail end of ivars.
7954  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7955  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7956
7957  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7958                              DeclLoc, DeclLoc, 0,
7959                              Context.CharTy,
7960                              Context.CreateTypeSourceInfo(Context.CharTy),
7961                              ObjCIvarDecl::Private, BW,
7962                              true);
7963  AllIvarDecls.push_back(Ivar);
7964}
7965
7966void Sema::ActOnFields(Scope* S,
7967                       SourceLocation RecLoc, Decl *EnclosingDecl,
7968                       Decl **Fields, unsigned NumFields,
7969                       SourceLocation LBrac, SourceLocation RBrac,
7970                       AttributeList *Attr) {
7971  assert(EnclosingDecl && "missing record or interface decl");
7972
7973  // If the decl this is being inserted into is invalid, then it may be a
7974  // redeclaration or some other bogus case.  Don't try to add fields to it.
7975  if (EnclosingDecl->isInvalidDecl()) {
7976    // FIXME: Deallocate fields?
7977    return;
7978  }
7979
7980
7981  // Verify that all the fields are okay.
7982  unsigned NumNamedMembers = 0;
7983  llvm::SmallVector<FieldDecl*, 32> RecFields;
7984
7985  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7986  for (unsigned i = 0; i != NumFields; ++i) {
7987    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7988
7989    // Get the type for the field.
7990    const Type *FDTy = FD->getType().getTypePtr();
7991
7992    if (!FD->isAnonymousStructOrUnion()) {
7993      // Remember all fields written by the user.
7994      RecFields.push_back(FD);
7995    }
7996
7997    // If the field is already invalid for some reason, don't emit more
7998    // diagnostics about it.
7999    if (FD->isInvalidDecl()) {
8000      EnclosingDecl->setInvalidDecl();
8001      continue;
8002    }
8003
8004    // C99 6.7.2.1p2:
8005    //   A structure or union shall not contain a member with
8006    //   incomplete or function type (hence, a structure shall not
8007    //   contain an instance of itself, but may contain a pointer to
8008    //   an instance of itself), except that the last member of a
8009    //   structure with more than one named member may have incomplete
8010    //   array type; such a structure (and any union containing,
8011    //   possibly recursively, a member that is such a structure)
8012    //   shall not be a member of a structure or an element of an
8013    //   array.
8014    if (FDTy->isFunctionType()) {
8015      // Field declared as a function.
8016      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8017        << FD->getDeclName();
8018      FD->setInvalidDecl();
8019      EnclosingDecl->setInvalidDecl();
8020      continue;
8021    } else if (FDTy->isIncompleteArrayType() && Record &&
8022               ((i == NumFields - 1 && !Record->isUnion()) ||
8023                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8024                 (i == NumFields - 1 || Record->isUnion())))) {
8025      // Flexible array member.
8026      // Microsoft and g++ is more permissive regarding flexible array.
8027      // It will accept flexible array in union and also
8028      // as the sole element of a struct/class.
8029      if (getLangOptions().Microsoft) {
8030        if (Record->isUnion())
8031          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8032            << FD->getDeclName();
8033        else if (NumFields == 1)
8034          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8035            << FD->getDeclName() << Record->getTagKind();
8036      } else if (getLangOptions().CPlusPlus) {
8037        if (Record->isUnion())
8038          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8039            << FD->getDeclName();
8040        else if (NumFields == 1)
8041          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8042            << FD->getDeclName() << Record->getTagKind();
8043      } else if (NumNamedMembers < 1) {
8044        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8045          << FD->getDeclName();
8046        FD->setInvalidDecl();
8047        EnclosingDecl->setInvalidDecl();
8048        continue;
8049      }
8050      if (!FD->getType()->isDependentType() &&
8051          !Context.getBaseElementType(FD->getType())->isPODType()) {
8052        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8053          << FD->getDeclName() << FD->getType();
8054        FD->setInvalidDecl();
8055        EnclosingDecl->setInvalidDecl();
8056        continue;
8057      }
8058      // Okay, we have a legal flexible array member at the end of the struct.
8059      if (Record)
8060        Record->setHasFlexibleArrayMember(true);
8061    } else if (!FDTy->isDependentType() &&
8062               RequireCompleteType(FD->getLocation(), FD->getType(),
8063                                   diag::err_field_incomplete)) {
8064      // Incomplete type
8065      FD->setInvalidDecl();
8066      EnclosingDecl->setInvalidDecl();
8067      continue;
8068    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8069      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8070        // If this is a member of a union, then entire union becomes "flexible".
8071        if (Record && Record->isUnion()) {
8072          Record->setHasFlexibleArrayMember(true);
8073        } else {
8074          // If this is a struct/class and this is not the last element, reject
8075          // it.  Note that GCC supports variable sized arrays in the middle of
8076          // structures.
8077          if (i != NumFields-1)
8078            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8079              << FD->getDeclName() << FD->getType();
8080          else {
8081            // We support flexible arrays at the end of structs in
8082            // other structs as an extension.
8083            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8084              << FD->getDeclName();
8085            if (Record)
8086              Record->setHasFlexibleArrayMember(true);
8087          }
8088        }
8089      }
8090      if (Record && FDTTy->getDecl()->hasObjectMember())
8091        Record->setHasObjectMember(true);
8092    } else if (FDTy->isObjCObjectType()) {
8093      /// A field cannot be an Objective-c object
8094      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8095      FD->setInvalidDecl();
8096      EnclosingDecl->setInvalidDecl();
8097      continue;
8098    } else if (getLangOptions().ObjC1 &&
8099               getLangOptions().getGCMode() != LangOptions::NonGC &&
8100               Record &&
8101               (FD->getType()->isObjCObjectPointerType() ||
8102                FD->getType().isObjCGCStrong()))
8103      Record->setHasObjectMember(true);
8104    else if (Context.getAsArrayType(FD->getType())) {
8105      QualType BaseType = Context.getBaseElementType(FD->getType());
8106      if (Record && BaseType->isRecordType() &&
8107          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8108        Record->setHasObjectMember(true);
8109    }
8110    // Keep track of the number of named members.
8111    if (FD->getIdentifier())
8112      ++NumNamedMembers;
8113  }
8114
8115  // Okay, we successfully defined 'Record'.
8116  if (Record) {
8117    bool Completed = false;
8118    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8119      if (!CXXRecord->isInvalidDecl()) {
8120        // Set access bits correctly on the directly-declared conversions.
8121        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8122        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8123             I != E; ++I)
8124          Convs->setAccess(I, (*I)->getAccess());
8125
8126        if (!CXXRecord->isDependentType()) {
8127          // Add any implicitly-declared members to this class.
8128          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8129
8130          // If we have virtual base classes, we may end up finding multiple
8131          // final overriders for a given virtual function. Check for this
8132          // problem now.
8133          if (CXXRecord->getNumVBases()) {
8134            CXXFinalOverriderMap FinalOverriders;
8135            CXXRecord->getFinalOverriders(FinalOverriders);
8136
8137            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8138                                             MEnd = FinalOverriders.end();
8139                 M != MEnd; ++M) {
8140              for (OverridingMethods::iterator SO = M->second.begin(),
8141                                            SOEnd = M->second.end();
8142                   SO != SOEnd; ++SO) {
8143                assert(SO->second.size() > 0 &&
8144                       "Virtual function without overridding functions?");
8145                if (SO->second.size() == 1)
8146                  continue;
8147
8148                // C++ [class.virtual]p2:
8149                //   In a derived class, if a virtual member function of a base
8150                //   class subobject has more than one final overrider the
8151                //   program is ill-formed.
8152                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8153                  << (NamedDecl *)M->first << Record;
8154                Diag(M->first->getLocation(),
8155                     diag::note_overridden_virtual_function);
8156                for (OverridingMethods::overriding_iterator
8157                          OM = SO->second.begin(),
8158                       OMEnd = SO->second.end();
8159                     OM != OMEnd; ++OM)
8160                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8161                    << (NamedDecl *)M->first << OM->Method->getParent();
8162
8163                Record->setInvalidDecl();
8164              }
8165            }
8166            CXXRecord->completeDefinition(&FinalOverriders);
8167            Completed = true;
8168          }
8169        }
8170      }
8171    }
8172
8173    if (!Completed)
8174      Record->completeDefinition();
8175  } else {
8176    ObjCIvarDecl **ClsFields =
8177      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8178    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8179      ID->setLocEnd(RBrac);
8180      // Add ivar's to class's DeclContext.
8181      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8182        ClsFields[i]->setLexicalDeclContext(ID);
8183        ID->addDecl(ClsFields[i]);
8184      }
8185      // Must enforce the rule that ivars in the base classes may not be
8186      // duplicates.
8187      if (ID->getSuperClass())
8188        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8189    } else if (ObjCImplementationDecl *IMPDecl =
8190                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8191      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8192      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8193        // Ivar declared in @implementation never belongs to the implementation.
8194        // Only it is in implementation's lexical context.
8195        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8196      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8197    } else if (ObjCCategoryDecl *CDecl =
8198                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8199      // case of ivars in class extension; all other cases have been
8200      // reported as errors elsewhere.
8201      // FIXME. Class extension does not have a LocEnd field.
8202      // CDecl->setLocEnd(RBrac);
8203      // Add ivar's to class extension's DeclContext.
8204      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8205        ClsFields[i]->setLexicalDeclContext(CDecl);
8206        CDecl->addDecl(ClsFields[i]);
8207      }
8208    }
8209  }
8210
8211  if (Attr)
8212    ProcessDeclAttributeList(S, Record, Attr);
8213
8214  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8215  // set the visibility of this record.
8216  if (Record && !Record->getDeclContext()->isRecord())
8217    AddPushedVisibilityAttribute(Record);
8218}
8219
8220/// \brief Determine whether the given integral value is representable within
8221/// the given type T.
8222static bool isRepresentableIntegerValue(ASTContext &Context,
8223                                        llvm::APSInt &Value,
8224                                        QualType T) {
8225  assert(T->isIntegralType(Context) && "Integral type required!");
8226  unsigned BitWidth = Context.getIntWidth(T);
8227
8228  if (Value.isUnsigned() || Value.isNonNegative()) {
8229    if (T->isSignedIntegerType())
8230      --BitWidth;
8231    return Value.getActiveBits() <= BitWidth;
8232  }
8233  return Value.getMinSignedBits() <= BitWidth;
8234}
8235
8236// \brief Given an integral type, return the next larger integral type
8237// (or a NULL type of no such type exists).
8238static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8239  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8240  // enum checking below.
8241  assert(T->isIntegralType(Context) && "Integral type required!");
8242  const unsigned NumTypes = 4;
8243  QualType SignedIntegralTypes[NumTypes] = {
8244    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8245  };
8246  QualType UnsignedIntegralTypes[NumTypes] = {
8247    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8248    Context.UnsignedLongLongTy
8249  };
8250
8251  unsigned BitWidth = Context.getTypeSize(T);
8252  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8253                                            : UnsignedIntegralTypes;
8254  for (unsigned I = 0; I != NumTypes; ++I)
8255    if (Context.getTypeSize(Types[I]) > BitWidth)
8256      return Types[I];
8257
8258  return QualType();
8259}
8260
8261EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8262                                          EnumConstantDecl *LastEnumConst,
8263                                          SourceLocation IdLoc,
8264                                          IdentifierInfo *Id,
8265                                          Expr *Val) {
8266  unsigned IntWidth = Context.Target.getIntWidth();
8267  llvm::APSInt EnumVal(IntWidth);
8268  QualType EltTy;
8269
8270  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8271    Val = 0;
8272
8273  if (Val) {
8274    if (Enum->isDependentType() || Val->isTypeDependent())
8275      EltTy = Context.DependentTy;
8276    else {
8277      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8278      SourceLocation ExpLoc;
8279      if (!Val->isValueDependent() &&
8280          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8281        Val = 0;
8282      } else {
8283        if (!getLangOptions().CPlusPlus) {
8284          // C99 6.7.2.2p2:
8285          //   The expression that defines the value of an enumeration constant
8286          //   shall be an integer constant expression that has a value
8287          //   representable as an int.
8288
8289          // Complain if the value is not representable in an int.
8290          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8291            Diag(IdLoc, diag::ext_enum_value_not_int)
8292              << EnumVal.toString(10) << Val->getSourceRange()
8293              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8294          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8295            // Force the type of the expression to 'int'.
8296            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8297          }
8298        }
8299
8300        if (Enum->isFixed()) {
8301          EltTy = Enum->getIntegerType();
8302
8303          // C++0x [dcl.enum]p5:
8304          //   ... if the initializing value of an enumerator cannot be
8305          //   represented by the underlying type, the program is ill-formed.
8306          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8307            if (getLangOptions().Microsoft) {
8308              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8309              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8310            } else
8311              Diag(IdLoc, diag::err_enumerator_too_large)
8312                << EltTy;
8313          } else
8314            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8315        }
8316        else {
8317          // C++0x [dcl.enum]p5:
8318          //   If the underlying type is not fixed, the type of each enumerator
8319          //   is the type of its initializing value:
8320          //     - If an initializer is specified for an enumerator, the
8321          //       initializing value has the same type as the expression.
8322          EltTy = Val->getType();
8323        }
8324      }
8325    }
8326  }
8327
8328  if (!Val) {
8329    if (Enum->isDependentType())
8330      EltTy = Context.DependentTy;
8331    else if (!LastEnumConst) {
8332      // C++0x [dcl.enum]p5:
8333      //   If the underlying type is not fixed, the type of each enumerator
8334      //   is the type of its initializing value:
8335      //     - If no initializer is specified for the first enumerator, the
8336      //       initializing value has an unspecified integral type.
8337      //
8338      // GCC uses 'int' for its unspecified integral type, as does
8339      // C99 6.7.2.2p3.
8340      if (Enum->isFixed()) {
8341        EltTy = Enum->getIntegerType();
8342      }
8343      else {
8344        EltTy = Context.IntTy;
8345      }
8346    } else {
8347      // Assign the last value + 1.
8348      EnumVal = LastEnumConst->getInitVal();
8349      ++EnumVal;
8350      EltTy = LastEnumConst->getType();
8351
8352      // Check for overflow on increment.
8353      if (EnumVal < LastEnumConst->getInitVal()) {
8354        // C++0x [dcl.enum]p5:
8355        //   If the underlying type is not fixed, the type of each enumerator
8356        //   is the type of its initializing value:
8357        //
8358        //     - Otherwise the type of the initializing value is the same as
8359        //       the type of the initializing value of the preceding enumerator
8360        //       unless the incremented value is not representable in that type,
8361        //       in which case the type is an unspecified integral type
8362        //       sufficient to contain the incremented value. If no such type
8363        //       exists, the program is ill-formed.
8364        QualType T = getNextLargerIntegralType(Context, EltTy);
8365        if (T.isNull() || Enum->isFixed()) {
8366          // There is no integral type larger enough to represent this
8367          // value. Complain, then allow the value to wrap around.
8368          EnumVal = LastEnumConst->getInitVal();
8369          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8370          ++EnumVal;
8371          if (Enum->isFixed())
8372            // When the underlying type is fixed, this is ill-formed.
8373            Diag(IdLoc, diag::err_enumerator_wrapped)
8374              << EnumVal.toString(10)
8375              << EltTy;
8376          else
8377            Diag(IdLoc, diag::warn_enumerator_too_large)
8378              << EnumVal.toString(10);
8379        } else {
8380          EltTy = T;
8381        }
8382
8383        // Retrieve the last enumerator's value, extent that type to the
8384        // type that is supposed to be large enough to represent the incremented
8385        // value, then increment.
8386        EnumVal = LastEnumConst->getInitVal();
8387        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8388        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8389        ++EnumVal;
8390
8391        // If we're not in C++, diagnose the overflow of enumerator values,
8392        // which in C99 means that the enumerator value is not representable in
8393        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8394        // permits enumerator values that are representable in some larger
8395        // integral type.
8396        if (!getLangOptions().CPlusPlus && !T.isNull())
8397          Diag(IdLoc, diag::warn_enum_value_overflow);
8398      } else if (!getLangOptions().CPlusPlus &&
8399                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8400        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8401        Diag(IdLoc, diag::ext_enum_value_not_int)
8402          << EnumVal.toString(10) << 1;
8403      }
8404    }
8405  }
8406
8407  if (!EltTy->isDependentType()) {
8408    // Make the enumerator value match the signedness and size of the
8409    // enumerator's type.
8410    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8411    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8412  }
8413
8414  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8415                                  Val, EnumVal);
8416}
8417
8418
8419Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8420                              SourceLocation IdLoc, IdentifierInfo *Id,
8421                              AttributeList *Attr,
8422                              SourceLocation EqualLoc, ExprTy *val) {
8423  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8424  EnumConstantDecl *LastEnumConst =
8425    cast_or_null<EnumConstantDecl>(lastEnumConst);
8426  Expr *Val = static_cast<Expr*>(val);
8427
8428  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8429  // we find one that is.
8430  S = getNonFieldDeclScope(S);
8431
8432  // Verify that there isn't already something declared with this name in this
8433  // scope.
8434  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8435                                         ForRedeclaration);
8436  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8437    // Maybe we will complain about the shadowed template parameter.
8438    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8439    // Just pretend that we didn't see the previous declaration.
8440    PrevDecl = 0;
8441  }
8442
8443  if (PrevDecl) {
8444    // When in C++, we may get a TagDecl with the same name; in this case the
8445    // enum constant will 'hide' the tag.
8446    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8447           "Received TagDecl when not in C++!");
8448    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8449      if (isa<EnumConstantDecl>(PrevDecl))
8450        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8451      else
8452        Diag(IdLoc, diag::err_redefinition) << Id;
8453      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8454      return 0;
8455    }
8456  }
8457
8458  // C++ [class.mem]p13:
8459  //   If T is the name of a class, then each of the following shall have a
8460  //   name different from T:
8461  //     - every enumerator of every member of class T that is an enumerated
8462  //       type
8463  if (CXXRecordDecl *Record
8464                      = dyn_cast<CXXRecordDecl>(
8465                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8466    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8467      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8468
8469  EnumConstantDecl *New =
8470    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8471
8472  if (New) {
8473    // Process attributes.
8474    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8475
8476    // Register this decl in the current scope stack.
8477    New->setAccess(TheEnumDecl->getAccess());
8478    PushOnScopeChains(New, S);
8479  }
8480
8481  return New;
8482}
8483
8484void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8485                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8486                         Decl **Elements, unsigned NumElements,
8487                         Scope *S, AttributeList *Attr) {
8488  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8489  QualType EnumType = Context.getTypeDeclType(Enum);
8490
8491  if (Attr)
8492    ProcessDeclAttributeList(S, Enum, Attr);
8493
8494  if (Enum->isDependentType()) {
8495    for (unsigned i = 0; i != NumElements; ++i) {
8496      EnumConstantDecl *ECD =
8497        cast_or_null<EnumConstantDecl>(Elements[i]);
8498      if (!ECD) continue;
8499
8500      ECD->setType(EnumType);
8501    }
8502
8503    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8504    return;
8505  }
8506
8507  // TODO: If the result value doesn't fit in an int, it must be a long or long
8508  // long value.  ISO C does not support this, but GCC does as an extension,
8509  // emit a warning.
8510  unsigned IntWidth = Context.Target.getIntWidth();
8511  unsigned CharWidth = Context.Target.getCharWidth();
8512  unsigned ShortWidth = Context.Target.getShortWidth();
8513
8514  // Verify that all the values are okay, compute the size of the values, and
8515  // reverse the list.
8516  unsigned NumNegativeBits = 0;
8517  unsigned NumPositiveBits = 0;
8518
8519  // Keep track of whether all elements have type int.
8520  bool AllElementsInt = true;
8521
8522  for (unsigned i = 0; i != NumElements; ++i) {
8523    EnumConstantDecl *ECD =
8524      cast_or_null<EnumConstantDecl>(Elements[i]);
8525    if (!ECD) continue;  // Already issued a diagnostic.
8526
8527    const llvm::APSInt &InitVal = ECD->getInitVal();
8528
8529    // Keep track of the size of positive and negative values.
8530    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8531      NumPositiveBits = std::max(NumPositiveBits,
8532                                 (unsigned)InitVal.getActiveBits());
8533    else
8534      NumNegativeBits = std::max(NumNegativeBits,
8535                                 (unsigned)InitVal.getMinSignedBits());
8536
8537    // Keep track of whether every enum element has type int (very commmon).
8538    if (AllElementsInt)
8539      AllElementsInt = ECD->getType() == Context.IntTy;
8540  }
8541
8542  // Figure out the type that should be used for this enum.
8543  QualType BestType;
8544  unsigned BestWidth;
8545
8546  // C++0x N3000 [conv.prom]p3:
8547  //   An rvalue of an unscoped enumeration type whose underlying
8548  //   type is not fixed can be converted to an rvalue of the first
8549  //   of the following types that can represent all the values of
8550  //   the enumeration: int, unsigned int, long int, unsigned long
8551  //   int, long long int, or unsigned long long int.
8552  // C99 6.4.4.3p2:
8553  //   An identifier declared as an enumeration constant has type int.
8554  // The C99 rule is modified by a gcc extension
8555  QualType BestPromotionType;
8556
8557  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8558  // -fshort-enums is the equivalent to specifying the packed attribute on all
8559  // enum definitions.
8560  if (LangOpts.ShortEnums)
8561    Packed = true;
8562
8563  if (Enum->isFixed()) {
8564    BestType = BestPromotionType = Enum->getIntegerType();
8565    // We don't need to set BestWidth, because BestType is going to be the type
8566    // of the enumerators, but we do anyway because otherwise some compilers
8567    // warn that it might be used uninitialized.
8568    BestWidth = CharWidth;
8569  }
8570  else if (NumNegativeBits) {
8571    // If there is a negative value, figure out the smallest integer type (of
8572    // int/long/longlong) that fits.
8573    // If it's packed, check also if it fits a char or a short.
8574    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8575      BestType = Context.SignedCharTy;
8576      BestWidth = CharWidth;
8577    } else if (Packed && NumNegativeBits <= ShortWidth &&
8578               NumPositiveBits < ShortWidth) {
8579      BestType = Context.ShortTy;
8580      BestWidth = ShortWidth;
8581    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8582      BestType = Context.IntTy;
8583      BestWidth = IntWidth;
8584    } else {
8585      BestWidth = Context.Target.getLongWidth();
8586
8587      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8588        BestType = Context.LongTy;
8589      } else {
8590        BestWidth = Context.Target.getLongLongWidth();
8591
8592        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8593          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8594        BestType = Context.LongLongTy;
8595      }
8596    }
8597    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8598  } else {
8599    // If there is no negative value, figure out the smallest type that fits
8600    // all of the enumerator values.
8601    // If it's packed, check also if it fits a char or a short.
8602    if (Packed && NumPositiveBits <= CharWidth) {
8603      BestType = Context.UnsignedCharTy;
8604      BestPromotionType = Context.IntTy;
8605      BestWidth = CharWidth;
8606    } else if (Packed && NumPositiveBits <= ShortWidth) {
8607      BestType = Context.UnsignedShortTy;
8608      BestPromotionType = Context.IntTy;
8609      BestWidth = ShortWidth;
8610    } else if (NumPositiveBits <= IntWidth) {
8611      BestType = Context.UnsignedIntTy;
8612      BestWidth = IntWidth;
8613      BestPromotionType
8614        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8615                           ? Context.UnsignedIntTy : Context.IntTy;
8616    } else if (NumPositiveBits <=
8617               (BestWidth = Context.Target.getLongWidth())) {
8618      BestType = Context.UnsignedLongTy;
8619      BestPromotionType
8620        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8621                           ? Context.UnsignedLongTy : Context.LongTy;
8622    } else {
8623      BestWidth = Context.Target.getLongLongWidth();
8624      assert(NumPositiveBits <= BestWidth &&
8625             "How could an initializer get larger than ULL?");
8626      BestType = Context.UnsignedLongLongTy;
8627      BestPromotionType
8628        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8629                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8630    }
8631  }
8632
8633  // Loop over all of the enumerator constants, changing their types to match
8634  // the type of the enum if needed.
8635  for (unsigned i = 0; i != NumElements; ++i) {
8636    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8637    if (!ECD) continue;  // Already issued a diagnostic.
8638
8639    // Standard C says the enumerators have int type, but we allow, as an
8640    // extension, the enumerators to be larger than int size.  If each
8641    // enumerator value fits in an int, type it as an int, otherwise type it the
8642    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8643    // that X has type 'int', not 'unsigned'.
8644
8645    // Determine whether the value fits into an int.
8646    llvm::APSInt InitVal = ECD->getInitVal();
8647
8648    // If it fits into an integer type, force it.  Otherwise force it to match
8649    // the enum decl type.
8650    QualType NewTy;
8651    unsigned NewWidth;
8652    bool NewSign;
8653    if (!getLangOptions().CPlusPlus &&
8654        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8655      NewTy = Context.IntTy;
8656      NewWidth = IntWidth;
8657      NewSign = true;
8658    } else if (ECD->getType() == BestType) {
8659      // Already the right type!
8660      if (getLangOptions().CPlusPlus)
8661        // C++ [dcl.enum]p4: Following the closing brace of an
8662        // enum-specifier, each enumerator has the type of its
8663        // enumeration.
8664        ECD->setType(EnumType);
8665      continue;
8666    } else {
8667      NewTy = BestType;
8668      NewWidth = BestWidth;
8669      NewSign = BestType->isSignedIntegerType();
8670    }
8671
8672    // Adjust the APSInt value.
8673    InitVal = InitVal.extOrTrunc(NewWidth);
8674    InitVal.setIsSigned(NewSign);
8675    ECD->setInitVal(InitVal);
8676
8677    // Adjust the Expr initializer and type.
8678    if (ECD->getInitExpr() &&
8679	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8680      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8681                                                CK_IntegralCast,
8682                                                ECD->getInitExpr(),
8683                                                /*base paths*/ 0,
8684                                                VK_RValue));
8685    if (getLangOptions().CPlusPlus)
8686      // C++ [dcl.enum]p4: Following the closing brace of an
8687      // enum-specifier, each enumerator has the type of its
8688      // enumeration.
8689      ECD->setType(EnumType);
8690    else
8691      ECD->setType(NewTy);
8692  }
8693
8694  Enum->completeDefinition(BestType, BestPromotionType,
8695                           NumPositiveBits, NumNegativeBits);
8696}
8697
8698Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8699                                  SourceLocation StartLoc,
8700                                  SourceLocation EndLoc) {
8701  StringLiteral *AsmString = cast<StringLiteral>(expr);
8702
8703  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8704                                                   AsmString, StartLoc,
8705                                                   EndLoc);
8706  CurContext->addDecl(New);
8707  return New;
8708}
8709
8710void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8711                             SourceLocation PragmaLoc,
8712                             SourceLocation NameLoc) {
8713  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8714
8715  if (PrevDecl) {
8716    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8717  } else {
8718    (void)WeakUndeclaredIdentifiers.insert(
8719      std::pair<IdentifierInfo*,WeakInfo>
8720        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8721  }
8722}
8723
8724void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8725                                IdentifierInfo* AliasName,
8726                                SourceLocation PragmaLoc,
8727                                SourceLocation NameLoc,
8728                                SourceLocation AliasNameLoc) {
8729  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8730                                    LookupOrdinaryName);
8731  WeakInfo W = WeakInfo(Name, NameLoc);
8732
8733  if (PrevDecl) {
8734    if (!PrevDecl->hasAttr<AliasAttr>())
8735      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8736        DeclApplyPragmaWeak(TUScope, ND, W);
8737  } else {
8738    (void)WeakUndeclaredIdentifiers.insert(
8739      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8740  }
8741}
8742