SemaExprCXX.cpp revision 56ca35d396d8692c384c785f9aeebcf22563fe1e
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31using namespace clang;
32using namespace sema;
33
34ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
35                                   IdentifierInfo &II,
36                                   SourceLocation NameLoc,
37                                   Scope *S, CXXScopeSpec &SS,
38                                   ParsedType ObjectTypePtr,
39                                   bool EnteringContext) {
40  // Determine where to perform name lookup.
41
42  // FIXME: This area of the standard is very messy, and the current
43  // wording is rather unclear about which scopes we search for the
44  // destructor name; see core issues 399 and 555. Issue 399 in
45  // particular shows where the current description of destructor name
46  // lookup is completely out of line with existing practice, e.g.,
47  // this appears to be ill-formed:
48  //
49  //   namespace N {
50  //     template <typename T> struct S {
51  //       ~S();
52  //     };
53  //   }
54  //
55  //   void f(N::S<int>* s) {
56  //     s->N::S<int>::~S();
57  //   }
58  //
59  // See also PR6358 and PR6359.
60  // For this reason, we're currently only doing the C++03 version of this
61  // code; the C++0x version has to wait until we get a proper spec.
62  QualType SearchType;
63  DeclContext *LookupCtx = 0;
64  bool isDependent = false;
65  bool LookInScope = false;
66
67  // If we have an object type, it's because we are in a
68  // pseudo-destructor-expression or a member access expression, and
69  // we know what type we're looking for.
70  if (ObjectTypePtr)
71    SearchType = GetTypeFromParser(ObjectTypePtr);
72
73  if (SS.isSet()) {
74    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
75
76    bool AlreadySearched = false;
77    bool LookAtPrefix = true;
78    // C++ [basic.lookup.qual]p6:
79    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
80    //   the type-names are looked up as types in the scope designated by the
81    //   nested-name-specifier. In a qualified-id of the form:
82    //
83    //     ::[opt] nested-name-specifier  ~ class-name
84    //
85    //   where the nested-name-specifier designates a namespace scope, and in
86    //   a qualified-id of the form:
87    //
88    //     ::opt nested-name-specifier class-name ::  ~ class-name
89    //
90    //   the class-names are looked up as types in the scope designated by
91    //   the nested-name-specifier.
92    //
93    // Here, we check the first case (completely) and determine whether the
94    // code below is permitted to look at the prefix of the
95    // nested-name-specifier.
96    DeclContext *DC = computeDeclContext(SS, EnteringContext);
97    if (DC && DC->isFileContext()) {
98      AlreadySearched = true;
99      LookupCtx = DC;
100      isDependent = false;
101    } else if (DC && isa<CXXRecordDecl>(DC))
102      LookAtPrefix = false;
103
104    // The second case from the C++03 rules quoted further above.
105    NestedNameSpecifier *Prefix = 0;
106    if (AlreadySearched) {
107      // Nothing left to do.
108    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
109      CXXScopeSpec PrefixSS;
110      PrefixSS.setScopeRep(Prefix);
111      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
112      isDependent = isDependentScopeSpecifier(PrefixSS);
113    } else if (ObjectTypePtr) {
114      LookupCtx = computeDeclContext(SearchType);
115      isDependent = SearchType->isDependentType();
116    } else {
117      LookupCtx = computeDeclContext(SS, EnteringContext);
118      isDependent = LookupCtx && LookupCtx->isDependentContext();
119    }
120
121    LookInScope = false;
122  } else if (ObjectTypePtr) {
123    // C++ [basic.lookup.classref]p3:
124    //   If the unqualified-id is ~type-name, the type-name is looked up
125    //   in the context of the entire postfix-expression. If the type T
126    //   of the object expression is of a class type C, the type-name is
127    //   also looked up in the scope of class C. At least one of the
128    //   lookups shall find a name that refers to (possibly
129    //   cv-qualified) T.
130    LookupCtx = computeDeclContext(SearchType);
131    isDependent = SearchType->isDependentType();
132    assert((isDependent || !SearchType->isIncompleteType()) &&
133           "Caller should have completed object type");
134
135    LookInScope = true;
136  } else {
137    // Perform lookup into the current scope (only).
138    LookInScope = true;
139  }
140
141  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
142  for (unsigned Step = 0; Step != 2; ++Step) {
143    // Look for the name first in the computed lookup context (if we
144    // have one) and, if that fails to find a match, in the sope (if
145    // we're allowed to look there).
146    Found.clear();
147    if (Step == 0 && LookupCtx)
148      LookupQualifiedName(Found, LookupCtx);
149    else if (Step == 1 && LookInScope && S)
150      LookupName(Found, S);
151    else
152      continue;
153
154    // FIXME: Should we be suppressing ambiguities here?
155    if (Found.isAmbiguous())
156      return ParsedType();
157
158    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
159      QualType T = Context.getTypeDeclType(Type);
160
161      if (SearchType.isNull() || SearchType->isDependentType() ||
162          Context.hasSameUnqualifiedType(T, SearchType)) {
163        // We found our type!
164
165        return ParsedType::make(T);
166      }
167    }
168
169    // If the name that we found is a class template name, and it is
170    // the same name as the template name in the last part of the
171    // nested-name-specifier (if present) or the object type, then
172    // this is the destructor for that class.
173    // FIXME: This is a workaround until we get real drafting for core
174    // issue 399, for which there isn't even an obvious direction.
175    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
176      QualType MemberOfType;
177      if (SS.isSet()) {
178        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
179          // Figure out the type of the context, if it has one.
180          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
181            MemberOfType = Context.getTypeDeclType(Record);
182        }
183      }
184      if (MemberOfType.isNull())
185        MemberOfType = SearchType;
186
187      if (MemberOfType.isNull())
188        continue;
189
190      // We're referring into a class template specialization. If the
191      // class template we found is the same as the template being
192      // specialized, we found what we are looking for.
193      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
194        if (ClassTemplateSpecializationDecl *Spec
195              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
196          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
197                Template->getCanonicalDecl())
198            return ParsedType::make(MemberOfType);
199        }
200
201        continue;
202      }
203
204      // We're referring to an unresolved class template
205      // specialization. Determine whether we class template we found
206      // is the same as the template being specialized or, if we don't
207      // know which template is being specialized, that it at least
208      // has the same name.
209      if (const TemplateSpecializationType *SpecType
210            = MemberOfType->getAs<TemplateSpecializationType>()) {
211        TemplateName SpecName = SpecType->getTemplateName();
212
213        // The class template we found is the same template being
214        // specialized.
215        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
216          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
217            return ParsedType::make(MemberOfType);
218
219          continue;
220        }
221
222        // The class template we found has the same name as the
223        // (dependent) template name being specialized.
224        if (DependentTemplateName *DepTemplate
225                                    = SpecName.getAsDependentTemplateName()) {
226          if (DepTemplate->isIdentifier() &&
227              DepTemplate->getIdentifier() == Template->getIdentifier())
228            return ParsedType::make(MemberOfType);
229
230          continue;
231        }
232      }
233    }
234  }
235
236  if (isDependent) {
237    // We didn't find our type, but that's okay: it's dependent
238    // anyway.
239    NestedNameSpecifier *NNS = 0;
240    SourceRange Range;
241    if (SS.isSet()) {
242      NNS = (NestedNameSpecifier *)SS.getScopeRep();
243      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
244    } else {
245      NNS = NestedNameSpecifier::Create(Context, &II);
246      Range = SourceRange(NameLoc);
247    }
248
249    QualType T = CheckTypenameType(ETK_None, NNS, II,
250                                   SourceLocation(),
251                                   Range, NameLoc);
252    return ParsedType::make(T);
253  }
254
255  if (ObjectTypePtr)
256    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
257      << &II;
258  else
259    Diag(NameLoc, diag::err_destructor_class_name);
260
261  return ParsedType();
262}
263
264/// \brief Build a C++ typeid expression with a type operand.
265ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
266                                SourceLocation TypeidLoc,
267                                TypeSourceInfo *Operand,
268                                SourceLocation RParenLoc) {
269  // C++ [expr.typeid]p4:
270  //   The top-level cv-qualifiers of the lvalue expression or the type-id
271  //   that is the operand of typeid are always ignored.
272  //   If the type of the type-id is a class type or a reference to a class
273  //   type, the class shall be completely-defined.
274  Qualifiers Quals;
275  QualType T
276    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
277                                      Quals);
278  if (T->getAs<RecordType>() &&
279      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
280    return ExprError();
281
282  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
283                                           Operand,
284                                           SourceRange(TypeidLoc, RParenLoc)));
285}
286
287/// \brief Build a C++ typeid expression with an expression operand.
288ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
289                                SourceLocation TypeidLoc,
290                                Expr *E,
291                                SourceLocation RParenLoc) {
292  bool isUnevaluatedOperand = true;
293  if (E && !E->isTypeDependent()) {
294    QualType T = E->getType();
295    if (const RecordType *RecordT = T->getAs<RecordType>()) {
296      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
297      // C++ [expr.typeid]p3:
298      //   [...] If the type of the expression is a class type, the class
299      //   shall be completely-defined.
300      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
301        return ExprError();
302
303      // C++ [expr.typeid]p3:
304      //   When typeid is applied to an expression other than an glvalue of a
305      //   polymorphic class type [...] [the] expression is an unevaluated
306      //   operand. [...]
307      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
308        isUnevaluatedOperand = false;
309
310        // We require a vtable to query the type at run time.
311        MarkVTableUsed(TypeidLoc, RecordD);
312      }
313    }
314
315    // C++ [expr.typeid]p4:
316    //   [...] If the type of the type-id is a reference to a possibly
317    //   cv-qualified type, the result of the typeid expression refers to a
318    //   std::type_info object representing the cv-unqualified referenced
319    //   type.
320    Qualifiers Quals;
321    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
322    if (!Context.hasSameType(T, UnqualT)) {
323      T = UnqualT;
324      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
325    }
326  }
327
328  // If this is an unevaluated operand, clear out the set of
329  // declaration references we have been computing and eliminate any
330  // temporaries introduced in its computation.
331  if (isUnevaluatedOperand)
332    ExprEvalContexts.back().Context = Unevaluated;
333
334  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
335                                           E,
336                                           SourceRange(TypeidLoc, RParenLoc)));
337}
338
339/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
340ExprResult
341Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
342                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
343  // Find the std::type_info type.
344  if (!StdNamespace)
345    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
346
347  if (!CXXTypeInfoDecl) {
348    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
349    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
350    LookupQualifiedName(R, getStdNamespace());
351    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
352    if (!CXXTypeInfoDecl)
353      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
354  }
355
356  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
357
358  if (isType) {
359    // The operand is a type; handle it as such.
360    TypeSourceInfo *TInfo = 0;
361    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
362                                   &TInfo);
363    if (T.isNull())
364      return ExprError();
365
366    if (!TInfo)
367      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
368
369    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
370  }
371
372  // The operand is an expression.
373  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
374}
375
376/// Retrieve the UuidAttr associated with QT.
377static UuidAttr *GetUuidAttrOfType(QualType QT) {
378  // Optionally remove one level of pointer, reference or array indirection.
379  const Type *Ty = QT.getTypePtr();;
380  if (QT->isPointerType() || QT->isReferenceType())
381    Ty = QT->getPointeeType().getTypePtr();
382  else if (QT->isArrayType())
383    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
384
385  // Loop all class definition and declaration looking for an uuid attribute.
386  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
387  while (RD) {
388    if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
389      return Uuid;
390    RD = RD->getPreviousDeclaration();
391  }
392  return 0;
393}
394
395/// \brief Build a Microsoft __uuidof expression with a type operand.
396ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
397                                SourceLocation TypeidLoc,
398                                TypeSourceInfo *Operand,
399                                SourceLocation RParenLoc) {
400  if (!Operand->getType()->isDependentType()) {
401    if (!GetUuidAttrOfType(Operand->getType()))
402      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
403  }
404
405  // FIXME: add __uuidof semantic analysis for type operand.
406  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
407                                           Operand,
408                                           SourceRange(TypeidLoc, RParenLoc)));
409}
410
411/// \brief Build a Microsoft __uuidof expression with an expression operand.
412ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
413                                SourceLocation TypeidLoc,
414                                Expr *E,
415                                SourceLocation RParenLoc) {
416  if (!E->getType()->isDependentType()) {
417    if (!GetUuidAttrOfType(E->getType()) &&
418        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
419      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
420  }
421  // FIXME: add __uuidof semantic analysis for type operand.
422  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
423                                           E,
424                                           SourceRange(TypeidLoc, RParenLoc)));
425}
426
427/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
428ExprResult
429Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
430                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
431  // If MSVCGuidDecl has not been cached, do the lookup.
432  if (!MSVCGuidDecl) {
433    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
434    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
435    LookupQualifiedName(R, Context.getTranslationUnitDecl());
436    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
437    if (!MSVCGuidDecl)
438      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
439  }
440
441  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
442
443  if (isType) {
444    // The operand is a type; handle it as such.
445    TypeSourceInfo *TInfo = 0;
446    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
447                                   &TInfo);
448    if (T.isNull())
449      return ExprError();
450
451    if (!TInfo)
452      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
453
454    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
455  }
456
457  // The operand is an expression.
458  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
459}
460
461/// ActOnCXXBoolLiteral - Parse {true,false} literals.
462ExprResult
463Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
464  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
465         "Unknown C++ Boolean value!");
466  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
467                                                Context.BoolTy, OpLoc));
468}
469
470/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
471ExprResult
472Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
473  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
474}
475
476/// ActOnCXXThrow - Parse throw expressions.
477ExprResult
478Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
479  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
480    return ExprError();
481  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
482}
483
484/// CheckCXXThrowOperand - Validate the operand of a throw.
485bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
486  // C++ [except.throw]p3:
487  //   A throw-expression initializes a temporary object, called the exception
488  //   object, the type of which is determined by removing any top-level
489  //   cv-qualifiers from the static type of the operand of throw and adjusting
490  //   the type from "array of T" or "function returning T" to "pointer to T"
491  //   or "pointer to function returning T", [...]
492  if (E->getType().hasQualifiers())
493    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
494                      CastCategory(E));
495
496  DefaultFunctionArrayConversion(E);
497
498  //   If the type of the exception would be an incomplete type or a pointer
499  //   to an incomplete type other than (cv) void the program is ill-formed.
500  QualType Ty = E->getType();
501  bool isPointer = false;
502  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
503    Ty = Ptr->getPointeeType();
504    isPointer = true;
505  }
506  if (!isPointer || !Ty->isVoidType()) {
507    if (RequireCompleteType(ThrowLoc, Ty,
508                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
509                                            : diag::err_throw_incomplete)
510                              << E->getSourceRange()))
511      return true;
512
513    if (RequireNonAbstractType(ThrowLoc, E->getType(),
514                               PDiag(diag::err_throw_abstract_type)
515                                 << E->getSourceRange()))
516      return true;
517  }
518
519  // Initialize the exception result.  This implicitly weeds out
520  // abstract types or types with inaccessible copy constructors.
521  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
522
523  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
524  InitializedEntity Entity =
525      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
526                                             /*NRVO=*/false);
527  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
528                                                   QualType(), E);
529  if (Res.isInvalid())
530    return true;
531  E = Res.takeAs<Expr>();
532
533  // If the exception has class type, we need additional handling.
534  const RecordType *RecordTy = Ty->getAs<RecordType>();
535  if (!RecordTy)
536    return false;
537  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
538
539  // If we are throwing a polymorphic class type or pointer thereof,
540  // exception handling will make use of the vtable.
541  MarkVTableUsed(ThrowLoc, RD);
542
543  // If a pointer is thrown, the referenced object will not be destroyed.
544  if (isPointer)
545    return false;
546
547  // If the class has a non-trivial destructor, we must be able to call it.
548  if (RD->hasTrivialDestructor())
549    return false;
550
551  CXXDestructorDecl *Destructor
552    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
553  if (!Destructor)
554    return false;
555
556  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
557  CheckDestructorAccess(E->getExprLoc(), Destructor,
558                        PDiag(diag::err_access_dtor_exception) << Ty);
559  return false;
560}
561
562CXXMethodDecl *Sema::tryCaptureCXXThis() {
563  // Ignore block scopes: we can capture through them.
564  // Ignore nested enum scopes: we'll diagnose non-constant expressions
565  // where they're invalid, and other uses are legitimate.
566  // Don't ignore nested class scopes: you can't use 'this' in a local class.
567  DeclContext *DC = CurContext;
568  while (true) {
569    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
570    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
571    else break;
572  }
573
574  // If we're not in an instance method, error out.
575  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
576  if (!method || !method->isInstance())
577    return 0;
578
579  // Mark that we're closing on 'this' in all the block scopes, if applicable.
580  for (unsigned idx = FunctionScopes.size() - 1;
581       isa<BlockScopeInfo>(FunctionScopes[idx]);
582       --idx)
583    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
584
585  return method;
586}
587
588ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
589  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
590  /// is a non-lvalue expression whose value is the address of the object for
591  /// which the function is called.
592
593  CXXMethodDecl *method = tryCaptureCXXThis();
594  if (!method) return Diag(loc, diag::err_invalid_this_use);
595
596  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
597                                         /*isImplicit=*/false));
598}
599
600ExprResult
601Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
602                                SourceLocation LParenLoc,
603                                MultiExprArg exprs,
604                                SourceLocation RParenLoc) {
605  if (!TypeRep)
606    return ExprError();
607
608  TypeSourceInfo *TInfo;
609  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
610  if (!TInfo)
611    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
612
613  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
614}
615
616/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
617/// Can be interpreted either as function-style casting ("int(x)")
618/// or class type construction ("ClassType(x,y,z)")
619/// or creation of a value-initialized type ("int()").
620ExprResult
621Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
622                                SourceLocation LParenLoc,
623                                MultiExprArg exprs,
624                                SourceLocation RParenLoc) {
625  QualType Ty = TInfo->getType();
626  unsigned NumExprs = exprs.size();
627  Expr **Exprs = (Expr**)exprs.get();
628  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
629  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
630
631  if (Ty->isDependentType() ||
632      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
633    exprs.release();
634
635    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
636                                                    LParenLoc,
637                                                    Exprs, NumExprs,
638                                                    RParenLoc));
639  }
640
641  if (Ty->isArrayType())
642    return ExprError(Diag(TyBeginLoc,
643                          diag::err_value_init_for_array_type) << FullRange);
644  if (!Ty->isVoidType() &&
645      RequireCompleteType(TyBeginLoc, Ty,
646                          PDiag(diag::err_invalid_incomplete_type_use)
647                            << FullRange))
648    return ExprError();
649
650  if (RequireNonAbstractType(TyBeginLoc, Ty,
651                             diag::err_allocation_of_abstract_type))
652    return ExprError();
653
654
655  // C++ [expr.type.conv]p1:
656  // If the expression list is a single expression, the type conversion
657  // expression is equivalent (in definedness, and if defined in meaning) to the
658  // corresponding cast expression.
659  //
660  if (NumExprs == 1) {
661    CastKind Kind = CK_Invalid;
662    ExprValueKind VK = VK_RValue;
663    CXXCastPath BasePath;
664    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
665                       Kind, VK, BasePath,
666                       /*FunctionalStyle=*/true))
667      return ExprError();
668
669    exprs.release();
670
671    return Owned(CXXFunctionalCastExpr::Create(Context,
672                                               Ty.getNonLValueExprType(Context),
673                                               VK, TInfo, TyBeginLoc, Kind,
674                                               Exprs[0], &BasePath,
675                                               RParenLoc));
676  }
677
678  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
679  InitializationKind Kind
680    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
681                                                  LParenLoc, RParenLoc)
682               : InitializationKind::CreateValue(TyBeginLoc,
683                                                 LParenLoc, RParenLoc);
684  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
685  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
686
687  // FIXME: Improve AST representation?
688  return move(Result);
689}
690
691/// doesUsualArrayDeleteWantSize - Answers whether the usual
692/// operator delete[] for the given type has a size_t parameter.
693static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
694                                         QualType allocType) {
695  const RecordType *record =
696    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
697  if (!record) return false;
698
699  // Try to find an operator delete[] in class scope.
700
701  DeclarationName deleteName =
702    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
703  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
704  S.LookupQualifiedName(ops, record->getDecl());
705
706  // We're just doing this for information.
707  ops.suppressDiagnostics();
708
709  // Very likely: there's no operator delete[].
710  if (ops.empty()) return false;
711
712  // If it's ambiguous, it should be illegal to call operator delete[]
713  // on this thing, so it doesn't matter if we allocate extra space or not.
714  if (ops.isAmbiguous()) return false;
715
716  LookupResult::Filter filter = ops.makeFilter();
717  while (filter.hasNext()) {
718    NamedDecl *del = filter.next()->getUnderlyingDecl();
719
720    // C++0x [basic.stc.dynamic.deallocation]p2:
721    //   A template instance is never a usual deallocation function,
722    //   regardless of its signature.
723    if (isa<FunctionTemplateDecl>(del)) {
724      filter.erase();
725      continue;
726    }
727
728    // C++0x [basic.stc.dynamic.deallocation]p2:
729    //   If class T does not declare [an operator delete[] with one
730    //   parameter] but does declare a member deallocation function
731    //   named operator delete[] with exactly two parameters, the
732    //   second of which has type std::size_t, then this function
733    //   is a usual deallocation function.
734    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
735      filter.erase();
736      continue;
737    }
738  }
739  filter.done();
740
741  if (!ops.isSingleResult()) return false;
742
743  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
744  return (del->getNumParams() == 2);
745}
746
747/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
748/// @code new (memory) int[size][4] @endcode
749/// or
750/// @code ::new Foo(23, "hello") @endcode
751/// For the interpretation of this heap of arguments, consult the base version.
752ExprResult
753Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
754                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
755                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
756                  Declarator &D, SourceLocation ConstructorLParen,
757                  MultiExprArg ConstructorArgs,
758                  SourceLocation ConstructorRParen) {
759  Expr *ArraySize = 0;
760  // If the specified type is an array, unwrap it and save the expression.
761  if (D.getNumTypeObjects() > 0 &&
762      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
763    DeclaratorChunk &Chunk = D.getTypeObject(0);
764    if (Chunk.Arr.hasStatic)
765      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
766        << D.getSourceRange());
767    if (!Chunk.Arr.NumElts)
768      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
769        << D.getSourceRange());
770
771    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
772    D.DropFirstTypeObject();
773  }
774
775  // Every dimension shall be of constant size.
776  if (ArraySize) {
777    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
778      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
779        break;
780
781      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
782      if (Expr *NumElts = (Expr *)Array.NumElts) {
783        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
784            !NumElts->isIntegerConstantExpr(Context)) {
785          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
786            << NumElts->getSourceRange();
787          return ExprError();
788        }
789      }
790    }
791  }
792
793  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
794  QualType AllocType = TInfo->getType();
795  if (D.isInvalidType())
796    return ExprError();
797
798  if (!TInfo)
799    TInfo = Context.getTrivialTypeSourceInfo(AllocType);
800
801  return BuildCXXNew(StartLoc, UseGlobal,
802                     PlacementLParen,
803                     move(PlacementArgs),
804                     PlacementRParen,
805                     TypeIdParens,
806                     AllocType,
807                     TInfo,
808                     ArraySize,
809                     ConstructorLParen,
810                     move(ConstructorArgs),
811                     ConstructorRParen);
812}
813
814ExprResult
815Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
816                  SourceLocation PlacementLParen,
817                  MultiExprArg PlacementArgs,
818                  SourceLocation PlacementRParen,
819                  SourceRange TypeIdParens,
820                  QualType AllocType,
821                  TypeSourceInfo *AllocTypeInfo,
822                  Expr *ArraySize,
823                  SourceLocation ConstructorLParen,
824                  MultiExprArg ConstructorArgs,
825                  SourceLocation ConstructorRParen) {
826  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
827
828  // Per C++0x [expr.new]p5, the type being constructed may be a
829  // typedef of an array type.
830  if (!ArraySize) {
831    if (const ConstantArrayType *Array
832                              = Context.getAsConstantArrayType(AllocType)) {
833      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
834                                         Context.getSizeType(),
835                                         TypeRange.getEnd());
836      AllocType = Array->getElementType();
837    }
838  }
839
840  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
841    return ExprError();
842
843  QualType ResultType = Context.getPointerType(AllocType);
844
845  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
846  //   or enumeration type with a non-negative value."
847  if (ArraySize && !ArraySize->isTypeDependent()) {
848
849    QualType SizeType = ArraySize->getType();
850
851    ExprResult ConvertedSize
852      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
853                                       PDiag(diag::err_array_size_not_integral),
854                                     PDiag(diag::err_array_size_incomplete_type)
855                                       << ArraySize->getSourceRange(),
856                               PDiag(diag::err_array_size_explicit_conversion),
857                                       PDiag(diag::note_array_size_conversion),
858                               PDiag(diag::err_array_size_ambiguous_conversion),
859                                       PDiag(diag::note_array_size_conversion),
860                          PDiag(getLangOptions().CPlusPlus0x? 0
861                                            : diag::ext_array_size_conversion));
862    if (ConvertedSize.isInvalid())
863      return ExprError();
864
865    ArraySize = ConvertedSize.take();
866    SizeType = ArraySize->getType();
867    if (!SizeType->isIntegralOrUnscopedEnumerationType())
868      return ExprError();
869
870    // Let's see if this is a constant < 0. If so, we reject it out of hand.
871    // We don't care about special rules, so we tell the machinery it's not
872    // evaluated - it gives us a result in more cases.
873    if (!ArraySize->isValueDependent()) {
874      llvm::APSInt Value;
875      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
876        if (Value < llvm::APSInt(
877                        llvm::APInt::getNullValue(Value.getBitWidth()),
878                                 Value.isUnsigned()))
879          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
880                                diag::err_typecheck_negative_array_size)
881            << ArraySize->getSourceRange());
882
883        if (!AllocType->isDependentType()) {
884          unsigned ActiveSizeBits
885            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
886          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
887            Diag(ArraySize->getSourceRange().getBegin(),
888                 diag::err_array_too_large)
889              << Value.toString(10)
890              << ArraySize->getSourceRange();
891            return ExprError();
892          }
893        }
894      } else if (TypeIdParens.isValid()) {
895        // Can't have dynamic array size when the type-id is in parentheses.
896        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
897          << ArraySize->getSourceRange()
898          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
899          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
900
901        TypeIdParens = SourceRange();
902      }
903    }
904
905    ImpCastExprToType(ArraySize, Context.getSizeType(),
906                      CK_IntegralCast);
907  }
908
909  FunctionDecl *OperatorNew = 0;
910  FunctionDecl *OperatorDelete = 0;
911  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
912  unsigned NumPlaceArgs = PlacementArgs.size();
913
914  if (!AllocType->isDependentType() &&
915      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
916      FindAllocationFunctions(StartLoc,
917                              SourceRange(PlacementLParen, PlacementRParen),
918                              UseGlobal, AllocType, ArraySize, PlaceArgs,
919                              NumPlaceArgs, OperatorNew, OperatorDelete))
920    return ExprError();
921
922  // If this is an array allocation, compute whether the usual array
923  // deallocation function for the type has a size_t parameter.
924  bool UsualArrayDeleteWantsSize = false;
925  if (ArraySize && !AllocType->isDependentType())
926    UsualArrayDeleteWantsSize
927      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
928
929  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
930  if (OperatorNew) {
931    // Add default arguments, if any.
932    const FunctionProtoType *Proto =
933      OperatorNew->getType()->getAs<FunctionProtoType>();
934    VariadicCallType CallType =
935      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
936
937    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
938                               Proto, 1, PlaceArgs, NumPlaceArgs,
939                               AllPlaceArgs, CallType))
940      return ExprError();
941
942    NumPlaceArgs = AllPlaceArgs.size();
943    if (NumPlaceArgs > 0)
944      PlaceArgs = &AllPlaceArgs[0];
945  }
946
947  bool Init = ConstructorLParen.isValid();
948  // --- Choosing a constructor ---
949  CXXConstructorDecl *Constructor = 0;
950  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
951  unsigned NumConsArgs = ConstructorArgs.size();
952  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
953
954  // Array 'new' can't have any initializers.
955  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
956    SourceRange InitRange(ConsArgs[0]->getLocStart(),
957                          ConsArgs[NumConsArgs - 1]->getLocEnd());
958
959    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
960    return ExprError();
961  }
962
963  if (!AllocType->isDependentType() &&
964      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
965    // C++0x [expr.new]p15:
966    //   A new-expression that creates an object of type T initializes that
967    //   object as follows:
968    InitializationKind Kind
969    //     - If the new-initializer is omitted, the object is default-
970    //       initialized (8.5); if no initialization is performed,
971    //       the object has indeterminate value
972      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
973    //     - Otherwise, the new-initializer is interpreted according to the
974    //       initialization rules of 8.5 for direct-initialization.
975             : InitializationKind::CreateDirect(TypeRange.getBegin(),
976                                                ConstructorLParen,
977                                                ConstructorRParen);
978
979    InitializedEntity Entity
980      = InitializedEntity::InitializeNew(StartLoc, AllocType);
981    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
982    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
983                                                move(ConstructorArgs));
984    if (FullInit.isInvalid())
985      return ExprError();
986
987    // FullInit is our initializer; walk through it to determine if it's a
988    // constructor call, which CXXNewExpr handles directly.
989    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
990      if (CXXBindTemporaryExpr *Binder
991            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
992        FullInitExpr = Binder->getSubExpr();
993      if (CXXConstructExpr *Construct
994                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
995        Constructor = Construct->getConstructor();
996        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
997                                         AEnd = Construct->arg_end();
998             A != AEnd; ++A)
999          ConvertedConstructorArgs.push_back(*A);
1000      } else {
1001        // Take the converted initializer.
1002        ConvertedConstructorArgs.push_back(FullInit.release());
1003      }
1004    } else {
1005      // No initialization required.
1006    }
1007
1008    // Take the converted arguments and use them for the new expression.
1009    NumConsArgs = ConvertedConstructorArgs.size();
1010    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1011  }
1012
1013  // Mark the new and delete operators as referenced.
1014  if (OperatorNew)
1015    MarkDeclarationReferenced(StartLoc, OperatorNew);
1016  if (OperatorDelete)
1017    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1018
1019  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1020
1021  PlacementArgs.release();
1022  ConstructorArgs.release();
1023
1024  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1025                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1026                                        ArraySize, Constructor, Init,
1027                                        ConsArgs, NumConsArgs, OperatorDelete,
1028                                        UsualArrayDeleteWantsSize,
1029                                        ResultType, AllocTypeInfo,
1030                                        StartLoc,
1031                                        Init ? ConstructorRParen :
1032                                               TypeRange.getEnd(),
1033                                        ConstructorLParen, ConstructorRParen));
1034}
1035
1036/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1037/// in a new-expression.
1038/// dimension off and stores the size expression in ArraySize.
1039bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1040                              SourceRange R) {
1041  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1042  //   abstract class type or array thereof.
1043  if (AllocType->isFunctionType())
1044    return Diag(Loc, diag::err_bad_new_type)
1045      << AllocType << 0 << R;
1046  else if (AllocType->isReferenceType())
1047    return Diag(Loc, diag::err_bad_new_type)
1048      << AllocType << 1 << R;
1049  else if (!AllocType->isDependentType() &&
1050           RequireCompleteType(Loc, AllocType,
1051                               PDiag(diag::err_new_incomplete_type)
1052                                 << R))
1053    return true;
1054  else if (RequireNonAbstractType(Loc, AllocType,
1055                                  diag::err_allocation_of_abstract_type))
1056    return true;
1057  else if (AllocType->isVariablyModifiedType())
1058    return Diag(Loc, diag::err_variably_modified_new_type)
1059             << AllocType;
1060
1061  return false;
1062}
1063
1064/// \brief Determine whether the given function is a non-placement
1065/// deallocation function.
1066static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1067  if (FD->isInvalidDecl())
1068    return false;
1069
1070  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1071    return Method->isUsualDeallocationFunction();
1072
1073  return ((FD->getOverloadedOperator() == OO_Delete ||
1074           FD->getOverloadedOperator() == OO_Array_Delete) &&
1075          FD->getNumParams() == 1);
1076}
1077
1078/// FindAllocationFunctions - Finds the overloads of operator new and delete
1079/// that are appropriate for the allocation.
1080bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1081                                   bool UseGlobal, QualType AllocType,
1082                                   bool IsArray, Expr **PlaceArgs,
1083                                   unsigned NumPlaceArgs,
1084                                   FunctionDecl *&OperatorNew,
1085                                   FunctionDecl *&OperatorDelete) {
1086  // --- Choosing an allocation function ---
1087  // C++ 5.3.4p8 - 14 & 18
1088  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1089  //   in the scope of the allocated class.
1090  // 2) If an array size is given, look for operator new[], else look for
1091  //   operator new.
1092  // 3) The first argument is always size_t. Append the arguments from the
1093  //   placement form.
1094
1095  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1096  // We don't care about the actual value of this argument.
1097  // FIXME: Should the Sema create the expression and embed it in the syntax
1098  // tree? Or should the consumer just recalculate the value?
1099  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1100                      Context.Target.getPointerWidth(0)),
1101                      Context.getSizeType(),
1102                      SourceLocation());
1103  AllocArgs[0] = &Size;
1104  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1105
1106  // C++ [expr.new]p8:
1107  //   If the allocated type is a non-array type, the allocation
1108  //   function's name is operator new and the deallocation function's
1109  //   name is operator delete. If the allocated type is an array
1110  //   type, the allocation function's name is operator new[] and the
1111  //   deallocation function's name is operator delete[].
1112  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1113                                        IsArray ? OO_Array_New : OO_New);
1114  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1115                                        IsArray ? OO_Array_Delete : OO_Delete);
1116
1117  QualType AllocElemType = Context.getBaseElementType(AllocType);
1118
1119  if (AllocElemType->isRecordType() && !UseGlobal) {
1120    CXXRecordDecl *Record
1121      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1122    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1123                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1124                          OperatorNew))
1125      return true;
1126  }
1127  if (!OperatorNew) {
1128    // Didn't find a member overload. Look for a global one.
1129    DeclareGlobalNewDelete();
1130    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1131    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1132                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1133                          OperatorNew))
1134      return true;
1135  }
1136
1137  // We don't need an operator delete if we're running under
1138  // -fno-exceptions.
1139  if (!getLangOptions().Exceptions) {
1140    OperatorDelete = 0;
1141    return false;
1142  }
1143
1144  // FindAllocationOverload can change the passed in arguments, so we need to
1145  // copy them back.
1146  if (NumPlaceArgs > 0)
1147    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1148
1149  // C++ [expr.new]p19:
1150  //
1151  //   If the new-expression begins with a unary :: operator, the
1152  //   deallocation function's name is looked up in the global
1153  //   scope. Otherwise, if the allocated type is a class type T or an
1154  //   array thereof, the deallocation function's name is looked up in
1155  //   the scope of T. If this lookup fails to find the name, or if
1156  //   the allocated type is not a class type or array thereof, the
1157  //   deallocation function's name is looked up in the global scope.
1158  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1159  if (AllocElemType->isRecordType() && !UseGlobal) {
1160    CXXRecordDecl *RD
1161      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1162    LookupQualifiedName(FoundDelete, RD);
1163  }
1164  if (FoundDelete.isAmbiguous())
1165    return true; // FIXME: clean up expressions?
1166
1167  if (FoundDelete.empty()) {
1168    DeclareGlobalNewDelete();
1169    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1170  }
1171
1172  FoundDelete.suppressDiagnostics();
1173
1174  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1175
1176  // Whether we're looking for a placement operator delete is dictated
1177  // by whether we selected a placement operator new, not by whether
1178  // we had explicit placement arguments.  This matters for things like
1179  //   struct A { void *operator new(size_t, int = 0); ... };
1180  //   A *a = new A()
1181  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1182
1183  if (isPlacementNew) {
1184    // C++ [expr.new]p20:
1185    //   A declaration of a placement deallocation function matches the
1186    //   declaration of a placement allocation function if it has the
1187    //   same number of parameters and, after parameter transformations
1188    //   (8.3.5), all parameter types except the first are
1189    //   identical. [...]
1190    //
1191    // To perform this comparison, we compute the function type that
1192    // the deallocation function should have, and use that type both
1193    // for template argument deduction and for comparison purposes.
1194    //
1195    // FIXME: this comparison should ignore CC and the like.
1196    QualType ExpectedFunctionType;
1197    {
1198      const FunctionProtoType *Proto
1199        = OperatorNew->getType()->getAs<FunctionProtoType>();
1200
1201      llvm::SmallVector<QualType, 4> ArgTypes;
1202      ArgTypes.push_back(Context.VoidPtrTy);
1203      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1204        ArgTypes.push_back(Proto->getArgType(I));
1205
1206      FunctionProtoType::ExtProtoInfo EPI;
1207      EPI.Variadic = Proto->isVariadic();
1208
1209      ExpectedFunctionType
1210        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1211                                  ArgTypes.size(), EPI);
1212    }
1213
1214    for (LookupResult::iterator D = FoundDelete.begin(),
1215                             DEnd = FoundDelete.end();
1216         D != DEnd; ++D) {
1217      FunctionDecl *Fn = 0;
1218      if (FunctionTemplateDecl *FnTmpl
1219            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1220        // Perform template argument deduction to try to match the
1221        // expected function type.
1222        TemplateDeductionInfo Info(Context, StartLoc);
1223        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1224          continue;
1225      } else
1226        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1227
1228      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1229        Matches.push_back(std::make_pair(D.getPair(), Fn));
1230    }
1231  } else {
1232    // C++ [expr.new]p20:
1233    //   [...] Any non-placement deallocation function matches a
1234    //   non-placement allocation function. [...]
1235    for (LookupResult::iterator D = FoundDelete.begin(),
1236                             DEnd = FoundDelete.end();
1237         D != DEnd; ++D) {
1238      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1239        if (isNonPlacementDeallocationFunction(Fn))
1240          Matches.push_back(std::make_pair(D.getPair(), Fn));
1241    }
1242  }
1243
1244  // C++ [expr.new]p20:
1245  //   [...] If the lookup finds a single matching deallocation
1246  //   function, that function will be called; otherwise, no
1247  //   deallocation function will be called.
1248  if (Matches.size() == 1) {
1249    OperatorDelete = Matches[0].second;
1250
1251    // C++0x [expr.new]p20:
1252    //   If the lookup finds the two-parameter form of a usual
1253    //   deallocation function (3.7.4.2) and that function, considered
1254    //   as a placement deallocation function, would have been
1255    //   selected as a match for the allocation function, the program
1256    //   is ill-formed.
1257    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1258        isNonPlacementDeallocationFunction(OperatorDelete)) {
1259      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1260        << SourceRange(PlaceArgs[0]->getLocStart(),
1261                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1262      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1263        << DeleteName;
1264    } else {
1265      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1266                            Matches[0].first);
1267    }
1268  }
1269
1270  return false;
1271}
1272
1273/// FindAllocationOverload - Find an fitting overload for the allocation
1274/// function in the specified scope.
1275bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1276                                  DeclarationName Name, Expr** Args,
1277                                  unsigned NumArgs, DeclContext *Ctx,
1278                                  bool AllowMissing, FunctionDecl *&Operator) {
1279  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1280  LookupQualifiedName(R, Ctx);
1281  if (R.empty()) {
1282    if (AllowMissing)
1283      return false;
1284    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1285      << Name << Range;
1286  }
1287
1288  if (R.isAmbiguous())
1289    return true;
1290
1291  R.suppressDiagnostics();
1292
1293  OverloadCandidateSet Candidates(StartLoc);
1294  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1295       Alloc != AllocEnd; ++Alloc) {
1296    // Even member operator new/delete are implicitly treated as
1297    // static, so don't use AddMemberCandidate.
1298    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1299
1300    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1301      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1302                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1303                                   Candidates,
1304                                   /*SuppressUserConversions=*/false);
1305      continue;
1306    }
1307
1308    FunctionDecl *Fn = cast<FunctionDecl>(D);
1309    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1310                         /*SuppressUserConversions=*/false);
1311  }
1312
1313  // Do the resolution.
1314  OverloadCandidateSet::iterator Best;
1315  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1316  case OR_Success: {
1317    // Got one!
1318    FunctionDecl *FnDecl = Best->Function;
1319    // The first argument is size_t, and the first parameter must be size_t,
1320    // too. This is checked on declaration and can be assumed. (It can't be
1321    // asserted on, though, since invalid decls are left in there.)
1322    // Watch out for variadic allocator function.
1323    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1324    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1325      ExprResult Result
1326        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1327                                                       Context,
1328                                                       FnDecl->getParamDecl(i)),
1329                                    SourceLocation(),
1330                                    Owned(Args[i]));
1331      if (Result.isInvalid())
1332        return true;
1333
1334      Args[i] = Result.takeAs<Expr>();
1335    }
1336    Operator = FnDecl;
1337    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1338    return false;
1339  }
1340
1341  case OR_No_Viable_Function:
1342    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1343      << Name << Range;
1344    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1345    return true;
1346
1347  case OR_Ambiguous:
1348    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1349      << Name << Range;
1350    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1351    return true;
1352
1353  case OR_Deleted:
1354    Diag(StartLoc, diag::err_ovl_deleted_call)
1355      << Best->Function->isDeleted()
1356      << Name << Range;
1357    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1358    return true;
1359  }
1360  assert(false && "Unreachable, bad result from BestViableFunction");
1361  return true;
1362}
1363
1364
1365/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1366/// delete. These are:
1367/// @code
1368///   void* operator new(std::size_t) throw(std::bad_alloc);
1369///   void* operator new[](std::size_t) throw(std::bad_alloc);
1370///   void operator delete(void *) throw();
1371///   void operator delete[](void *) throw();
1372/// @endcode
1373/// Note that the placement and nothrow forms of new are *not* implicitly
1374/// declared. Their use requires including \<new\>.
1375void Sema::DeclareGlobalNewDelete() {
1376  if (GlobalNewDeleteDeclared)
1377    return;
1378
1379  // C++ [basic.std.dynamic]p2:
1380  //   [...] The following allocation and deallocation functions (18.4) are
1381  //   implicitly declared in global scope in each translation unit of a
1382  //   program
1383  //
1384  //     void* operator new(std::size_t) throw(std::bad_alloc);
1385  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1386  //     void  operator delete(void*) throw();
1387  //     void  operator delete[](void*) throw();
1388  //
1389  //   These implicit declarations introduce only the function names operator
1390  //   new, operator new[], operator delete, operator delete[].
1391  //
1392  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1393  // "std" or "bad_alloc" as necessary to form the exception specification.
1394  // However, we do not make these implicit declarations visible to name
1395  // lookup.
1396  if (!StdBadAlloc) {
1397    // The "std::bad_alloc" class has not yet been declared, so build it
1398    // implicitly.
1399    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1400                                        getOrCreateStdNamespace(),
1401                                        SourceLocation(),
1402                                      &PP.getIdentifierTable().get("bad_alloc"),
1403                                        SourceLocation(), 0);
1404    getStdBadAlloc()->setImplicit(true);
1405  }
1406
1407  GlobalNewDeleteDeclared = true;
1408
1409  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1410  QualType SizeT = Context.getSizeType();
1411  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1412
1413  DeclareGlobalAllocationFunction(
1414      Context.DeclarationNames.getCXXOperatorName(OO_New),
1415      VoidPtr, SizeT, AssumeSaneOperatorNew);
1416  DeclareGlobalAllocationFunction(
1417      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1418      VoidPtr, SizeT, AssumeSaneOperatorNew);
1419  DeclareGlobalAllocationFunction(
1420      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1421      Context.VoidTy, VoidPtr);
1422  DeclareGlobalAllocationFunction(
1423      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1424      Context.VoidTy, VoidPtr);
1425}
1426
1427/// DeclareGlobalAllocationFunction - Declares a single implicit global
1428/// allocation function if it doesn't already exist.
1429void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1430                                           QualType Return, QualType Argument,
1431                                           bool AddMallocAttr) {
1432  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1433
1434  // Check if this function is already declared.
1435  {
1436    DeclContext::lookup_iterator Alloc, AllocEnd;
1437    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1438         Alloc != AllocEnd; ++Alloc) {
1439      // Only look at non-template functions, as it is the predefined,
1440      // non-templated allocation function we are trying to declare here.
1441      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1442        QualType InitialParamType =
1443          Context.getCanonicalType(
1444            Func->getParamDecl(0)->getType().getUnqualifiedType());
1445        // FIXME: Do we need to check for default arguments here?
1446        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1447          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1448            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1449          return;
1450        }
1451      }
1452    }
1453  }
1454
1455  QualType BadAllocType;
1456  bool HasBadAllocExceptionSpec
1457    = (Name.getCXXOverloadedOperator() == OO_New ||
1458       Name.getCXXOverloadedOperator() == OO_Array_New);
1459  if (HasBadAllocExceptionSpec) {
1460    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1461    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1462  }
1463
1464  FunctionProtoType::ExtProtoInfo EPI;
1465  EPI.HasExceptionSpec = true;
1466  if (HasBadAllocExceptionSpec) {
1467    EPI.NumExceptions = 1;
1468    EPI.Exceptions = &BadAllocType;
1469  }
1470
1471  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1472  FunctionDecl *Alloc =
1473    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1474                         FnType, /*TInfo=*/0, SC_None,
1475                         SC_None, false, true);
1476  Alloc->setImplicit();
1477
1478  if (AddMallocAttr)
1479    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1480
1481  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1482                                           0, Argument, /*TInfo=*/0,
1483                                           SC_None,
1484                                           SC_None, 0);
1485  Alloc->setParams(&Param, 1);
1486
1487  // FIXME: Also add this declaration to the IdentifierResolver, but
1488  // make sure it is at the end of the chain to coincide with the
1489  // global scope.
1490  Context.getTranslationUnitDecl()->addDecl(Alloc);
1491}
1492
1493bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1494                                    DeclarationName Name,
1495                                    FunctionDecl* &Operator) {
1496  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1497  // Try to find operator delete/operator delete[] in class scope.
1498  LookupQualifiedName(Found, RD);
1499
1500  if (Found.isAmbiguous())
1501    return true;
1502
1503  Found.suppressDiagnostics();
1504
1505  llvm::SmallVector<DeclAccessPair,4> Matches;
1506  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1507       F != FEnd; ++F) {
1508    NamedDecl *ND = (*F)->getUnderlyingDecl();
1509
1510    // Ignore template operator delete members from the check for a usual
1511    // deallocation function.
1512    if (isa<FunctionTemplateDecl>(ND))
1513      continue;
1514
1515    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1516      Matches.push_back(F.getPair());
1517  }
1518
1519  // There's exactly one suitable operator;  pick it.
1520  if (Matches.size() == 1) {
1521    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1522    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1523                          Matches[0]);
1524    return false;
1525
1526  // We found multiple suitable operators;  complain about the ambiguity.
1527  } else if (!Matches.empty()) {
1528    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1529      << Name << RD;
1530
1531    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1532           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1533      Diag((*F)->getUnderlyingDecl()->getLocation(),
1534           diag::note_member_declared_here) << Name;
1535    return true;
1536  }
1537
1538  // We did find operator delete/operator delete[] declarations, but
1539  // none of them were suitable.
1540  if (!Found.empty()) {
1541    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1542      << Name << RD;
1543
1544    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1545         F != FEnd; ++F)
1546      Diag((*F)->getUnderlyingDecl()->getLocation(),
1547           diag::note_member_declared_here) << Name;
1548
1549    return true;
1550  }
1551
1552  // Look for a global declaration.
1553  DeclareGlobalNewDelete();
1554  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1555
1556  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1557  Expr* DeallocArgs[1];
1558  DeallocArgs[0] = &Null;
1559  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1560                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1561                             Operator))
1562    return true;
1563
1564  assert(Operator && "Did not find a deallocation function!");
1565  return false;
1566}
1567
1568/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1569/// @code ::delete ptr; @endcode
1570/// or
1571/// @code delete [] ptr; @endcode
1572ExprResult
1573Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1574                     bool ArrayForm, Expr *Ex) {
1575  // C++ [expr.delete]p1:
1576  //   The operand shall have a pointer type, or a class type having a single
1577  //   conversion function to a pointer type. The result has type void.
1578  //
1579  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1580
1581  FunctionDecl *OperatorDelete = 0;
1582  bool ArrayFormAsWritten = ArrayForm;
1583  bool UsualArrayDeleteWantsSize = false;
1584
1585  if (!Ex->isTypeDependent()) {
1586    QualType Type = Ex->getType();
1587
1588    if (const RecordType *Record = Type->getAs<RecordType>()) {
1589      if (RequireCompleteType(StartLoc, Type,
1590                              PDiag(diag::err_delete_incomplete_class_type)))
1591        return ExprError();
1592
1593      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1594
1595      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1596      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1597      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1598             E = Conversions->end(); I != E; ++I) {
1599        NamedDecl *D = I.getDecl();
1600        if (isa<UsingShadowDecl>(D))
1601          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1602
1603        // Skip over templated conversion functions; they aren't considered.
1604        if (isa<FunctionTemplateDecl>(D))
1605          continue;
1606
1607        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1608
1609        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1610        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1611          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1612            ObjectPtrConversions.push_back(Conv);
1613      }
1614      if (ObjectPtrConversions.size() == 1) {
1615        // We have a single conversion to a pointer-to-object type. Perform
1616        // that conversion.
1617        // TODO: don't redo the conversion calculation.
1618        if (!PerformImplicitConversion(Ex,
1619                            ObjectPtrConversions.front()->getConversionType(),
1620                                      AA_Converting)) {
1621          Type = Ex->getType();
1622        }
1623      }
1624      else if (ObjectPtrConversions.size() > 1) {
1625        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1626              << Type << Ex->getSourceRange();
1627        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1628          NoteOverloadCandidate(ObjectPtrConversions[i]);
1629        return ExprError();
1630      }
1631    }
1632
1633    if (!Type->isPointerType())
1634      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1635        << Type << Ex->getSourceRange());
1636
1637    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1638    if (Pointee->isVoidType() && !isSFINAEContext()) {
1639      // The C++ standard bans deleting a pointer to a non-object type, which
1640      // effectively bans deletion of "void*". However, most compilers support
1641      // this, so we treat it as a warning unless we're in a SFINAE context.
1642      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1643        << Type << Ex->getSourceRange();
1644    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1645      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1646        << Type << Ex->getSourceRange());
1647    else if (!Pointee->isDependentType() &&
1648             RequireCompleteType(StartLoc, Pointee,
1649                                 PDiag(diag::warn_delete_incomplete)
1650                                   << Ex->getSourceRange()))
1651      return ExprError();
1652
1653    // C++ [expr.delete]p2:
1654    //   [Note: a pointer to a const type can be the operand of a
1655    //   delete-expression; it is not necessary to cast away the constness
1656    //   (5.2.11) of the pointer expression before it is used as the operand
1657    //   of the delete-expression. ]
1658    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1659                      CK_NoOp);
1660
1661    if (Pointee->isArrayType() && !ArrayForm) {
1662      Diag(StartLoc, diag::warn_delete_array_type)
1663          << Type << Ex->getSourceRange()
1664          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1665      ArrayForm = true;
1666    }
1667
1668    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1669                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1670
1671    QualType PointeeElem = Context.getBaseElementType(Pointee);
1672    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1673      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1674
1675      if (!UseGlobal &&
1676          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1677        return ExprError();
1678
1679      // If we're allocating an array of records, check whether the
1680      // usual operator delete[] has a size_t parameter.
1681      if (ArrayForm) {
1682        // If the user specifically asked to use the global allocator,
1683        // we'll need to do the lookup into the class.
1684        if (UseGlobal)
1685          UsualArrayDeleteWantsSize =
1686            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1687
1688        // Otherwise, the usual operator delete[] should be the
1689        // function we just found.
1690        else if (isa<CXXMethodDecl>(OperatorDelete))
1691          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1692      }
1693
1694      if (!RD->hasTrivialDestructor())
1695        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1696          MarkDeclarationReferenced(StartLoc,
1697                                    const_cast<CXXDestructorDecl*>(Dtor));
1698          DiagnoseUseOfDecl(Dtor, StartLoc);
1699        }
1700    }
1701
1702    if (!OperatorDelete) {
1703      // Look for a global declaration.
1704      DeclareGlobalNewDelete();
1705      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1706      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1707                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1708                                 OperatorDelete))
1709        return ExprError();
1710    }
1711
1712    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1713
1714    // Check access and ambiguity of operator delete and destructor.
1715    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1716      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1717      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1718          CheckDestructorAccess(Ex->getExprLoc(), Dtor,
1719                      PDiag(diag::err_access_dtor) << PointeeElem);
1720      }
1721    }
1722
1723  }
1724
1725  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1726                                           ArrayFormAsWritten,
1727                                           UsualArrayDeleteWantsSize,
1728                                           OperatorDelete, Ex, StartLoc));
1729}
1730
1731/// \brief Check the use of the given variable as a C++ condition in an if,
1732/// while, do-while, or switch statement.
1733ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1734                                        SourceLocation StmtLoc,
1735                                        bool ConvertToBoolean) {
1736  QualType T = ConditionVar->getType();
1737
1738  // C++ [stmt.select]p2:
1739  //   The declarator shall not specify a function or an array.
1740  if (T->isFunctionType())
1741    return ExprError(Diag(ConditionVar->getLocation(),
1742                          diag::err_invalid_use_of_function_type)
1743                       << ConditionVar->getSourceRange());
1744  else if (T->isArrayType())
1745    return ExprError(Diag(ConditionVar->getLocation(),
1746                          diag::err_invalid_use_of_array_type)
1747                     << ConditionVar->getSourceRange());
1748
1749  Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
1750                                        ConditionVar->getLocation(),
1751                            ConditionVar->getType().getNonReferenceType(),
1752                                        VK_LValue);
1753  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1754    return ExprError();
1755
1756  return Owned(Condition);
1757}
1758
1759/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1760bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1761  // C++ 6.4p4:
1762  // The value of a condition that is an initialized declaration in a statement
1763  // other than a switch statement is the value of the declared variable
1764  // implicitly converted to type bool. If that conversion is ill-formed, the
1765  // program is ill-formed.
1766  // The value of a condition that is an expression is the value of the
1767  // expression, implicitly converted to bool.
1768  //
1769  return PerformContextuallyConvertToBool(CondExpr);
1770}
1771
1772/// Helper function to determine whether this is the (deprecated) C++
1773/// conversion from a string literal to a pointer to non-const char or
1774/// non-const wchar_t (for narrow and wide string literals,
1775/// respectively).
1776bool
1777Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1778  // Look inside the implicit cast, if it exists.
1779  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1780    From = Cast->getSubExpr();
1781
1782  // A string literal (2.13.4) that is not a wide string literal can
1783  // be converted to an rvalue of type "pointer to char"; a wide
1784  // string literal can be converted to an rvalue of type "pointer
1785  // to wchar_t" (C++ 4.2p2).
1786  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1787    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1788      if (const BuiltinType *ToPointeeType
1789          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1790        // This conversion is considered only when there is an
1791        // explicit appropriate pointer target type (C++ 4.2p2).
1792        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1793            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1794             (!StrLit->isWide() &&
1795              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1796               ToPointeeType->getKind() == BuiltinType::Char_S))))
1797          return true;
1798      }
1799
1800  return false;
1801}
1802
1803static ExprResult BuildCXXCastArgument(Sema &S,
1804                                       SourceLocation CastLoc,
1805                                       QualType Ty,
1806                                       CastKind Kind,
1807                                       CXXMethodDecl *Method,
1808                                       NamedDecl *FoundDecl,
1809                                       Expr *From) {
1810  switch (Kind) {
1811  default: assert(0 && "Unhandled cast kind!");
1812  case CK_ConstructorConversion: {
1813    ASTOwningVector<Expr*> ConstructorArgs(S);
1814
1815    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1816                                  MultiExprArg(&From, 1),
1817                                  CastLoc, ConstructorArgs))
1818      return ExprError();
1819
1820    ExprResult Result =
1821    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1822                            move_arg(ConstructorArgs),
1823                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1824                            SourceRange());
1825    if (Result.isInvalid())
1826      return ExprError();
1827
1828    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1829  }
1830
1831  case CK_UserDefinedConversion: {
1832    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1833
1834    // Create an implicit call expr that calls it.
1835    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
1836    if (Result.isInvalid())
1837      return ExprError();
1838
1839    return S.MaybeBindToTemporary(Result.get());
1840  }
1841  }
1842}
1843
1844/// PerformImplicitConversion - Perform an implicit conversion of the
1845/// expression From to the type ToType using the pre-computed implicit
1846/// conversion sequence ICS. Returns true if there was an error, false
1847/// otherwise. The expression From is replaced with the converted
1848/// expression. Action is the kind of conversion we're performing,
1849/// used in the error message.
1850bool
1851Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1852                                const ImplicitConversionSequence &ICS,
1853                                AssignmentAction Action, bool CStyle) {
1854  switch (ICS.getKind()) {
1855  case ImplicitConversionSequence::StandardConversion:
1856    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1857                                  CStyle))
1858      return true;
1859    break;
1860
1861  case ImplicitConversionSequence::UserDefinedConversion: {
1862
1863      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1864      CastKind CastKind;
1865      QualType BeforeToType;
1866      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1867        CastKind = CK_UserDefinedConversion;
1868
1869        // If the user-defined conversion is specified by a conversion function,
1870        // the initial standard conversion sequence converts the source type to
1871        // the implicit object parameter of the conversion function.
1872        BeforeToType = Context.getTagDeclType(Conv->getParent());
1873      } else {
1874        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
1875        CastKind = CK_ConstructorConversion;
1876        // Do no conversion if dealing with ... for the first conversion.
1877        if (!ICS.UserDefined.EllipsisConversion) {
1878          // If the user-defined conversion is specified by a constructor, the
1879          // initial standard conversion sequence converts the source type to the
1880          // type required by the argument of the constructor
1881          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1882        }
1883      }
1884      // Watch out for elipsis conversion.
1885      if (!ICS.UserDefined.EllipsisConversion) {
1886        if (PerformImplicitConversion(From, BeforeToType,
1887                                      ICS.UserDefined.Before, AA_Converting,
1888                                      CStyle))
1889          return true;
1890      }
1891
1892      ExprResult CastArg
1893        = BuildCXXCastArgument(*this,
1894                               From->getLocStart(),
1895                               ToType.getNonReferenceType(),
1896                               CastKind, cast<CXXMethodDecl>(FD),
1897                               ICS.UserDefined.FoundConversionFunction,
1898                               From);
1899
1900      if (CastArg.isInvalid())
1901        return true;
1902
1903      From = CastArg.takeAs<Expr>();
1904
1905      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1906                                       AA_Converting, CStyle);
1907  }
1908
1909  case ImplicitConversionSequence::AmbiguousConversion:
1910    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1911                          PDiag(diag::err_typecheck_ambiguous_condition)
1912                            << From->getSourceRange());
1913     return true;
1914
1915  case ImplicitConversionSequence::EllipsisConversion:
1916    assert(false && "Cannot perform an ellipsis conversion");
1917    return false;
1918
1919  case ImplicitConversionSequence::BadConversion:
1920    return true;
1921  }
1922
1923  // Everything went well.
1924  return false;
1925}
1926
1927/// PerformImplicitConversion - Perform an implicit conversion of the
1928/// expression From to the type ToType by following the standard
1929/// conversion sequence SCS. Returns true if there was an error, false
1930/// otherwise. The expression From is replaced with the converted
1931/// expression. Flavor is the context in which we're performing this
1932/// conversion, for use in error messages.
1933bool
1934Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1935                                const StandardConversionSequence& SCS,
1936                                AssignmentAction Action, bool CStyle) {
1937  // Overall FIXME: we are recomputing too many types here and doing far too
1938  // much extra work. What this means is that we need to keep track of more
1939  // information that is computed when we try the implicit conversion initially,
1940  // so that we don't need to recompute anything here.
1941  QualType FromType = From->getType();
1942
1943  if (SCS.CopyConstructor) {
1944    // FIXME: When can ToType be a reference type?
1945    assert(!ToType->isReferenceType());
1946    if (SCS.Second == ICK_Derived_To_Base) {
1947      ASTOwningVector<Expr*> ConstructorArgs(*this);
1948      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1949                                  MultiExprArg(*this, &From, 1),
1950                                  /*FIXME:ConstructLoc*/SourceLocation(),
1951                                  ConstructorArgs))
1952        return true;
1953      ExprResult FromResult =
1954        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1955                              ToType, SCS.CopyConstructor,
1956                              move_arg(ConstructorArgs),
1957                              /*ZeroInit*/ false,
1958                              CXXConstructExpr::CK_Complete,
1959                              SourceRange());
1960      if (FromResult.isInvalid())
1961        return true;
1962      From = FromResult.takeAs<Expr>();
1963      return false;
1964    }
1965    ExprResult FromResult =
1966      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1967                            ToType, SCS.CopyConstructor,
1968                            MultiExprArg(*this, &From, 1),
1969                            /*ZeroInit*/ false,
1970                            CXXConstructExpr::CK_Complete,
1971                            SourceRange());
1972
1973    if (FromResult.isInvalid())
1974      return true;
1975
1976    From = FromResult.takeAs<Expr>();
1977    return false;
1978  }
1979
1980  // Resolve overloaded function references.
1981  if (Context.hasSameType(FromType, Context.OverloadTy)) {
1982    DeclAccessPair Found;
1983    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
1984                                                          true, Found);
1985    if (!Fn)
1986      return true;
1987
1988    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
1989      return true;
1990
1991    From = FixOverloadedFunctionReference(From, Found, Fn);
1992    FromType = From->getType();
1993  }
1994
1995  // Perform the first implicit conversion.
1996  switch (SCS.First) {
1997  case ICK_Identity:
1998    // Nothing to do.
1999    break;
2000
2001  case ICK_Lvalue_To_Rvalue:
2002    // Should this get its own ICK?
2003    if (From->getObjectKind() == OK_ObjCProperty) {
2004      ConvertPropertyForRValue(From);
2005      if (!From->isGLValue()) break;
2006    }
2007
2008    FromType = FromType.getUnqualifiedType();
2009    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2010                                    From, 0, VK_RValue);
2011    break;
2012
2013  case ICK_Array_To_Pointer:
2014    FromType = Context.getArrayDecayedType(FromType);
2015    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
2016    break;
2017
2018  case ICK_Function_To_Pointer:
2019    FromType = Context.getPointerType(FromType);
2020    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
2021    break;
2022
2023  default:
2024    assert(false && "Improper first standard conversion");
2025    break;
2026  }
2027
2028  // Perform the second implicit conversion
2029  switch (SCS.Second) {
2030  case ICK_Identity:
2031    // If both sides are functions (or pointers/references to them), there could
2032    // be incompatible exception declarations.
2033    if (CheckExceptionSpecCompatibility(From, ToType))
2034      return true;
2035    // Nothing else to do.
2036    break;
2037
2038  case ICK_NoReturn_Adjustment:
2039    // If both sides are functions (or pointers/references to them), there could
2040    // be incompatible exception declarations.
2041    if (CheckExceptionSpecCompatibility(From, ToType))
2042      return true;
2043
2044    ImpCastExprToType(From, ToType, CK_NoOp);
2045    break;
2046
2047  case ICK_Integral_Promotion:
2048  case ICK_Integral_Conversion:
2049    ImpCastExprToType(From, ToType, CK_IntegralCast);
2050    break;
2051
2052  case ICK_Floating_Promotion:
2053  case ICK_Floating_Conversion:
2054    ImpCastExprToType(From, ToType, CK_FloatingCast);
2055    break;
2056
2057  case ICK_Complex_Promotion:
2058  case ICK_Complex_Conversion: {
2059    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2060    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2061    CastKind CK;
2062    if (FromEl->isRealFloatingType()) {
2063      if (ToEl->isRealFloatingType())
2064        CK = CK_FloatingComplexCast;
2065      else
2066        CK = CK_FloatingComplexToIntegralComplex;
2067    } else if (ToEl->isRealFloatingType()) {
2068      CK = CK_IntegralComplexToFloatingComplex;
2069    } else {
2070      CK = CK_IntegralComplexCast;
2071    }
2072    ImpCastExprToType(From, ToType, CK);
2073    break;
2074  }
2075
2076  case ICK_Floating_Integral:
2077    if (ToType->isRealFloatingType())
2078      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
2079    else
2080      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
2081    break;
2082
2083  case ICK_Compatible_Conversion:
2084    ImpCastExprToType(From, ToType, CK_NoOp);
2085    break;
2086
2087  case ICK_Pointer_Conversion: {
2088    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2089      // Diagnose incompatible Objective-C conversions
2090      Diag(From->getSourceRange().getBegin(),
2091           diag::ext_typecheck_convert_incompatible_pointer)
2092        << From->getType() << ToType << Action
2093        << From->getSourceRange();
2094    }
2095
2096    CastKind Kind = CK_Invalid;
2097    CXXCastPath BasePath;
2098    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2099      return true;
2100    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2101    break;
2102  }
2103
2104  case ICK_Pointer_Member: {
2105    CastKind Kind = CK_Invalid;
2106    CXXCastPath BasePath;
2107    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2108      return true;
2109    if (CheckExceptionSpecCompatibility(From, ToType))
2110      return true;
2111    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2112    break;
2113  }
2114  case ICK_Boolean_Conversion: {
2115    CastKind Kind = CK_Invalid;
2116    switch (FromType->getScalarTypeKind()) {
2117    case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
2118    case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
2119    case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
2120    case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
2121    case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
2122    case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
2123    case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
2124    }
2125
2126    ImpCastExprToType(From, Context.BoolTy, Kind);
2127    break;
2128  }
2129
2130  case ICK_Derived_To_Base: {
2131    CXXCastPath BasePath;
2132    if (CheckDerivedToBaseConversion(From->getType(),
2133                                     ToType.getNonReferenceType(),
2134                                     From->getLocStart(),
2135                                     From->getSourceRange(),
2136                                     &BasePath,
2137                                     CStyle))
2138      return true;
2139
2140    ImpCastExprToType(From, ToType.getNonReferenceType(),
2141                      CK_DerivedToBase, CastCategory(From),
2142                      &BasePath);
2143    break;
2144  }
2145
2146  case ICK_Vector_Conversion:
2147    ImpCastExprToType(From, ToType, CK_BitCast);
2148    break;
2149
2150  case ICK_Vector_Splat:
2151    ImpCastExprToType(From, ToType, CK_VectorSplat);
2152    break;
2153
2154  case ICK_Complex_Real:
2155    // Case 1.  x -> _Complex y
2156    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2157      QualType ElType = ToComplex->getElementType();
2158      bool isFloatingComplex = ElType->isRealFloatingType();
2159
2160      // x -> y
2161      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2162        // do nothing
2163      } else if (From->getType()->isRealFloatingType()) {
2164        ImpCastExprToType(From, ElType,
2165                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
2166      } else {
2167        assert(From->getType()->isIntegerType());
2168        ImpCastExprToType(From, ElType,
2169                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
2170      }
2171      // y -> _Complex y
2172      ImpCastExprToType(From, ToType,
2173                   isFloatingComplex ? CK_FloatingRealToComplex
2174                                     : CK_IntegralRealToComplex);
2175
2176    // Case 2.  _Complex x -> y
2177    } else {
2178      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2179      assert(FromComplex);
2180
2181      QualType ElType = FromComplex->getElementType();
2182      bool isFloatingComplex = ElType->isRealFloatingType();
2183
2184      // _Complex x -> x
2185      ImpCastExprToType(From, ElType,
2186                   isFloatingComplex ? CK_FloatingComplexToReal
2187                                     : CK_IntegralComplexToReal);
2188
2189      // x -> y
2190      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2191        // do nothing
2192      } else if (ToType->isRealFloatingType()) {
2193        ImpCastExprToType(From, ToType,
2194                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
2195      } else {
2196        assert(ToType->isIntegerType());
2197        ImpCastExprToType(From, ToType,
2198                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
2199      }
2200    }
2201    break;
2202
2203  case ICK_Block_Pointer_Conversion: {
2204      ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue);
2205      break;
2206    }
2207
2208  case ICK_Lvalue_To_Rvalue:
2209  case ICK_Array_To_Pointer:
2210  case ICK_Function_To_Pointer:
2211  case ICK_Qualification:
2212  case ICK_Num_Conversion_Kinds:
2213    assert(false && "Improper second standard conversion");
2214    break;
2215  }
2216
2217  switch (SCS.Third) {
2218  case ICK_Identity:
2219    // Nothing to do.
2220    break;
2221
2222  case ICK_Qualification: {
2223    // The qualification keeps the category of the inner expression, unless the
2224    // target type isn't a reference.
2225    ExprValueKind VK = ToType->isReferenceType() ?
2226                                  CastCategory(From) : VK_RValue;
2227    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2228                      CK_NoOp, VK);
2229
2230    if (SCS.DeprecatedStringLiteralToCharPtr)
2231      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2232        << ToType.getNonReferenceType();
2233
2234    break;
2235    }
2236
2237  default:
2238    assert(false && "Improper third standard conversion");
2239    break;
2240  }
2241
2242  return false;
2243}
2244
2245ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2246                                     SourceLocation KWLoc,
2247                                     ParsedType Ty,
2248                                     SourceLocation RParen) {
2249  TypeSourceInfo *TSInfo;
2250  QualType T = GetTypeFromParser(Ty, &TSInfo);
2251
2252  if (!TSInfo)
2253    TSInfo = Context.getTrivialTypeSourceInfo(T);
2254  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2255}
2256
2257static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2258                                   SourceLocation KeyLoc) {
2259  // FIXME: For many of these traits, we need a complete type before we can
2260  // check these properties.
2261  assert(!T->isDependentType() &&
2262         "Cannot evaluate traits for dependent types.");
2263  ASTContext &C = Self.Context;
2264  switch(UTT) {
2265  default: assert(false && "Unknown type trait or not implemented");
2266  case UTT_IsPOD: return T->isPODType();
2267  case UTT_IsLiteral: return T->isLiteralType();
2268  case UTT_IsClass: // Fallthrough
2269  case UTT_IsUnion:
2270    if (const RecordType *Record = T->getAs<RecordType>()) {
2271      bool Union = Record->getDecl()->isUnion();
2272      return UTT == UTT_IsUnion ? Union : !Union;
2273    }
2274    return false;
2275  case UTT_IsEnum: return T->isEnumeralType();
2276  case UTT_IsPolymorphic:
2277    if (const RecordType *Record = T->getAs<RecordType>()) {
2278      // Type traits are only parsed in C++, so we've got CXXRecords.
2279      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2280    }
2281    return false;
2282  case UTT_IsAbstract:
2283    if (const RecordType *RT = T->getAs<RecordType>())
2284      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2285    return false;
2286  case UTT_IsEmpty:
2287    if (const RecordType *Record = T->getAs<RecordType>()) {
2288      return !Record->getDecl()->isUnion()
2289          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2290    }
2291    return false;
2292  case UTT_HasTrivialConstructor:
2293    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2294    //   If __is_pod (type) is true then the trait is true, else if type is
2295    //   a cv class or union type (or array thereof) with a trivial default
2296    //   constructor ([class.ctor]) then the trait is true, else it is false.
2297    if (T->isPODType())
2298      return true;
2299    if (const RecordType *RT =
2300          C.getBaseElementType(T)->getAs<RecordType>())
2301      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2302    return false;
2303  case UTT_HasTrivialCopy:
2304    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2305    //   If __is_pod (type) is true or type is a reference type then
2306    //   the trait is true, else if type is a cv class or union type
2307    //   with a trivial copy constructor ([class.copy]) then the trait
2308    //   is true, else it is false.
2309    if (T->isPODType() || T->isReferenceType())
2310      return true;
2311    if (const RecordType *RT = T->getAs<RecordType>())
2312      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2313    return false;
2314  case UTT_HasTrivialAssign:
2315    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2316    //   If type is const qualified or is a reference type then the
2317    //   trait is false. Otherwise if __is_pod (type) is true then the
2318    //   trait is true, else if type is a cv class or union type with
2319    //   a trivial copy assignment ([class.copy]) then the trait is
2320    //   true, else it is false.
2321    // Note: the const and reference restrictions are interesting,
2322    // given that const and reference members don't prevent a class
2323    // from having a trivial copy assignment operator (but do cause
2324    // errors if the copy assignment operator is actually used, q.v.
2325    // [class.copy]p12).
2326
2327    if (C.getBaseElementType(T).isConstQualified())
2328      return false;
2329    if (T->isPODType())
2330      return true;
2331    if (const RecordType *RT = T->getAs<RecordType>())
2332      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2333    return false;
2334  case UTT_HasTrivialDestructor:
2335    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2336    //   If __is_pod (type) is true or type is a reference type
2337    //   then the trait is true, else if type is a cv class or union
2338    //   type (or array thereof) with a trivial destructor
2339    //   ([class.dtor]) then the trait is true, else it is
2340    //   false.
2341    if (T->isPODType() || T->isReferenceType())
2342      return true;
2343    if (const RecordType *RT =
2344          C.getBaseElementType(T)->getAs<RecordType>())
2345      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2346    return false;
2347  // TODO: Propagate nothrowness for implicitly declared special members.
2348  case UTT_HasNothrowAssign:
2349    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2350    //   If type is const qualified or is a reference type then the
2351    //   trait is false. Otherwise if __has_trivial_assign (type)
2352    //   is true then the trait is true, else if type is a cv class
2353    //   or union type with copy assignment operators that are known
2354    //   not to throw an exception then the trait is true, else it is
2355    //   false.
2356    if (C.getBaseElementType(T).isConstQualified())
2357      return false;
2358    if (T->isReferenceType())
2359      return false;
2360    if (T->isPODType())
2361      return true;
2362    if (const RecordType *RT = T->getAs<RecordType>()) {
2363      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2364      if (RD->hasTrivialCopyAssignment())
2365        return true;
2366
2367      bool FoundAssign = false;
2368      bool AllNoThrow = true;
2369      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2370      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2371                       Sema::LookupOrdinaryName);
2372      if (Self.LookupQualifiedName(Res, RD)) {
2373        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2374             Op != OpEnd; ++Op) {
2375          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2376          if (Operator->isCopyAssignmentOperator()) {
2377            FoundAssign = true;
2378            const FunctionProtoType *CPT
2379                = Operator->getType()->getAs<FunctionProtoType>();
2380            if (!CPT->hasEmptyExceptionSpec()) {
2381              AllNoThrow = false;
2382              break;
2383            }
2384          }
2385        }
2386      }
2387
2388      return FoundAssign && AllNoThrow;
2389    }
2390    return false;
2391  case UTT_HasNothrowCopy:
2392    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2393    //   If __has_trivial_copy (type) is true then the trait is true, else
2394    //   if type is a cv class or union type with copy constructors that are
2395    //   known not to throw an exception then the trait is true, else it is
2396    //   false.
2397    if (T->isPODType() || T->isReferenceType())
2398      return true;
2399    if (const RecordType *RT = T->getAs<RecordType>()) {
2400      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2401      if (RD->hasTrivialCopyConstructor())
2402        return true;
2403
2404      bool FoundConstructor = false;
2405      bool AllNoThrow = true;
2406      unsigned FoundTQs;
2407      DeclContext::lookup_const_iterator Con, ConEnd;
2408      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2409           Con != ConEnd; ++Con) {
2410        // A template constructor is never a copy constructor.
2411        // FIXME: However, it may actually be selected at the actual overload
2412        // resolution point.
2413        if (isa<FunctionTemplateDecl>(*Con))
2414          continue;
2415        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2416        if (Constructor->isCopyConstructor(FoundTQs)) {
2417          FoundConstructor = true;
2418          const FunctionProtoType *CPT
2419              = Constructor->getType()->getAs<FunctionProtoType>();
2420          // TODO: check whether evaluating default arguments can throw.
2421          // For now, we'll be conservative and assume that they can throw.
2422          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2423            AllNoThrow = false;
2424            break;
2425          }
2426        }
2427      }
2428
2429      return FoundConstructor && AllNoThrow;
2430    }
2431    return false;
2432  case UTT_HasNothrowConstructor:
2433    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2434    //   If __has_trivial_constructor (type) is true then the trait is
2435    //   true, else if type is a cv class or union type (or array
2436    //   thereof) with a default constructor that is known not to
2437    //   throw an exception then the trait is true, else it is false.
2438    if (T->isPODType())
2439      return true;
2440    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2441      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2442      if (RD->hasTrivialConstructor())
2443        return true;
2444
2445      DeclContext::lookup_const_iterator Con, ConEnd;
2446      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2447           Con != ConEnd; ++Con) {
2448        // FIXME: In C++0x, a constructor template can be a default constructor.
2449        if (isa<FunctionTemplateDecl>(*Con))
2450          continue;
2451        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2452        if (Constructor->isDefaultConstructor()) {
2453          const FunctionProtoType *CPT
2454              = Constructor->getType()->getAs<FunctionProtoType>();
2455          // TODO: check whether evaluating default arguments can throw.
2456          // For now, we'll be conservative and assume that they can throw.
2457          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2458        }
2459      }
2460    }
2461    return false;
2462  case UTT_HasVirtualDestructor:
2463    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2464    //   If type is a class type with a virtual destructor ([class.dtor])
2465    //   then the trait is true, else it is false.
2466    if (const RecordType *Record = T->getAs<RecordType>()) {
2467      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2468      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2469        return Destructor->isVirtual();
2470    }
2471    return false;
2472  }
2473}
2474
2475ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2476                                     SourceLocation KWLoc,
2477                                     TypeSourceInfo *TSInfo,
2478                                     SourceLocation RParen) {
2479  QualType T = TSInfo->getType();
2480
2481  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2482  // all traits except __is_class, __is_enum and __is_union require a the type
2483  // to be complete, an array of unknown bound, or void.
2484  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2485    QualType E = T;
2486    if (T->isIncompleteArrayType())
2487      E = Context.getAsArrayType(T)->getElementType();
2488    if (!T->isVoidType() &&
2489        RequireCompleteType(KWLoc, E,
2490                            diag::err_incomplete_type_used_in_type_trait_expr))
2491      return ExprError();
2492  }
2493
2494  bool Value = false;
2495  if (!T->isDependentType())
2496    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2497
2498  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2499                                                RParen, Context.BoolTy));
2500}
2501
2502ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2503                                      SourceLocation KWLoc,
2504                                      ParsedType LhsTy,
2505                                      ParsedType RhsTy,
2506                                      SourceLocation RParen) {
2507  TypeSourceInfo *LhsTSInfo;
2508  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2509  if (!LhsTSInfo)
2510    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2511
2512  TypeSourceInfo *RhsTSInfo;
2513  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2514  if (!RhsTSInfo)
2515    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2516
2517  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2518}
2519
2520static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2521                                    QualType LhsT, QualType RhsT,
2522                                    SourceLocation KeyLoc) {
2523  assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
2524         "Cannot evaluate traits for dependent types.");
2525
2526  switch(BTT) {
2527  case BTT_IsBaseOf: {
2528    // C++0x [meta.rel]p2
2529    // Base is a base class of Derived without regard to cv-qualifiers or
2530    // Base and Derived are not unions and name the same class type without
2531    // regard to cv-qualifiers.
2532
2533    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2534    if (!lhsRecord) return false;
2535
2536    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2537    if (!rhsRecord) return false;
2538
2539    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2540             == (lhsRecord == rhsRecord));
2541
2542    if (lhsRecord == rhsRecord)
2543      return !lhsRecord->getDecl()->isUnion();
2544
2545    // C++0x [meta.rel]p2:
2546    //   If Base and Derived are class types and are different types
2547    //   (ignoring possible cv-qualifiers) then Derived shall be a
2548    //   complete type.
2549    if (Self.RequireCompleteType(KeyLoc, RhsT,
2550                          diag::err_incomplete_type_used_in_type_trait_expr))
2551      return false;
2552
2553    return cast<CXXRecordDecl>(rhsRecord->getDecl())
2554      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2555  }
2556
2557  case BTT_TypeCompatible:
2558    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2559                                           RhsT.getUnqualifiedType());
2560
2561  case BTT_IsConvertibleTo: {
2562    // C++0x [meta.rel]p4:
2563    //   Given the following function prototype:
2564    //
2565    //     template <class T>
2566    //       typename add_rvalue_reference<T>::type create();
2567    //
2568    //   the predicate condition for a template specialization
2569    //   is_convertible<From, To> shall be satisfied if and only if
2570    //   the return expression in the following code would be
2571    //   well-formed, including any implicit conversions to the return
2572    //   type of the function:
2573    //
2574    //     To test() {
2575    //       return create<From>();
2576    //     }
2577    //
2578    //   Access checking is performed as if in a context unrelated to To and
2579    //   From. Only the validity of the immediate context of the expression
2580    //   of the return-statement (including conversions to the return type)
2581    //   is considered.
2582    //
2583    // We model the initialization as a copy-initialization of a temporary
2584    // of the appropriate type, which for this expression is identical to the
2585    // return statement (since NRVO doesn't apply).
2586    if (LhsT->isObjectType() || LhsT->isFunctionType())
2587      LhsT = Self.Context.getRValueReferenceType(LhsT);
2588
2589    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2590    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2591                         Expr::getValueKindForType(LhsT));
2592    Expr *FromPtr = &From;
2593    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2594                                                           SourceLocation()));
2595
2596    // Perform the initialization within a SFINAE trap at translation unit
2597    // scope.
2598    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2599    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2600    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2601    if (Init.getKind() == InitializationSequence::FailedSequence)
2602      return false;
2603
2604    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2605    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2606  }
2607  }
2608  llvm_unreachable("Unknown type trait or not implemented");
2609}
2610
2611ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2612                                      SourceLocation KWLoc,
2613                                      TypeSourceInfo *LhsTSInfo,
2614                                      TypeSourceInfo *RhsTSInfo,
2615                                      SourceLocation RParen) {
2616  QualType LhsT = LhsTSInfo->getType();
2617  QualType RhsT = RhsTSInfo->getType();
2618
2619  if (BTT == BTT_TypeCompatible) {
2620    if (getLangOptions().CPlusPlus) {
2621      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2622        << SourceRange(KWLoc, RParen);
2623      return ExprError();
2624    }
2625  }
2626
2627  bool Value = false;
2628  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2629    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2630
2631  // Select trait result type.
2632  QualType ResultType;
2633  switch (BTT) {
2634  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2635  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2636  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
2637  }
2638
2639  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2640                                                 RhsTSInfo, Value, RParen,
2641                                                 ResultType));
2642}
2643
2644QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
2645                                            ExprValueKind &VK,
2646                                            SourceLocation Loc,
2647                                            bool isIndirect) {
2648  const char *OpSpelling = isIndirect ? "->*" : ".*";
2649  // C++ 5.5p2
2650  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2651  //   be of type "pointer to member of T" (where T is a completely-defined
2652  //   class type) [...]
2653  QualType RType = rex->getType();
2654  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2655  if (!MemPtr) {
2656    Diag(Loc, diag::err_bad_memptr_rhs)
2657      << OpSpelling << RType << rex->getSourceRange();
2658    return QualType();
2659  }
2660
2661  QualType Class(MemPtr->getClass(), 0);
2662
2663  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
2664  // member pointer points must be completely-defined. However, there is no
2665  // reason for this semantic distinction, and the rule is not enforced by
2666  // other compilers. Therefore, we do not check this property, as it is
2667  // likely to be considered a defect.
2668
2669  // C++ 5.5p2
2670  //   [...] to its first operand, which shall be of class T or of a class of
2671  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2672  //   such a class]
2673  QualType LType = lex->getType();
2674  if (isIndirect) {
2675    if (const PointerType *Ptr = LType->getAs<PointerType>())
2676      LType = Ptr->getPointeeType();
2677    else {
2678      Diag(Loc, diag::err_bad_memptr_lhs)
2679        << OpSpelling << 1 << LType
2680        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2681      return QualType();
2682    }
2683  }
2684
2685  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2686    // If we want to check the hierarchy, we need a complete type.
2687    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2688        << OpSpelling << (int)isIndirect)) {
2689      return QualType();
2690    }
2691    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2692                       /*DetectVirtual=*/false);
2693    // FIXME: Would it be useful to print full ambiguity paths, or is that
2694    // overkill?
2695    if (!IsDerivedFrom(LType, Class, Paths) ||
2696        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2697      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2698        << (int)isIndirect << lex->getType();
2699      return QualType();
2700    }
2701    // Cast LHS to type of use.
2702    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2703    ExprValueKind VK =
2704        isIndirect ? VK_RValue : CastCategory(lex);
2705
2706    CXXCastPath BasePath;
2707    BuildBasePathArray(Paths, BasePath);
2708    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2709  }
2710
2711  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2712    // Diagnose use of pointer-to-member type which when used as
2713    // the functional cast in a pointer-to-member expression.
2714    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2715     return QualType();
2716  }
2717
2718  // C++ 5.5p2
2719  //   The result is an object or a function of the type specified by the
2720  //   second operand.
2721  // The cv qualifiers are the union of those in the pointer and the left side,
2722  // in accordance with 5.5p5 and 5.2.5.
2723  // FIXME: This returns a dereferenced member function pointer as a normal
2724  // function type. However, the only operation valid on such functions is
2725  // calling them. There's also a GCC extension to get a function pointer to the
2726  // thing, which is another complication, because this type - unlike the type
2727  // that is the result of this expression - takes the class as the first
2728  // argument.
2729  // We probably need a "MemberFunctionClosureType" or something like that.
2730  QualType Result = MemPtr->getPointeeType();
2731  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2732
2733  // C++0x [expr.mptr.oper]p6:
2734  //   In a .* expression whose object expression is an rvalue, the program is
2735  //   ill-formed if the second operand is a pointer to member function with
2736  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
2737  //   expression is an lvalue, the program is ill-formed if the second operand
2738  //   is a pointer to member function with ref-qualifier &&.
2739  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
2740    switch (Proto->getRefQualifier()) {
2741    case RQ_None:
2742      // Do nothing
2743      break;
2744
2745    case RQ_LValue:
2746      if (!isIndirect && !lex->Classify(Context).isLValue())
2747        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2748          << RType << 1 << lex->getSourceRange();
2749      break;
2750
2751    case RQ_RValue:
2752      if (isIndirect || !lex->Classify(Context).isRValue())
2753        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2754          << RType << 0 << lex->getSourceRange();
2755      break;
2756    }
2757  }
2758
2759  // C++ [expr.mptr.oper]p6:
2760  //   The result of a .* expression whose second operand is a pointer
2761  //   to a data member is of the same value category as its
2762  //   first operand. The result of a .* expression whose second
2763  //   operand is a pointer to a member function is a prvalue. The
2764  //   result of an ->* expression is an lvalue if its second operand
2765  //   is a pointer to data member and a prvalue otherwise.
2766  if (Result->isFunctionType())
2767    VK = VK_RValue;
2768  else if (isIndirect)
2769    VK = VK_LValue;
2770  else
2771    VK = lex->getValueKind();
2772
2773  return Result;
2774}
2775
2776/// \brief Try to convert a type to another according to C++0x 5.16p3.
2777///
2778/// This is part of the parameter validation for the ? operator. If either
2779/// value operand is a class type, the two operands are attempted to be
2780/// converted to each other. This function does the conversion in one direction.
2781/// It returns true if the program is ill-formed and has already been diagnosed
2782/// as such.
2783static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2784                                SourceLocation QuestionLoc,
2785                                bool &HaveConversion,
2786                                QualType &ToType) {
2787  HaveConversion = false;
2788  ToType = To->getType();
2789
2790  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2791                                                           SourceLocation());
2792  // C++0x 5.16p3
2793  //   The process for determining whether an operand expression E1 of type T1
2794  //   can be converted to match an operand expression E2 of type T2 is defined
2795  //   as follows:
2796  //   -- If E2 is an lvalue:
2797  bool ToIsLvalue = To->isLValue();
2798  if (ToIsLvalue) {
2799    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2800    //   type "lvalue reference to T2", subject to the constraint that in the
2801    //   conversion the reference must bind directly to E1.
2802    QualType T = Self.Context.getLValueReferenceType(ToType);
2803    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2804
2805    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2806    if (InitSeq.isDirectReferenceBinding()) {
2807      ToType = T;
2808      HaveConversion = true;
2809      return false;
2810    }
2811
2812    if (InitSeq.isAmbiguous())
2813      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2814  }
2815
2816  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2817  //      -- if E1 and E2 have class type, and the underlying class types are
2818  //         the same or one is a base class of the other:
2819  QualType FTy = From->getType();
2820  QualType TTy = To->getType();
2821  const RecordType *FRec = FTy->getAs<RecordType>();
2822  const RecordType *TRec = TTy->getAs<RecordType>();
2823  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2824                       Self.IsDerivedFrom(FTy, TTy);
2825  if (FRec && TRec &&
2826      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2827    //         E1 can be converted to match E2 if the class of T2 is the
2828    //         same type as, or a base class of, the class of T1, and
2829    //         [cv2 > cv1].
2830    if (FRec == TRec || FDerivedFromT) {
2831      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2832        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2833        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2834        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2835          HaveConversion = true;
2836          return false;
2837        }
2838
2839        if (InitSeq.isAmbiguous())
2840          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2841      }
2842    }
2843
2844    return false;
2845  }
2846
2847  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2848  //        implicitly converted to the type that expression E2 would have
2849  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2850  //        an rvalue).
2851  //
2852  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2853  // to the array-to-pointer or function-to-pointer conversions.
2854  if (!TTy->getAs<TagType>())
2855    TTy = TTy.getUnqualifiedType();
2856
2857  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2858  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2859  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2860  ToType = TTy;
2861  if (InitSeq.isAmbiguous())
2862    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2863
2864  return false;
2865}
2866
2867/// \brief Try to find a common type for two according to C++0x 5.16p5.
2868///
2869/// This is part of the parameter validation for the ? operator. If either
2870/// value operand is a class type, overload resolution is used to find a
2871/// conversion to a common type.
2872static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2873                                    SourceLocation Loc) {
2874  Expr *Args[2] = { LHS, RHS };
2875  OverloadCandidateSet CandidateSet(Loc);
2876  Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
2877
2878  OverloadCandidateSet::iterator Best;
2879  switch (CandidateSet.BestViableFunction(Self, Loc, Best)) {
2880    case OR_Success:
2881      // We found a match. Perform the conversions on the arguments and move on.
2882      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2883                                         Best->Conversions[0], Sema::AA_Converting) ||
2884          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2885                                         Best->Conversions[1], Sema::AA_Converting))
2886        break;
2887      return false;
2888
2889    case OR_No_Viable_Function:
2890      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
2891        << LHS->getType() << RHS->getType()
2892        << LHS->getSourceRange() << RHS->getSourceRange();
2893      return true;
2894
2895    case OR_Ambiguous:
2896      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
2897        << LHS->getType() << RHS->getType()
2898        << LHS->getSourceRange() << RHS->getSourceRange();
2899      // FIXME: Print the possible common types by printing the return types of
2900      // the viable candidates.
2901      break;
2902
2903    case OR_Deleted:
2904      assert(false && "Conditional operator has only built-in overloads");
2905      break;
2906  }
2907  return true;
2908}
2909
2910/// \brief Perform an "extended" implicit conversion as returned by
2911/// TryClassUnification.
2912static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2913  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2914  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2915                                                           SourceLocation());
2916  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2917  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2918  if (Result.isInvalid())
2919    return true;
2920
2921  E = Result.takeAs<Expr>();
2922  return false;
2923}
2924
2925/// \brief Check the operands of ?: under C++ semantics.
2926///
2927/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2928/// extension. In this case, LHS == Cond. (But they're not aliases.)
2929QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2930                                           ExprValueKind &VK, ExprObjectKind &OK,
2931                                           SourceLocation QuestionLoc) {
2932  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2933  // interface pointers.
2934
2935  // C++0x 5.16p1
2936  //   The first expression is contextually converted to bool.
2937  if (!Cond->isTypeDependent()) {
2938    if (CheckCXXBooleanCondition(Cond))
2939      return QualType();
2940  }
2941
2942  // Assume r-value.
2943  VK = VK_RValue;
2944  OK = OK_Ordinary;
2945
2946  // Either of the arguments dependent?
2947  if (LHS->isTypeDependent() || RHS->isTypeDependent())
2948    return Context.DependentTy;
2949
2950  // C++0x 5.16p2
2951  //   If either the second or the third operand has type (cv) void, ...
2952  QualType LTy = LHS->getType();
2953  QualType RTy = RHS->getType();
2954  bool LVoid = LTy->isVoidType();
2955  bool RVoid = RTy->isVoidType();
2956  if (LVoid || RVoid) {
2957    //   ... then the [l2r] conversions are performed on the second and third
2958    //   operands ...
2959    DefaultFunctionArrayLvalueConversion(LHS);
2960    DefaultFunctionArrayLvalueConversion(RHS);
2961    LTy = LHS->getType();
2962    RTy = RHS->getType();
2963
2964    //   ... and one of the following shall hold:
2965    //   -- The second or the third operand (but not both) is a throw-
2966    //      expression; the result is of the type of the other and is an rvalue.
2967    bool LThrow = isa<CXXThrowExpr>(LHS);
2968    bool RThrow = isa<CXXThrowExpr>(RHS);
2969    if (LThrow && !RThrow)
2970      return RTy;
2971    if (RThrow && !LThrow)
2972      return LTy;
2973
2974    //   -- Both the second and third operands have type void; the result is of
2975    //      type void and is an rvalue.
2976    if (LVoid && RVoid)
2977      return Context.VoidTy;
2978
2979    // Neither holds, error.
2980    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
2981      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
2982      << LHS->getSourceRange() << RHS->getSourceRange();
2983    return QualType();
2984  }
2985
2986  // Neither is void.
2987
2988  // C++0x 5.16p3
2989  //   Otherwise, if the second and third operand have different types, and
2990  //   either has (cv) class type, and attempt is made to convert each of those
2991  //   operands to the other.
2992  if (!Context.hasSameType(LTy, RTy) &&
2993      (LTy->isRecordType() || RTy->isRecordType())) {
2994    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
2995    // These return true if a single direction is already ambiguous.
2996    QualType L2RType, R2LType;
2997    bool HaveL2R, HaveR2L;
2998    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
2999      return QualType();
3000    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
3001      return QualType();
3002
3003    //   If both can be converted, [...] the program is ill-formed.
3004    if (HaveL2R && HaveR2L) {
3005      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3006        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
3007      return QualType();
3008    }
3009
3010    //   If exactly one conversion is possible, that conversion is applied to
3011    //   the chosen operand and the converted operands are used in place of the
3012    //   original operands for the remainder of this section.
3013    if (HaveL2R) {
3014      if (ConvertForConditional(*this, LHS, L2RType))
3015        return QualType();
3016      LTy = LHS->getType();
3017    } else if (HaveR2L) {
3018      if (ConvertForConditional(*this, RHS, R2LType))
3019        return QualType();
3020      RTy = RHS->getType();
3021    }
3022  }
3023
3024  // C++0x 5.16p4
3025  //   If the second and third operands are glvalues of the same value
3026  //   category and have the same type, the result is of that type and
3027  //   value category and it is a bit-field if the second or the third
3028  //   operand is a bit-field, or if both are bit-fields.
3029  // We only extend this to bitfields, not to the crazy other kinds of
3030  // l-values.
3031  bool Same = Context.hasSameType(LTy, RTy);
3032  if (Same &&
3033      LHS->isGLValue() &&
3034      LHS->getValueKind() == RHS->getValueKind() &&
3035      LHS->isOrdinaryOrBitFieldObject() &&
3036      RHS->isOrdinaryOrBitFieldObject()) {
3037    VK = LHS->getValueKind();
3038    if (LHS->getObjectKind() == OK_BitField ||
3039        RHS->getObjectKind() == OK_BitField)
3040      OK = OK_BitField;
3041    return LTy;
3042  }
3043
3044  // C++0x 5.16p5
3045  //   Otherwise, the result is an rvalue. If the second and third operands
3046  //   do not have the same type, and either has (cv) class type, ...
3047  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3048    //   ... overload resolution is used to determine the conversions (if any)
3049    //   to be applied to the operands. If the overload resolution fails, the
3050    //   program is ill-formed.
3051    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3052      return QualType();
3053  }
3054
3055  // C++0x 5.16p6
3056  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3057  //   conversions are performed on the second and third operands.
3058  DefaultFunctionArrayLvalueConversion(LHS);
3059  DefaultFunctionArrayLvalueConversion(RHS);
3060  LTy = LHS->getType();
3061  RTy = RHS->getType();
3062
3063  //   After those conversions, one of the following shall hold:
3064  //   -- The second and third operands have the same type; the result
3065  //      is of that type. If the operands have class type, the result
3066  //      is a prvalue temporary of the result type, which is
3067  //      copy-initialized from either the second operand or the third
3068  //      operand depending on the value of the first operand.
3069  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3070    if (LTy->isRecordType()) {
3071      // The operands have class type. Make a temporary copy.
3072      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3073      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3074                                                     SourceLocation(),
3075                                                     Owned(LHS));
3076      if (LHSCopy.isInvalid())
3077        return QualType();
3078
3079      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3080                                                     SourceLocation(),
3081                                                     Owned(RHS));
3082      if (RHSCopy.isInvalid())
3083        return QualType();
3084
3085      LHS = LHSCopy.takeAs<Expr>();
3086      RHS = RHSCopy.takeAs<Expr>();
3087    }
3088
3089    return LTy;
3090  }
3091
3092  // Extension: conditional operator involving vector types.
3093  if (LTy->isVectorType() || RTy->isVectorType())
3094    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3095
3096  //   -- The second and third operands have arithmetic or enumeration type;
3097  //      the usual arithmetic conversions are performed to bring them to a
3098  //      common type, and the result is of that type.
3099  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3100    UsualArithmeticConversions(LHS, RHS);
3101    return LHS->getType();
3102  }
3103
3104  //   -- The second and third operands have pointer type, or one has pointer
3105  //      type and the other is a null pointer constant; pointer conversions
3106  //      and qualification conversions are performed to bring them to their
3107  //      composite pointer type. The result is of the composite pointer type.
3108  //   -- The second and third operands have pointer to member type, or one has
3109  //      pointer to member type and the other is a null pointer constant;
3110  //      pointer to member conversions and qualification conversions are
3111  //      performed to bring them to a common type, whose cv-qualification
3112  //      shall match the cv-qualification of either the second or the third
3113  //      operand. The result is of the common type.
3114  bool NonStandardCompositeType = false;
3115  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3116                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3117  if (!Composite.isNull()) {
3118    if (NonStandardCompositeType)
3119      Diag(QuestionLoc,
3120           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3121        << LTy << RTy << Composite
3122        << LHS->getSourceRange() << RHS->getSourceRange();
3123
3124    return Composite;
3125  }
3126
3127  // Similarly, attempt to find composite type of two objective-c pointers.
3128  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3129  if (!Composite.isNull())
3130    return Composite;
3131
3132  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3133    << LHS->getType() << RHS->getType()
3134    << LHS->getSourceRange() << RHS->getSourceRange();
3135  return QualType();
3136}
3137
3138/// \brief Find a merged pointer type and convert the two expressions to it.
3139///
3140/// This finds the composite pointer type (or member pointer type) for @p E1
3141/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3142/// type and returns it.
3143/// It does not emit diagnostics.
3144///
3145/// \param Loc The location of the operator requiring these two expressions to
3146/// be converted to the composite pointer type.
3147///
3148/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3149/// a non-standard (but still sane) composite type to which both expressions
3150/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3151/// will be set true.
3152QualType Sema::FindCompositePointerType(SourceLocation Loc,
3153                                        Expr *&E1, Expr *&E2,
3154                                        bool *NonStandardCompositeType) {
3155  if (NonStandardCompositeType)
3156    *NonStandardCompositeType = false;
3157
3158  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3159  QualType T1 = E1->getType(), T2 = E2->getType();
3160
3161  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3162      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3163   return QualType();
3164
3165  // C++0x 5.9p2
3166  //   Pointer conversions and qualification conversions are performed on
3167  //   pointer operands to bring them to their composite pointer type. If
3168  //   one operand is a null pointer constant, the composite pointer type is
3169  //   the type of the other operand.
3170  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3171    if (T2->isMemberPointerType())
3172      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
3173    else
3174      ImpCastExprToType(E1, T2, CK_NullToPointer);
3175    return T2;
3176  }
3177  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3178    if (T1->isMemberPointerType())
3179      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
3180    else
3181      ImpCastExprToType(E2, T1, CK_NullToPointer);
3182    return T1;
3183  }
3184
3185  // Now both have to be pointers or member pointers.
3186  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3187      (!T2->isPointerType() && !T2->isMemberPointerType()))
3188    return QualType();
3189
3190  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3191  //   the other has type "pointer to cv2 T" and the composite pointer type is
3192  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3193  //   Otherwise, the composite pointer type is a pointer type similar to the
3194  //   type of one of the operands, with a cv-qualification signature that is
3195  //   the union of the cv-qualification signatures of the operand types.
3196  // In practice, the first part here is redundant; it's subsumed by the second.
3197  // What we do here is, we build the two possible composite types, and try the
3198  // conversions in both directions. If only one works, or if the two composite
3199  // types are the same, we have succeeded.
3200  // FIXME: extended qualifiers?
3201  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3202  QualifierVector QualifierUnion;
3203  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3204      ContainingClassVector;
3205  ContainingClassVector MemberOfClass;
3206  QualType Composite1 = Context.getCanonicalType(T1),
3207           Composite2 = Context.getCanonicalType(T2);
3208  unsigned NeedConstBefore = 0;
3209  do {
3210    const PointerType *Ptr1, *Ptr2;
3211    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3212        (Ptr2 = Composite2->getAs<PointerType>())) {
3213      Composite1 = Ptr1->getPointeeType();
3214      Composite2 = Ptr2->getPointeeType();
3215
3216      // If we're allowed to create a non-standard composite type, keep track
3217      // of where we need to fill in additional 'const' qualifiers.
3218      if (NonStandardCompositeType &&
3219          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3220        NeedConstBefore = QualifierUnion.size();
3221
3222      QualifierUnion.push_back(
3223                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3224      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3225      continue;
3226    }
3227
3228    const MemberPointerType *MemPtr1, *MemPtr2;
3229    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3230        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3231      Composite1 = MemPtr1->getPointeeType();
3232      Composite2 = MemPtr2->getPointeeType();
3233
3234      // If we're allowed to create a non-standard composite type, keep track
3235      // of where we need to fill in additional 'const' qualifiers.
3236      if (NonStandardCompositeType &&
3237          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3238        NeedConstBefore = QualifierUnion.size();
3239
3240      QualifierUnion.push_back(
3241                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3242      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3243                                             MemPtr2->getClass()));
3244      continue;
3245    }
3246
3247    // FIXME: block pointer types?
3248
3249    // Cannot unwrap any more types.
3250    break;
3251  } while (true);
3252
3253  if (NeedConstBefore && NonStandardCompositeType) {
3254    // Extension: Add 'const' to qualifiers that come before the first qualifier
3255    // mismatch, so that our (non-standard!) composite type meets the
3256    // requirements of C++ [conv.qual]p4 bullet 3.
3257    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3258      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3259        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3260        *NonStandardCompositeType = true;
3261      }
3262    }
3263  }
3264
3265  // Rewrap the composites as pointers or member pointers with the union CVRs.
3266  ContainingClassVector::reverse_iterator MOC
3267    = MemberOfClass.rbegin();
3268  for (QualifierVector::reverse_iterator
3269         I = QualifierUnion.rbegin(),
3270         E = QualifierUnion.rend();
3271       I != E; (void)++I, ++MOC) {
3272    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3273    if (MOC->first && MOC->second) {
3274      // Rebuild member pointer type
3275      Composite1 = Context.getMemberPointerType(
3276                                    Context.getQualifiedType(Composite1, Quals),
3277                                    MOC->first);
3278      Composite2 = Context.getMemberPointerType(
3279                                    Context.getQualifiedType(Composite2, Quals),
3280                                    MOC->second);
3281    } else {
3282      // Rebuild pointer type
3283      Composite1
3284        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3285      Composite2
3286        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3287    }
3288  }
3289
3290  // Try to convert to the first composite pointer type.
3291  InitializedEntity Entity1
3292    = InitializedEntity::InitializeTemporary(Composite1);
3293  InitializationKind Kind
3294    = InitializationKind::CreateCopy(Loc, SourceLocation());
3295  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3296  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3297
3298  if (E1ToC1 && E2ToC1) {
3299    // Conversion to Composite1 is viable.
3300    if (!Context.hasSameType(Composite1, Composite2)) {
3301      // Composite2 is a different type from Composite1. Check whether
3302      // Composite2 is also viable.
3303      InitializedEntity Entity2
3304        = InitializedEntity::InitializeTemporary(Composite2);
3305      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3306      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3307      if (E1ToC2 && E2ToC2) {
3308        // Both Composite1 and Composite2 are viable and are different;
3309        // this is an ambiguity.
3310        return QualType();
3311      }
3312    }
3313
3314    // Convert E1 to Composite1
3315    ExprResult E1Result
3316      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3317    if (E1Result.isInvalid())
3318      return QualType();
3319    E1 = E1Result.takeAs<Expr>();
3320
3321    // Convert E2 to Composite1
3322    ExprResult E2Result
3323      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3324    if (E2Result.isInvalid())
3325      return QualType();
3326    E2 = E2Result.takeAs<Expr>();
3327
3328    return Composite1;
3329  }
3330
3331  // Check whether Composite2 is viable.
3332  InitializedEntity Entity2
3333    = InitializedEntity::InitializeTemporary(Composite2);
3334  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3335  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3336  if (!E1ToC2 || !E2ToC2)
3337    return QualType();
3338
3339  // Convert E1 to Composite2
3340  ExprResult E1Result
3341    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3342  if (E1Result.isInvalid())
3343    return QualType();
3344  E1 = E1Result.takeAs<Expr>();
3345
3346  // Convert E2 to Composite2
3347  ExprResult E2Result
3348    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3349  if (E2Result.isInvalid())
3350    return QualType();
3351  E2 = E2Result.takeAs<Expr>();
3352
3353  return Composite2;
3354}
3355
3356ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3357  if (!E)
3358    return ExprError();
3359
3360  if (!Context.getLangOptions().CPlusPlus)
3361    return Owned(E);
3362
3363  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3364
3365  const RecordType *RT = E->getType()->getAs<RecordType>();
3366  if (!RT)
3367    return Owned(E);
3368
3369  // If the result is a glvalue, we shouldn't bind it.
3370  if (E->Classify(Context).isGLValue())
3371    return Owned(E);
3372
3373  // That should be enough to guarantee that this type is complete.
3374  // If it has a trivial destructor, we can avoid the extra copy.
3375  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3376  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3377    return Owned(E);
3378
3379  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3380  ExprTemporaries.push_back(Temp);
3381  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3382    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3383    CheckDestructorAccess(E->getExprLoc(), Destructor,
3384                          PDiag(diag::err_access_dtor_temp)
3385                            << E->getType());
3386  }
3387  // FIXME: Add the temporary to the temporaries vector.
3388  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3389}
3390
3391Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3392  assert(SubExpr && "sub expression can't be null!");
3393
3394  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3395  assert(ExprTemporaries.size() >= FirstTemporary);
3396  if (ExprTemporaries.size() == FirstTemporary)
3397    return SubExpr;
3398
3399  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3400                                     &ExprTemporaries[FirstTemporary],
3401                                     ExprTemporaries.size() - FirstTemporary);
3402  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3403                        ExprTemporaries.end());
3404
3405  return E;
3406}
3407
3408ExprResult
3409Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3410  if (SubExpr.isInvalid())
3411    return ExprError();
3412
3413  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3414}
3415
3416Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3417  assert(SubStmt && "sub statement can't be null!");
3418
3419  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3420  assert(ExprTemporaries.size() >= FirstTemporary);
3421  if (ExprTemporaries.size() == FirstTemporary)
3422    return SubStmt;
3423
3424  // FIXME: In order to attach the temporaries, wrap the statement into
3425  // a StmtExpr; currently this is only used for asm statements.
3426  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3427  // a new AsmStmtWithTemporaries.
3428  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3429                                                      SourceLocation(),
3430                                                      SourceLocation());
3431  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3432                                   SourceLocation());
3433  return MaybeCreateExprWithCleanups(E);
3434}
3435
3436ExprResult
3437Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3438                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3439                                   bool &MayBePseudoDestructor) {
3440  // Since this might be a postfix expression, get rid of ParenListExprs.
3441  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3442  if (Result.isInvalid()) return ExprError();
3443  Base = Result.get();
3444
3445  QualType BaseType = Base->getType();
3446  MayBePseudoDestructor = false;
3447  if (BaseType->isDependentType()) {
3448    // If we have a pointer to a dependent type and are using the -> operator,
3449    // the object type is the type that the pointer points to. We might still
3450    // have enough information about that type to do something useful.
3451    if (OpKind == tok::arrow)
3452      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3453        BaseType = Ptr->getPointeeType();
3454
3455    ObjectType = ParsedType::make(BaseType);
3456    MayBePseudoDestructor = true;
3457    return Owned(Base);
3458  }
3459
3460  // C++ [over.match.oper]p8:
3461  //   [...] When operator->returns, the operator-> is applied  to the value
3462  //   returned, with the original second operand.
3463  if (OpKind == tok::arrow) {
3464    // The set of types we've considered so far.
3465    llvm::SmallPtrSet<CanQualType,8> CTypes;
3466    llvm::SmallVector<SourceLocation, 8> Locations;
3467    CTypes.insert(Context.getCanonicalType(BaseType));
3468
3469    while (BaseType->isRecordType()) {
3470      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3471      if (Result.isInvalid())
3472        return ExprError();
3473      Base = Result.get();
3474      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3475        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3476      BaseType = Base->getType();
3477      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3478      if (!CTypes.insert(CBaseType)) {
3479        Diag(OpLoc, diag::err_operator_arrow_circular);
3480        for (unsigned i = 0; i < Locations.size(); i++)
3481          Diag(Locations[i], diag::note_declared_at);
3482        return ExprError();
3483      }
3484    }
3485
3486    if (BaseType->isPointerType())
3487      BaseType = BaseType->getPointeeType();
3488  }
3489
3490  // We could end up with various non-record types here, such as extended
3491  // vector types or Objective-C interfaces. Just return early and let
3492  // ActOnMemberReferenceExpr do the work.
3493  if (!BaseType->isRecordType()) {
3494    // C++ [basic.lookup.classref]p2:
3495    //   [...] If the type of the object expression is of pointer to scalar
3496    //   type, the unqualified-id is looked up in the context of the complete
3497    //   postfix-expression.
3498    //
3499    // This also indicates that we should be parsing a
3500    // pseudo-destructor-name.
3501    ObjectType = ParsedType();
3502    MayBePseudoDestructor = true;
3503    return Owned(Base);
3504  }
3505
3506  // The object type must be complete (or dependent).
3507  if (!BaseType->isDependentType() &&
3508      RequireCompleteType(OpLoc, BaseType,
3509                          PDiag(diag::err_incomplete_member_access)))
3510    return ExprError();
3511
3512  // C++ [basic.lookup.classref]p2:
3513  //   If the id-expression in a class member access (5.2.5) is an
3514  //   unqualified-id, and the type of the object expression is of a class
3515  //   type C (or of pointer to a class type C), the unqualified-id is looked
3516  //   up in the scope of class C. [...]
3517  ObjectType = ParsedType::make(BaseType);
3518  return move(Base);
3519}
3520
3521ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3522                                                   Expr *MemExpr) {
3523  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3524  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3525    << isa<CXXPseudoDestructorExpr>(MemExpr)
3526    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3527
3528  return ActOnCallExpr(/*Scope*/ 0,
3529                       MemExpr,
3530                       /*LPLoc*/ ExpectedLParenLoc,
3531                       MultiExprArg(),
3532                       /*RPLoc*/ ExpectedLParenLoc);
3533}
3534
3535ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3536                                                       SourceLocation OpLoc,
3537                                                       tok::TokenKind OpKind,
3538                                                       const CXXScopeSpec &SS,
3539                                                 TypeSourceInfo *ScopeTypeInfo,
3540                                                       SourceLocation CCLoc,
3541                                                       SourceLocation TildeLoc,
3542                                         PseudoDestructorTypeStorage Destructed,
3543                                                       bool HasTrailingLParen) {
3544  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3545
3546  // C++ [expr.pseudo]p2:
3547  //   The left-hand side of the dot operator shall be of scalar type. The
3548  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3549  //   This scalar type is the object type.
3550  QualType ObjectType = Base->getType();
3551  if (OpKind == tok::arrow) {
3552    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3553      ObjectType = Ptr->getPointeeType();
3554    } else if (!Base->isTypeDependent()) {
3555      // The user wrote "p->" when she probably meant "p."; fix it.
3556      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3557        << ObjectType << true
3558        << FixItHint::CreateReplacement(OpLoc, ".");
3559      if (isSFINAEContext())
3560        return ExprError();
3561
3562      OpKind = tok::period;
3563    }
3564  }
3565
3566  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3567    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3568      << ObjectType << Base->getSourceRange();
3569    return ExprError();
3570  }
3571
3572  // C++ [expr.pseudo]p2:
3573  //   [...] The cv-unqualified versions of the object type and of the type
3574  //   designated by the pseudo-destructor-name shall be the same type.
3575  if (DestructedTypeInfo) {
3576    QualType DestructedType = DestructedTypeInfo->getType();
3577    SourceLocation DestructedTypeStart
3578      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3579    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3580        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3581      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3582        << ObjectType << DestructedType << Base->getSourceRange()
3583        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3584
3585      // Recover by setting the destructed type to the object type.
3586      DestructedType = ObjectType;
3587      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3588                                                           DestructedTypeStart);
3589      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3590    }
3591  }
3592
3593  // C++ [expr.pseudo]p2:
3594  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3595  //   form
3596  //
3597  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3598  //
3599  //   shall designate the same scalar type.
3600  if (ScopeTypeInfo) {
3601    QualType ScopeType = ScopeTypeInfo->getType();
3602    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3603        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3604
3605      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3606           diag::err_pseudo_dtor_type_mismatch)
3607        << ObjectType << ScopeType << Base->getSourceRange()
3608        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3609
3610      ScopeType = QualType();
3611      ScopeTypeInfo = 0;
3612    }
3613  }
3614
3615  Expr *Result
3616    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3617                                            OpKind == tok::arrow, OpLoc,
3618                                            SS.getScopeRep(), SS.getRange(),
3619                                            ScopeTypeInfo,
3620                                            CCLoc,
3621                                            TildeLoc,
3622                                            Destructed);
3623
3624  if (HasTrailingLParen)
3625    return Owned(Result);
3626
3627  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3628}
3629
3630ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3631                                                       SourceLocation OpLoc,
3632                                                       tok::TokenKind OpKind,
3633                                                       CXXScopeSpec &SS,
3634                                                  UnqualifiedId &FirstTypeName,
3635                                                       SourceLocation CCLoc,
3636                                                       SourceLocation TildeLoc,
3637                                                 UnqualifiedId &SecondTypeName,
3638                                                       bool HasTrailingLParen) {
3639  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3640          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3641         "Invalid first type name in pseudo-destructor");
3642  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3643          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3644         "Invalid second type name in pseudo-destructor");
3645
3646  // C++ [expr.pseudo]p2:
3647  //   The left-hand side of the dot operator shall be of scalar type. The
3648  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3649  //   This scalar type is the object type.
3650  QualType ObjectType = Base->getType();
3651  if (OpKind == tok::arrow) {
3652    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3653      ObjectType = Ptr->getPointeeType();
3654    } else if (!ObjectType->isDependentType()) {
3655      // The user wrote "p->" when she probably meant "p."; fix it.
3656      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3657        << ObjectType << true
3658        << FixItHint::CreateReplacement(OpLoc, ".");
3659      if (isSFINAEContext())
3660        return ExprError();
3661
3662      OpKind = tok::period;
3663    }
3664  }
3665
3666  // Compute the object type that we should use for name lookup purposes. Only
3667  // record types and dependent types matter.
3668  ParsedType ObjectTypePtrForLookup;
3669  if (!SS.isSet()) {
3670    if (const Type *T = ObjectType->getAs<RecordType>())
3671      ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0));
3672    else if (ObjectType->isDependentType())
3673      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3674  }
3675
3676  // Convert the name of the type being destructed (following the ~) into a
3677  // type (with source-location information).
3678  QualType DestructedType;
3679  TypeSourceInfo *DestructedTypeInfo = 0;
3680  PseudoDestructorTypeStorage Destructed;
3681  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3682    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3683                               SecondTypeName.StartLocation,
3684                               S, &SS, true, false, ObjectTypePtrForLookup);
3685    if (!T &&
3686        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3687         (!SS.isSet() && ObjectType->isDependentType()))) {
3688      // The name of the type being destroyed is a dependent name, and we
3689      // couldn't find anything useful in scope. Just store the identifier and
3690      // it's location, and we'll perform (qualified) name lookup again at
3691      // template instantiation time.
3692      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3693                                               SecondTypeName.StartLocation);
3694    } else if (!T) {
3695      Diag(SecondTypeName.StartLocation,
3696           diag::err_pseudo_dtor_destructor_non_type)
3697        << SecondTypeName.Identifier << ObjectType;
3698      if (isSFINAEContext())
3699        return ExprError();
3700
3701      // Recover by assuming we had the right type all along.
3702      DestructedType = ObjectType;
3703    } else
3704      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3705  } else {
3706    // Resolve the template-id to a type.
3707    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3708    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3709                                       TemplateId->getTemplateArgs(),
3710                                       TemplateId->NumArgs);
3711    TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3712                                       TemplateId->TemplateNameLoc,
3713                                       TemplateId->LAngleLoc,
3714                                       TemplateArgsPtr,
3715                                       TemplateId->RAngleLoc);
3716    if (T.isInvalid() || !T.get()) {
3717      // Recover by assuming we had the right type all along.
3718      DestructedType = ObjectType;
3719    } else
3720      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3721  }
3722
3723  // If we've performed some kind of recovery, (re-)build the type source
3724  // information.
3725  if (!DestructedType.isNull()) {
3726    if (!DestructedTypeInfo)
3727      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3728                                                  SecondTypeName.StartLocation);
3729    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3730  }
3731
3732  // Convert the name of the scope type (the type prior to '::') into a type.
3733  TypeSourceInfo *ScopeTypeInfo = 0;
3734  QualType ScopeType;
3735  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3736      FirstTypeName.Identifier) {
3737    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3738      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3739                                 FirstTypeName.StartLocation,
3740                                 S, &SS, false, false, ObjectTypePtrForLookup);
3741      if (!T) {
3742        Diag(FirstTypeName.StartLocation,
3743             diag::err_pseudo_dtor_destructor_non_type)
3744          << FirstTypeName.Identifier << ObjectType;
3745
3746        if (isSFINAEContext())
3747          return ExprError();
3748
3749        // Just drop this type. It's unnecessary anyway.
3750        ScopeType = QualType();
3751      } else
3752        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3753    } else {
3754      // Resolve the template-id to a type.
3755      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3756      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3757                                         TemplateId->getTemplateArgs(),
3758                                         TemplateId->NumArgs);
3759      TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3760                                         TemplateId->TemplateNameLoc,
3761                                         TemplateId->LAngleLoc,
3762                                         TemplateArgsPtr,
3763                                         TemplateId->RAngleLoc);
3764      if (T.isInvalid() || !T.get()) {
3765        // Recover by dropping this type.
3766        ScopeType = QualType();
3767      } else
3768        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3769    }
3770  }
3771
3772  if (!ScopeType.isNull() && !ScopeTypeInfo)
3773    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3774                                                  FirstTypeName.StartLocation);
3775
3776
3777  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3778                                   ScopeTypeInfo, CCLoc, TildeLoc,
3779                                   Destructed, HasTrailingLParen);
3780}
3781
3782ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
3783                                        CXXMethodDecl *Method) {
3784  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3785                                          FoundDecl, Method))
3786    return true;
3787
3788  MemberExpr *ME =
3789      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3790                               SourceLocation(), Method->getType(),
3791                               VK_RValue, OK_Ordinary);
3792  QualType ResultType = Method->getResultType();
3793  ExprValueKind VK = Expr::getValueKindForType(ResultType);
3794  ResultType = ResultType.getNonLValueExprType(Context);
3795
3796  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3797  CXXMemberCallExpr *CE =
3798    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
3799                                    Exp->getLocEnd());
3800  return CE;
3801}
3802
3803ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3804                                      SourceLocation RParen) {
3805  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3806                                             Operand->CanThrow(Context),
3807                                             KeyLoc, RParen));
3808}
3809
3810ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3811                                   Expr *Operand, SourceLocation RParen) {
3812  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3813}
3814
3815/// Perform the conversions required for an expression used in a
3816/// context that ignores the result.
3817void Sema::IgnoredValueConversions(Expr *&E) {
3818  // C99 6.3.2.1:
3819  //   [Except in specific positions,] an lvalue that does not have
3820  //   array type is converted to the value stored in the
3821  //   designated object (and is no longer an lvalue).
3822  if (E->isRValue()) return;
3823
3824  // We always want to do this on ObjC property references.
3825  if (E->getObjectKind() == OK_ObjCProperty) {
3826    ConvertPropertyForRValue(E);
3827    if (E->isRValue()) return;
3828  }
3829
3830  // Otherwise, this rule does not apply in C++, at least not for the moment.
3831  if (getLangOptions().CPlusPlus) return;
3832
3833  // GCC seems to also exclude expressions of incomplete enum type.
3834  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
3835    if (!T->getDecl()->isComplete()) {
3836      // FIXME: stupid workaround for a codegen bug!
3837      ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
3838      return;
3839    }
3840  }
3841
3842  DefaultFunctionArrayLvalueConversion(E);
3843  if (!E->getType()->isVoidType())
3844    RequireCompleteType(E->getExprLoc(), E->getType(),
3845                        diag::err_incomplete_type);
3846}
3847
3848ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3849  if (!FullExpr)
3850    return ExprError();
3851
3852  if (DiagnoseUnexpandedParameterPack(FullExpr))
3853    return ExprError();
3854
3855  IgnoredValueConversions(FullExpr);
3856  CheckImplicitConversions(FullExpr);
3857  return MaybeCreateExprWithCleanups(FullExpr);
3858}
3859
3860StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
3861  if (!FullStmt) return StmtError();
3862
3863  return MaybeCreateStmtWithCleanups(FullStmt);
3864}
3865