SemaOverload.cpp revision ad4e02f1711e5e90f4e653397b626e0d1929002c
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << '\'' << ConversionFunction << '\'';
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439ImplicitConversionSequence
440Sema::TryImplicitConversion(Expr* From, QualType ToType,
441                            bool SuppressUserConversions,
442                            bool AllowExplicit,
443                            bool InOverloadResolution) {
444  ImplicitConversionSequence ICS;
445  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
446    ICS.setStandard();
447    return ICS;
448  }
449
450  if (!getLangOptions().CPlusPlus) {
451    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
452    return ICS;
453  }
454
455  if (SuppressUserConversions) {
456    // C++ [over.ics.user]p4:
457    //   A conversion of an expression of class type to the same class
458    //   type is given Exact Match rank, and a conversion of an
459    //   expression of class type to a base class of that type is
460    //   given Conversion rank, in spite of the fact that a copy/move
461    //   constructor (i.e., a user-defined conversion function) is
462    //   called for those cases.
463    QualType FromType = From->getType();
464    if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
465        !(Context.hasSameUnqualifiedType(FromType, ToType) ||
466          IsDerivedFrom(FromType, ToType))) {
467      // We're not in the case above, so there is no conversion that
468      // we can perform.
469      ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
470      return ICS;
471    }
472
473    ICS.setStandard();
474    ICS.Standard.setAsIdentityConversion();
475    ICS.Standard.setFromType(FromType);
476    ICS.Standard.setAllToTypes(ToType);
477
478    // We don't actually check at this point whether there is a valid
479    // copy/move constructor, since overloading just assumes that it
480    // exists. When we actually perform initialization, we'll find the
481    // appropriate constructor to copy the returned object, if needed.
482    ICS.Standard.CopyConstructor = 0;
483
484    // Determine whether this is considered a derived-to-base conversion.
485    if (!Context.hasSameUnqualifiedType(FromType, ToType))
486      ICS.Standard.Second = ICK_Derived_To_Base;
487
488    return ICS;
489  }
490
491  // Attempt user-defined conversion.
492  OverloadCandidateSet Conversions(From->getExprLoc());
493  OverloadingResult UserDefResult
494    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
495                              AllowExplicit);
496
497  if (UserDefResult == OR_Success) {
498    ICS.setUserDefined();
499    // C++ [over.ics.user]p4:
500    //   A conversion of an expression of class type to the same class
501    //   type is given Exact Match rank, and a conversion of an
502    //   expression of class type to a base class of that type is
503    //   given Conversion rank, in spite of the fact that a copy
504    //   constructor (i.e., a user-defined conversion function) is
505    //   called for those cases.
506    if (CXXConstructorDecl *Constructor
507          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
508      QualType FromCanon
509        = Context.getCanonicalType(From->getType().getUnqualifiedType());
510      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
511      if (Constructor->isCopyConstructor() &&
512          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
513        // Turn this into a "standard" conversion sequence, so that it
514        // gets ranked with standard conversion sequences.
515        ICS.setStandard();
516        ICS.Standard.setAsIdentityConversion();
517        ICS.Standard.setFromType(From->getType());
518        ICS.Standard.setAllToTypes(ToType);
519        ICS.Standard.CopyConstructor = Constructor;
520        if (ToCanon != FromCanon)
521          ICS.Standard.Second = ICK_Derived_To_Base;
522      }
523    }
524
525    // C++ [over.best.ics]p4:
526    //   However, when considering the argument of a user-defined
527    //   conversion function that is a candidate by 13.3.1.3 when
528    //   invoked for the copying of the temporary in the second step
529    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
530    //   13.3.1.6 in all cases, only standard conversion sequences and
531    //   ellipsis conversion sequences are allowed.
532    if (SuppressUserConversions && ICS.isUserDefined()) {
533      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
534    }
535  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
536    ICS.setAmbiguous();
537    ICS.Ambiguous.setFromType(From->getType());
538    ICS.Ambiguous.setToType(ToType);
539    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
540         Cand != Conversions.end(); ++Cand)
541      if (Cand->Viable)
542        ICS.Ambiguous.addConversion(Cand->Function);
543  } else {
544    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
545  }
546
547  return ICS;
548}
549
550/// PerformImplicitConversion - Perform an implicit conversion of the
551/// expression From to the type ToType. Returns true if there was an
552/// error, false otherwise. The expression From is replaced with the
553/// converted expression. Flavor is the kind of conversion we're
554/// performing, used in the error message. If @p AllowExplicit,
555/// explicit user-defined conversions are permitted.
556bool
557Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
558                                AssignmentAction Action, bool AllowExplicit) {
559  ImplicitConversionSequence ICS;
560  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
561}
562
563bool
564Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
565                                AssignmentAction Action, bool AllowExplicit,
566                                ImplicitConversionSequence& ICS) {
567  ICS = TryImplicitConversion(From, ToType,
568                              /*SuppressUserConversions=*/false,
569                              AllowExplicit,
570                              /*InOverloadResolution=*/false);
571  return PerformImplicitConversion(From, ToType, ICS, Action);
572}
573
574/// \brief Determine whether the conversion from FromType to ToType is a valid
575/// conversion that strips "noreturn" off the nested function type.
576static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
577                                 QualType ToType, QualType &ResultTy) {
578  if (Context.hasSameUnqualifiedType(FromType, ToType))
579    return false;
580
581  // Strip the noreturn off the type we're converting from; noreturn can
582  // safely be removed.
583  FromType = Context.getNoReturnType(FromType, false);
584  if (!Context.hasSameUnqualifiedType(FromType, ToType))
585    return false;
586
587  ResultTy = FromType;
588  return true;
589}
590
591/// IsStandardConversion - Determines whether there is a standard
592/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
593/// expression From to the type ToType. Standard conversion sequences
594/// only consider non-class types; for conversions that involve class
595/// types, use TryImplicitConversion. If a conversion exists, SCS will
596/// contain the standard conversion sequence required to perform this
597/// conversion and this routine will return true. Otherwise, this
598/// routine will return false and the value of SCS is unspecified.
599bool
600Sema::IsStandardConversion(Expr* From, QualType ToType,
601                           bool InOverloadResolution,
602                           StandardConversionSequence &SCS) {
603  QualType FromType = From->getType();
604
605  // Standard conversions (C++ [conv])
606  SCS.setAsIdentityConversion();
607  SCS.DeprecatedStringLiteralToCharPtr = false;
608  SCS.IncompatibleObjC = false;
609  SCS.setFromType(FromType);
610  SCS.CopyConstructor = 0;
611
612  // There are no standard conversions for class types in C++, so
613  // abort early. When overloading in C, however, we do permit
614  if (FromType->isRecordType() || ToType->isRecordType()) {
615    if (getLangOptions().CPlusPlus)
616      return false;
617
618    // When we're overloading in C, we allow, as standard conversions,
619  }
620
621  // The first conversion can be an lvalue-to-rvalue conversion,
622  // array-to-pointer conversion, or function-to-pointer conversion
623  // (C++ 4p1).
624
625  if (FromType == Context.OverloadTy) {
626    DeclAccessPair AccessPair;
627    if (FunctionDecl *Fn
628          = ResolveAddressOfOverloadedFunction(From, ToType, false,
629                                               AccessPair)) {
630      // We were able to resolve the address of the overloaded function,
631      // so we can convert to the type of that function.
632      FromType = Fn->getType();
633      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
634        if (!Method->isStatic()) {
635          Type *ClassType
636            = Context.getTypeDeclType(Method->getParent()).getTypePtr();
637          FromType = Context.getMemberPointerType(FromType, ClassType);
638        }
639      }
640
641      // If the "from" expression takes the address of the overloaded
642      // function, update the type of the resulting expression accordingly.
643      if (FromType->getAs<FunctionType>())
644        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
645          if (UnOp->getOpcode() == UnaryOperator::AddrOf)
646            FromType = Context.getPointerType(FromType);
647
648      // Check that we've computed the proper type after overload resolution.
649      assert(Context.hasSameType(FromType,
650              FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
651    } else {
652      return false;
653    }
654  }
655  // Lvalue-to-rvalue conversion (C++ 4.1):
656  //   An lvalue (3.10) of a non-function, non-array type T can be
657  //   converted to an rvalue.
658  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
659  if (argIsLvalue == Expr::LV_Valid &&
660      !FromType->isFunctionType() && !FromType->isArrayType() &&
661      Context.getCanonicalType(FromType) != Context.OverloadTy) {
662    SCS.First = ICK_Lvalue_To_Rvalue;
663
664    // If T is a non-class type, the type of the rvalue is the
665    // cv-unqualified version of T. Otherwise, the type of the rvalue
666    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
667    // just strip the qualifiers because they don't matter.
668    FromType = FromType.getUnqualifiedType();
669  } else if (FromType->isArrayType()) {
670    // Array-to-pointer conversion (C++ 4.2)
671    SCS.First = ICK_Array_To_Pointer;
672
673    // An lvalue or rvalue of type "array of N T" or "array of unknown
674    // bound of T" can be converted to an rvalue of type "pointer to
675    // T" (C++ 4.2p1).
676    FromType = Context.getArrayDecayedType(FromType);
677
678    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
679      // This conversion is deprecated. (C++ D.4).
680      SCS.DeprecatedStringLiteralToCharPtr = true;
681
682      // For the purpose of ranking in overload resolution
683      // (13.3.3.1.1), this conversion is considered an
684      // array-to-pointer conversion followed by a qualification
685      // conversion (4.4). (C++ 4.2p2)
686      SCS.Second = ICK_Identity;
687      SCS.Third = ICK_Qualification;
688      SCS.setAllToTypes(FromType);
689      return true;
690    }
691  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
692    // Function-to-pointer conversion (C++ 4.3).
693    SCS.First = ICK_Function_To_Pointer;
694
695    // An lvalue of function type T can be converted to an rvalue of
696    // type "pointer to T." The result is a pointer to the
697    // function. (C++ 4.3p1).
698    FromType = Context.getPointerType(FromType);
699  } else {
700    // We don't require any conversions for the first step.
701    SCS.First = ICK_Identity;
702  }
703  SCS.setToType(0, FromType);
704
705  // The second conversion can be an integral promotion, floating
706  // point promotion, integral conversion, floating point conversion,
707  // floating-integral conversion, pointer conversion,
708  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
709  // For overloading in C, this can also be a "compatible-type"
710  // conversion.
711  bool IncompatibleObjC = false;
712  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
713    // The unqualified versions of the types are the same: there's no
714    // conversion to do.
715    SCS.Second = ICK_Identity;
716  } else if (IsIntegralPromotion(From, FromType, ToType)) {
717    // Integral promotion (C++ 4.5).
718    SCS.Second = ICK_Integral_Promotion;
719    FromType = ToType.getUnqualifiedType();
720  } else if (IsFloatingPointPromotion(FromType, ToType)) {
721    // Floating point promotion (C++ 4.6).
722    SCS.Second = ICK_Floating_Promotion;
723    FromType = ToType.getUnqualifiedType();
724  } else if (IsComplexPromotion(FromType, ToType)) {
725    // Complex promotion (Clang extension)
726    SCS.Second = ICK_Complex_Promotion;
727    FromType = ToType.getUnqualifiedType();
728  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
729           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
730    // Integral conversions (C++ 4.7).
731    SCS.Second = ICK_Integral_Conversion;
732    FromType = ToType.getUnqualifiedType();
733  } else if (FromType->isComplexType() && ToType->isComplexType()) {
734    // Complex conversions (C99 6.3.1.6)
735    SCS.Second = ICK_Complex_Conversion;
736    FromType = ToType.getUnqualifiedType();
737  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
738             (ToType->isComplexType() && FromType->isArithmeticType())) {
739    // Complex-real conversions (C99 6.3.1.7)
740    SCS.Second = ICK_Complex_Real;
741    FromType = ToType.getUnqualifiedType();
742  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
743    // Floating point conversions (C++ 4.8).
744    SCS.Second = ICK_Floating_Conversion;
745    FromType = ToType.getUnqualifiedType();
746  } else if ((FromType->isFloatingType() &&
747              ToType->isIntegralType() && (!ToType->isBooleanType() &&
748                                           !ToType->isEnumeralType())) ||
749             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
750              ToType->isFloatingType())) {
751    // Floating-integral conversions (C++ 4.9).
752    SCS.Second = ICK_Floating_Integral;
753    FromType = ToType.getUnqualifiedType();
754  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
755                                 FromType, IncompatibleObjC)) {
756    // Pointer conversions (C++ 4.10).
757    SCS.Second = ICK_Pointer_Conversion;
758    SCS.IncompatibleObjC = IncompatibleObjC;
759  } else if (IsMemberPointerConversion(From, FromType, ToType,
760                                       InOverloadResolution, FromType)) {
761    // Pointer to member conversions (4.11).
762    SCS.Second = ICK_Pointer_Member;
763  } else if (ToType->isBooleanType() &&
764             (FromType->isArithmeticType() ||
765              FromType->isEnumeralType() ||
766              FromType->isAnyPointerType() ||
767              FromType->isBlockPointerType() ||
768              FromType->isMemberPointerType() ||
769              FromType->isNullPtrType())) {
770    // Boolean conversions (C++ 4.12).
771    SCS.Second = ICK_Boolean_Conversion;
772    FromType = Context.BoolTy;
773  } else if (!getLangOptions().CPlusPlus &&
774             Context.typesAreCompatible(ToType, FromType)) {
775    // Compatible conversions (Clang extension for C function overloading)
776    SCS.Second = ICK_Compatible_Conversion;
777  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
778    // Treat a conversion that strips "noreturn" as an identity conversion.
779    SCS.Second = ICK_NoReturn_Adjustment;
780  } else {
781    // No second conversion required.
782    SCS.Second = ICK_Identity;
783  }
784  SCS.setToType(1, FromType);
785
786  QualType CanonFrom;
787  QualType CanonTo;
788  // The third conversion can be a qualification conversion (C++ 4p1).
789  if (IsQualificationConversion(FromType, ToType)) {
790    SCS.Third = ICK_Qualification;
791    FromType = ToType;
792    CanonFrom = Context.getCanonicalType(FromType);
793    CanonTo = Context.getCanonicalType(ToType);
794  } else {
795    // No conversion required
796    SCS.Third = ICK_Identity;
797
798    // C++ [over.best.ics]p6:
799    //   [...] Any difference in top-level cv-qualification is
800    //   subsumed by the initialization itself and does not constitute
801    //   a conversion. [...]
802    CanonFrom = Context.getCanonicalType(FromType);
803    CanonTo = Context.getCanonicalType(ToType);
804    if (CanonFrom.getLocalUnqualifiedType()
805                                       == CanonTo.getLocalUnqualifiedType() &&
806        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
807      FromType = ToType;
808      CanonFrom = CanonTo;
809    }
810  }
811  SCS.setToType(2, FromType);
812
813  // If we have not converted the argument type to the parameter type,
814  // this is a bad conversion sequence.
815  if (CanonFrom != CanonTo)
816    return false;
817
818  return true;
819}
820
821/// IsIntegralPromotion - Determines whether the conversion from the
822/// expression From (whose potentially-adjusted type is FromType) to
823/// ToType is an integral promotion (C++ 4.5). If so, returns true and
824/// sets PromotedType to the promoted type.
825bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
826  const BuiltinType *To = ToType->getAs<BuiltinType>();
827  // All integers are built-in.
828  if (!To) {
829    return false;
830  }
831
832  // An rvalue of type char, signed char, unsigned char, short int, or
833  // unsigned short int can be converted to an rvalue of type int if
834  // int can represent all the values of the source type; otherwise,
835  // the source rvalue can be converted to an rvalue of type unsigned
836  // int (C++ 4.5p1).
837  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
838      !FromType->isEnumeralType()) {
839    if (// We can promote any signed, promotable integer type to an int
840        (FromType->isSignedIntegerType() ||
841         // We can promote any unsigned integer type whose size is
842         // less than int to an int.
843         (!FromType->isSignedIntegerType() &&
844          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
845      return To->getKind() == BuiltinType::Int;
846    }
847
848    return To->getKind() == BuiltinType::UInt;
849  }
850
851  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
852  // can be converted to an rvalue of the first of the following types
853  // that can represent all the values of its underlying type: int,
854  // unsigned int, long, or unsigned long (C++ 4.5p2).
855
856  // We pre-calculate the promotion type for enum types.
857  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
858    if (ToType->isIntegerType())
859      return Context.hasSameUnqualifiedType(ToType,
860                                FromEnumType->getDecl()->getPromotionType());
861
862  if (FromType->isWideCharType() && ToType->isIntegerType()) {
863    // Determine whether the type we're converting from is signed or
864    // unsigned.
865    bool FromIsSigned;
866    uint64_t FromSize = Context.getTypeSize(FromType);
867
868    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
869    FromIsSigned = true;
870
871    // The types we'll try to promote to, in the appropriate
872    // order. Try each of these types.
873    QualType PromoteTypes[6] = {
874      Context.IntTy, Context.UnsignedIntTy,
875      Context.LongTy, Context.UnsignedLongTy ,
876      Context.LongLongTy, Context.UnsignedLongLongTy
877    };
878    for (int Idx = 0; Idx < 6; ++Idx) {
879      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
880      if (FromSize < ToSize ||
881          (FromSize == ToSize &&
882           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
883        // We found the type that we can promote to. If this is the
884        // type we wanted, we have a promotion. Otherwise, no
885        // promotion.
886        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
887      }
888    }
889  }
890
891  // An rvalue for an integral bit-field (9.6) can be converted to an
892  // rvalue of type int if int can represent all the values of the
893  // bit-field; otherwise, it can be converted to unsigned int if
894  // unsigned int can represent all the values of the bit-field. If
895  // the bit-field is larger yet, no integral promotion applies to
896  // it. If the bit-field has an enumerated type, it is treated as any
897  // other value of that type for promotion purposes (C++ 4.5p3).
898  // FIXME: We should delay checking of bit-fields until we actually perform the
899  // conversion.
900  using llvm::APSInt;
901  if (From)
902    if (FieldDecl *MemberDecl = From->getBitField()) {
903      APSInt BitWidth;
904      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
905          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
906        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
907        ToSize = Context.getTypeSize(ToType);
908
909        // Are we promoting to an int from a bitfield that fits in an int?
910        if (BitWidth < ToSize ||
911            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
912          return To->getKind() == BuiltinType::Int;
913        }
914
915        // Are we promoting to an unsigned int from an unsigned bitfield
916        // that fits into an unsigned int?
917        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
918          return To->getKind() == BuiltinType::UInt;
919        }
920
921        return false;
922      }
923    }
924
925  // An rvalue of type bool can be converted to an rvalue of type int,
926  // with false becoming zero and true becoming one (C++ 4.5p4).
927  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
928    return true;
929  }
930
931  return false;
932}
933
934/// IsFloatingPointPromotion - Determines whether the conversion from
935/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
936/// returns true and sets PromotedType to the promoted type.
937bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
938  /// An rvalue of type float can be converted to an rvalue of type
939  /// double. (C++ 4.6p1).
940  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
941    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
942      if (FromBuiltin->getKind() == BuiltinType::Float &&
943          ToBuiltin->getKind() == BuiltinType::Double)
944        return true;
945
946      // C99 6.3.1.5p1:
947      //   When a float is promoted to double or long double, or a
948      //   double is promoted to long double [...].
949      if (!getLangOptions().CPlusPlus &&
950          (FromBuiltin->getKind() == BuiltinType::Float ||
951           FromBuiltin->getKind() == BuiltinType::Double) &&
952          (ToBuiltin->getKind() == BuiltinType::LongDouble))
953        return true;
954    }
955
956  return false;
957}
958
959/// \brief Determine if a conversion is a complex promotion.
960///
961/// A complex promotion is defined as a complex -> complex conversion
962/// where the conversion between the underlying real types is a
963/// floating-point or integral promotion.
964bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
965  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
966  if (!FromComplex)
967    return false;
968
969  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
970  if (!ToComplex)
971    return false;
972
973  return IsFloatingPointPromotion(FromComplex->getElementType(),
974                                  ToComplex->getElementType()) ||
975    IsIntegralPromotion(0, FromComplex->getElementType(),
976                        ToComplex->getElementType());
977}
978
979/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
980/// the pointer type FromPtr to a pointer to type ToPointee, with the
981/// same type qualifiers as FromPtr has on its pointee type. ToType,
982/// if non-empty, will be a pointer to ToType that may or may not have
983/// the right set of qualifiers on its pointee.
984static QualType
985BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
986                                   QualType ToPointee, QualType ToType,
987                                   ASTContext &Context) {
988  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
989  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
990  Qualifiers Quals = CanonFromPointee.getQualifiers();
991
992  // Exact qualifier match -> return the pointer type we're converting to.
993  if (CanonToPointee.getLocalQualifiers() == Quals) {
994    // ToType is exactly what we need. Return it.
995    if (!ToType.isNull())
996      return ToType;
997
998    // Build a pointer to ToPointee. It has the right qualifiers
999    // already.
1000    return Context.getPointerType(ToPointee);
1001  }
1002
1003  // Just build a canonical type that has the right qualifiers.
1004  return Context.getPointerType(
1005         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
1006                                  Quals));
1007}
1008
1009/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
1010/// the FromType, which is an objective-c pointer, to ToType, which may or may
1011/// not have the right set of qualifiers.
1012static QualType
1013BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
1014                                             QualType ToType,
1015                                             ASTContext &Context) {
1016  QualType CanonFromType = Context.getCanonicalType(FromType);
1017  QualType CanonToType = Context.getCanonicalType(ToType);
1018  Qualifiers Quals = CanonFromType.getQualifiers();
1019
1020  // Exact qualifier match -> return the pointer type we're converting to.
1021  if (CanonToType.getLocalQualifiers() == Quals)
1022    return ToType;
1023
1024  // Just build a canonical type that has the right qualifiers.
1025  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
1026}
1027
1028static bool isNullPointerConstantForConversion(Expr *Expr,
1029                                               bool InOverloadResolution,
1030                                               ASTContext &Context) {
1031  // Handle value-dependent integral null pointer constants correctly.
1032  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1033  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1034      Expr->getType()->isIntegralType())
1035    return !InOverloadResolution;
1036
1037  return Expr->isNullPointerConstant(Context,
1038                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1039                                        : Expr::NPC_ValueDependentIsNull);
1040}
1041
1042/// IsPointerConversion - Determines whether the conversion of the
1043/// expression From, which has the (possibly adjusted) type FromType,
1044/// can be converted to the type ToType via a pointer conversion (C++
1045/// 4.10). If so, returns true and places the converted type (that
1046/// might differ from ToType in its cv-qualifiers at some level) into
1047/// ConvertedType.
1048///
1049/// This routine also supports conversions to and from block pointers
1050/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1051/// pointers to interfaces. FIXME: Once we've determined the
1052/// appropriate overloading rules for Objective-C, we may want to
1053/// split the Objective-C checks into a different routine; however,
1054/// GCC seems to consider all of these conversions to be pointer
1055/// conversions, so for now they live here. IncompatibleObjC will be
1056/// set if the conversion is an allowed Objective-C conversion that
1057/// should result in a warning.
1058bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1059                               bool InOverloadResolution,
1060                               QualType& ConvertedType,
1061                               bool &IncompatibleObjC) {
1062  IncompatibleObjC = false;
1063  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1064    return true;
1065
1066  // Conversion from a null pointer constant to any Objective-C pointer type.
1067  if (ToType->isObjCObjectPointerType() &&
1068      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1069    ConvertedType = ToType;
1070    return true;
1071  }
1072
1073  // Blocks: Block pointers can be converted to void*.
1074  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1075      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1076    ConvertedType = ToType;
1077    return true;
1078  }
1079  // Blocks: A null pointer constant can be converted to a block
1080  // pointer type.
1081  if (ToType->isBlockPointerType() &&
1082      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1083    ConvertedType = ToType;
1084    return true;
1085  }
1086
1087  // If the left-hand-side is nullptr_t, the right side can be a null
1088  // pointer constant.
1089  if (ToType->isNullPtrType() &&
1090      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1091    ConvertedType = ToType;
1092    return true;
1093  }
1094
1095  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1096  if (!ToTypePtr)
1097    return false;
1098
1099  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1100  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1101    ConvertedType = ToType;
1102    return true;
1103  }
1104
1105  // Beyond this point, both types need to be pointers
1106  // , including objective-c pointers.
1107  QualType ToPointeeType = ToTypePtr->getPointeeType();
1108  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1109    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1110                                                       ToType, Context);
1111    return true;
1112
1113  }
1114  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1115  if (!FromTypePtr)
1116    return false;
1117
1118  QualType FromPointeeType = FromTypePtr->getPointeeType();
1119
1120  // An rvalue of type "pointer to cv T," where T is an object type,
1121  // can be converted to an rvalue of type "pointer to cv void" (C++
1122  // 4.10p2).
1123  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1124    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1125                                                       ToPointeeType,
1126                                                       ToType, Context);
1127    return true;
1128  }
1129
1130  // When we're overloading in C, we allow a special kind of pointer
1131  // conversion for compatible-but-not-identical pointee types.
1132  if (!getLangOptions().CPlusPlus &&
1133      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1134    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1135                                                       ToPointeeType,
1136                                                       ToType, Context);
1137    return true;
1138  }
1139
1140  // C++ [conv.ptr]p3:
1141  //
1142  //   An rvalue of type "pointer to cv D," where D is a class type,
1143  //   can be converted to an rvalue of type "pointer to cv B," where
1144  //   B is a base class (clause 10) of D. If B is an inaccessible
1145  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1146  //   necessitates this conversion is ill-formed. The result of the
1147  //   conversion is a pointer to the base class sub-object of the
1148  //   derived class object. The null pointer value is converted to
1149  //   the null pointer value of the destination type.
1150  //
1151  // Note that we do not check for ambiguity or inaccessibility
1152  // here. That is handled by CheckPointerConversion.
1153  if (getLangOptions().CPlusPlus &&
1154      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1155      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1156      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1157      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1158    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1159                                                       ToPointeeType,
1160                                                       ToType, Context);
1161    return true;
1162  }
1163
1164  return false;
1165}
1166
1167/// isObjCPointerConversion - Determines whether this is an
1168/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1169/// with the same arguments and return values.
1170bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1171                                   QualType& ConvertedType,
1172                                   bool &IncompatibleObjC) {
1173  if (!getLangOptions().ObjC1)
1174    return false;
1175
1176  // First, we handle all conversions on ObjC object pointer types.
1177  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1178  const ObjCObjectPointerType *FromObjCPtr =
1179    FromType->getAs<ObjCObjectPointerType>();
1180
1181  if (ToObjCPtr && FromObjCPtr) {
1182    // Objective C++: We're able to convert between "id" or "Class" and a
1183    // pointer to any interface (in both directions).
1184    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1185      ConvertedType = ToType;
1186      return true;
1187    }
1188    // Conversions with Objective-C's id<...>.
1189    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1190         ToObjCPtr->isObjCQualifiedIdType()) &&
1191        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1192                                                  /*compare=*/false)) {
1193      ConvertedType = ToType;
1194      return true;
1195    }
1196    // Objective C++: We're able to convert from a pointer to an
1197    // interface to a pointer to a different interface.
1198    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1199      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1200      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1201      if (getLangOptions().CPlusPlus && LHS && RHS &&
1202          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1203                                                FromObjCPtr->getPointeeType()))
1204        return false;
1205      ConvertedType = ToType;
1206      return true;
1207    }
1208
1209    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1210      // Okay: this is some kind of implicit downcast of Objective-C
1211      // interfaces, which is permitted. However, we're going to
1212      // complain about it.
1213      IncompatibleObjC = true;
1214      ConvertedType = FromType;
1215      return true;
1216    }
1217  }
1218  // Beyond this point, both types need to be C pointers or block pointers.
1219  QualType ToPointeeType;
1220  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1221    ToPointeeType = ToCPtr->getPointeeType();
1222  else if (const BlockPointerType *ToBlockPtr =
1223            ToType->getAs<BlockPointerType>()) {
1224    // Objective C++: We're able to convert from a pointer to any object
1225    // to a block pointer type.
1226    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1227      ConvertedType = ToType;
1228      return true;
1229    }
1230    ToPointeeType = ToBlockPtr->getPointeeType();
1231  }
1232  else if (FromType->getAs<BlockPointerType>() &&
1233           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1234    // Objective C++: We're able to convert from a block pointer type to a
1235    // pointer to any object.
1236    ConvertedType = ToType;
1237    return true;
1238  }
1239  else
1240    return false;
1241
1242  QualType FromPointeeType;
1243  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1244    FromPointeeType = FromCPtr->getPointeeType();
1245  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1246    FromPointeeType = FromBlockPtr->getPointeeType();
1247  else
1248    return false;
1249
1250  // If we have pointers to pointers, recursively check whether this
1251  // is an Objective-C conversion.
1252  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1253      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1254                              IncompatibleObjC)) {
1255    // We always complain about this conversion.
1256    IncompatibleObjC = true;
1257    ConvertedType = ToType;
1258    return true;
1259  }
1260  // Allow conversion of pointee being objective-c pointer to another one;
1261  // as in I* to id.
1262  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1263      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1264      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1265                              IncompatibleObjC)) {
1266    ConvertedType = ToType;
1267    return true;
1268  }
1269
1270  // If we have pointers to functions or blocks, check whether the only
1271  // differences in the argument and result types are in Objective-C
1272  // pointer conversions. If so, we permit the conversion (but
1273  // complain about it).
1274  const FunctionProtoType *FromFunctionType
1275    = FromPointeeType->getAs<FunctionProtoType>();
1276  const FunctionProtoType *ToFunctionType
1277    = ToPointeeType->getAs<FunctionProtoType>();
1278  if (FromFunctionType && ToFunctionType) {
1279    // If the function types are exactly the same, this isn't an
1280    // Objective-C pointer conversion.
1281    if (Context.getCanonicalType(FromPointeeType)
1282          == Context.getCanonicalType(ToPointeeType))
1283      return false;
1284
1285    // Perform the quick checks that will tell us whether these
1286    // function types are obviously different.
1287    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1288        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1289        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1290      return false;
1291
1292    bool HasObjCConversion = false;
1293    if (Context.getCanonicalType(FromFunctionType->getResultType())
1294          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1295      // Okay, the types match exactly. Nothing to do.
1296    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1297                                       ToFunctionType->getResultType(),
1298                                       ConvertedType, IncompatibleObjC)) {
1299      // Okay, we have an Objective-C pointer conversion.
1300      HasObjCConversion = true;
1301    } else {
1302      // Function types are too different. Abort.
1303      return false;
1304    }
1305
1306    // Check argument types.
1307    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1308         ArgIdx != NumArgs; ++ArgIdx) {
1309      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1310      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1311      if (Context.getCanonicalType(FromArgType)
1312            == Context.getCanonicalType(ToArgType)) {
1313        // Okay, the types match exactly. Nothing to do.
1314      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1315                                         ConvertedType, IncompatibleObjC)) {
1316        // Okay, we have an Objective-C pointer conversion.
1317        HasObjCConversion = true;
1318      } else {
1319        // Argument types are too different. Abort.
1320        return false;
1321      }
1322    }
1323
1324    if (HasObjCConversion) {
1325      // We had an Objective-C conversion. Allow this pointer
1326      // conversion, but complain about it.
1327      ConvertedType = ToType;
1328      IncompatibleObjC = true;
1329      return true;
1330    }
1331  }
1332
1333  return false;
1334}
1335
1336/// CheckPointerConversion - Check the pointer conversion from the
1337/// expression From to the type ToType. This routine checks for
1338/// ambiguous or inaccessible derived-to-base pointer
1339/// conversions for which IsPointerConversion has already returned
1340/// true. It returns true and produces a diagnostic if there was an
1341/// error, or returns false otherwise.
1342bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1343                                  CastExpr::CastKind &Kind,
1344                                  CXXBaseSpecifierArray& BasePath,
1345                                  bool IgnoreBaseAccess) {
1346  QualType FromType = From->getType();
1347
1348  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1349    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1350      QualType FromPointeeType = FromPtrType->getPointeeType(),
1351               ToPointeeType   = ToPtrType->getPointeeType();
1352
1353      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1354          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1355        // We must have a derived-to-base conversion. Check an
1356        // ambiguous or inaccessible conversion.
1357        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1358                                         From->getExprLoc(),
1359                                         From->getSourceRange(), &BasePath,
1360                                         IgnoreBaseAccess))
1361          return true;
1362
1363        // The conversion was successful.
1364        Kind = CastExpr::CK_DerivedToBase;
1365      }
1366    }
1367  if (const ObjCObjectPointerType *FromPtrType =
1368        FromType->getAs<ObjCObjectPointerType>())
1369    if (const ObjCObjectPointerType *ToPtrType =
1370          ToType->getAs<ObjCObjectPointerType>()) {
1371      // Objective-C++ conversions are always okay.
1372      // FIXME: We should have a different class of conversions for the
1373      // Objective-C++ implicit conversions.
1374      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1375        return false;
1376
1377  }
1378  return false;
1379}
1380
1381/// IsMemberPointerConversion - Determines whether the conversion of the
1382/// expression From, which has the (possibly adjusted) type FromType, can be
1383/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1384/// If so, returns true and places the converted type (that might differ from
1385/// ToType in its cv-qualifiers at some level) into ConvertedType.
1386bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1387                                     QualType ToType,
1388                                     bool InOverloadResolution,
1389                                     QualType &ConvertedType) {
1390  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1391  if (!ToTypePtr)
1392    return false;
1393
1394  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1395  if (From->isNullPointerConstant(Context,
1396                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1397                                        : Expr::NPC_ValueDependentIsNull)) {
1398    ConvertedType = ToType;
1399    return true;
1400  }
1401
1402  // Otherwise, both types have to be member pointers.
1403  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1404  if (!FromTypePtr)
1405    return false;
1406
1407  // A pointer to member of B can be converted to a pointer to member of D,
1408  // where D is derived from B (C++ 4.11p2).
1409  QualType FromClass(FromTypePtr->getClass(), 0);
1410  QualType ToClass(ToTypePtr->getClass(), 0);
1411  // FIXME: What happens when these are dependent? Is this function even called?
1412
1413  if (IsDerivedFrom(ToClass, FromClass)) {
1414    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1415                                                 ToClass.getTypePtr());
1416    return true;
1417  }
1418
1419  return false;
1420}
1421
1422/// CheckMemberPointerConversion - Check the member pointer conversion from the
1423/// expression From to the type ToType. This routine checks for ambiguous or
1424/// virtual or inaccessible base-to-derived member pointer conversions
1425/// for which IsMemberPointerConversion has already returned true. It returns
1426/// true and produces a diagnostic if there was an error, or returns false
1427/// otherwise.
1428bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1429                                        CastExpr::CastKind &Kind,
1430                                        CXXBaseSpecifierArray &BasePath,
1431                                        bool IgnoreBaseAccess) {
1432  QualType FromType = From->getType();
1433  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1434  if (!FromPtrType) {
1435    // This must be a null pointer to member pointer conversion
1436    assert(From->isNullPointerConstant(Context,
1437                                       Expr::NPC_ValueDependentIsNull) &&
1438           "Expr must be null pointer constant!");
1439    Kind = CastExpr::CK_NullToMemberPointer;
1440    return false;
1441  }
1442
1443  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1444  assert(ToPtrType && "No member pointer cast has a target type "
1445                      "that is not a member pointer.");
1446
1447  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1448  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1449
1450  // FIXME: What about dependent types?
1451  assert(FromClass->isRecordType() && "Pointer into non-class.");
1452  assert(ToClass->isRecordType() && "Pointer into non-class.");
1453
1454  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1455                     /*DetectVirtual=*/true);
1456  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1457  assert(DerivationOkay &&
1458         "Should not have been called if derivation isn't OK.");
1459  (void)DerivationOkay;
1460
1461  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1462                                  getUnqualifiedType())) {
1463    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1464    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1465      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1466    return true;
1467  }
1468
1469  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1470    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1471      << FromClass << ToClass << QualType(VBase, 0)
1472      << From->getSourceRange();
1473    return true;
1474  }
1475
1476  if (!IgnoreBaseAccess)
1477    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1478                         Paths.front(),
1479                         diag::err_downcast_from_inaccessible_base);
1480
1481  // Must be a base to derived member conversion.
1482  BuildBasePathArray(Paths, BasePath);
1483  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1484  return false;
1485}
1486
1487/// IsQualificationConversion - Determines whether the conversion from
1488/// an rvalue of type FromType to ToType is a qualification conversion
1489/// (C++ 4.4).
1490bool
1491Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1492  FromType = Context.getCanonicalType(FromType);
1493  ToType = Context.getCanonicalType(ToType);
1494
1495  // If FromType and ToType are the same type, this is not a
1496  // qualification conversion.
1497  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1498    return false;
1499
1500  // (C++ 4.4p4):
1501  //   A conversion can add cv-qualifiers at levels other than the first
1502  //   in multi-level pointers, subject to the following rules: [...]
1503  bool PreviousToQualsIncludeConst = true;
1504  bool UnwrappedAnyPointer = false;
1505  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1506    // Within each iteration of the loop, we check the qualifiers to
1507    // determine if this still looks like a qualification
1508    // conversion. Then, if all is well, we unwrap one more level of
1509    // pointers or pointers-to-members and do it all again
1510    // until there are no more pointers or pointers-to-members left to
1511    // unwrap.
1512    UnwrappedAnyPointer = true;
1513
1514    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1515    //      2,j, and similarly for volatile.
1516    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1517      return false;
1518
1519    //   -- if the cv 1,j and cv 2,j are different, then const is in
1520    //      every cv for 0 < k < j.
1521    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1522        && !PreviousToQualsIncludeConst)
1523      return false;
1524
1525    // Keep track of whether all prior cv-qualifiers in the "to" type
1526    // include const.
1527    PreviousToQualsIncludeConst
1528      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1529  }
1530
1531  // We are left with FromType and ToType being the pointee types
1532  // after unwrapping the original FromType and ToType the same number
1533  // of types. If we unwrapped any pointers, and if FromType and
1534  // ToType have the same unqualified type (since we checked
1535  // qualifiers above), then this is a qualification conversion.
1536  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1537}
1538
1539/// Determines whether there is a user-defined conversion sequence
1540/// (C++ [over.ics.user]) that converts expression From to the type
1541/// ToType. If such a conversion exists, User will contain the
1542/// user-defined conversion sequence that performs such a conversion
1543/// and this routine will return true. Otherwise, this routine returns
1544/// false and User is unspecified.
1545///
1546/// \param AllowExplicit  true if the conversion should consider C++0x
1547/// "explicit" conversion functions as well as non-explicit conversion
1548/// functions (C++0x [class.conv.fct]p2).
1549OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1550                                          UserDefinedConversionSequence& User,
1551                                           OverloadCandidateSet& CandidateSet,
1552                                                bool AllowExplicit) {
1553  // Whether we will only visit constructors.
1554  bool ConstructorsOnly = false;
1555
1556  // If the type we are conversion to is a class type, enumerate its
1557  // constructors.
1558  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1559    // C++ [over.match.ctor]p1:
1560    //   When objects of class type are direct-initialized (8.5), or
1561    //   copy-initialized from an expression of the same or a
1562    //   derived class type (8.5), overload resolution selects the
1563    //   constructor. [...] For copy-initialization, the candidate
1564    //   functions are all the converting constructors (12.3.1) of
1565    //   that class. The argument list is the expression-list within
1566    //   the parentheses of the initializer.
1567    if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1568        (From->getType()->getAs<RecordType>() &&
1569         IsDerivedFrom(From->getType(), ToType)))
1570      ConstructorsOnly = true;
1571
1572    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1573      // We're not going to find any constructors.
1574    } else if (CXXRecordDecl *ToRecordDecl
1575                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1576      DeclarationName ConstructorName
1577        = Context.DeclarationNames.getCXXConstructorName(
1578                       Context.getCanonicalType(ToType).getUnqualifiedType());
1579      DeclContext::lookup_iterator Con, ConEnd;
1580      for (llvm::tie(Con, ConEnd)
1581             = ToRecordDecl->lookup(ConstructorName);
1582           Con != ConEnd; ++Con) {
1583        NamedDecl *D = *Con;
1584        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1585
1586        // Find the constructor (which may be a template).
1587        CXXConstructorDecl *Constructor = 0;
1588        FunctionTemplateDecl *ConstructorTmpl
1589          = dyn_cast<FunctionTemplateDecl>(D);
1590        if (ConstructorTmpl)
1591          Constructor
1592            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1593        else
1594          Constructor = cast<CXXConstructorDecl>(D);
1595
1596        if (!Constructor->isInvalidDecl() &&
1597            Constructor->isConvertingConstructor(AllowExplicit)) {
1598          if (ConstructorTmpl)
1599            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1600                                         /*ExplicitArgs*/ 0,
1601                                         &From, 1, CandidateSet,
1602                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1603          else
1604            // Allow one user-defined conversion when user specifies a
1605            // From->ToType conversion via an static cast (c-style, etc).
1606            AddOverloadCandidate(Constructor, FoundDecl,
1607                                 &From, 1, CandidateSet,
1608                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1609        }
1610      }
1611    }
1612  }
1613
1614  // Enumerate conversion functions, if we're allowed to.
1615  if (ConstructorsOnly) {
1616  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1617                          PDiag(0) << From->getSourceRange())) {
1618    // No conversion functions from incomplete types.
1619  } else if (const RecordType *FromRecordType
1620                                   = From->getType()->getAs<RecordType>()) {
1621    if (CXXRecordDecl *FromRecordDecl
1622         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1623      // Add all of the conversion functions as candidates.
1624      const UnresolvedSetImpl *Conversions
1625        = FromRecordDecl->getVisibleConversionFunctions();
1626      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1627             E = Conversions->end(); I != E; ++I) {
1628        DeclAccessPair FoundDecl = I.getPair();
1629        NamedDecl *D = FoundDecl.getDecl();
1630        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1631        if (isa<UsingShadowDecl>(D))
1632          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1633
1634        CXXConversionDecl *Conv;
1635        FunctionTemplateDecl *ConvTemplate;
1636        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1637          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1638        else
1639          Conv = cast<CXXConversionDecl>(D);
1640
1641        if (AllowExplicit || !Conv->isExplicit()) {
1642          if (ConvTemplate)
1643            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1644                                           ActingContext, From, ToType,
1645                                           CandidateSet);
1646          else
1647            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1648                                   From, ToType, CandidateSet);
1649        }
1650      }
1651    }
1652  }
1653
1654  OverloadCandidateSet::iterator Best;
1655  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1656    case OR_Success:
1657      // Record the standard conversion we used and the conversion function.
1658      if (CXXConstructorDecl *Constructor
1659            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1660        // C++ [over.ics.user]p1:
1661        //   If the user-defined conversion is specified by a
1662        //   constructor (12.3.1), the initial standard conversion
1663        //   sequence converts the source type to the type required by
1664        //   the argument of the constructor.
1665        //
1666        QualType ThisType = Constructor->getThisType(Context);
1667        if (Best->Conversions[0].isEllipsis())
1668          User.EllipsisConversion = true;
1669        else {
1670          User.Before = Best->Conversions[0].Standard;
1671          User.EllipsisConversion = false;
1672        }
1673        User.ConversionFunction = Constructor;
1674        User.After.setAsIdentityConversion();
1675        User.After.setFromType(
1676          ThisType->getAs<PointerType>()->getPointeeType());
1677        User.After.setAllToTypes(ToType);
1678        return OR_Success;
1679      } else if (CXXConversionDecl *Conversion
1680                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1681        // C++ [over.ics.user]p1:
1682        //
1683        //   [...] If the user-defined conversion is specified by a
1684        //   conversion function (12.3.2), the initial standard
1685        //   conversion sequence converts the source type to the
1686        //   implicit object parameter of the conversion function.
1687        User.Before = Best->Conversions[0].Standard;
1688        User.ConversionFunction = Conversion;
1689        User.EllipsisConversion = false;
1690
1691        // C++ [over.ics.user]p2:
1692        //   The second standard conversion sequence converts the
1693        //   result of the user-defined conversion to the target type
1694        //   for the sequence. Since an implicit conversion sequence
1695        //   is an initialization, the special rules for
1696        //   initialization by user-defined conversion apply when
1697        //   selecting the best user-defined conversion for a
1698        //   user-defined conversion sequence (see 13.3.3 and
1699        //   13.3.3.1).
1700        User.After = Best->FinalConversion;
1701        return OR_Success;
1702      } else {
1703        assert(false && "Not a constructor or conversion function?");
1704        return OR_No_Viable_Function;
1705      }
1706
1707    case OR_No_Viable_Function:
1708      return OR_No_Viable_Function;
1709    case OR_Deleted:
1710      // No conversion here! We're done.
1711      return OR_Deleted;
1712
1713    case OR_Ambiguous:
1714      return OR_Ambiguous;
1715    }
1716
1717  return OR_No_Viable_Function;
1718}
1719
1720bool
1721Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1722  ImplicitConversionSequence ICS;
1723  OverloadCandidateSet CandidateSet(From->getExprLoc());
1724  OverloadingResult OvResult =
1725    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1726                            CandidateSet, false);
1727  if (OvResult == OR_Ambiguous)
1728    Diag(From->getSourceRange().getBegin(),
1729         diag::err_typecheck_ambiguous_condition)
1730          << From->getType() << ToType << From->getSourceRange();
1731  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1732    Diag(From->getSourceRange().getBegin(),
1733         diag::err_typecheck_nonviable_condition)
1734    << From->getType() << ToType << From->getSourceRange();
1735  else
1736    return false;
1737  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1738  return true;
1739}
1740
1741/// CompareImplicitConversionSequences - Compare two implicit
1742/// conversion sequences to determine whether one is better than the
1743/// other or if they are indistinguishable (C++ 13.3.3.2).
1744ImplicitConversionSequence::CompareKind
1745Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1746                                         const ImplicitConversionSequence& ICS2)
1747{
1748  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1749  // conversion sequences (as defined in 13.3.3.1)
1750  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1751  //      conversion sequence than a user-defined conversion sequence or
1752  //      an ellipsis conversion sequence, and
1753  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1754  //      conversion sequence than an ellipsis conversion sequence
1755  //      (13.3.3.1.3).
1756  //
1757  // C++0x [over.best.ics]p10:
1758  //   For the purpose of ranking implicit conversion sequences as
1759  //   described in 13.3.3.2, the ambiguous conversion sequence is
1760  //   treated as a user-defined sequence that is indistinguishable
1761  //   from any other user-defined conversion sequence.
1762  if (ICS1.getKindRank() < ICS2.getKindRank())
1763    return ImplicitConversionSequence::Better;
1764  else if (ICS2.getKindRank() < ICS1.getKindRank())
1765    return ImplicitConversionSequence::Worse;
1766
1767  // The following checks require both conversion sequences to be of
1768  // the same kind.
1769  if (ICS1.getKind() != ICS2.getKind())
1770    return ImplicitConversionSequence::Indistinguishable;
1771
1772  // Two implicit conversion sequences of the same form are
1773  // indistinguishable conversion sequences unless one of the
1774  // following rules apply: (C++ 13.3.3.2p3):
1775  if (ICS1.isStandard())
1776    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1777  else if (ICS1.isUserDefined()) {
1778    // User-defined conversion sequence U1 is a better conversion
1779    // sequence than another user-defined conversion sequence U2 if
1780    // they contain the same user-defined conversion function or
1781    // constructor and if the second standard conversion sequence of
1782    // U1 is better than the second standard conversion sequence of
1783    // U2 (C++ 13.3.3.2p3).
1784    if (ICS1.UserDefined.ConversionFunction ==
1785          ICS2.UserDefined.ConversionFunction)
1786      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1787                                                ICS2.UserDefined.After);
1788  }
1789
1790  return ImplicitConversionSequence::Indistinguishable;
1791}
1792
1793// Per 13.3.3.2p3, compare the given standard conversion sequences to
1794// determine if one is a proper subset of the other.
1795static ImplicitConversionSequence::CompareKind
1796compareStandardConversionSubsets(ASTContext &Context,
1797                                 const StandardConversionSequence& SCS1,
1798                                 const StandardConversionSequence& SCS2) {
1799  ImplicitConversionSequence::CompareKind Result
1800    = ImplicitConversionSequence::Indistinguishable;
1801
1802  if (SCS1.Second != SCS2.Second) {
1803    if (SCS1.Second == ICK_Identity)
1804      Result = ImplicitConversionSequence::Better;
1805    else if (SCS2.Second == ICK_Identity)
1806      Result = ImplicitConversionSequence::Worse;
1807    else
1808      return ImplicitConversionSequence::Indistinguishable;
1809  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1810    return ImplicitConversionSequence::Indistinguishable;
1811
1812  if (SCS1.Third == SCS2.Third) {
1813    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1814                             : ImplicitConversionSequence::Indistinguishable;
1815  }
1816
1817  if (SCS1.Third == ICK_Identity)
1818    return Result == ImplicitConversionSequence::Worse
1819             ? ImplicitConversionSequence::Indistinguishable
1820             : ImplicitConversionSequence::Better;
1821
1822  if (SCS2.Third == ICK_Identity)
1823    return Result == ImplicitConversionSequence::Better
1824             ? ImplicitConversionSequence::Indistinguishable
1825             : ImplicitConversionSequence::Worse;
1826
1827  return ImplicitConversionSequence::Indistinguishable;
1828}
1829
1830/// CompareStandardConversionSequences - Compare two standard
1831/// conversion sequences to determine whether one is better than the
1832/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1833ImplicitConversionSequence::CompareKind
1834Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1835                                         const StandardConversionSequence& SCS2)
1836{
1837  // Standard conversion sequence S1 is a better conversion sequence
1838  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1839
1840  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1841  //     sequences in the canonical form defined by 13.3.3.1.1,
1842  //     excluding any Lvalue Transformation; the identity conversion
1843  //     sequence is considered to be a subsequence of any
1844  //     non-identity conversion sequence) or, if not that,
1845  if (ImplicitConversionSequence::CompareKind CK
1846        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1847    return CK;
1848
1849  //  -- the rank of S1 is better than the rank of S2 (by the rules
1850  //     defined below), or, if not that,
1851  ImplicitConversionRank Rank1 = SCS1.getRank();
1852  ImplicitConversionRank Rank2 = SCS2.getRank();
1853  if (Rank1 < Rank2)
1854    return ImplicitConversionSequence::Better;
1855  else if (Rank2 < Rank1)
1856    return ImplicitConversionSequence::Worse;
1857
1858  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1859  // are indistinguishable unless one of the following rules
1860  // applies:
1861
1862  //   A conversion that is not a conversion of a pointer, or
1863  //   pointer to member, to bool is better than another conversion
1864  //   that is such a conversion.
1865  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1866    return SCS2.isPointerConversionToBool()
1867             ? ImplicitConversionSequence::Better
1868             : ImplicitConversionSequence::Worse;
1869
1870  // C++ [over.ics.rank]p4b2:
1871  //
1872  //   If class B is derived directly or indirectly from class A,
1873  //   conversion of B* to A* is better than conversion of B* to
1874  //   void*, and conversion of A* to void* is better than conversion
1875  //   of B* to void*.
1876  bool SCS1ConvertsToVoid
1877    = SCS1.isPointerConversionToVoidPointer(Context);
1878  bool SCS2ConvertsToVoid
1879    = SCS2.isPointerConversionToVoidPointer(Context);
1880  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1881    // Exactly one of the conversion sequences is a conversion to
1882    // a void pointer; it's the worse conversion.
1883    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1884                              : ImplicitConversionSequence::Worse;
1885  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1886    // Neither conversion sequence converts to a void pointer; compare
1887    // their derived-to-base conversions.
1888    if (ImplicitConversionSequence::CompareKind DerivedCK
1889          = CompareDerivedToBaseConversions(SCS1, SCS2))
1890      return DerivedCK;
1891  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1892    // Both conversion sequences are conversions to void
1893    // pointers. Compare the source types to determine if there's an
1894    // inheritance relationship in their sources.
1895    QualType FromType1 = SCS1.getFromType();
1896    QualType FromType2 = SCS2.getFromType();
1897
1898    // Adjust the types we're converting from via the array-to-pointer
1899    // conversion, if we need to.
1900    if (SCS1.First == ICK_Array_To_Pointer)
1901      FromType1 = Context.getArrayDecayedType(FromType1);
1902    if (SCS2.First == ICK_Array_To_Pointer)
1903      FromType2 = Context.getArrayDecayedType(FromType2);
1904
1905    QualType FromPointee1
1906      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1907    QualType FromPointee2
1908      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1909
1910    if (IsDerivedFrom(FromPointee2, FromPointee1))
1911      return ImplicitConversionSequence::Better;
1912    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1913      return ImplicitConversionSequence::Worse;
1914
1915    // Objective-C++: If one interface is more specific than the
1916    // other, it is the better one.
1917    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1918    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1919    if (FromIface1 && FromIface1) {
1920      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1921        return ImplicitConversionSequence::Better;
1922      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1923        return ImplicitConversionSequence::Worse;
1924    }
1925  }
1926
1927  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1928  // bullet 3).
1929  if (ImplicitConversionSequence::CompareKind QualCK
1930        = CompareQualificationConversions(SCS1, SCS2))
1931    return QualCK;
1932
1933  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1934    // C++0x [over.ics.rank]p3b4:
1935    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1936    //      implicit object parameter of a non-static member function declared
1937    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1938    //      rvalue and S2 binds an lvalue reference.
1939    // FIXME: We don't know if we're dealing with the implicit object parameter,
1940    // or if the member function in this case has a ref qualifier.
1941    // (Of course, we don't have ref qualifiers yet.)
1942    if (SCS1.RRefBinding != SCS2.RRefBinding)
1943      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1944                              : ImplicitConversionSequence::Worse;
1945
1946    // C++ [over.ics.rank]p3b4:
1947    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1948    //      which the references refer are the same type except for
1949    //      top-level cv-qualifiers, and the type to which the reference
1950    //      initialized by S2 refers is more cv-qualified than the type
1951    //      to which the reference initialized by S1 refers.
1952    QualType T1 = SCS1.getToType(2);
1953    QualType T2 = SCS2.getToType(2);
1954    T1 = Context.getCanonicalType(T1);
1955    T2 = Context.getCanonicalType(T2);
1956    Qualifiers T1Quals, T2Quals;
1957    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1958    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1959    if (UnqualT1 == UnqualT2) {
1960      // If the type is an array type, promote the element qualifiers to the type
1961      // for comparison.
1962      if (isa<ArrayType>(T1) && T1Quals)
1963        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1964      if (isa<ArrayType>(T2) && T2Quals)
1965        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1966      if (T2.isMoreQualifiedThan(T1))
1967        return ImplicitConversionSequence::Better;
1968      else if (T1.isMoreQualifiedThan(T2))
1969        return ImplicitConversionSequence::Worse;
1970    }
1971  }
1972
1973  return ImplicitConversionSequence::Indistinguishable;
1974}
1975
1976/// CompareQualificationConversions - Compares two standard conversion
1977/// sequences to determine whether they can be ranked based on their
1978/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1979ImplicitConversionSequence::CompareKind
1980Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1981                                      const StandardConversionSequence& SCS2) {
1982  // C++ 13.3.3.2p3:
1983  //  -- S1 and S2 differ only in their qualification conversion and
1984  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1985  //     cv-qualification signature of type T1 is a proper subset of
1986  //     the cv-qualification signature of type T2, and S1 is not the
1987  //     deprecated string literal array-to-pointer conversion (4.2).
1988  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1989      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1990    return ImplicitConversionSequence::Indistinguishable;
1991
1992  // FIXME: the example in the standard doesn't use a qualification
1993  // conversion (!)
1994  QualType T1 = SCS1.getToType(2);
1995  QualType T2 = SCS2.getToType(2);
1996  T1 = Context.getCanonicalType(T1);
1997  T2 = Context.getCanonicalType(T2);
1998  Qualifiers T1Quals, T2Quals;
1999  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2000  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2001
2002  // If the types are the same, we won't learn anything by unwrapped
2003  // them.
2004  if (UnqualT1 == UnqualT2)
2005    return ImplicitConversionSequence::Indistinguishable;
2006
2007  // If the type is an array type, promote the element qualifiers to the type
2008  // for comparison.
2009  if (isa<ArrayType>(T1) && T1Quals)
2010    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2011  if (isa<ArrayType>(T2) && T2Quals)
2012    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2013
2014  ImplicitConversionSequence::CompareKind Result
2015    = ImplicitConversionSequence::Indistinguishable;
2016  while (UnwrapSimilarPointerTypes(T1, T2)) {
2017    // Within each iteration of the loop, we check the qualifiers to
2018    // determine if this still looks like a qualification
2019    // conversion. Then, if all is well, we unwrap one more level of
2020    // pointers or pointers-to-members and do it all again
2021    // until there are no more pointers or pointers-to-members left
2022    // to unwrap. This essentially mimics what
2023    // IsQualificationConversion does, but here we're checking for a
2024    // strict subset of qualifiers.
2025    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2026      // The qualifiers are the same, so this doesn't tell us anything
2027      // about how the sequences rank.
2028      ;
2029    else if (T2.isMoreQualifiedThan(T1)) {
2030      // T1 has fewer qualifiers, so it could be the better sequence.
2031      if (Result == ImplicitConversionSequence::Worse)
2032        // Neither has qualifiers that are a subset of the other's
2033        // qualifiers.
2034        return ImplicitConversionSequence::Indistinguishable;
2035
2036      Result = ImplicitConversionSequence::Better;
2037    } else if (T1.isMoreQualifiedThan(T2)) {
2038      // T2 has fewer qualifiers, so it could be the better sequence.
2039      if (Result == ImplicitConversionSequence::Better)
2040        // Neither has qualifiers that are a subset of the other's
2041        // qualifiers.
2042        return ImplicitConversionSequence::Indistinguishable;
2043
2044      Result = ImplicitConversionSequence::Worse;
2045    } else {
2046      // Qualifiers are disjoint.
2047      return ImplicitConversionSequence::Indistinguishable;
2048    }
2049
2050    // If the types after this point are equivalent, we're done.
2051    if (Context.hasSameUnqualifiedType(T1, T2))
2052      break;
2053  }
2054
2055  // Check that the winning standard conversion sequence isn't using
2056  // the deprecated string literal array to pointer conversion.
2057  switch (Result) {
2058  case ImplicitConversionSequence::Better:
2059    if (SCS1.DeprecatedStringLiteralToCharPtr)
2060      Result = ImplicitConversionSequence::Indistinguishable;
2061    break;
2062
2063  case ImplicitConversionSequence::Indistinguishable:
2064    break;
2065
2066  case ImplicitConversionSequence::Worse:
2067    if (SCS2.DeprecatedStringLiteralToCharPtr)
2068      Result = ImplicitConversionSequence::Indistinguishable;
2069    break;
2070  }
2071
2072  return Result;
2073}
2074
2075/// CompareDerivedToBaseConversions - Compares two standard conversion
2076/// sequences to determine whether they can be ranked based on their
2077/// various kinds of derived-to-base conversions (C++
2078/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2079/// conversions between Objective-C interface types.
2080ImplicitConversionSequence::CompareKind
2081Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2082                                      const StandardConversionSequence& SCS2) {
2083  QualType FromType1 = SCS1.getFromType();
2084  QualType ToType1 = SCS1.getToType(1);
2085  QualType FromType2 = SCS2.getFromType();
2086  QualType ToType2 = SCS2.getToType(1);
2087
2088  // Adjust the types we're converting from via the array-to-pointer
2089  // conversion, if we need to.
2090  if (SCS1.First == ICK_Array_To_Pointer)
2091    FromType1 = Context.getArrayDecayedType(FromType1);
2092  if (SCS2.First == ICK_Array_To_Pointer)
2093    FromType2 = Context.getArrayDecayedType(FromType2);
2094
2095  // Canonicalize all of the types.
2096  FromType1 = Context.getCanonicalType(FromType1);
2097  ToType1 = Context.getCanonicalType(ToType1);
2098  FromType2 = Context.getCanonicalType(FromType2);
2099  ToType2 = Context.getCanonicalType(ToType2);
2100
2101  // C++ [over.ics.rank]p4b3:
2102  //
2103  //   If class B is derived directly or indirectly from class A and
2104  //   class C is derived directly or indirectly from B,
2105  //
2106  // For Objective-C, we let A, B, and C also be Objective-C
2107  // interfaces.
2108
2109  // Compare based on pointer conversions.
2110  if (SCS1.Second == ICK_Pointer_Conversion &&
2111      SCS2.Second == ICK_Pointer_Conversion &&
2112      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2113      FromType1->isPointerType() && FromType2->isPointerType() &&
2114      ToType1->isPointerType() && ToType2->isPointerType()) {
2115    QualType FromPointee1
2116      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2117    QualType ToPointee1
2118      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2119    QualType FromPointee2
2120      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2121    QualType ToPointee2
2122      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2123
2124    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2125    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2126    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2127    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2128
2129    //   -- conversion of C* to B* is better than conversion of C* to A*,
2130    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2131      if (IsDerivedFrom(ToPointee1, ToPointee2))
2132        return ImplicitConversionSequence::Better;
2133      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2134        return ImplicitConversionSequence::Worse;
2135
2136      if (ToIface1 && ToIface2) {
2137        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2138          return ImplicitConversionSequence::Better;
2139        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2140          return ImplicitConversionSequence::Worse;
2141      }
2142    }
2143
2144    //   -- conversion of B* to A* is better than conversion of C* to A*,
2145    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2146      if (IsDerivedFrom(FromPointee2, FromPointee1))
2147        return ImplicitConversionSequence::Better;
2148      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2149        return ImplicitConversionSequence::Worse;
2150
2151      if (FromIface1 && FromIface2) {
2152        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2153          return ImplicitConversionSequence::Better;
2154        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2155          return ImplicitConversionSequence::Worse;
2156      }
2157    }
2158  }
2159
2160  // Ranking of member-pointer types.
2161  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2162      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2163      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2164    const MemberPointerType * FromMemPointer1 =
2165                                        FromType1->getAs<MemberPointerType>();
2166    const MemberPointerType * ToMemPointer1 =
2167                                          ToType1->getAs<MemberPointerType>();
2168    const MemberPointerType * FromMemPointer2 =
2169                                          FromType2->getAs<MemberPointerType>();
2170    const MemberPointerType * ToMemPointer2 =
2171                                          ToType2->getAs<MemberPointerType>();
2172    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2173    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2174    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2175    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2176    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2177    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2178    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2179    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2180    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2181    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2182      if (IsDerivedFrom(ToPointee1, ToPointee2))
2183        return ImplicitConversionSequence::Worse;
2184      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2185        return ImplicitConversionSequence::Better;
2186    }
2187    // conversion of B::* to C::* is better than conversion of A::* to C::*
2188    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2189      if (IsDerivedFrom(FromPointee1, FromPointee2))
2190        return ImplicitConversionSequence::Better;
2191      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2192        return ImplicitConversionSequence::Worse;
2193    }
2194  }
2195
2196  if (SCS1.Second == ICK_Derived_To_Base) {
2197    //   -- conversion of C to B is better than conversion of C to A,
2198    //   -- binding of an expression of type C to a reference of type
2199    //      B& is better than binding an expression of type C to a
2200    //      reference of type A&,
2201    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2202        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2203      if (IsDerivedFrom(ToType1, ToType2))
2204        return ImplicitConversionSequence::Better;
2205      else if (IsDerivedFrom(ToType2, ToType1))
2206        return ImplicitConversionSequence::Worse;
2207    }
2208
2209    //   -- conversion of B to A is better than conversion of C to A.
2210    //   -- binding of an expression of type B to a reference of type
2211    //      A& is better than binding an expression of type C to a
2212    //      reference of type A&,
2213    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2214        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2215      if (IsDerivedFrom(FromType2, FromType1))
2216        return ImplicitConversionSequence::Better;
2217      else if (IsDerivedFrom(FromType1, FromType2))
2218        return ImplicitConversionSequence::Worse;
2219    }
2220  }
2221
2222  return ImplicitConversionSequence::Indistinguishable;
2223}
2224
2225/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2226/// determine whether they are reference-related,
2227/// reference-compatible, reference-compatible with added
2228/// qualification, or incompatible, for use in C++ initialization by
2229/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2230/// type, and the first type (T1) is the pointee type of the reference
2231/// type being initialized.
2232Sema::ReferenceCompareResult
2233Sema::CompareReferenceRelationship(SourceLocation Loc,
2234                                   QualType OrigT1, QualType OrigT2,
2235                                   bool& DerivedToBase) {
2236  assert(!OrigT1->isReferenceType() &&
2237    "T1 must be the pointee type of the reference type");
2238  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2239
2240  QualType T1 = Context.getCanonicalType(OrigT1);
2241  QualType T2 = Context.getCanonicalType(OrigT2);
2242  Qualifiers T1Quals, T2Quals;
2243  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2244  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2245
2246  // C++ [dcl.init.ref]p4:
2247  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2248  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2249  //   T1 is a base class of T2.
2250  if (UnqualT1 == UnqualT2)
2251    DerivedToBase = false;
2252  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
2253           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
2254           IsDerivedFrom(UnqualT2, UnqualT1))
2255    DerivedToBase = true;
2256  else
2257    return Ref_Incompatible;
2258
2259  // At this point, we know that T1 and T2 are reference-related (at
2260  // least).
2261
2262  // If the type is an array type, promote the element qualifiers to the type
2263  // for comparison.
2264  if (isa<ArrayType>(T1) && T1Quals)
2265    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2266  if (isa<ArrayType>(T2) && T2Quals)
2267    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2268
2269  // C++ [dcl.init.ref]p4:
2270  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2271  //   reference-related to T2 and cv1 is the same cv-qualification
2272  //   as, or greater cv-qualification than, cv2. For purposes of
2273  //   overload resolution, cases for which cv1 is greater
2274  //   cv-qualification than cv2 are identified as
2275  //   reference-compatible with added qualification (see 13.3.3.2).
2276  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2277    return Ref_Compatible;
2278  else if (T1.isMoreQualifiedThan(T2))
2279    return Ref_Compatible_With_Added_Qualification;
2280  else
2281    return Ref_Related;
2282}
2283
2284/// \brief Compute an implicit conversion sequence for reference
2285/// initialization.
2286static ImplicitConversionSequence
2287TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2288                 SourceLocation DeclLoc,
2289                 bool SuppressUserConversions,
2290                 bool AllowExplicit) {
2291  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2292
2293  // Most paths end in a failed conversion.
2294  ImplicitConversionSequence ICS;
2295  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2296
2297  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2298  QualType T2 = Init->getType();
2299
2300  // If the initializer is the address of an overloaded function, try
2301  // to resolve the overloaded function. If all goes well, T2 is the
2302  // type of the resulting function.
2303  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2304    DeclAccessPair Found;
2305    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2306                                                                false, Found))
2307      T2 = Fn->getType();
2308  }
2309
2310  // Compute some basic properties of the types and the initializer.
2311  bool isRValRef = DeclType->isRValueReferenceType();
2312  bool DerivedToBase = false;
2313  Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
2314  Sema::ReferenceCompareResult RefRelationship
2315    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2316
2317
2318  // C++ [over.ics.ref]p3:
2319  //   Except for an implicit object parameter, for which see 13.3.1,
2320  //   a standard conversion sequence cannot be formed if it requires
2321  //   binding an lvalue reference to non-const to an rvalue or
2322  //   binding an rvalue reference to an lvalue.
2323  //
2324  // FIXME: DPG doesn't trust this code. It seems far too early to
2325  // abort because of a binding of an rvalue reference to an lvalue.
2326  if (isRValRef && InitLvalue == Expr::LV_Valid)
2327    return ICS;
2328
2329  // C++0x [dcl.init.ref]p16:
2330  //   A reference to type "cv1 T1" is initialized by an expression
2331  //   of type "cv2 T2" as follows:
2332
2333  //     -- If the initializer expression
2334  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2335  //          reference-compatible with "cv2 T2," or
2336  //
2337  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2338  if (InitLvalue == Expr::LV_Valid &&
2339      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2340    // C++ [over.ics.ref]p1:
2341    //   When a parameter of reference type binds directly (8.5.3)
2342    //   to an argument expression, the implicit conversion sequence
2343    //   is the identity conversion, unless the argument expression
2344    //   has a type that is a derived class of the parameter type,
2345    //   in which case the implicit conversion sequence is a
2346    //   derived-to-base Conversion (13.3.3.1).
2347    ICS.setStandard();
2348    ICS.Standard.First = ICK_Identity;
2349    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2350    ICS.Standard.Third = ICK_Identity;
2351    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2352    ICS.Standard.setToType(0, T2);
2353    ICS.Standard.setToType(1, T1);
2354    ICS.Standard.setToType(2, T1);
2355    ICS.Standard.ReferenceBinding = true;
2356    ICS.Standard.DirectBinding = true;
2357    ICS.Standard.RRefBinding = false;
2358    ICS.Standard.CopyConstructor = 0;
2359
2360    // Nothing more to do: the inaccessibility/ambiguity check for
2361    // derived-to-base conversions is suppressed when we're
2362    // computing the implicit conversion sequence (C++
2363    // [over.best.ics]p2).
2364    return ICS;
2365  }
2366
2367  //       -- has a class type (i.e., T2 is a class type), where T1 is
2368  //          not reference-related to T2, and can be implicitly
2369  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2370  //          is reference-compatible with "cv3 T3" 92) (this
2371  //          conversion is selected by enumerating the applicable
2372  //          conversion functions (13.3.1.6) and choosing the best
2373  //          one through overload resolution (13.3)),
2374  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2375      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2376      RefRelationship == Sema::Ref_Incompatible) {
2377    CXXRecordDecl *T2RecordDecl
2378      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2379
2380    OverloadCandidateSet CandidateSet(DeclLoc);
2381    const UnresolvedSetImpl *Conversions
2382      = T2RecordDecl->getVisibleConversionFunctions();
2383    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2384           E = Conversions->end(); I != E; ++I) {
2385      NamedDecl *D = *I;
2386      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2387      if (isa<UsingShadowDecl>(D))
2388        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2389
2390      FunctionTemplateDecl *ConvTemplate
2391        = dyn_cast<FunctionTemplateDecl>(D);
2392      CXXConversionDecl *Conv;
2393      if (ConvTemplate)
2394        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2395      else
2396        Conv = cast<CXXConversionDecl>(D);
2397
2398      // If the conversion function doesn't return a reference type,
2399      // it can't be considered for this conversion.
2400      if (Conv->getConversionType()->isLValueReferenceType() &&
2401          (AllowExplicit || !Conv->isExplicit())) {
2402        if (ConvTemplate)
2403          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2404                                         Init, DeclType, CandidateSet);
2405        else
2406          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2407                                 DeclType, CandidateSet);
2408      }
2409    }
2410
2411    OverloadCandidateSet::iterator Best;
2412    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2413    case OR_Success:
2414      // C++ [over.ics.ref]p1:
2415      //
2416      //   [...] If the parameter binds directly to the result of
2417      //   applying a conversion function to the argument
2418      //   expression, the implicit conversion sequence is a
2419      //   user-defined conversion sequence (13.3.3.1.2), with the
2420      //   second standard conversion sequence either an identity
2421      //   conversion or, if the conversion function returns an
2422      //   entity of a type that is a derived class of the parameter
2423      //   type, a derived-to-base Conversion.
2424      if (!Best->FinalConversion.DirectBinding)
2425        break;
2426
2427      ICS.setUserDefined();
2428      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2429      ICS.UserDefined.After = Best->FinalConversion;
2430      ICS.UserDefined.ConversionFunction = Best->Function;
2431      ICS.UserDefined.EllipsisConversion = false;
2432      assert(ICS.UserDefined.After.ReferenceBinding &&
2433             ICS.UserDefined.After.DirectBinding &&
2434             "Expected a direct reference binding!");
2435      return ICS;
2436
2437    case OR_Ambiguous:
2438      ICS.setAmbiguous();
2439      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2440           Cand != CandidateSet.end(); ++Cand)
2441        if (Cand->Viable)
2442          ICS.Ambiguous.addConversion(Cand->Function);
2443      return ICS;
2444
2445    case OR_No_Viable_Function:
2446    case OR_Deleted:
2447      // There was no suitable conversion, or we found a deleted
2448      // conversion; continue with other checks.
2449      break;
2450    }
2451  }
2452
2453  //     -- Otherwise, the reference shall be to a non-volatile const
2454  //        type (i.e., cv1 shall be const), or the reference shall be an
2455  //        rvalue reference and the initializer expression shall be an rvalue.
2456  //
2457  // We actually handle one oddity of C++ [over.ics.ref] at this
2458  // point, which is that, due to p2 (which short-circuits reference
2459  // binding by only attempting a simple conversion for non-direct
2460  // bindings) and p3's strange wording, we allow a const volatile
2461  // reference to bind to an rvalue. Hence the check for the presence
2462  // of "const" rather than checking for "const" being the only
2463  // qualifier.
2464  if (!isRValRef && !T1.isConstQualified())
2465    return ICS;
2466
2467  //       -- if T2 is a class type and
2468  //          -- the initializer expression is an rvalue and "cv1 T1"
2469  //             is reference-compatible with "cv2 T2," or
2470  //
2471  //          -- T1 is not reference-related to T2 and the initializer
2472  //             expression can be implicitly converted to an rvalue
2473  //             of type "cv3 T3" (this conversion is selected by
2474  //             enumerating the applicable conversion functions
2475  //             (13.3.1.6) and choosing the best one through overload
2476  //             resolution (13.3)),
2477  //
2478  //          then the reference is bound to the initializer
2479  //          expression rvalue in the first case and to the object
2480  //          that is the result of the conversion in the second case
2481  //          (or, in either case, to the appropriate base class
2482  //          subobject of the object).
2483  //
2484  // We're only checking the first case here, which is a direct
2485  // binding in C++0x but not in C++03.
2486  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2487      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2488    ICS.setStandard();
2489    ICS.Standard.First = ICK_Identity;
2490    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2491    ICS.Standard.Third = ICK_Identity;
2492    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2493    ICS.Standard.setToType(0, T2);
2494    ICS.Standard.setToType(1, T1);
2495    ICS.Standard.setToType(2, T1);
2496    ICS.Standard.ReferenceBinding = true;
2497    ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
2498    ICS.Standard.RRefBinding = isRValRef;
2499    ICS.Standard.CopyConstructor = 0;
2500    return ICS;
2501  }
2502
2503  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2504  //          initialized from the initializer expression using the
2505  //          rules for a non-reference copy initialization (8.5). The
2506  //          reference is then bound to the temporary. If T1 is
2507  //          reference-related to T2, cv1 must be the same
2508  //          cv-qualification as, or greater cv-qualification than,
2509  //          cv2; otherwise, the program is ill-formed.
2510  if (RefRelationship == Sema::Ref_Related) {
2511    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2512    // we would be reference-compatible or reference-compatible with
2513    // added qualification. But that wasn't the case, so the reference
2514    // initialization fails.
2515    return ICS;
2516  }
2517
2518  // If at least one of the types is a class type, the types are not
2519  // related, and we aren't allowed any user conversions, the
2520  // reference binding fails. This case is important for breaking
2521  // recursion, since TryImplicitConversion below will attempt to
2522  // create a temporary through the use of a copy constructor.
2523  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2524      (T1->isRecordType() || T2->isRecordType()))
2525    return ICS;
2526
2527  // C++ [over.ics.ref]p2:
2528  //   When a parameter of reference type is not bound directly to
2529  //   an argument expression, the conversion sequence is the one
2530  //   required to convert the argument expression to the
2531  //   underlying type of the reference according to
2532  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2533  //   to copy-initializing a temporary of the underlying type with
2534  //   the argument expression. Any difference in top-level
2535  //   cv-qualification is subsumed by the initialization itself
2536  //   and does not constitute a conversion.
2537  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2538                                /*AllowExplicit=*/false,
2539                                /*InOverloadResolution=*/false);
2540
2541  // Of course, that's still a reference binding.
2542  if (ICS.isStandard()) {
2543    ICS.Standard.ReferenceBinding = true;
2544    ICS.Standard.RRefBinding = isRValRef;
2545  } else if (ICS.isUserDefined()) {
2546    ICS.UserDefined.After.ReferenceBinding = true;
2547    ICS.UserDefined.After.RRefBinding = isRValRef;
2548  }
2549  return ICS;
2550}
2551
2552/// TryCopyInitialization - Try to copy-initialize a value of type
2553/// ToType from the expression From. Return the implicit conversion
2554/// sequence required to pass this argument, which may be a bad
2555/// conversion sequence (meaning that the argument cannot be passed to
2556/// a parameter of this type). If @p SuppressUserConversions, then we
2557/// do not permit any user-defined conversion sequences.
2558static ImplicitConversionSequence
2559TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2560                      bool SuppressUserConversions,
2561                      bool InOverloadResolution) {
2562  if (ToType->isReferenceType())
2563    return TryReferenceInit(S, From, ToType,
2564                            /*FIXME:*/From->getLocStart(),
2565                            SuppressUserConversions,
2566                            /*AllowExplicit=*/false);
2567
2568  return S.TryImplicitConversion(From, ToType,
2569                                 SuppressUserConversions,
2570                                 /*AllowExplicit=*/false,
2571                                 InOverloadResolution);
2572}
2573
2574/// TryObjectArgumentInitialization - Try to initialize the object
2575/// parameter of the given member function (@c Method) from the
2576/// expression @p From.
2577ImplicitConversionSequence
2578Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2579                                      CXXMethodDecl *Method,
2580                                      CXXRecordDecl *ActingContext) {
2581  QualType ClassType = Context.getTypeDeclType(ActingContext);
2582  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2583  //                 const volatile object.
2584  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2585    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2586  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2587
2588  // Set up the conversion sequence as a "bad" conversion, to allow us
2589  // to exit early.
2590  ImplicitConversionSequence ICS;
2591
2592  // We need to have an object of class type.
2593  QualType FromType = OrigFromType;
2594  if (const PointerType *PT = FromType->getAs<PointerType>())
2595    FromType = PT->getPointeeType();
2596
2597  assert(FromType->isRecordType());
2598
2599  // The implicit object parameter is has the type "reference to cv X",
2600  // where X is the class of which the function is a member
2601  // (C++ [over.match.funcs]p4). However, when finding an implicit
2602  // conversion sequence for the argument, we are not allowed to
2603  // create temporaries or perform user-defined conversions
2604  // (C++ [over.match.funcs]p5). We perform a simplified version of
2605  // reference binding here, that allows class rvalues to bind to
2606  // non-constant references.
2607
2608  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2609  // with the implicit object parameter (C++ [over.match.funcs]p5).
2610  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2611  if (ImplicitParamType.getCVRQualifiers()
2612                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2613      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2614    ICS.setBad(BadConversionSequence::bad_qualifiers,
2615               OrigFromType, ImplicitParamType);
2616    return ICS;
2617  }
2618
2619  // Check that we have either the same type or a derived type. It
2620  // affects the conversion rank.
2621  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2622  ImplicitConversionKind SecondKind;
2623  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2624    SecondKind = ICK_Identity;
2625  } else if (IsDerivedFrom(FromType, ClassType))
2626    SecondKind = ICK_Derived_To_Base;
2627  else {
2628    ICS.setBad(BadConversionSequence::unrelated_class,
2629               FromType, ImplicitParamType);
2630    return ICS;
2631  }
2632
2633  // Success. Mark this as a reference binding.
2634  ICS.setStandard();
2635  ICS.Standard.setAsIdentityConversion();
2636  ICS.Standard.Second = SecondKind;
2637  ICS.Standard.setFromType(FromType);
2638  ICS.Standard.setAllToTypes(ImplicitParamType);
2639  ICS.Standard.ReferenceBinding = true;
2640  ICS.Standard.DirectBinding = true;
2641  ICS.Standard.RRefBinding = false;
2642  return ICS;
2643}
2644
2645/// PerformObjectArgumentInitialization - Perform initialization of
2646/// the implicit object parameter for the given Method with the given
2647/// expression.
2648bool
2649Sema::PerformObjectArgumentInitialization(Expr *&From,
2650                                          NestedNameSpecifier *Qualifier,
2651                                          NamedDecl *FoundDecl,
2652                                          CXXMethodDecl *Method) {
2653  QualType FromRecordType, DestType;
2654  QualType ImplicitParamRecordType  =
2655    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2656
2657  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2658    FromRecordType = PT->getPointeeType();
2659    DestType = Method->getThisType(Context);
2660  } else {
2661    FromRecordType = From->getType();
2662    DestType = ImplicitParamRecordType;
2663  }
2664
2665  // Note that we always use the true parent context when performing
2666  // the actual argument initialization.
2667  ImplicitConversionSequence ICS
2668    = TryObjectArgumentInitialization(From->getType(), Method,
2669                                      Method->getParent());
2670  if (ICS.isBad())
2671    return Diag(From->getSourceRange().getBegin(),
2672                diag::err_implicit_object_parameter_init)
2673       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2674
2675  if (ICS.Standard.Second == ICK_Derived_To_Base)
2676    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2677
2678  if (!Context.hasSameType(From->getType(), DestType))
2679    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2680                      /*isLvalue=*/!From->getType()->isPointerType());
2681  return false;
2682}
2683
2684/// TryContextuallyConvertToBool - Attempt to contextually convert the
2685/// expression From to bool (C++0x [conv]p3).
2686ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2687  return TryImplicitConversion(From, Context.BoolTy,
2688                               // FIXME: Are these flags correct?
2689                               /*SuppressUserConversions=*/false,
2690                               /*AllowExplicit=*/true,
2691                               /*InOverloadResolution=*/false);
2692}
2693
2694/// PerformContextuallyConvertToBool - Perform a contextual conversion
2695/// of the expression From to bool (C++0x [conv]p3).
2696bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2697  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2698  if (!ICS.isBad())
2699    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2700
2701  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2702    return  Diag(From->getSourceRange().getBegin(),
2703                 diag::err_typecheck_bool_condition)
2704                  << From->getType() << From->getSourceRange();
2705  return true;
2706}
2707
2708/// AddOverloadCandidate - Adds the given function to the set of
2709/// candidate functions, using the given function call arguments.  If
2710/// @p SuppressUserConversions, then don't allow user-defined
2711/// conversions via constructors or conversion operators.
2712///
2713/// \para PartialOverloading true if we are performing "partial" overloading
2714/// based on an incomplete set of function arguments. This feature is used by
2715/// code completion.
2716void
2717Sema::AddOverloadCandidate(FunctionDecl *Function,
2718                           DeclAccessPair FoundDecl,
2719                           Expr **Args, unsigned NumArgs,
2720                           OverloadCandidateSet& CandidateSet,
2721                           bool SuppressUserConversions,
2722                           bool PartialOverloading) {
2723  const FunctionProtoType* Proto
2724    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2725  assert(Proto && "Functions without a prototype cannot be overloaded");
2726  assert(!Function->getDescribedFunctionTemplate() &&
2727         "Use AddTemplateOverloadCandidate for function templates");
2728
2729  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2730    if (!isa<CXXConstructorDecl>(Method)) {
2731      // If we get here, it's because we're calling a member function
2732      // that is named without a member access expression (e.g.,
2733      // "this->f") that was either written explicitly or created
2734      // implicitly. This can happen with a qualified call to a member
2735      // function, e.g., X::f(). We use an empty type for the implied
2736      // object argument (C++ [over.call.func]p3), and the acting context
2737      // is irrelevant.
2738      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2739                         QualType(), Args, NumArgs, CandidateSet,
2740                         SuppressUserConversions);
2741      return;
2742    }
2743    // We treat a constructor like a non-member function, since its object
2744    // argument doesn't participate in overload resolution.
2745  }
2746
2747  if (!CandidateSet.isNewCandidate(Function))
2748    return;
2749
2750  // Overload resolution is always an unevaluated context.
2751  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2752
2753  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2754    // C++ [class.copy]p3:
2755    //   A member function template is never instantiated to perform the copy
2756    //   of a class object to an object of its class type.
2757    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2758    if (NumArgs == 1 &&
2759        Constructor->isCopyConstructorLikeSpecialization() &&
2760        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2761         IsDerivedFrom(Args[0]->getType(), ClassType)))
2762      return;
2763  }
2764
2765  // Add this candidate
2766  CandidateSet.push_back(OverloadCandidate());
2767  OverloadCandidate& Candidate = CandidateSet.back();
2768  Candidate.FoundDecl = FoundDecl;
2769  Candidate.Function = Function;
2770  Candidate.Viable = true;
2771  Candidate.IsSurrogate = false;
2772  Candidate.IgnoreObjectArgument = false;
2773
2774  unsigned NumArgsInProto = Proto->getNumArgs();
2775
2776  // (C++ 13.3.2p2): A candidate function having fewer than m
2777  // parameters is viable only if it has an ellipsis in its parameter
2778  // list (8.3.5).
2779  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2780      !Proto->isVariadic()) {
2781    Candidate.Viable = false;
2782    Candidate.FailureKind = ovl_fail_too_many_arguments;
2783    return;
2784  }
2785
2786  // (C++ 13.3.2p2): A candidate function having more than m parameters
2787  // is viable only if the (m+1)st parameter has a default argument
2788  // (8.3.6). For the purposes of overload resolution, the
2789  // parameter list is truncated on the right, so that there are
2790  // exactly m parameters.
2791  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2792  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2793    // Not enough arguments.
2794    Candidate.Viable = false;
2795    Candidate.FailureKind = ovl_fail_too_few_arguments;
2796    return;
2797  }
2798
2799  // Determine the implicit conversion sequences for each of the
2800  // arguments.
2801  Candidate.Conversions.resize(NumArgs);
2802  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2803    if (ArgIdx < NumArgsInProto) {
2804      // (C++ 13.3.2p3): for F to be a viable function, there shall
2805      // exist for each argument an implicit conversion sequence
2806      // (13.3.3.1) that converts that argument to the corresponding
2807      // parameter of F.
2808      QualType ParamType = Proto->getArgType(ArgIdx);
2809      Candidate.Conversions[ArgIdx]
2810        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
2811                                SuppressUserConversions,
2812                                /*InOverloadResolution=*/true);
2813      if (Candidate.Conversions[ArgIdx].isBad()) {
2814        Candidate.Viable = false;
2815        Candidate.FailureKind = ovl_fail_bad_conversion;
2816        break;
2817      }
2818    } else {
2819      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2820      // argument for which there is no corresponding parameter is
2821      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2822      Candidate.Conversions[ArgIdx].setEllipsis();
2823    }
2824  }
2825}
2826
2827/// \brief Add all of the function declarations in the given function set to
2828/// the overload canddiate set.
2829void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2830                                 Expr **Args, unsigned NumArgs,
2831                                 OverloadCandidateSet& CandidateSet,
2832                                 bool SuppressUserConversions) {
2833  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2834    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2835    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2836      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2837        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2838                           cast<CXXMethodDecl>(FD)->getParent(),
2839                           Args[0]->getType(), Args + 1, NumArgs - 1,
2840                           CandidateSet, SuppressUserConversions);
2841      else
2842        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2843                             SuppressUserConversions);
2844    } else {
2845      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2846      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2847          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2848        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2849                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2850                                   /*FIXME: explicit args */ 0,
2851                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2852                                   CandidateSet,
2853                                   SuppressUserConversions);
2854      else
2855        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2856                                     /*FIXME: explicit args */ 0,
2857                                     Args, NumArgs, CandidateSet,
2858                                     SuppressUserConversions);
2859    }
2860  }
2861}
2862
2863/// AddMethodCandidate - Adds a named decl (which is some kind of
2864/// method) as a method candidate to the given overload set.
2865void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2866                              QualType ObjectType,
2867                              Expr **Args, unsigned NumArgs,
2868                              OverloadCandidateSet& CandidateSet,
2869                              bool SuppressUserConversions) {
2870  NamedDecl *Decl = FoundDecl.getDecl();
2871  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2872
2873  if (isa<UsingShadowDecl>(Decl))
2874    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2875
2876  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2877    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2878           "Expected a member function template");
2879    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2880                               /*ExplicitArgs*/ 0,
2881                               ObjectType, Args, NumArgs,
2882                               CandidateSet,
2883                               SuppressUserConversions);
2884  } else {
2885    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2886                       ObjectType, Args, NumArgs,
2887                       CandidateSet, SuppressUserConversions);
2888  }
2889}
2890
2891/// AddMethodCandidate - Adds the given C++ member function to the set
2892/// of candidate functions, using the given function call arguments
2893/// and the object argument (@c Object). For example, in a call
2894/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2895/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2896/// allow user-defined conversions via constructors or conversion
2897/// operators.
2898void
2899Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2900                         CXXRecordDecl *ActingContext, QualType ObjectType,
2901                         Expr **Args, unsigned NumArgs,
2902                         OverloadCandidateSet& CandidateSet,
2903                         bool SuppressUserConversions) {
2904  const FunctionProtoType* Proto
2905    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2906  assert(Proto && "Methods without a prototype cannot be overloaded");
2907  assert(!isa<CXXConstructorDecl>(Method) &&
2908         "Use AddOverloadCandidate for constructors");
2909
2910  if (!CandidateSet.isNewCandidate(Method))
2911    return;
2912
2913  // Overload resolution is always an unevaluated context.
2914  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2915
2916  // Add this candidate
2917  CandidateSet.push_back(OverloadCandidate());
2918  OverloadCandidate& Candidate = CandidateSet.back();
2919  Candidate.FoundDecl = FoundDecl;
2920  Candidate.Function = Method;
2921  Candidate.IsSurrogate = false;
2922  Candidate.IgnoreObjectArgument = false;
2923
2924  unsigned NumArgsInProto = Proto->getNumArgs();
2925
2926  // (C++ 13.3.2p2): A candidate function having fewer than m
2927  // parameters is viable only if it has an ellipsis in its parameter
2928  // list (8.3.5).
2929  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2930    Candidate.Viable = false;
2931    Candidate.FailureKind = ovl_fail_too_many_arguments;
2932    return;
2933  }
2934
2935  // (C++ 13.3.2p2): A candidate function having more than m parameters
2936  // is viable only if the (m+1)st parameter has a default argument
2937  // (8.3.6). For the purposes of overload resolution, the
2938  // parameter list is truncated on the right, so that there are
2939  // exactly m parameters.
2940  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2941  if (NumArgs < MinRequiredArgs) {
2942    // Not enough arguments.
2943    Candidate.Viable = false;
2944    Candidate.FailureKind = ovl_fail_too_few_arguments;
2945    return;
2946  }
2947
2948  Candidate.Viable = true;
2949  Candidate.Conversions.resize(NumArgs + 1);
2950
2951  if (Method->isStatic() || ObjectType.isNull())
2952    // The implicit object argument is ignored.
2953    Candidate.IgnoreObjectArgument = true;
2954  else {
2955    // Determine the implicit conversion sequence for the object
2956    // parameter.
2957    Candidate.Conversions[0]
2958      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2959    if (Candidate.Conversions[0].isBad()) {
2960      Candidate.Viable = false;
2961      Candidate.FailureKind = ovl_fail_bad_conversion;
2962      return;
2963    }
2964  }
2965
2966  // Determine the implicit conversion sequences for each of the
2967  // arguments.
2968  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2969    if (ArgIdx < NumArgsInProto) {
2970      // (C++ 13.3.2p3): for F to be a viable function, there shall
2971      // exist for each argument an implicit conversion sequence
2972      // (13.3.3.1) that converts that argument to the corresponding
2973      // parameter of F.
2974      QualType ParamType = Proto->getArgType(ArgIdx);
2975      Candidate.Conversions[ArgIdx + 1]
2976        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
2977                                SuppressUserConversions,
2978                                /*InOverloadResolution=*/true);
2979      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2980        Candidate.Viable = false;
2981        Candidate.FailureKind = ovl_fail_bad_conversion;
2982        break;
2983      }
2984    } else {
2985      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2986      // argument for which there is no corresponding parameter is
2987      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2988      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2989    }
2990  }
2991}
2992
2993/// \brief Add a C++ member function template as a candidate to the candidate
2994/// set, using template argument deduction to produce an appropriate member
2995/// function template specialization.
2996void
2997Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2998                                 DeclAccessPair FoundDecl,
2999                                 CXXRecordDecl *ActingContext,
3000                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3001                                 QualType ObjectType,
3002                                 Expr **Args, unsigned NumArgs,
3003                                 OverloadCandidateSet& CandidateSet,
3004                                 bool SuppressUserConversions) {
3005  if (!CandidateSet.isNewCandidate(MethodTmpl))
3006    return;
3007
3008  // C++ [over.match.funcs]p7:
3009  //   In each case where a candidate is a function template, candidate
3010  //   function template specializations are generated using template argument
3011  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3012  //   candidate functions in the usual way.113) A given name can refer to one
3013  //   or more function templates and also to a set of overloaded non-template
3014  //   functions. In such a case, the candidate functions generated from each
3015  //   function template are combined with the set of non-template candidate
3016  //   functions.
3017  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3018  FunctionDecl *Specialization = 0;
3019  if (TemplateDeductionResult Result
3020      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3021                                Args, NumArgs, Specialization, Info)) {
3022        // FIXME: Record what happened with template argument deduction, so
3023        // that we can give the user a beautiful diagnostic.
3024        (void)Result;
3025        return;
3026      }
3027
3028  // Add the function template specialization produced by template argument
3029  // deduction as a candidate.
3030  assert(Specialization && "Missing member function template specialization?");
3031  assert(isa<CXXMethodDecl>(Specialization) &&
3032         "Specialization is not a member function?");
3033  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3034                     ActingContext, ObjectType, Args, NumArgs,
3035                     CandidateSet, SuppressUserConversions);
3036}
3037
3038/// \brief Add a C++ function template specialization as a candidate
3039/// in the candidate set, using template argument deduction to produce
3040/// an appropriate function template specialization.
3041void
3042Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3043                                   DeclAccessPair FoundDecl,
3044                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3045                                   Expr **Args, unsigned NumArgs,
3046                                   OverloadCandidateSet& CandidateSet,
3047                                   bool SuppressUserConversions) {
3048  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3049    return;
3050
3051  // C++ [over.match.funcs]p7:
3052  //   In each case where a candidate is a function template, candidate
3053  //   function template specializations are generated using template argument
3054  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3055  //   candidate functions in the usual way.113) A given name can refer to one
3056  //   or more function templates and also to a set of overloaded non-template
3057  //   functions. In such a case, the candidate functions generated from each
3058  //   function template are combined with the set of non-template candidate
3059  //   functions.
3060  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3061  FunctionDecl *Specialization = 0;
3062  if (TemplateDeductionResult Result
3063        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3064                                  Args, NumArgs, Specialization, Info)) {
3065    CandidateSet.push_back(OverloadCandidate());
3066    OverloadCandidate &Candidate = CandidateSet.back();
3067    Candidate.FoundDecl = FoundDecl;
3068    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3069    Candidate.Viable = false;
3070    Candidate.FailureKind = ovl_fail_bad_deduction;
3071    Candidate.IsSurrogate = false;
3072    Candidate.IgnoreObjectArgument = false;
3073
3074    // TODO: record more information about failed template arguments
3075    Candidate.DeductionFailure.Result = Result;
3076    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
3077    return;
3078  }
3079
3080  // Add the function template specialization produced by template argument
3081  // deduction as a candidate.
3082  assert(Specialization && "Missing function template specialization?");
3083  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3084                       SuppressUserConversions);
3085}
3086
3087/// AddConversionCandidate - Add a C++ conversion function as a
3088/// candidate in the candidate set (C++ [over.match.conv],
3089/// C++ [over.match.copy]). From is the expression we're converting from,
3090/// and ToType is the type that we're eventually trying to convert to
3091/// (which may or may not be the same type as the type that the
3092/// conversion function produces).
3093void
3094Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3095                             DeclAccessPair FoundDecl,
3096                             CXXRecordDecl *ActingContext,
3097                             Expr *From, QualType ToType,
3098                             OverloadCandidateSet& CandidateSet) {
3099  assert(!Conversion->getDescribedFunctionTemplate() &&
3100         "Conversion function templates use AddTemplateConversionCandidate");
3101  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3102  if (!CandidateSet.isNewCandidate(Conversion))
3103    return;
3104
3105  // Overload resolution is always an unevaluated context.
3106  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3107
3108  // Add this candidate
3109  CandidateSet.push_back(OverloadCandidate());
3110  OverloadCandidate& Candidate = CandidateSet.back();
3111  Candidate.FoundDecl = FoundDecl;
3112  Candidate.Function = Conversion;
3113  Candidate.IsSurrogate = false;
3114  Candidate.IgnoreObjectArgument = false;
3115  Candidate.FinalConversion.setAsIdentityConversion();
3116  Candidate.FinalConversion.setFromType(ConvType);
3117  Candidate.FinalConversion.setAllToTypes(ToType);
3118
3119  // Determine the implicit conversion sequence for the implicit
3120  // object parameter.
3121  Candidate.Viable = true;
3122  Candidate.Conversions.resize(1);
3123  Candidate.Conversions[0]
3124    = TryObjectArgumentInitialization(From->getType(), Conversion,
3125                                      ActingContext);
3126  // Conversion functions to a different type in the base class is visible in
3127  // the derived class.  So, a derived to base conversion should not participate
3128  // in overload resolution.
3129  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3130    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3131  if (Candidate.Conversions[0].isBad()) {
3132    Candidate.Viable = false;
3133    Candidate.FailureKind = ovl_fail_bad_conversion;
3134    return;
3135  }
3136
3137  // We won't go through a user-define type conversion function to convert a
3138  // derived to base as such conversions are given Conversion Rank. They only
3139  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3140  QualType FromCanon
3141    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3142  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3143  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3144    Candidate.Viable = false;
3145    Candidate.FailureKind = ovl_fail_trivial_conversion;
3146    return;
3147  }
3148
3149  // To determine what the conversion from the result of calling the
3150  // conversion function to the type we're eventually trying to
3151  // convert to (ToType), we need to synthesize a call to the
3152  // conversion function and attempt copy initialization from it. This
3153  // makes sure that we get the right semantics with respect to
3154  // lvalues/rvalues and the type. Fortunately, we can allocate this
3155  // call on the stack and we don't need its arguments to be
3156  // well-formed.
3157  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3158                            From->getLocStart());
3159  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3160                                CastExpr::CK_FunctionToPointerDecay,
3161                                &ConversionRef, CXXBaseSpecifierArray(), false);
3162
3163  // Note that it is safe to allocate CallExpr on the stack here because
3164  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3165  // allocator).
3166  CallExpr Call(Context, &ConversionFn, 0, 0,
3167                Conversion->getConversionType().getNonReferenceType(),
3168                From->getLocStart());
3169  ImplicitConversionSequence ICS =
3170    TryCopyInitialization(*this, &Call, ToType,
3171                          /*SuppressUserConversions=*/true,
3172                          /*InOverloadResolution=*/false);
3173
3174  switch (ICS.getKind()) {
3175  case ImplicitConversionSequence::StandardConversion:
3176    Candidate.FinalConversion = ICS.Standard;
3177
3178    // C++ [over.ics.user]p3:
3179    //   If the user-defined conversion is specified by a specialization of a
3180    //   conversion function template, the second standard conversion sequence
3181    //   shall have exact match rank.
3182    if (Conversion->getPrimaryTemplate() &&
3183        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3184      Candidate.Viable = false;
3185      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3186    }
3187
3188    break;
3189
3190  case ImplicitConversionSequence::BadConversion:
3191    Candidate.Viable = false;
3192    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3193    break;
3194
3195  default:
3196    assert(false &&
3197           "Can only end up with a standard conversion sequence or failure");
3198  }
3199}
3200
3201/// \brief Adds a conversion function template specialization
3202/// candidate to the overload set, using template argument deduction
3203/// to deduce the template arguments of the conversion function
3204/// template from the type that we are converting to (C++
3205/// [temp.deduct.conv]).
3206void
3207Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3208                                     DeclAccessPair FoundDecl,
3209                                     CXXRecordDecl *ActingDC,
3210                                     Expr *From, QualType ToType,
3211                                     OverloadCandidateSet &CandidateSet) {
3212  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3213         "Only conversion function templates permitted here");
3214
3215  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3216    return;
3217
3218  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3219  CXXConversionDecl *Specialization = 0;
3220  if (TemplateDeductionResult Result
3221        = DeduceTemplateArguments(FunctionTemplate, ToType,
3222                                  Specialization, Info)) {
3223    // FIXME: Record what happened with template argument deduction, so
3224    // that we can give the user a beautiful diagnostic.
3225    (void)Result;
3226    return;
3227  }
3228
3229  // Add the conversion function template specialization produced by
3230  // template argument deduction as a candidate.
3231  assert(Specialization && "Missing function template specialization?");
3232  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3233                         CandidateSet);
3234}
3235
3236/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3237/// converts the given @c Object to a function pointer via the
3238/// conversion function @c Conversion, and then attempts to call it
3239/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3240/// the type of function that we'll eventually be calling.
3241void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3242                                 DeclAccessPair FoundDecl,
3243                                 CXXRecordDecl *ActingContext,
3244                                 const FunctionProtoType *Proto,
3245                                 QualType ObjectType,
3246                                 Expr **Args, unsigned NumArgs,
3247                                 OverloadCandidateSet& CandidateSet) {
3248  if (!CandidateSet.isNewCandidate(Conversion))
3249    return;
3250
3251  // Overload resolution is always an unevaluated context.
3252  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3253
3254  CandidateSet.push_back(OverloadCandidate());
3255  OverloadCandidate& Candidate = CandidateSet.back();
3256  Candidate.FoundDecl = FoundDecl;
3257  Candidate.Function = 0;
3258  Candidate.Surrogate = Conversion;
3259  Candidate.Viable = true;
3260  Candidate.IsSurrogate = true;
3261  Candidate.IgnoreObjectArgument = false;
3262  Candidate.Conversions.resize(NumArgs + 1);
3263
3264  // Determine the implicit conversion sequence for the implicit
3265  // object parameter.
3266  ImplicitConversionSequence ObjectInit
3267    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3268  if (ObjectInit.isBad()) {
3269    Candidate.Viable = false;
3270    Candidate.FailureKind = ovl_fail_bad_conversion;
3271    Candidate.Conversions[0] = ObjectInit;
3272    return;
3273  }
3274
3275  // The first conversion is actually a user-defined conversion whose
3276  // first conversion is ObjectInit's standard conversion (which is
3277  // effectively a reference binding). Record it as such.
3278  Candidate.Conversions[0].setUserDefined();
3279  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3280  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3281  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3282  Candidate.Conversions[0].UserDefined.After
3283    = Candidate.Conversions[0].UserDefined.Before;
3284  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3285
3286  // Find the
3287  unsigned NumArgsInProto = Proto->getNumArgs();
3288
3289  // (C++ 13.3.2p2): A candidate function having fewer than m
3290  // parameters is viable only if it has an ellipsis in its parameter
3291  // list (8.3.5).
3292  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3293    Candidate.Viable = false;
3294    Candidate.FailureKind = ovl_fail_too_many_arguments;
3295    return;
3296  }
3297
3298  // Function types don't have any default arguments, so just check if
3299  // we have enough arguments.
3300  if (NumArgs < NumArgsInProto) {
3301    // Not enough arguments.
3302    Candidate.Viable = false;
3303    Candidate.FailureKind = ovl_fail_too_few_arguments;
3304    return;
3305  }
3306
3307  // Determine the implicit conversion sequences for each of the
3308  // arguments.
3309  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3310    if (ArgIdx < NumArgsInProto) {
3311      // (C++ 13.3.2p3): for F to be a viable function, there shall
3312      // exist for each argument an implicit conversion sequence
3313      // (13.3.3.1) that converts that argument to the corresponding
3314      // parameter of F.
3315      QualType ParamType = Proto->getArgType(ArgIdx);
3316      Candidate.Conversions[ArgIdx + 1]
3317        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3318                                /*SuppressUserConversions=*/false,
3319                                /*InOverloadResolution=*/false);
3320      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3321        Candidate.Viable = false;
3322        Candidate.FailureKind = ovl_fail_bad_conversion;
3323        break;
3324      }
3325    } else {
3326      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3327      // argument for which there is no corresponding parameter is
3328      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3329      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3330    }
3331  }
3332}
3333
3334/// \brief Add overload candidates for overloaded operators that are
3335/// member functions.
3336///
3337/// Add the overloaded operator candidates that are member functions
3338/// for the operator Op that was used in an operator expression such
3339/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3340/// CandidateSet will store the added overload candidates. (C++
3341/// [over.match.oper]).
3342void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3343                                       SourceLocation OpLoc,
3344                                       Expr **Args, unsigned NumArgs,
3345                                       OverloadCandidateSet& CandidateSet,
3346                                       SourceRange OpRange) {
3347  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3348
3349  // C++ [over.match.oper]p3:
3350  //   For a unary operator @ with an operand of a type whose
3351  //   cv-unqualified version is T1, and for a binary operator @ with
3352  //   a left operand of a type whose cv-unqualified version is T1 and
3353  //   a right operand of a type whose cv-unqualified version is T2,
3354  //   three sets of candidate functions, designated member
3355  //   candidates, non-member candidates and built-in candidates, are
3356  //   constructed as follows:
3357  QualType T1 = Args[0]->getType();
3358  QualType T2;
3359  if (NumArgs > 1)
3360    T2 = Args[1]->getType();
3361
3362  //     -- If T1 is a class type, the set of member candidates is the
3363  //        result of the qualified lookup of T1::operator@
3364  //        (13.3.1.1.1); otherwise, the set of member candidates is
3365  //        empty.
3366  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3367    // Complete the type if it can be completed. Otherwise, we're done.
3368    if (RequireCompleteType(OpLoc, T1, PDiag()))
3369      return;
3370
3371    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3372    LookupQualifiedName(Operators, T1Rec->getDecl());
3373    Operators.suppressDiagnostics();
3374
3375    for (LookupResult::iterator Oper = Operators.begin(),
3376                             OperEnd = Operators.end();
3377         Oper != OperEnd;
3378         ++Oper)
3379      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3380                         Args + 1, NumArgs - 1, CandidateSet,
3381                         /* SuppressUserConversions = */ false);
3382  }
3383}
3384
3385/// AddBuiltinCandidate - Add a candidate for a built-in
3386/// operator. ResultTy and ParamTys are the result and parameter types
3387/// of the built-in candidate, respectively. Args and NumArgs are the
3388/// arguments being passed to the candidate. IsAssignmentOperator
3389/// should be true when this built-in candidate is an assignment
3390/// operator. NumContextualBoolArguments is the number of arguments
3391/// (at the beginning of the argument list) that will be contextually
3392/// converted to bool.
3393void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3394                               Expr **Args, unsigned NumArgs,
3395                               OverloadCandidateSet& CandidateSet,
3396                               bool IsAssignmentOperator,
3397                               unsigned NumContextualBoolArguments) {
3398  // Overload resolution is always an unevaluated context.
3399  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3400
3401  // Add this candidate
3402  CandidateSet.push_back(OverloadCandidate());
3403  OverloadCandidate& Candidate = CandidateSet.back();
3404  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3405  Candidate.Function = 0;
3406  Candidate.IsSurrogate = false;
3407  Candidate.IgnoreObjectArgument = false;
3408  Candidate.BuiltinTypes.ResultTy = ResultTy;
3409  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3410    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3411
3412  // Determine the implicit conversion sequences for each of the
3413  // arguments.
3414  Candidate.Viable = true;
3415  Candidate.Conversions.resize(NumArgs);
3416  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3417    // C++ [over.match.oper]p4:
3418    //   For the built-in assignment operators, conversions of the
3419    //   left operand are restricted as follows:
3420    //     -- no temporaries are introduced to hold the left operand, and
3421    //     -- no user-defined conversions are applied to the left
3422    //        operand to achieve a type match with the left-most
3423    //        parameter of a built-in candidate.
3424    //
3425    // We block these conversions by turning off user-defined
3426    // conversions, since that is the only way that initialization of
3427    // a reference to a non-class type can occur from something that
3428    // is not of the same type.
3429    if (ArgIdx < NumContextualBoolArguments) {
3430      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3431             "Contextual conversion to bool requires bool type");
3432      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3433    } else {
3434      Candidate.Conversions[ArgIdx]
3435        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
3436                                ArgIdx == 0 && IsAssignmentOperator,
3437                                /*InOverloadResolution=*/false);
3438    }
3439    if (Candidate.Conversions[ArgIdx].isBad()) {
3440      Candidate.Viable = false;
3441      Candidate.FailureKind = ovl_fail_bad_conversion;
3442      break;
3443    }
3444  }
3445}
3446
3447/// BuiltinCandidateTypeSet - A set of types that will be used for the
3448/// candidate operator functions for built-in operators (C++
3449/// [over.built]). The types are separated into pointer types and
3450/// enumeration types.
3451class BuiltinCandidateTypeSet  {
3452  /// TypeSet - A set of types.
3453  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3454
3455  /// PointerTypes - The set of pointer types that will be used in the
3456  /// built-in candidates.
3457  TypeSet PointerTypes;
3458
3459  /// MemberPointerTypes - The set of member pointer types that will be
3460  /// used in the built-in candidates.
3461  TypeSet MemberPointerTypes;
3462
3463  /// EnumerationTypes - The set of enumeration types that will be
3464  /// used in the built-in candidates.
3465  TypeSet EnumerationTypes;
3466
3467  /// Sema - The semantic analysis instance where we are building the
3468  /// candidate type set.
3469  Sema &SemaRef;
3470
3471  /// Context - The AST context in which we will build the type sets.
3472  ASTContext &Context;
3473
3474  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3475                                               const Qualifiers &VisibleQuals);
3476  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3477
3478public:
3479  /// iterator - Iterates through the types that are part of the set.
3480  typedef TypeSet::iterator iterator;
3481
3482  BuiltinCandidateTypeSet(Sema &SemaRef)
3483    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3484
3485  void AddTypesConvertedFrom(QualType Ty,
3486                             SourceLocation Loc,
3487                             bool AllowUserConversions,
3488                             bool AllowExplicitConversions,
3489                             const Qualifiers &VisibleTypeConversionsQuals);
3490
3491  /// pointer_begin - First pointer type found;
3492  iterator pointer_begin() { return PointerTypes.begin(); }
3493
3494  /// pointer_end - Past the last pointer type found;
3495  iterator pointer_end() { return PointerTypes.end(); }
3496
3497  /// member_pointer_begin - First member pointer type found;
3498  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3499
3500  /// member_pointer_end - Past the last member pointer type found;
3501  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3502
3503  /// enumeration_begin - First enumeration type found;
3504  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3505
3506  /// enumeration_end - Past the last enumeration type found;
3507  iterator enumeration_end() { return EnumerationTypes.end(); }
3508};
3509
3510/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3511/// the set of pointer types along with any more-qualified variants of
3512/// that type. For example, if @p Ty is "int const *", this routine
3513/// will add "int const *", "int const volatile *", "int const
3514/// restrict *", and "int const volatile restrict *" to the set of
3515/// pointer types. Returns true if the add of @p Ty itself succeeded,
3516/// false otherwise.
3517///
3518/// FIXME: what to do about extended qualifiers?
3519bool
3520BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3521                                             const Qualifiers &VisibleQuals) {
3522
3523  // Insert this type.
3524  if (!PointerTypes.insert(Ty))
3525    return false;
3526
3527  const PointerType *PointerTy = Ty->getAs<PointerType>();
3528  assert(PointerTy && "type was not a pointer type!");
3529
3530  QualType PointeeTy = PointerTy->getPointeeType();
3531  // Don't add qualified variants of arrays. For one, they're not allowed
3532  // (the qualifier would sink to the element type), and for another, the
3533  // only overload situation where it matters is subscript or pointer +- int,
3534  // and those shouldn't have qualifier variants anyway.
3535  if (PointeeTy->isArrayType())
3536    return true;
3537  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3538  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3539    BaseCVR = Array->getElementType().getCVRQualifiers();
3540  bool hasVolatile = VisibleQuals.hasVolatile();
3541  bool hasRestrict = VisibleQuals.hasRestrict();
3542
3543  // Iterate through all strict supersets of BaseCVR.
3544  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3545    if ((CVR | BaseCVR) != CVR) continue;
3546    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3547    // in the types.
3548    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3549    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3550    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3551    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3552  }
3553
3554  return true;
3555}
3556
3557/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3558/// to the set of pointer types along with any more-qualified variants of
3559/// that type. For example, if @p Ty is "int const *", this routine
3560/// will add "int const *", "int const volatile *", "int const
3561/// restrict *", and "int const volatile restrict *" to the set of
3562/// pointer types. Returns true if the add of @p Ty itself succeeded,
3563/// false otherwise.
3564///
3565/// FIXME: what to do about extended qualifiers?
3566bool
3567BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3568    QualType Ty) {
3569  // Insert this type.
3570  if (!MemberPointerTypes.insert(Ty))
3571    return false;
3572
3573  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3574  assert(PointerTy && "type was not a member pointer type!");
3575
3576  QualType PointeeTy = PointerTy->getPointeeType();
3577  // Don't add qualified variants of arrays. For one, they're not allowed
3578  // (the qualifier would sink to the element type), and for another, the
3579  // only overload situation where it matters is subscript or pointer +- int,
3580  // and those shouldn't have qualifier variants anyway.
3581  if (PointeeTy->isArrayType())
3582    return true;
3583  const Type *ClassTy = PointerTy->getClass();
3584
3585  // Iterate through all strict supersets of the pointee type's CVR
3586  // qualifiers.
3587  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3588  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3589    if ((CVR | BaseCVR) != CVR) continue;
3590
3591    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3592    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3593  }
3594
3595  return true;
3596}
3597
3598/// AddTypesConvertedFrom - Add each of the types to which the type @p
3599/// Ty can be implicit converted to the given set of @p Types. We're
3600/// primarily interested in pointer types and enumeration types. We also
3601/// take member pointer types, for the conditional operator.
3602/// AllowUserConversions is true if we should look at the conversion
3603/// functions of a class type, and AllowExplicitConversions if we
3604/// should also include the explicit conversion functions of a class
3605/// type.
3606void
3607BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3608                                               SourceLocation Loc,
3609                                               bool AllowUserConversions,
3610                                               bool AllowExplicitConversions,
3611                                               const Qualifiers &VisibleQuals) {
3612  // Only deal with canonical types.
3613  Ty = Context.getCanonicalType(Ty);
3614
3615  // Look through reference types; they aren't part of the type of an
3616  // expression for the purposes of conversions.
3617  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3618    Ty = RefTy->getPointeeType();
3619
3620  // We don't care about qualifiers on the type.
3621  Ty = Ty.getLocalUnqualifiedType();
3622
3623  // If we're dealing with an array type, decay to the pointer.
3624  if (Ty->isArrayType())
3625    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3626
3627  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3628    QualType PointeeTy = PointerTy->getPointeeType();
3629
3630    // Insert our type, and its more-qualified variants, into the set
3631    // of types.
3632    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3633      return;
3634  } else if (Ty->isMemberPointerType()) {
3635    // Member pointers are far easier, since the pointee can't be converted.
3636    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3637      return;
3638  } else if (Ty->isEnumeralType()) {
3639    EnumerationTypes.insert(Ty);
3640  } else if (AllowUserConversions) {
3641    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3642      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3643        // No conversion functions in incomplete types.
3644        return;
3645      }
3646
3647      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3648      const UnresolvedSetImpl *Conversions
3649        = ClassDecl->getVisibleConversionFunctions();
3650      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3651             E = Conversions->end(); I != E; ++I) {
3652        NamedDecl *D = I.getDecl();
3653        if (isa<UsingShadowDecl>(D))
3654          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3655
3656        // Skip conversion function templates; they don't tell us anything
3657        // about which builtin types we can convert to.
3658        if (isa<FunctionTemplateDecl>(D))
3659          continue;
3660
3661        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3662        if (AllowExplicitConversions || !Conv->isExplicit()) {
3663          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3664                                VisibleQuals);
3665        }
3666      }
3667    }
3668  }
3669}
3670
3671/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3672/// the volatile- and non-volatile-qualified assignment operators for the
3673/// given type to the candidate set.
3674static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3675                                                   QualType T,
3676                                                   Expr **Args,
3677                                                   unsigned NumArgs,
3678                                    OverloadCandidateSet &CandidateSet) {
3679  QualType ParamTypes[2];
3680
3681  // T& operator=(T&, T)
3682  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3683  ParamTypes[1] = T;
3684  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3685                        /*IsAssignmentOperator=*/true);
3686
3687  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3688    // volatile T& operator=(volatile T&, T)
3689    ParamTypes[0]
3690      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3691    ParamTypes[1] = T;
3692    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3693                          /*IsAssignmentOperator=*/true);
3694  }
3695}
3696
3697/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3698/// if any, found in visible type conversion functions found in ArgExpr's type.
3699static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3700    Qualifiers VRQuals;
3701    const RecordType *TyRec;
3702    if (const MemberPointerType *RHSMPType =
3703        ArgExpr->getType()->getAs<MemberPointerType>())
3704      TyRec = RHSMPType->getClass()->getAs<RecordType>();
3705    else
3706      TyRec = ArgExpr->getType()->getAs<RecordType>();
3707    if (!TyRec) {
3708      // Just to be safe, assume the worst case.
3709      VRQuals.addVolatile();
3710      VRQuals.addRestrict();
3711      return VRQuals;
3712    }
3713
3714    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3715    if (!ClassDecl->hasDefinition())
3716      return VRQuals;
3717
3718    const UnresolvedSetImpl *Conversions =
3719      ClassDecl->getVisibleConversionFunctions();
3720
3721    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3722           E = Conversions->end(); I != E; ++I) {
3723      NamedDecl *D = I.getDecl();
3724      if (isa<UsingShadowDecl>(D))
3725        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3726      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3727        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3728        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3729          CanTy = ResTypeRef->getPointeeType();
3730        // Need to go down the pointer/mempointer chain and add qualifiers
3731        // as see them.
3732        bool done = false;
3733        while (!done) {
3734          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3735            CanTy = ResTypePtr->getPointeeType();
3736          else if (const MemberPointerType *ResTypeMPtr =
3737                CanTy->getAs<MemberPointerType>())
3738            CanTy = ResTypeMPtr->getPointeeType();
3739          else
3740            done = true;
3741          if (CanTy.isVolatileQualified())
3742            VRQuals.addVolatile();
3743          if (CanTy.isRestrictQualified())
3744            VRQuals.addRestrict();
3745          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3746            return VRQuals;
3747        }
3748      }
3749    }
3750    return VRQuals;
3751}
3752
3753/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3754/// operator overloads to the candidate set (C++ [over.built]), based
3755/// on the operator @p Op and the arguments given. For example, if the
3756/// operator is a binary '+', this routine might add "int
3757/// operator+(int, int)" to cover integer addition.
3758void
3759Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3760                                   SourceLocation OpLoc,
3761                                   Expr **Args, unsigned NumArgs,
3762                                   OverloadCandidateSet& CandidateSet) {
3763  // The set of "promoted arithmetic types", which are the arithmetic
3764  // types are that preserved by promotion (C++ [over.built]p2). Note
3765  // that the first few of these types are the promoted integral
3766  // types; these types need to be first.
3767  // FIXME: What about complex?
3768  const unsigned FirstIntegralType = 0;
3769  const unsigned LastIntegralType = 13;
3770  const unsigned FirstPromotedIntegralType = 7,
3771                 LastPromotedIntegralType = 13;
3772  const unsigned FirstPromotedArithmeticType = 7,
3773                 LastPromotedArithmeticType = 16;
3774  const unsigned NumArithmeticTypes = 16;
3775  QualType ArithmeticTypes[NumArithmeticTypes] = {
3776    Context.BoolTy, Context.CharTy, Context.WCharTy,
3777// FIXME:   Context.Char16Ty, Context.Char32Ty,
3778    Context.SignedCharTy, Context.ShortTy,
3779    Context.UnsignedCharTy, Context.UnsignedShortTy,
3780    Context.IntTy, Context.LongTy, Context.LongLongTy,
3781    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3782    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3783  };
3784  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3785         "Invalid first promoted integral type");
3786  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3787           == Context.UnsignedLongLongTy &&
3788         "Invalid last promoted integral type");
3789  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3790         "Invalid first promoted arithmetic type");
3791  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3792            == Context.LongDoubleTy &&
3793         "Invalid last promoted arithmetic type");
3794
3795  // Find all of the types that the arguments can convert to, but only
3796  // if the operator we're looking at has built-in operator candidates
3797  // that make use of these types.
3798  Qualifiers VisibleTypeConversionsQuals;
3799  VisibleTypeConversionsQuals.addConst();
3800  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3801    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3802
3803  BuiltinCandidateTypeSet CandidateTypes(*this);
3804  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3805      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3806      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3807      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3808      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3809      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3810    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3811      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3812                                           OpLoc,
3813                                           true,
3814                                           (Op == OO_Exclaim ||
3815                                            Op == OO_AmpAmp ||
3816                                            Op == OO_PipePipe),
3817                                           VisibleTypeConversionsQuals);
3818  }
3819
3820  bool isComparison = false;
3821  switch (Op) {
3822  case OO_None:
3823  case NUM_OVERLOADED_OPERATORS:
3824    assert(false && "Expected an overloaded operator");
3825    break;
3826
3827  case OO_Star: // '*' is either unary or binary
3828    if (NumArgs == 1)
3829      goto UnaryStar;
3830    else
3831      goto BinaryStar;
3832    break;
3833
3834  case OO_Plus: // '+' is either unary or binary
3835    if (NumArgs == 1)
3836      goto UnaryPlus;
3837    else
3838      goto BinaryPlus;
3839    break;
3840
3841  case OO_Minus: // '-' is either unary or binary
3842    if (NumArgs == 1)
3843      goto UnaryMinus;
3844    else
3845      goto BinaryMinus;
3846    break;
3847
3848  case OO_Amp: // '&' is either unary or binary
3849    if (NumArgs == 1)
3850      goto UnaryAmp;
3851    else
3852      goto BinaryAmp;
3853
3854  case OO_PlusPlus:
3855  case OO_MinusMinus:
3856    // C++ [over.built]p3:
3857    //
3858    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3859    //   is either volatile or empty, there exist candidate operator
3860    //   functions of the form
3861    //
3862    //       VQ T&      operator++(VQ T&);
3863    //       T          operator++(VQ T&, int);
3864    //
3865    // C++ [over.built]p4:
3866    //
3867    //   For every pair (T, VQ), where T is an arithmetic type other
3868    //   than bool, and VQ is either volatile or empty, there exist
3869    //   candidate operator functions of the form
3870    //
3871    //       VQ T&      operator--(VQ T&);
3872    //       T          operator--(VQ T&, int);
3873    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3874         Arith < NumArithmeticTypes; ++Arith) {
3875      QualType ArithTy = ArithmeticTypes[Arith];
3876      QualType ParamTypes[2]
3877        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3878
3879      // Non-volatile version.
3880      if (NumArgs == 1)
3881        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3882      else
3883        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3884      // heuristic to reduce number of builtin candidates in the set.
3885      // Add volatile version only if there are conversions to a volatile type.
3886      if (VisibleTypeConversionsQuals.hasVolatile()) {
3887        // Volatile version
3888        ParamTypes[0]
3889          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3890        if (NumArgs == 1)
3891          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3892        else
3893          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3894      }
3895    }
3896
3897    // C++ [over.built]p5:
3898    //
3899    //   For every pair (T, VQ), where T is a cv-qualified or
3900    //   cv-unqualified object type, and VQ is either volatile or
3901    //   empty, there exist candidate operator functions of the form
3902    //
3903    //       T*VQ&      operator++(T*VQ&);
3904    //       T*VQ&      operator--(T*VQ&);
3905    //       T*         operator++(T*VQ&, int);
3906    //       T*         operator--(T*VQ&, int);
3907    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3908         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3909      // Skip pointer types that aren't pointers to object types.
3910      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3911        continue;
3912
3913      QualType ParamTypes[2] = {
3914        Context.getLValueReferenceType(*Ptr), Context.IntTy
3915      };
3916
3917      // Without volatile
3918      if (NumArgs == 1)
3919        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3920      else
3921        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3922
3923      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3924          VisibleTypeConversionsQuals.hasVolatile()) {
3925        // With volatile
3926        ParamTypes[0]
3927          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3928        if (NumArgs == 1)
3929          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3930        else
3931          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3932      }
3933    }
3934    break;
3935
3936  UnaryStar:
3937    // C++ [over.built]p6:
3938    //   For every cv-qualified or cv-unqualified object type T, there
3939    //   exist candidate operator functions of the form
3940    //
3941    //       T&         operator*(T*);
3942    //
3943    // C++ [over.built]p7:
3944    //   For every function type T, there exist candidate operator
3945    //   functions of the form
3946    //       T&         operator*(T*);
3947    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3948         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3949      QualType ParamTy = *Ptr;
3950      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3951      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3952                          &ParamTy, Args, 1, CandidateSet);
3953    }
3954    break;
3955
3956  UnaryPlus:
3957    // C++ [over.built]p8:
3958    //   For every type T, there exist candidate operator functions of
3959    //   the form
3960    //
3961    //       T*         operator+(T*);
3962    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3963         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3964      QualType ParamTy = *Ptr;
3965      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3966    }
3967
3968    // Fall through
3969
3970  UnaryMinus:
3971    // C++ [over.built]p9:
3972    //  For every promoted arithmetic type T, there exist candidate
3973    //  operator functions of the form
3974    //
3975    //       T         operator+(T);
3976    //       T         operator-(T);
3977    for (unsigned Arith = FirstPromotedArithmeticType;
3978         Arith < LastPromotedArithmeticType; ++Arith) {
3979      QualType ArithTy = ArithmeticTypes[Arith];
3980      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3981    }
3982    break;
3983
3984  case OO_Tilde:
3985    // C++ [over.built]p10:
3986    //   For every promoted integral type T, there exist candidate
3987    //   operator functions of the form
3988    //
3989    //        T         operator~(T);
3990    for (unsigned Int = FirstPromotedIntegralType;
3991         Int < LastPromotedIntegralType; ++Int) {
3992      QualType IntTy = ArithmeticTypes[Int];
3993      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3994    }
3995    break;
3996
3997  case OO_New:
3998  case OO_Delete:
3999  case OO_Array_New:
4000  case OO_Array_Delete:
4001  case OO_Call:
4002    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
4003    break;
4004
4005  case OO_Comma:
4006  UnaryAmp:
4007  case OO_Arrow:
4008    // C++ [over.match.oper]p3:
4009    //   -- For the operator ',', the unary operator '&', or the
4010    //      operator '->', the built-in candidates set is empty.
4011    break;
4012
4013  case OO_EqualEqual:
4014  case OO_ExclaimEqual:
4015    // C++ [over.match.oper]p16:
4016    //   For every pointer to member type T, there exist candidate operator
4017    //   functions of the form
4018    //
4019    //        bool operator==(T,T);
4020    //        bool operator!=(T,T);
4021    for (BuiltinCandidateTypeSet::iterator
4022           MemPtr = CandidateTypes.member_pointer_begin(),
4023           MemPtrEnd = CandidateTypes.member_pointer_end();
4024         MemPtr != MemPtrEnd;
4025         ++MemPtr) {
4026      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4027      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4028    }
4029
4030    // Fall through
4031
4032  case OO_Less:
4033  case OO_Greater:
4034  case OO_LessEqual:
4035  case OO_GreaterEqual:
4036    // C++ [over.built]p15:
4037    //
4038    //   For every pointer or enumeration type T, there exist
4039    //   candidate operator functions of the form
4040    //
4041    //        bool       operator<(T, T);
4042    //        bool       operator>(T, T);
4043    //        bool       operator<=(T, T);
4044    //        bool       operator>=(T, T);
4045    //        bool       operator==(T, T);
4046    //        bool       operator!=(T, T);
4047    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4048         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4049      QualType ParamTypes[2] = { *Ptr, *Ptr };
4050      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4051    }
4052    for (BuiltinCandidateTypeSet::iterator Enum
4053           = CandidateTypes.enumeration_begin();
4054         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4055      QualType ParamTypes[2] = { *Enum, *Enum };
4056      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4057    }
4058
4059    // Fall through.
4060    isComparison = true;
4061
4062  BinaryPlus:
4063  BinaryMinus:
4064    if (!isComparison) {
4065      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4066
4067      // C++ [over.built]p13:
4068      //
4069      //   For every cv-qualified or cv-unqualified object type T
4070      //   there exist candidate operator functions of the form
4071      //
4072      //      T*         operator+(T*, ptrdiff_t);
4073      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4074      //      T*         operator-(T*, ptrdiff_t);
4075      //      T*         operator+(ptrdiff_t, T*);
4076      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4077      //
4078      // C++ [over.built]p14:
4079      //
4080      //   For every T, where T is a pointer to object type, there
4081      //   exist candidate operator functions of the form
4082      //
4083      //      ptrdiff_t  operator-(T, T);
4084      for (BuiltinCandidateTypeSet::iterator Ptr
4085             = CandidateTypes.pointer_begin();
4086           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4087        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4088
4089        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4090        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4091
4092        if (Op == OO_Plus) {
4093          // T* operator+(ptrdiff_t, T*);
4094          ParamTypes[0] = ParamTypes[1];
4095          ParamTypes[1] = *Ptr;
4096          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4097        } else {
4098          // ptrdiff_t operator-(T, T);
4099          ParamTypes[1] = *Ptr;
4100          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4101                              Args, 2, CandidateSet);
4102        }
4103      }
4104    }
4105    // Fall through
4106
4107  case OO_Slash:
4108  BinaryStar:
4109  Conditional:
4110    // C++ [over.built]p12:
4111    //
4112    //   For every pair of promoted arithmetic types L and R, there
4113    //   exist candidate operator functions of the form
4114    //
4115    //        LR         operator*(L, R);
4116    //        LR         operator/(L, R);
4117    //        LR         operator+(L, R);
4118    //        LR         operator-(L, R);
4119    //        bool       operator<(L, R);
4120    //        bool       operator>(L, R);
4121    //        bool       operator<=(L, R);
4122    //        bool       operator>=(L, R);
4123    //        bool       operator==(L, R);
4124    //        bool       operator!=(L, R);
4125    //
4126    //   where LR is the result of the usual arithmetic conversions
4127    //   between types L and R.
4128    //
4129    // C++ [over.built]p24:
4130    //
4131    //   For every pair of promoted arithmetic types L and R, there exist
4132    //   candidate operator functions of the form
4133    //
4134    //        LR       operator?(bool, L, R);
4135    //
4136    //   where LR is the result of the usual arithmetic conversions
4137    //   between types L and R.
4138    // Our candidates ignore the first parameter.
4139    for (unsigned Left = FirstPromotedArithmeticType;
4140         Left < LastPromotedArithmeticType; ++Left) {
4141      for (unsigned Right = FirstPromotedArithmeticType;
4142           Right < LastPromotedArithmeticType; ++Right) {
4143        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4144        QualType Result
4145          = isComparison
4146          ? Context.BoolTy
4147          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4148        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4149      }
4150    }
4151    break;
4152
4153  case OO_Percent:
4154  BinaryAmp:
4155  case OO_Caret:
4156  case OO_Pipe:
4157  case OO_LessLess:
4158  case OO_GreaterGreater:
4159    // C++ [over.built]p17:
4160    //
4161    //   For every pair of promoted integral types L and R, there
4162    //   exist candidate operator functions of the form
4163    //
4164    //      LR         operator%(L, R);
4165    //      LR         operator&(L, R);
4166    //      LR         operator^(L, R);
4167    //      LR         operator|(L, R);
4168    //      L          operator<<(L, R);
4169    //      L          operator>>(L, R);
4170    //
4171    //   where LR is the result of the usual arithmetic conversions
4172    //   between types L and R.
4173    for (unsigned Left = FirstPromotedIntegralType;
4174         Left < LastPromotedIntegralType; ++Left) {
4175      for (unsigned Right = FirstPromotedIntegralType;
4176           Right < LastPromotedIntegralType; ++Right) {
4177        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4178        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4179            ? LandR[0]
4180            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4181        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4182      }
4183    }
4184    break;
4185
4186  case OO_Equal:
4187    // C++ [over.built]p20:
4188    //
4189    //   For every pair (T, VQ), where T is an enumeration or
4190    //   pointer to member type and VQ is either volatile or
4191    //   empty, there exist candidate operator functions of the form
4192    //
4193    //        VQ T&      operator=(VQ T&, T);
4194    for (BuiltinCandidateTypeSet::iterator
4195           Enum = CandidateTypes.enumeration_begin(),
4196           EnumEnd = CandidateTypes.enumeration_end();
4197         Enum != EnumEnd; ++Enum)
4198      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4199                                             CandidateSet);
4200    for (BuiltinCandidateTypeSet::iterator
4201           MemPtr = CandidateTypes.member_pointer_begin(),
4202         MemPtrEnd = CandidateTypes.member_pointer_end();
4203         MemPtr != MemPtrEnd; ++MemPtr)
4204      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4205                                             CandidateSet);
4206      // Fall through.
4207
4208  case OO_PlusEqual:
4209  case OO_MinusEqual:
4210    // C++ [over.built]p19:
4211    //
4212    //   For every pair (T, VQ), where T is any type and VQ is either
4213    //   volatile or empty, there exist candidate operator functions
4214    //   of the form
4215    //
4216    //        T*VQ&      operator=(T*VQ&, T*);
4217    //
4218    // C++ [over.built]p21:
4219    //
4220    //   For every pair (T, VQ), where T is a cv-qualified or
4221    //   cv-unqualified object type and VQ is either volatile or
4222    //   empty, there exist candidate operator functions of the form
4223    //
4224    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4225    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4226    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4227         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4228      QualType ParamTypes[2];
4229      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4230
4231      // non-volatile version
4232      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4233      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4234                          /*IsAssigmentOperator=*/Op == OO_Equal);
4235
4236      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4237          VisibleTypeConversionsQuals.hasVolatile()) {
4238        // volatile version
4239        ParamTypes[0]
4240          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4241        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4242                            /*IsAssigmentOperator=*/Op == OO_Equal);
4243      }
4244    }
4245    // Fall through.
4246
4247  case OO_StarEqual:
4248  case OO_SlashEqual:
4249    // C++ [over.built]p18:
4250    //
4251    //   For every triple (L, VQ, R), where L is an arithmetic type,
4252    //   VQ is either volatile or empty, and R is a promoted
4253    //   arithmetic type, there exist candidate operator functions of
4254    //   the form
4255    //
4256    //        VQ L&      operator=(VQ L&, R);
4257    //        VQ L&      operator*=(VQ L&, R);
4258    //        VQ L&      operator/=(VQ L&, R);
4259    //        VQ L&      operator+=(VQ L&, R);
4260    //        VQ L&      operator-=(VQ L&, R);
4261    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4262      for (unsigned Right = FirstPromotedArithmeticType;
4263           Right < LastPromotedArithmeticType; ++Right) {
4264        QualType ParamTypes[2];
4265        ParamTypes[1] = ArithmeticTypes[Right];
4266
4267        // Add this built-in operator as a candidate (VQ is empty).
4268        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4269        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4270                            /*IsAssigmentOperator=*/Op == OO_Equal);
4271
4272        // Add this built-in operator as a candidate (VQ is 'volatile').
4273        if (VisibleTypeConversionsQuals.hasVolatile()) {
4274          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4275          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4276          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4277                              /*IsAssigmentOperator=*/Op == OO_Equal);
4278        }
4279      }
4280    }
4281    break;
4282
4283  case OO_PercentEqual:
4284  case OO_LessLessEqual:
4285  case OO_GreaterGreaterEqual:
4286  case OO_AmpEqual:
4287  case OO_CaretEqual:
4288  case OO_PipeEqual:
4289    // C++ [over.built]p22:
4290    //
4291    //   For every triple (L, VQ, R), where L is an integral type, VQ
4292    //   is either volatile or empty, and R is a promoted integral
4293    //   type, there exist candidate operator functions of the form
4294    //
4295    //        VQ L&       operator%=(VQ L&, R);
4296    //        VQ L&       operator<<=(VQ L&, R);
4297    //        VQ L&       operator>>=(VQ L&, R);
4298    //        VQ L&       operator&=(VQ L&, R);
4299    //        VQ L&       operator^=(VQ L&, R);
4300    //        VQ L&       operator|=(VQ L&, R);
4301    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4302      for (unsigned Right = FirstPromotedIntegralType;
4303           Right < LastPromotedIntegralType; ++Right) {
4304        QualType ParamTypes[2];
4305        ParamTypes[1] = ArithmeticTypes[Right];
4306
4307        // Add this built-in operator as a candidate (VQ is empty).
4308        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4309        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4310        if (VisibleTypeConversionsQuals.hasVolatile()) {
4311          // Add this built-in operator as a candidate (VQ is 'volatile').
4312          ParamTypes[0] = ArithmeticTypes[Left];
4313          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4314          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4315          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4316        }
4317      }
4318    }
4319    break;
4320
4321  case OO_Exclaim: {
4322    // C++ [over.operator]p23:
4323    //
4324    //   There also exist candidate operator functions of the form
4325    //
4326    //        bool        operator!(bool);
4327    //        bool        operator&&(bool, bool);     [BELOW]
4328    //        bool        operator||(bool, bool);     [BELOW]
4329    QualType ParamTy = Context.BoolTy;
4330    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4331                        /*IsAssignmentOperator=*/false,
4332                        /*NumContextualBoolArguments=*/1);
4333    break;
4334  }
4335
4336  case OO_AmpAmp:
4337  case OO_PipePipe: {
4338    // C++ [over.operator]p23:
4339    //
4340    //   There also exist candidate operator functions of the form
4341    //
4342    //        bool        operator!(bool);            [ABOVE]
4343    //        bool        operator&&(bool, bool);
4344    //        bool        operator||(bool, bool);
4345    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4346    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4347                        /*IsAssignmentOperator=*/false,
4348                        /*NumContextualBoolArguments=*/2);
4349    break;
4350  }
4351
4352  case OO_Subscript:
4353    // C++ [over.built]p13:
4354    //
4355    //   For every cv-qualified or cv-unqualified object type T there
4356    //   exist candidate operator functions of the form
4357    //
4358    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4359    //        T&         operator[](T*, ptrdiff_t);
4360    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4361    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4362    //        T&         operator[](ptrdiff_t, T*);
4363    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4364         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4365      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4366      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4367      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4368
4369      // T& operator[](T*, ptrdiff_t)
4370      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4371
4372      // T& operator[](ptrdiff_t, T*);
4373      ParamTypes[0] = ParamTypes[1];
4374      ParamTypes[1] = *Ptr;
4375      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4376    }
4377    break;
4378
4379  case OO_ArrowStar:
4380    // C++ [over.built]p11:
4381    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4382    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4383    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4384    //    there exist candidate operator functions of the form
4385    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4386    //    where CV12 is the union of CV1 and CV2.
4387    {
4388      for (BuiltinCandidateTypeSet::iterator Ptr =
4389             CandidateTypes.pointer_begin();
4390           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4391        QualType C1Ty = (*Ptr);
4392        QualType C1;
4393        QualifierCollector Q1;
4394        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4395          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4396          if (!isa<RecordType>(C1))
4397            continue;
4398          // heuristic to reduce number of builtin candidates in the set.
4399          // Add volatile/restrict version only if there are conversions to a
4400          // volatile/restrict type.
4401          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4402            continue;
4403          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4404            continue;
4405        }
4406        for (BuiltinCandidateTypeSet::iterator
4407             MemPtr = CandidateTypes.member_pointer_begin(),
4408             MemPtrEnd = CandidateTypes.member_pointer_end();
4409             MemPtr != MemPtrEnd; ++MemPtr) {
4410          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4411          QualType C2 = QualType(mptr->getClass(), 0);
4412          C2 = C2.getUnqualifiedType();
4413          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4414            break;
4415          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4416          // build CV12 T&
4417          QualType T = mptr->getPointeeType();
4418          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4419              T.isVolatileQualified())
4420            continue;
4421          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4422              T.isRestrictQualified())
4423            continue;
4424          T = Q1.apply(T);
4425          QualType ResultTy = Context.getLValueReferenceType(T);
4426          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4427        }
4428      }
4429    }
4430    break;
4431
4432  case OO_Conditional:
4433    // Note that we don't consider the first argument, since it has been
4434    // contextually converted to bool long ago. The candidates below are
4435    // therefore added as binary.
4436    //
4437    // C++ [over.built]p24:
4438    //   For every type T, where T is a pointer or pointer-to-member type,
4439    //   there exist candidate operator functions of the form
4440    //
4441    //        T        operator?(bool, T, T);
4442    //
4443    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4444         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4445      QualType ParamTypes[2] = { *Ptr, *Ptr };
4446      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4447    }
4448    for (BuiltinCandidateTypeSet::iterator Ptr =
4449           CandidateTypes.member_pointer_begin(),
4450         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4451      QualType ParamTypes[2] = { *Ptr, *Ptr };
4452      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4453    }
4454    goto Conditional;
4455  }
4456}
4457
4458/// \brief Add function candidates found via argument-dependent lookup
4459/// to the set of overloading candidates.
4460///
4461/// This routine performs argument-dependent name lookup based on the
4462/// given function name (which may also be an operator name) and adds
4463/// all of the overload candidates found by ADL to the overload
4464/// candidate set (C++ [basic.lookup.argdep]).
4465void
4466Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4467                                           bool Operator,
4468                                           Expr **Args, unsigned NumArgs,
4469                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4470                                           OverloadCandidateSet& CandidateSet,
4471                                           bool PartialOverloading) {
4472  ADLResult Fns;
4473
4474  // FIXME: This approach for uniquing ADL results (and removing
4475  // redundant candidates from the set) relies on pointer-equality,
4476  // which means we need to key off the canonical decl.  However,
4477  // always going back to the canonical decl might not get us the
4478  // right set of default arguments.  What default arguments are
4479  // we supposed to consider on ADL candidates, anyway?
4480
4481  // FIXME: Pass in the explicit template arguments?
4482  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4483
4484  // Erase all of the candidates we already knew about.
4485  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4486                                   CandEnd = CandidateSet.end();
4487       Cand != CandEnd; ++Cand)
4488    if (Cand->Function) {
4489      Fns.erase(Cand->Function);
4490      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4491        Fns.erase(FunTmpl);
4492    }
4493
4494  // For each of the ADL candidates we found, add it to the overload
4495  // set.
4496  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4497    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4498    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4499      if (ExplicitTemplateArgs)
4500        continue;
4501
4502      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4503                           false, PartialOverloading);
4504    } else
4505      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4506                                   FoundDecl, ExplicitTemplateArgs,
4507                                   Args, NumArgs, CandidateSet);
4508  }
4509}
4510
4511/// isBetterOverloadCandidate - Determines whether the first overload
4512/// candidate is a better candidate than the second (C++ 13.3.3p1).
4513bool
4514Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4515                                const OverloadCandidate& Cand2,
4516                                SourceLocation Loc) {
4517  // Define viable functions to be better candidates than non-viable
4518  // functions.
4519  if (!Cand2.Viable)
4520    return Cand1.Viable;
4521  else if (!Cand1.Viable)
4522    return false;
4523
4524  // C++ [over.match.best]p1:
4525  //
4526  //   -- if F is a static member function, ICS1(F) is defined such
4527  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4528  //      any function G, and, symmetrically, ICS1(G) is neither
4529  //      better nor worse than ICS1(F).
4530  unsigned StartArg = 0;
4531  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4532    StartArg = 1;
4533
4534  // C++ [over.match.best]p1:
4535  //   A viable function F1 is defined to be a better function than another
4536  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4537  //   conversion sequence than ICSi(F2), and then...
4538  unsigned NumArgs = Cand1.Conversions.size();
4539  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4540  bool HasBetterConversion = false;
4541  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4542    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4543                                               Cand2.Conversions[ArgIdx])) {
4544    case ImplicitConversionSequence::Better:
4545      // Cand1 has a better conversion sequence.
4546      HasBetterConversion = true;
4547      break;
4548
4549    case ImplicitConversionSequence::Worse:
4550      // Cand1 can't be better than Cand2.
4551      return false;
4552
4553    case ImplicitConversionSequence::Indistinguishable:
4554      // Do nothing.
4555      break;
4556    }
4557  }
4558
4559  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4560  //       ICSj(F2), or, if not that,
4561  if (HasBetterConversion)
4562    return true;
4563
4564  //     - F1 is a non-template function and F2 is a function template
4565  //       specialization, or, if not that,
4566  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4567      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4568    return true;
4569
4570  //   -- F1 and F2 are function template specializations, and the function
4571  //      template for F1 is more specialized than the template for F2
4572  //      according to the partial ordering rules described in 14.5.5.2, or,
4573  //      if not that,
4574  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4575      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4576    if (FunctionTemplateDecl *BetterTemplate
4577          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4578                                       Cand2.Function->getPrimaryTemplate(),
4579                                       Loc,
4580                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4581                                                             : TPOC_Call))
4582      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4583
4584  //   -- the context is an initialization by user-defined conversion
4585  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4586  //      from the return type of F1 to the destination type (i.e.,
4587  //      the type of the entity being initialized) is a better
4588  //      conversion sequence than the standard conversion sequence
4589  //      from the return type of F2 to the destination type.
4590  if (Cand1.Function && Cand2.Function &&
4591      isa<CXXConversionDecl>(Cand1.Function) &&
4592      isa<CXXConversionDecl>(Cand2.Function)) {
4593    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4594                                               Cand2.FinalConversion)) {
4595    case ImplicitConversionSequence::Better:
4596      // Cand1 has a better conversion sequence.
4597      return true;
4598
4599    case ImplicitConversionSequence::Worse:
4600      // Cand1 can't be better than Cand2.
4601      return false;
4602
4603    case ImplicitConversionSequence::Indistinguishable:
4604      // Do nothing
4605      break;
4606    }
4607  }
4608
4609  return false;
4610}
4611
4612/// \brief Computes the best viable function (C++ 13.3.3)
4613/// within an overload candidate set.
4614///
4615/// \param CandidateSet the set of candidate functions.
4616///
4617/// \param Loc the location of the function name (or operator symbol) for
4618/// which overload resolution occurs.
4619///
4620/// \param Best f overload resolution was successful or found a deleted
4621/// function, Best points to the candidate function found.
4622///
4623/// \returns The result of overload resolution.
4624OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4625                                           SourceLocation Loc,
4626                                        OverloadCandidateSet::iterator& Best) {
4627  // Find the best viable function.
4628  Best = CandidateSet.end();
4629  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4630       Cand != CandidateSet.end(); ++Cand) {
4631    if (Cand->Viable) {
4632      if (Best == CandidateSet.end() ||
4633          isBetterOverloadCandidate(*Cand, *Best, Loc))
4634        Best = Cand;
4635    }
4636  }
4637
4638  // If we didn't find any viable functions, abort.
4639  if (Best == CandidateSet.end())
4640    return OR_No_Viable_Function;
4641
4642  // Make sure that this function is better than every other viable
4643  // function. If not, we have an ambiguity.
4644  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4645       Cand != CandidateSet.end(); ++Cand) {
4646    if (Cand->Viable &&
4647        Cand != Best &&
4648        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4649      Best = CandidateSet.end();
4650      return OR_Ambiguous;
4651    }
4652  }
4653
4654  // Best is the best viable function.
4655  if (Best->Function &&
4656      (Best->Function->isDeleted() ||
4657       Best->Function->getAttr<UnavailableAttr>()))
4658    return OR_Deleted;
4659
4660  // C++ [basic.def.odr]p2:
4661  //   An overloaded function is used if it is selected by overload resolution
4662  //   when referred to from a potentially-evaluated expression. [Note: this
4663  //   covers calls to named functions (5.2.2), operator overloading
4664  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4665  //   placement new (5.3.4), as well as non-default initialization (8.5).
4666  if (Best->Function)
4667    MarkDeclarationReferenced(Loc, Best->Function);
4668  return OR_Success;
4669}
4670
4671namespace {
4672
4673enum OverloadCandidateKind {
4674  oc_function,
4675  oc_method,
4676  oc_constructor,
4677  oc_function_template,
4678  oc_method_template,
4679  oc_constructor_template,
4680  oc_implicit_default_constructor,
4681  oc_implicit_copy_constructor,
4682  oc_implicit_copy_assignment
4683};
4684
4685OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4686                                                FunctionDecl *Fn,
4687                                                std::string &Description) {
4688  bool isTemplate = false;
4689
4690  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4691    isTemplate = true;
4692    Description = S.getTemplateArgumentBindingsText(
4693      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4694  }
4695
4696  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4697    if (!Ctor->isImplicit())
4698      return isTemplate ? oc_constructor_template : oc_constructor;
4699
4700    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4701                                     : oc_implicit_default_constructor;
4702  }
4703
4704  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4705    // This actually gets spelled 'candidate function' for now, but
4706    // it doesn't hurt to split it out.
4707    if (!Meth->isImplicit())
4708      return isTemplate ? oc_method_template : oc_method;
4709
4710    assert(Meth->isCopyAssignment()
4711           && "implicit method is not copy assignment operator?");
4712    return oc_implicit_copy_assignment;
4713  }
4714
4715  return isTemplate ? oc_function_template : oc_function;
4716}
4717
4718} // end anonymous namespace
4719
4720// Notes the location of an overload candidate.
4721void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4722  std::string FnDesc;
4723  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4724  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4725    << (unsigned) K << FnDesc;
4726}
4727
4728/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4729/// "lead" diagnostic; it will be given two arguments, the source and
4730/// target types of the conversion.
4731void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4732                                       SourceLocation CaretLoc,
4733                                       const PartialDiagnostic &PDiag) {
4734  Diag(CaretLoc, PDiag)
4735    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4736  for (AmbiguousConversionSequence::const_iterator
4737         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4738    NoteOverloadCandidate(*I);
4739  }
4740}
4741
4742namespace {
4743
4744void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4745  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4746  assert(Conv.isBad());
4747  assert(Cand->Function && "for now, candidate must be a function");
4748  FunctionDecl *Fn = Cand->Function;
4749
4750  // There's a conversion slot for the object argument if this is a
4751  // non-constructor method.  Note that 'I' corresponds the
4752  // conversion-slot index.
4753  bool isObjectArgument = false;
4754  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4755    if (I == 0)
4756      isObjectArgument = true;
4757    else
4758      I--;
4759  }
4760
4761  std::string FnDesc;
4762  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4763
4764  Expr *FromExpr = Conv.Bad.FromExpr;
4765  QualType FromTy = Conv.Bad.getFromType();
4766  QualType ToTy = Conv.Bad.getToType();
4767
4768  if (FromTy == S.Context.OverloadTy) {
4769    assert(FromExpr && "overload set argument came from implicit argument?");
4770    Expr *E = FromExpr->IgnoreParens();
4771    if (isa<UnaryOperator>(E))
4772      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4773    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4774
4775    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4776      << (unsigned) FnKind << FnDesc
4777      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4778      << ToTy << Name << I+1;
4779    return;
4780  }
4781
4782  // Do some hand-waving analysis to see if the non-viability is due
4783  // to a qualifier mismatch.
4784  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4785  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4786  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4787    CToTy = RT->getPointeeType();
4788  else {
4789    // TODO: detect and diagnose the full richness of const mismatches.
4790    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4791      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4792        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4793  }
4794
4795  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4796      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4797    // It is dumb that we have to do this here.
4798    while (isa<ArrayType>(CFromTy))
4799      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4800    while (isa<ArrayType>(CToTy))
4801      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4802
4803    Qualifiers FromQs = CFromTy.getQualifiers();
4804    Qualifiers ToQs = CToTy.getQualifiers();
4805
4806    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4807      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4808        << (unsigned) FnKind << FnDesc
4809        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4810        << FromTy
4811        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4812        << (unsigned) isObjectArgument << I+1;
4813      return;
4814    }
4815
4816    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4817    assert(CVR && "unexpected qualifiers mismatch");
4818
4819    if (isObjectArgument) {
4820      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4821        << (unsigned) FnKind << FnDesc
4822        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4823        << FromTy << (CVR - 1);
4824    } else {
4825      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4826        << (unsigned) FnKind << FnDesc
4827        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4828        << FromTy << (CVR - 1) << I+1;
4829    }
4830    return;
4831  }
4832
4833  // Diagnose references or pointers to incomplete types differently,
4834  // since it's far from impossible that the incompleteness triggered
4835  // the failure.
4836  QualType TempFromTy = FromTy.getNonReferenceType();
4837  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4838    TempFromTy = PTy->getPointeeType();
4839  if (TempFromTy->isIncompleteType()) {
4840    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4841      << (unsigned) FnKind << FnDesc
4842      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4843      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4844    return;
4845  }
4846
4847  // TODO: specialize more based on the kind of mismatch
4848  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4849    << (unsigned) FnKind << FnDesc
4850    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4851    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4852}
4853
4854void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4855                           unsigned NumFormalArgs) {
4856  // TODO: treat calls to a missing default constructor as a special case
4857
4858  FunctionDecl *Fn = Cand->Function;
4859  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4860
4861  unsigned MinParams = Fn->getMinRequiredArguments();
4862
4863  // at least / at most / exactly
4864  unsigned mode, modeCount;
4865  if (NumFormalArgs < MinParams) {
4866    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4867    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4868      mode = 0; // "at least"
4869    else
4870      mode = 2; // "exactly"
4871    modeCount = MinParams;
4872  } else {
4873    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4874    if (MinParams != FnTy->getNumArgs())
4875      mode = 1; // "at most"
4876    else
4877      mode = 2; // "exactly"
4878    modeCount = FnTy->getNumArgs();
4879  }
4880
4881  std::string Description;
4882  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4883
4884  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4885    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4886}
4887
4888/// Diagnose a failed template-argument deduction.
4889void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4890                          Expr **Args, unsigned NumArgs) {
4891  FunctionDecl *Fn = Cand->Function; // pattern
4892
4893  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4894                                   Cand->DeductionFailure.TemplateParameter);
4895
4896  switch (Cand->DeductionFailure.Result) {
4897  case Sema::TDK_Success:
4898    llvm_unreachable("TDK_success while diagnosing bad deduction");
4899
4900  case Sema::TDK_Incomplete: {
4901    NamedDecl *ParamD;
4902    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4903    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4904    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4905    assert(ParamD && "no parameter found for incomplete deduction result");
4906    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4907      << ParamD->getDeclName();
4908    return;
4909  }
4910
4911  // TODO: diagnose these individually, then kill off
4912  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4913  case Sema::TDK_InstantiationDepth:
4914  case Sema::TDK_Inconsistent:
4915  case Sema::TDK_InconsistentQuals:
4916  case Sema::TDK_SubstitutionFailure:
4917  case Sema::TDK_NonDeducedMismatch:
4918  case Sema::TDK_TooManyArguments:
4919  case Sema::TDK_TooFewArguments:
4920  case Sema::TDK_InvalidExplicitArguments:
4921  case Sema::TDK_FailedOverloadResolution:
4922    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4923    return;
4924  }
4925}
4926
4927/// Generates a 'note' diagnostic for an overload candidate.  We've
4928/// already generated a primary error at the call site.
4929///
4930/// It really does need to be a single diagnostic with its caret
4931/// pointed at the candidate declaration.  Yes, this creates some
4932/// major challenges of technical writing.  Yes, this makes pointing
4933/// out problems with specific arguments quite awkward.  It's still
4934/// better than generating twenty screens of text for every failed
4935/// overload.
4936///
4937/// It would be great to be able to express per-candidate problems
4938/// more richly for those diagnostic clients that cared, but we'd
4939/// still have to be just as careful with the default diagnostics.
4940void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4941                           Expr **Args, unsigned NumArgs) {
4942  FunctionDecl *Fn = Cand->Function;
4943
4944  // Note deleted candidates, but only if they're viable.
4945  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4946    std::string FnDesc;
4947    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4948
4949    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4950      << FnKind << FnDesc << Fn->isDeleted();
4951    return;
4952  }
4953
4954  // We don't really have anything else to say about viable candidates.
4955  if (Cand->Viable) {
4956    S.NoteOverloadCandidate(Fn);
4957    return;
4958  }
4959
4960  switch (Cand->FailureKind) {
4961  case ovl_fail_too_many_arguments:
4962  case ovl_fail_too_few_arguments:
4963    return DiagnoseArityMismatch(S, Cand, NumArgs);
4964
4965  case ovl_fail_bad_deduction:
4966    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4967
4968  case ovl_fail_trivial_conversion:
4969  case ovl_fail_bad_final_conversion:
4970  case ovl_fail_final_conversion_not_exact:
4971    return S.NoteOverloadCandidate(Fn);
4972
4973  case ovl_fail_bad_conversion: {
4974    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4975    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4976      if (Cand->Conversions[I].isBad())
4977        return DiagnoseBadConversion(S, Cand, I);
4978
4979    // FIXME: this currently happens when we're called from SemaInit
4980    // when user-conversion overload fails.  Figure out how to handle
4981    // those conditions and diagnose them well.
4982    return S.NoteOverloadCandidate(Fn);
4983  }
4984  }
4985}
4986
4987void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4988  // Desugar the type of the surrogate down to a function type,
4989  // retaining as many typedefs as possible while still showing
4990  // the function type (and, therefore, its parameter types).
4991  QualType FnType = Cand->Surrogate->getConversionType();
4992  bool isLValueReference = false;
4993  bool isRValueReference = false;
4994  bool isPointer = false;
4995  if (const LValueReferenceType *FnTypeRef =
4996        FnType->getAs<LValueReferenceType>()) {
4997    FnType = FnTypeRef->getPointeeType();
4998    isLValueReference = true;
4999  } else if (const RValueReferenceType *FnTypeRef =
5000               FnType->getAs<RValueReferenceType>()) {
5001    FnType = FnTypeRef->getPointeeType();
5002    isRValueReference = true;
5003  }
5004  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
5005    FnType = FnTypePtr->getPointeeType();
5006    isPointer = true;
5007  }
5008  // Desugar down to a function type.
5009  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5010  // Reconstruct the pointer/reference as appropriate.
5011  if (isPointer) FnType = S.Context.getPointerType(FnType);
5012  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5013  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5014
5015  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5016    << FnType;
5017}
5018
5019void NoteBuiltinOperatorCandidate(Sema &S,
5020                                  const char *Opc,
5021                                  SourceLocation OpLoc,
5022                                  OverloadCandidate *Cand) {
5023  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5024  std::string TypeStr("operator");
5025  TypeStr += Opc;
5026  TypeStr += "(";
5027  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5028  if (Cand->Conversions.size() == 1) {
5029    TypeStr += ")";
5030    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5031  } else {
5032    TypeStr += ", ";
5033    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5034    TypeStr += ")";
5035    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5036  }
5037}
5038
5039void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5040                                  OverloadCandidate *Cand) {
5041  unsigned NoOperands = Cand->Conversions.size();
5042  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5043    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5044    if (ICS.isBad()) break; // all meaningless after first invalid
5045    if (!ICS.isAmbiguous()) continue;
5046
5047    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5048                              S.PDiag(diag::note_ambiguous_type_conversion));
5049  }
5050}
5051
5052SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5053  if (Cand->Function)
5054    return Cand->Function->getLocation();
5055  if (Cand->IsSurrogate)
5056    return Cand->Surrogate->getLocation();
5057  return SourceLocation();
5058}
5059
5060struct CompareOverloadCandidatesForDisplay {
5061  Sema &S;
5062  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5063
5064  bool operator()(const OverloadCandidate *L,
5065                  const OverloadCandidate *R) {
5066    // Fast-path this check.
5067    if (L == R) return false;
5068
5069    // Order first by viability.
5070    if (L->Viable) {
5071      if (!R->Viable) return true;
5072
5073      // TODO: introduce a tri-valued comparison for overload
5074      // candidates.  Would be more worthwhile if we had a sort
5075      // that could exploit it.
5076      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5077      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5078    } else if (R->Viable)
5079      return false;
5080
5081    assert(L->Viable == R->Viable);
5082
5083    // Criteria by which we can sort non-viable candidates:
5084    if (!L->Viable) {
5085      // 1. Arity mismatches come after other candidates.
5086      if (L->FailureKind == ovl_fail_too_many_arguments ||
5087          L->FailureKind == ovl_fail_too_few_arguments)
5088        return false;
5089      if (R->FailureKind == ovl_fail_too_many_arguments ||
5090          R->FailureKind == ovl_fail_too_few_arguments)
5091        return true;
5092
5093      // 2. Bad conversions come first and are ordered by the number
5094      // of bad conversions and quality of good conversions.
5095      if (L->FailureKind == ovl_fail_bad_conversion) {
5096        if (R->FailureKind != ovl_fail_bad_conversion)
5097          return true;
5098
5099        // If there's any ordering between the defined conversions...
5100        // FIXME: this might not be transitive.
5101        assert(L->Conversions.size() == R->Conversions.size());
5102
5103        int leftBetter = 0;
5104        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5105        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5106          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5107                                                       R->Conversions[I])) {
5108          case ImplicitConversionSequence::Better:
5109            leftBetter++;
5110            break;
5111
5112          case ImplicitConversionSequence::Worse:
5113            leftBetter--;
5114            break;
5115
5116          case ImplicitConversionSequence::Indistinguishable:
5117            break;
5118          }
5119        }
5120        if (leftBetter > 0) return true;
5121        if (leftBetter < 0) return false;
5122
5123      } else if (R->FailureKind == ovl_fail_bad_conversion)
5124        return false;
5125
5126      // TODO: others?
5127    }
5128
5129    // Sort everything else by location.
5130    SourceLocation LLoc = GetLocationForCandidate(L);
5131    SourceLocation RLoc = GetLocationForCandidate(R);
5132
5133    // Put candidates without locations (e.g. builtins) at the end.
5134    if (LLoc.isInvalid()) return false;
5135    if (RLoc.isInvalid()) return true;
5136
5137    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5138  }
5139};
5140
5141/// CompleteNonViableCandidate - Normally, overload resolution only
5142/// computes up to the first
5143void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5144                                Expr **Args, unsigned NumArgs) {
5145  assert(!Cand->Viable);
5146
5147  // Don't do anything on failures other than bad conversion.
5148  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5149
5150  // Skip forward to the first bad conversion.
5151  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5152  unsigned ConvCount = Cand->Conversions.size();
5153  while (true) {
5154    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5155    ConvIdx++;
5156    if (Cand->Conversions[ConvIdx - 1].isBad())
5157      break;
5158  }
5159
5160  if (ConvIdx == ConvCount)
5161    return;
5162
5163  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5164         "remaining conversion is initialized?");
5165
5166  // FIXME: this should probably be preserved from the overload
5167  // operation somehow.
5168  bool SuppressUserConversions = false;
5169
5170  const FunctionProtoType* Proto;
5171  unsigned ArgIdx = ConvIdx;
5172
5173  if (Cand->IsSurrogate) {
5174    QualType ConvType
5175      = Cand->Surrogate->getConversionType().getNonReferenceType();
5176    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5177      ConvType = ConvPtrType->getPointeeType();
5178    Proto = ConvType->getAs<FunctionProtoType>();
5179    ArgIdx--;
5180  } else if (Cand->Function) {
5181    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5182    if (isa<CXXMethodDecl>(Cand->Function) &&
5183        !isa<CXXConstructorDecl>(Cand->Function))
5184      ArgIdx--;
5185  } else {
5186    // Builtin binary operator with a bad first conversion.
5187    assert(ConvCount <= 3);
5188    for (; ConvIdx != ConvCount; ++ConvIdx)
5189      Cand->Conversions[ConvIdx]
5190        = TryCopyInitialization(S, Args[ConvIdx],
5191                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
5192                                SuppressUserConversions,
5193                                /*InOverloadResolution*/ true);
5194    return;
5195  }
5196
5197  // Fill in the rest of the conversions.
5198  unsigned NumArgsInProto = Proto->getNumArgs();
5199  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5200    if (ArgIdx < NumArgsInProto)
5201      Cand->Conversions[ConvIdx]
5202        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
5203                                SuppressUserConversions,
5204                                /*InOverloadResolution=*/true);
5205    else
5206      Cand->Conversions[ConvIdx].setEllipsis();
5207  }
5208}
5209
5210} // end anonymous namespace
5211
5212/// PrintOverloadCandidates - When overload resolution fails, prints
5213/// diagnostic messages containing the candidates in the candidate
5214/// set.
5215void
5216Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5217                              OverloadCandidateDisplayKind OCD,
5218                              Expr **Args, unsigned NumArgs,
5219                              const char *Opc,
5220                              SourceLocation OpLoc) {
5221  // Sort the candidates by viability and position.  Sorting directly would
5222  // be prohibitive, so we make a set of pointers and sort those.
5223  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5224  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5225  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5226                                  LastCand = CandidateSet.end();
5227       Cand != LastCand; ++Cand) {
5228    if (Cand->Viable)
5229      Cands.push_back(Cand);
5230    else if (OCD == OCD_AllCandidates) {
5231      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5232      Cands.push_back(Cand);
5233    }
5234  }
5235
5236  std::sort(Cands.begin(), Cands.end(),
5237            CompareOverloadCandidatesForDisplay(*this));
5238
5239  bool ReportedAmbiguousConversions = false;
5240
5241  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5242  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5243    OverloadCandidate *Cand = *I;
5244
5245    if (Cand->Function)
5246      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5247    else if (Cand->IsSurrogate)
5248      NoteSurrogateCandidate(*this, Cand);
5249
5250    // This a builtin candidate.  We do not, in general, want to list
5251    // every possible builtin candidate.
5252    else if (Cand->Viable) {
5253      // Generally we only see ambiguities including viable builtin
5254      // operators if overload resolution got screwed up by an
5255      // ambiguous user-defined conversion.
5256      //
5257      // FIXME: It's quite possible for different conversions to see
5258      // different ambiguities, though.
5259      if (!ReportedAmbiguousConversions) {
5260        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5261        ReportedAmbiguousConversions = true;
5262      }
5263
5264      // If this is a viable builtin, print it.
5265      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5266    }
5267  }
5268}
5269
5270static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5271  if (isa<UnresolvedLookupExpr>(E))
5272    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5273
5274  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5275}
5276
5277/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5278/// an overloaded function (C++ [over.over]), where @p From is an
5279/// expression with overloaded function type and @p ToType is the type
5280/// we're trying to resolve to. For example:
5281///
5282/// @code
5283/// int f(double);
5284/// int f(int);
5285///
5286/// int (*pfd)(double) = f; // selects f(double)
5287/// @endcode
5288///
5289/// This routine returns the resulting FunctionDecl if it could be
5290/// resolved, and NULL otherwise. When @p Complain is true, this
5291/// routine will emit diagnostics if there is an error.
5292FunctionDecl *
5293Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5294                                         bool Complain,
5295                                         DeclAccessPair &FoundResult) {
5296  QualType FunctionType = ToType;
5297  bool IsMember = false;
5298  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5299    FunctionType = ToTypePtr->getPointeeType();
5300  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5301    FunctionType = ToTypeRef->getPointeeType();
5302  else if (const MemberPointerType *MemTypePtr =
5303                    ToType->getAs<MemberPointerType>()) {
5304    FunctionType = MemTypePtr->getPointeeType();
5305    IsMember = true;
5306  }
5307
5308  // C++ [over.over]p1:
5309  //   [...] [Note: any redundant set of parentheses surrounding the
5310  //   overloaded function name is ignored (5.1). ]
5311  // C++ [over.over]p1:
5312  //   [...] The overloaded function name can be preceded by the &
5313  //   operator.
5314  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5315  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5316  if (OvlExpr->hasExplicitTemplateArgs()) {
5317    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5318    ExplicitTemplateArgs = &ETABuffer;
5319  }
5320
5321  // We expect a pointer or reference to function, or a function pointer.
5322  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5323  if (!FunctionType->isFunctionType()) {
5324    if (Complain)
5325      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5326        << OvlExpr->getName() << ToType;
5327
5328    return 0;
5329  }
5330
5331  assert(From->getType() == Context.OverloadTy);
5332
5333  // Look through all of the overloaded functions, searching for one
5334  // whose type matches exactly.
5335  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5336  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5337
5338  bool FoundNonTemplateFunction = false;
5339  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5340         E = OvlExpr->decls_end(); I != E; ++I) {
5341    // Look through any using declarations to find the underlying function.
5342    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5343
5344    // C++ [over.over]p3:
5345    //   Non-member functions and static member functions match
5346    //   targets of type "pointer-to-function" or "reference-to-function."
5347    //   Nonstatic member functions match targets of
5348    //   type "pointer-to-member-function."
5349    // Note that according to DR 247, the containing class does not matter.
5350
5351    if (FunctionTemplateDecl *FunctionTemplate
5352          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5353      if (CXXMethodDecl *Method
5354            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5355        // Skip non-static function templates when converting to pointer, and
5356        // static when converting to member pointer.
5357        if (Method->isStatic() == IsMember)
5358          continue;
5359      } else if (IsMember)
5360        continue;
5361
5362      // C++ [over.over]p2:
5363      //   If the name is a function template, template argument deduction is
5364      //   done (14.8.2.2), and if the argument deduction succeeds, the
5365      //   resulting template argument list is used to generate a single
5366      //   function template specialization, which is added to the set of
5367      //   overloaded functions considered.
5368      // FIXME: We don't really want to build the specialization here, do we?
5369      FunctionDecl *Specialization = 0;
5370      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5371      if (TemplateDeductionResult Result
5372            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5373                                      FunctionType, Specialization, Info)) {
5374        // FIXME: make a note of the failed deduction for diagnostics.
5375        (void)Result;
5376      } else {
5377        // FIXME: If the match isn't exact, shouldn't we just drop this as
5378        // a candidate? Find a testcase before changing the code.
5379        assert(FunctionType
5380                 == Context.getCanonicalType(Specialization->getType()));
5381        Matches.push_back(std::make_pair(I.getPair(),
5382                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5383      }
5384
5385      continue;
5386    }
5387
5388    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5389      // Skip non-static functions when converting to pointer, and static
5390      // when converting to member pointer.
5391      if (Method->isStatic() == IsMember)
5392        continue;
5393
5394      // If we have explicit template arguments, skip non-templates.
5395      if (OvlExpr->hasExplicitTemplateArgs())
5396        continue;
5397    } else if (IsMember)
5398      continue;
5399
5400    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5401      QualType ResultTy;
5402      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5403          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5404                               ResultTy)) {
5405        Matches.push_back(std::make_pair(I.getPair(),
5406                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5407        FoundNonTemplateFunction = true;
5408      }
5409    }
5410  }
5411
5412  // If there were 0 or 1 matches, we're done.
5413  if (Matches.empty()) {
5414    if (Complain) {
5415      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5416        << OvlExpr->getName() << FunctionType;
5417      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5418                                 E = OvlExpr->decls_end();
5419           I != E; ++I)
5420        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5421          NoteOverloadCandidate(F);
5422    }
5423
5424    return 0;
5425  } else if (Matches.size() == 1) {
5426    FunctionDecl *Result = Matches[0].second;
5427    FoundResult = Matches[0].first;
5428    MarkDeclarationReferenced(From->getLocStart(), Result);
5429    if (Complain)
5430      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5431    return Result;
5432  }
5433
5434  // C++ [over.over]p4:
5435  //   If more than one function is selected, [...]
5436  if (!FoundNonTemplateFunction) {
5437    //   [...] and any given function template specialization F1 is
5438    //   eliminated if the set contains a second function template
5439    //   specialization whose function template is more specialized
5440    //   than the function template of F1 according to the partial
5441    //   ordering rules of 14.5.5.2.
5442
5443    // The algorithm specified above is quadratic. We instead use a
5444    // two-pass algorithm (similar to the one used to identify the
5445    // best viable function in an overload set) that identifies the
5446    // best function template (if it exists).
5447
5448    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5449    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5450      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5451
5452    UnresolvedSetIterator Result =
5453        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5454                           TPOC_Other, From->getLocStart(),
5455                           PDiag(),
5456                           PDiag(diag::err_addr_ovl_ambiguous)
5457                               << Matches[0].second->getDeclName(),
5458                           PDiag(diag::note_ovl_candidate)
5459                               << (unsigned) oc_function_template);
5460    assert(Result != MatchesCopy.end() && "no most-specialized template");
5461    MarkDeclarationReferenced(From->getLocStart(), *Result);
5462    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5463    if (Complain)
5464      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5465    return cast<FunctionDecl>(*Result);
5466  }
5467
5468  //   [...] any function template specializations in the set are
5469  //   eliminated if the set also contains a non-template function, [...]
5470  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5471    if (Matches[I].second->getPrimaryTemplate() == 0)
5472      ++I;
5473    else {
5474      Matches[I] = Matches[--N];
5475      Matches.set_size(N);
5476    }
5477  }
5478
5479  // [...] After such eliminations, if any, there shall remain exactly one
5480  // selected function.
5481  if (Matches.size() == 1) {
5482    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5483    FoundResult = Matches[0].first;
5484    if (Complain)
5485      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5486    return cast<FunctionDecl>(Matches[0].second);
5487  }
5488
5489  // FIXME: We should probably return the same thing that BestViableFunction
5490  // returns (even if we issue the diagnostics here).
5491  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5492    << Matches[0].second->getDeclName();
5493  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5494    NoteOverloadCandidate(Matches[I].second);
5495  return 0;
5496}
5497
5498/// \brief Given an expression that refers to an overloaded function, try to
5499/// resolve that overloaded function expression down to a single function.
5500///
5501/// This routine can only resolve template-ids that refer to a single function
5502/// template, where that template-id refers to a single template whose template
5503/// arguments are either provided by the template-id or have defaults,
5504/// as described in C++0x [temp.arg.explicit]p3.
5505FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5506  // C++ [over.over]p1:
5507  //   [...] [Note: any redundant set of parentheses surrounding the
5508  //   overloaded function name is ignored (5.1). ]
5509  // C++ [over.over]p1:
5510  //   [...] The overloaded function name can be preceded by the &
5511  //   operator.
5512
5513  if (From->getType() != Context.OverloadTy)
5514    return 0;
5515
5516  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5517
5518  // If we didn't actually find any template-ids, we're done.
5519  if (!OvlExpr->hasExplicitTemplateArgs())
5520    return 0;
5521
5522  TemplateArgumentListInfo ExplicitTemplateArgs;
5523  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5524
5525  // Look through all of the overloaded functions, searching for one
5526  // whose type matches exactly.
5527  FunctionDecl *Matched = 0;
5528  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5529         E = OvlExpr->decls_end(); I != E; ++I) {
5530    // C++0x [temp.arg.explicit]p3:
5531    //   [...] In contexts where deduction is done and fails, or in contexts
5532    //   where deduction is not done, if a template argument list is
5533    //   specified and it, along with any default template arguments,
5534    //   identifies a single function template specialization, then the
5535    //   template-id is an lvalue for the function template specialization.
5536    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5537
5538    // C++ [over.over]p2:
5539    //   If the name is a function template, template argument deduction is
5540    //   done (14.8.2.2), and if the argument deduction succeeds, the
5541    //   resulting template argument list is used to generate a single
5542    //   function template specialization, which is added to the set of
5543    //   overloaded functions considered.
5544    FunctionDecl *Specialization = 0;
5545    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5546    if (TemplateDeductionResult Result
5547          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5548                                    Specialization, Info)) {
5549      // FIXME: make a note of the failed deduction for diagnostics.
5550      (void)Result;
5551      continue;
5552    }
5553
5554    // Multiple matches; we can't resolve to a single declaration.
5555    if (Matched)
5556      return 0;
5557
5558    Matched = Specialization;
5559  }
5560
5561  return Matched;
5562}
5563
5564/// \brief Add a single candidate to the overload set.
5565static void AddOverloadedCallCandidate(Sema &S,
5566                                       DeclAccessPair FoundDecl,
5567                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5568                                       Expr **Args, unsigned NumArgs,
5569                                       OverloadCandidateSet &CandidateSet,
5570                                       bool PartialOverloading) {
5571  NamedDecl *Callee = FoundDecl.getDecl();
5572  if (isa<UsingShadowDecl>(Callee))
5573    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5574
5575  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5576    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5577    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5578                           false, PartialOverloading);
5579    return;
5580  }
5581
5582  if (FunctionTemplateDecl *FuncTemplate
5583      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5584    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5585                                   ExplicitTemplateArgs,
5586                                   Args, NumArgs, CandidateSet);
5587    return;
5588  }
5589
5590  assert(false && "unhandled case in overloaded call candidate");
5591
5592  // do nothing?
5593}
5594
5595/// \brief Add the overload candidates named by callee and/or found by argument
5596/// dependent lookup to the given overload set.
5597void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5598                                       Expr **Args, unsigned NumArgs,
5599                                       OverloadCandidateSet &CandidateSet,
5600                                       bool PartialOverloading) {
5601
5602#ifndef NDEBUG
5603  // Verify that ArgumentDependentLookup is consistent with the rules
5604  // in C++0x [basic.lookup.argdep]p3:
5605  //
5606  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5607  //   and let Y be the lookup set produced by argument dependent
5608  //   lookup (defined as follows). If X contains
5609  //
5610  //     -- a declaration of a class member, or
5611  //
5612  //     -- a block-scope function declaration that is not a
5613  //        using-declaration, or
5614  //
5615  //     -- a declaration that is neither a function or a function
5616  //        template
5617  //
5618  //   then Y is empty.
5619
5620  if (ULE->requiresADL()) {
5621    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5622           E = ULE->decls_end(); I != E; ++I) {
5623      assert(!(*I)->getDeclContext()->isRecord());
5624      assert(isa<UsingShadowDecl>(*I) ||
5625             !(*I)->getDeclContext()->isFunctionOrMethod());
5626      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5627    }
5628  }
5629#endif
5630
5631  // It would be nice to avoid this copy.
5632  TemplateArgumentListInfo TABuffer;
5633  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5634  if (ULE->hasExplicitTemplateArgs()) {
5635    ULE->copyTemplateArgumentsInto(TABuffer);
5636    ExplicitTemplateArgs = &TABuffer;
5637  }
5638
5639  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5640         E = ULE->decls_end(); I != E; ++I)
5641    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5642                               Args, NumArgs, CandidateSet,
5643                               PartialOverloading);
5644
5645  if (ULE->requiresADL())
5646    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5647                                         Args, NumArgs,
5648                                         ExplicitTemplateArgs,
5649                                         CandidateSet,
5650                                         PartialOverloading);
5651}
5652
5653static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5654                                      Expr **Args, unsigned NumArgs) {
5655  Fn->Destroy(SemaRef.Context);
5656  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5657    Args[Arg]->Destroy(SemaRef.Context);
5658  return SemaRef.ExprError();
5659}
5660
5661/// Attempts to recover from a call where no functions were found.
5662///
5663/// Returns true if new candidates were found.
5664static Sema::OwningExprResult
5665BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5666                      UnresolvedLookupExpr *ULE,
5667                      SourceLocation LParenLoc,
5668                      Expr **Args, unsigned NumArgs,
5669                      SourceLocation *CommaLocs,
5670                      SourceLocation RParenLoc) {
5671
5672  CXXScopeSpec SS;
5673  if (ULE->getQualifier()) {
5674    SS.setScopeRep(ULE->getQualifier());
5675    SS.setRange(ULE->getQualifierRange());
5676  }
5677
5678  TemplateArgumentListInfo TABuffer;
5679  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5680  if (ULE->hasExplicitTemplateArgs()) {
5681    ULE->copyTemplateArgumentsInto(TABuffer);
5682    ExplicitTemplateArgs = &TABuffer;
5683  }
5684
5685  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5686                 Sema::LookupOrdinaryName);
5687  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5688    return Destroy(SemaRef, Fn, Args, NumArgs);
5689
5690  assert(!R.empty() && "lookup results empty despite recovery");
5691
5692  // Build an implicit member call if appropriate.  Just drop the
5693  // casts and such from the call, we don't really care.
5694  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5695  if ((*R.begin())->isCXXClassMember())
5696    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5697  else if (ExplicitTemplateArgs)
5698    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5699  else
5700    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5701
5702  if (NewFn.isInvalid())
5703    return Destroy(SemaRef, Fn, Args, NumArgs);
5704
5705  Fn->Destroy(SemaRef.Context);
5706
5707  // This shouldn't cause an infinite loop because we're giving it
5708  // an expression with non-empty lookup results, which should never
5709  // end up here.
5710  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5711                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5712                               CommaLocs, RParenLoc);
5713}
5714
5715/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5716/// (which eventually refers to the declaration Func) and the call
5717/// arguments Args/NumArgs, attempt to resolve the function call down
5718/// to a specific function. If overload resolution succeeds, returns
5719/// the function declaration produced by overload
5720/// resolution. Otherwise, emits diagnostics, deletes all of the
5721/// arguments and Fn, and returns NULL.
5722Sema::OwningExprResult
5723Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5724                              SourceLocation LParenLoc,
5725                              Expr **Args, unsigned NumArgs,
5726                              SourceLocation *CommaLocs,
5727                              SourceLocation RParenLoc) {
5728#ifndef NDEBUG
5729  if (ULE->requiresADL()) {
5730    // To do ADL, we must have found an unqualified name.
5731    assert(!ULE->getQualifier() && "qualified name with ADL");
5732
5733    // We don't perform ADL for implicit declarations of builtins.
5734    // Verify that this was correctly set up.
5735    FunctionDecl *F;
5736    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5737        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5738        F->getBuiltinID() && F->isImplicit())
5739      assert(0 && "performing ADL for builtin");
5740
5741    // We don't perform ADL in C.
5742    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5743  }
5744#endif
5745
5746  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5747
5748  // Add the functions denoted by the callee to the set of candidate
5749  // functions, including those from argument-dependent lookup.
5750  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5751
5752  // If we found nothing, try to recover.
5753  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5754  // bailout out if it fails.
5755  if (CandidateSet.empty())
5756    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5757                                 CommaLocs, RParenLoc);
5758
5759  OverloadCandidateSet::iterator Best;
5760  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5761  case OR_Success: {
5762    FunctionDecl *FDecl = Best->Function;
5763    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5764    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5765    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5766  }
5767
5768  case OR_No_Viable_Function:
5769    Diag(Fn->getSourceRange().getBegin(),
5770         diag::err_ovl_no_viable_function_in_call)
5771      << ULE->getName() << Fn->getSourceRange();
5772    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5773    break;
5774
5775  case OR_Ambiguous:
5776    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5777      << ULE->getName() << Fn->getSourceRange();
5778    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5779    break;
5780
5781  case OR_Deleted:
5782    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5783      << Best->Function->isDeleted()
5784      << ULE->getName()
5785      << Fn->getSourceRange();
5786    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5787    break;
5788  }
5789
5790  // Overload resolution failed. Destroy all of the subexpressions and
5791  // return NULL.
5792  Fn->Destroy(Context);
5793  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5794    Args[Arg]->Destroy(Context);
5795  return ExprError();
5796}
5797
5798static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5799  return Functions.size() > 1 ||
5800    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5801}
5802
5803/// \brief Create a unary operation that may resolve to an overloaded
5804/// operator.
5805///
5806/// \param OpLoc The location of the operator itself (e.g., '*').
5807///
5808/// \param OpcIn The UnaryOperator::Opcode that describes this
5809/// operator.
5810///
5811/// \param Functions The set of non-member functions that will be
5812/// considered by overload resolution. The caller needs to build this
5813/// set based on the context using, e.g.,
5814/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5815/// set should not contain any member functions; those will be added
5816/// by CreateOverloadedUnaryOp().
5817///
5818/// \param input The input argument.
5819Sema::OwningExprResult
5820Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5821                              const UnresolvedSetImpl &Fns,
5822                              ExprArg input) {
5823  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5824  Expr *Input = (Expr *)input.get();
5825
5826  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5827  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5828  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5829
5830  Expr *Args[2] = { Input, 0 };
5831  unsigned NumArgs = 1;
5832
5833  // For post-increment and post-decrement, add the implicit '0' as
5834  // the second argument, so that we know this is a post-increment or
5835  // post-decrement.
5836  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5837    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5838    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5839                                           SourceLocation());
5840    NumArgs = 2;
5841  }
5842
5843  if (Input->isTypeDependent()) {
5844    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5845    UnresolvedLookupExpr *Fn
5846      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5847                                     0, SourceRange(), OpName, OpLoc,
5848                                     /*ADL*/ true, IsOverloaded(Fns));
5849    Fn->addDecls(Fns.begin(), Fns.end());
5850
5851    input.release();
5852    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5853                                                   &Args[0], NumArgs,
5854                                                   Context.DependentTy,
5855                                                   OpLoc));
5856  }
5857
5858  // Build an empty overload set.
5859  OverloadCandidateSet CandidateSet(OpLoc);
5860
5861  // Add the candidates from the given function set.
5862  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5863
5864  // Add operator candidates that are member functions.
5865  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5866
5867  // Add candidates from ADL.
5868  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5869                                       Args, NumArgs,
5870                                       /*ExplicitTemplateArgs*/ 0,
5871                                       CandidateSet);
5872
5873  // Add builtin operator candidates.
5874  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5875
5876  // Perform overload resolution.
5877  OverloadCandidateSet::iterator Best;
5878  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5879  case OR_Success: {
5880    // We found a built-in operator or an overloaded operator.
5881    FunctionDecl *FnDecl = Best->Function;
5882
5883    if (FnDecl) {
5884      // We matched an overloaded operator. Build a call to that
5885      // operator.
5886
5887      // Convert the arguments.
5888      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5889        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5890
5891        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5892                                                Best->FoundDecl, Method))
5893          return ExprError();
5894      } else {
5895        // Convert the arguments.
5896        OwningExprResult InputInit
5897          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5898                                                      FnDecl->getParamDecl(0)),
5899                                      SourceLocation(),
5900                                      move(input));
5901        if (InputInit.isInvalid())
5902          return ExprError();
5903
5904        input = move(InputInit);
5905        Input = (Expr *)input.get();
5906      }
5907
5908      // Determine the result type
5909      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5910
5911      // Build the actual expression node.
5912      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5913                                               SourceLocation());
5914      UsualUnaryConversions(FnExpr);
5915
5916      input.release();
5917      Args[0] = Input;
5918      ExprOwningPtr<CallExpr> TheCall(this,
5919        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5920                                          Args, NumArgs, ResultTy, OpLoc));
5921
5922      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5923                              FnDecl))
5924        return ExprError();
5925
5926      return MaybeBindToTemporary(TheCall.release());
5927    } else {
5928      // We matched a built-in operator. Convert the arguments, then
5929      // break out so that we will build the appropriate built-in
5930      // operator node.
5931        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5932                                      Best->Conversions[0], AA_Passing))
5933          return ExprError();
5934
5935        break;
5936      }
5937    }
5938
5939    case OR_No_Viable_Function:
5940      // No viable function; fall through to handling this as a
5941      // built-in operator, which will produce an error message for us.
5942      break;
5943
5944    case OR_Ambiguous:
5945      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5946          << UnaryOperator::getOpcodeStr(Opc)
5947          << Input->getSourceRange();
5948      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5949                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5950      return ExprError();
5951
5952    case OR_Deleted:
5953      Diag(OpLoc, diag::err_ovl_deleted_oper)
5954        << Best->Function->isDeleted()
5955        << UnaryOperator::getOpcodeStr(Opc)
5956        << Input->getSourceRange();
5957      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5958      return ExprError();
5959    }
5960
5961  // Either we found no viable overloaded operator or we matched a
5962  // built-in operator. In either case, fall through to trying to
5963  // build a built-in operation.
5964  input.release();
5965  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5966}
5967
5968/// \brief Create a binary operation that may resolve to an overloaded
5969/// operator.
5970///
5971/// \param OpLoc The location of the operator itself (e.g., '+').
5972///
5973/// \param OpcIn The BinaryOperator::Opcode that describes this
5974/// operator.
5975///
5976/// \param Functions The set of non-member functions that will be
5977/// considered by overload resolution. The caller needs to build this
5978/// set based on the context using, e.g.,
5979/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5980/// set should not contain any member functions; those will be added
5981/// by CreateOverloadedBinOp().
5982///
5983/// \param LHS Left-hand argument.
5984/// \param RHS Right-hand argument.
5985Sema::OwningExprResult
5986Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5987                            unsigned OpcIn,
5988                            const UnresolvedSetImpl &Fns,
5989                            Expr *LHS, Expr *RHS) {
5990  Expr *Args[2] = { LHS, RHS };
5991  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5992
5993  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5994  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5995  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5996
5997  // If either side is type-dependent, create an appropriate dependent
5998  // expression.
5999  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6000    if (Fns.empty()) {
6001      // If there are no functions to store, just build a dependent
6002      // BinaryOperator or CompoundAssignment.
6003      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
6004        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6005                                                  Context.DependentTy, OpLoc));
6006
6007      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6008                                                        Context.DependentTy,
6009                                                        Context.DependentTy,
6010                                                        Context.DependentTy,
6011                                                        OpLoc));
6012    }
6013
6014    // FIXME: save results of ADL from here?
6015    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6016    UnresolvedLookupExpr *Fn
6017      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6018                                     0, SourceRange(), OpName, OpLoc,
6019                                     /*ADL*/ true, IsOverloaded(Fns));
6020
6021    Fn->addDecls(Fns.begin(), Fns.end());
6022    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6023                                                   Args, 2,
6024                                                   Context.DependentTy,
6025                                                   OpLoc));
6026  }
6027
6028  // If this is the .* operator, which is not overloadable, just
6029  // create a built-in binary operator.
6030  if (Opc == BinaryOperator::PtrMemD)
6031    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6032
6033  // If this is the assignment operator, we only perform overload resolution
6034  // if the left-hand side is a class or enumeration type. This is actually
6035  // a hack. The standard requires that we do overload resolution between the
6036  // various built-in candidates, but as DR507 points out, this can lead to
6037  // problems. So we do it this way, which pretty much follows what GCC does.
6038  // Note that we go the traditional code path for compound assignment forms.
6039  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6040    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6041
6042  // Build an empty overload set.
6043  OverloadCandidateSet CandidateSet(OpLoc);
6044
6045  // Add the candidates from the given function set.
6046  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6047
6048  // Add operator candidates that are member functions.
6049  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6050
6051  // Add candidates from ADL.
6052  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6053                                       Args, 2,
6054                                       /*ExplicitTemplateArgs*/ 0,
6055                                       CandidateSet);
6056
6057  // Add builtin operator candidates.
6058  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6059
6060  // Perform overload resolution.
6061  OverloadCandidateSet::iterator Best;
6062  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6063    case OR_Success: {
6064      // We found a built-in operator or an overloaded operator.
6065      FunctionDecl *FnDecl = Best->Function;
6066
6067      if (FnDecl) {
6068        // We matched an overloaded operator. Build a call to that
6069        // operator.
6070
6071        // Convert the arguments.
6072        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6073          // Best->Access is only meaningful for class members.
6074          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6075
6076          OwningExprResult Arg1
6077            = PerformCopyInitialization(
6078                                        InitializedEntity::InitializeParameter(
6079                                                        FnDecl->getParamDecl(0)),
6080                                        SourceLocation(),
6081                                        Owned(Args[1]));
6082          if (Arg1.isInvalid())
6083            return ExprError();
6084
6085          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6086                                                  Best->FoundDecl, Method))
6087            return ExprError();
6088
6089          Args[1] = RHS = Arg1.takeAs<Expr>();
6090        } else {
6091          // Convert the arguments.
6092          OwningExprResult Arg0
6093            = PerformCopyInitialization(
6094                                        InitializedEntity::InitializeParameter(
6095                                                        FnDecl->getParamDecl(0)),
6096                                        SourceLocation(),
6097                                        Owned(Args[0]));
6098          if (Arg0.isInvalid())
6099            return ExprError();
6100
6101          OwningExprResult Arg1
6102            = PerformCopyInitialization(
6103                                        InitializedEntity::InitializeParameter(
6104                                                        FnDecl->getParamDecl(1)),
6105                                        SourceLocation(),
6106                                        Owned(Args[1]));
6107          if (Arg1.isInvalid())
6108            return ExprError();
6109          Args[0] = LHS = Arg0.takeAs<Expr>();
6110          Args[1] = RHS = Arg1.takeAs<Expr>();
6111        }
6112
6113        // Determine the result type
6114        QualType ResultTy
6115          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6116        ResultTy = ResultTy.getNonReferenceType();
6117
6118        // Build the actual expression node.
6119        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6120                                                 OpLoc);
6121        UsualUnaryConversions(FnExpr);
6122
6123        ExprOwningPtr<CXXOperatorCallExpr>
6124          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6125                                                          Args, 2, ResultTy,
6126                                                          OpLoc));
6127
6128        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6129                                FnDecl))
6130          return ExprError();
6131
6132        return MaybeBindToTemporary(TheCall.release());
6133      } else {
6134        // We matched a built-in operator. Convert the arguments, then
6135        // break out so that we will build the appropriate built-in
6136        // operator node.
6137        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6138                                      Best->Conversions[0], AA_Passing) ||
6139            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6140                                      Best->Conversions[1], AA_Passing))
6141          return ExprError();
6142
6143        break;
6144      }
6145    }
6146
6147    case OR_No_Viable_Function: {
6148      // C++ [over.match.oper]p9:
6149      //   If the operator is the operator , [...] and there are no
6150      //   viable functions, then the operator is assumed to be the
6151      //   built-in operator and interpreted according to clause 5.
6152      if (Opc == BinaryOperator::Comma)
6153        break;
6154
6155      // For class as left operand for assignment or compound assigment operator
6156      // do not fall through to handling in built-in, but report that no overloaded
6157      // assignment operator found
6158      OwningExprResult Result = ExprError();
6159      if (Args[0]->getType()->isRecordType() &&
6160          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6161        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6162             << BinaryOperator::getOpcodeStr(Opc)
6163             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6164      } else {
6165        // No viable function; try to create a built-in operation, which will
6166        // produce an error. Then, show the non-viable candidates.
6167        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6168      }
6169      assert(Result.isInvalid() &&
6170             "C++ binary operator overloading is missing candidates!");
6171      if (Result.isInvalid())
6172        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6173                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6174      return move(Result);
6175    }
6176
6177    case OR_Ambiguous:
6178      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6179          << BinaryOperator::getOpcodeStr(Opc)
6180          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6181      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6182                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6183      return ExprError();
6184
6185    case OR_Deleted:
6186      Diag(OpLoc, diag::err_ovl_deleted_oper)
6187        << Best->Function->isDeleted()
6188        << BinaryOperator::getOpcodeStr(Opc)
6189        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6190      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6191      return ExprError();
6192  }
6193
6194  // We matched a built-in operator; build it.
6195  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6196}
6197
6198Action::OwningExprResult
6199Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6200                                         SourceLocation RLoc,
6201                                         ExprArg Base, ExprArg Idx) {
6202  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6203                    static_cast<Expr*>(Idx.get()) };
6204  DeclarationName OpName =
6205      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6206
6207  // If either side is type-dependent, create an appropriate dependent
6208  // expression.
6209  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6210
6211    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6212    UnresolvedLookupExpr *Fn
6213      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6214                                     0, SourceRange(), OpName, LLoc,
6215                                     /*ADL*/ true, /*Overloaded*/ false);
6216    // Can't add any actual overloads yet
6217
6218    Base.release();
6219    Idx.release();
6220    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6221                                                   Args, 2,
6222                                                   Context.DependentTy,
6223                                                   RLoc));
6224  }
6225
6226  // Build an empty overload set.
6227  OverloadCandidateSet CandidateSet(LLoc);
6228
6229  // Subscript can only be overloaded as a member function.
6230
6231  // Add operator candidates that are member functions.
6232  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6233
6234  // Add builtin operator candidates.
6235  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6236
6237  // Perform overload resolution.
6238  OverloadCandidateSet::iterator Best;
6239  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6240    case OR_Success: {
6241      // We found a built-in operator or an overloaded operator.
6242      FunctionDecl *FnDecl = Best->Function;
6243
6244      if (FnDecl) {
6245        // We matched an overloaded operator. Build a call to that
6246        // operator.
6247
6248        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6249
6250        // Convert the arguments.
6251        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6252        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6253                                                Best->FoundDecl, Method))
6254          return ExprError();
6255
6256        // Convert the arguments.
6257        OwningExprResult InputInit
6258          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6259                                                      FnDecl->getParamDecl(0)),
6260                                      SourceLocation(),
6261                                      Owned(Args[1]));
6262        if (InputInit.isInvalid())
6263          return ExprError();
6264
6265        Args[1] = InputInit.takeAs<Expr>();
6266
6267        // Determine the result type
6268        QualType ResultTy
6269          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6270        ResultTy = ResultTy.getNonReferenceType();
6271
6272        // Build the actual expression node.
6273        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6274                                                 LLoc);
6275        UsualUnaryConversions(FnExpr);
6276
6277        Base.release();
6278        Idx.release();
6279        ExprOwningPtr<CXXOperatorCallExpr>
6280          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6281                                                          FnExpr, Args, 2,
6282                                                          ResultTy, RLoc));
6283
6284        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6285                                FnDecl))
6286          return ExprError();
6287
6288        return MaybeBindToTemporary(TheCall.release());
6289      } else {
6290        // We matched a built-in operator. Convert the arguments, then
6291        // break out so that we will build the appropriate built-in
6292        // operator node.
6293        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6294                                      Best->Conversions[0], AA_Passing) ||
6295            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6296                                      Best->Conversions[1], AA_Passing))
6297          return ExprError();
6298
6299        break;
6300      }
6301    }
6302
6303    case OR_No_Viable_Function: {
6304      if (CandidateSet.empty())
6305        Diag(LLoc, diag::err_ovl_no_oper)
6306          << Args[0]->getType() << /*subscript*/ 0
6307          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6308      else
6309        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6310          << Args[0]->getType()
6311          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6312      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6313                              "[]", LLoc);
6314      return ExprError();
6315    }
6316
6317    case OR_Ambiguous:
6318      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6319          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6320      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6321                              "[]", LLoc);
6322      return ExprError();
6323
6324    case OR_Deleted:
6325      Diag(LLoc, diag::err_ovl_deleted_oper)
6326        << Best->Function->isDeleted() << "[]"
6327        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6328      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6329                              "[]", LLoc);
6330      return ExprError();
6331    }
6332
6333  // We matched a built-in operator; build it.
6334  Base.release();
6335  Idx.release();
6336  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6337                                         Owned(Args[1]), RLoc);
6338}
6339
6340/// BuildCallToMemberFunction - Build a call to a member
6341/// function. MemExpr is the expression that refers to the member
6342/// function (and includes the object parameter), Args/NumArgs are the
6343/// arguments to the function call (not including the object
6344/// parameter). The caller needs to validate that the member
6345/// expression refers to a member function or an overloaded member
6346/// function.
6347Sema::OwningExprResult
6348Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6349                                SourceLocation LParenLoc, Expr **Args,
6350                                unsigned NumArgs, SourceLocation *CommaLocs,
6351                                SourceLocation RParenLoc) {
6352  // Dig out the member expression. This holds both the object
6353  // argument and the member function we're referring to.
6354  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6355
6356  MemberExpr *MemExpr;
6357  CXXMethodDecl *Method = 0;
6358  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6359  NestedNameSpecifier *Qualifier = 0;
6360  if (isa<MemberExpr>(NakedMemExpr)) {
6361    MemExpr = cast<MemberExpr>(NakedMemExpr);
6362    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6363    FoundDecl = MemExpr->getFoundDecl();
6364    Qualifier = MemExpr->getQualifier();
6365  } else {
6366    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6367    Qualifier = UnresExpr->getQualifier();
6368
6369    QualType ObjectType = UnresExpr->getBaseType();
6370
6371    // Add overload candidates
6372    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6373
6374    // FIXME: avoid copy.
6375    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6376    if (UnresExpr->hasExplicitTemplateArgs()) {
6377      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6378      TemplateArgs = &TemplateArgsBuffer;
6379    }
6380
6381    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6382           E = UnresExpr->decls_end(); I != E; ++I) {
6383
6384      NamedDecl *Func = *I;
6385      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6386      if (isa<UsingShadowDecl>(Func))
6387        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6388
6389      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6390        // If explicit template arguments were provided, we can't call a
6391        // non-template member function.
6392        if (TemplateArgs)
6393          continue;
6394
6395        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6396                           Args, NumArgs,
6397                           CandidateSet, /*SuppressUserConversions=*/false);
6398      } else {
6399        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6400                                   I.getPair(), ActingDC, TemplateArgs,
6401                                   ObjectType, Args, NumArgs,
6402                                   CandidateSet,
6403                                   /*SuppressUsedConversions=*/false);
6404      }
6405    }
6406
6407    DeclarationName DeclName = UnresExpr->getMemberName();
6408
6409    OverloadCandidateSet::iterator Best;
6410    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6411    case OR_Success:
6412      Method = cast<CXXMethodDecl>(Best->Function);
6413      FoundDecl = Best->FoundDecl;
6414      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6415      break;
6416
6417    case OR_No_Viable_Function:
6418      Diag(UnresExpr->getMemberLoc(),
6419           diag::err_ovl_no_viable_member_function_in_call)
6420        << DeclName << MemExprE->getSourceRange();
6421      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6422      // FIXME: Leaking incoming expressions!
6423      return ExprError();
6424
6425    case OR_Ambiguous:
6426      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6427        << DeclName << MemExprE->getSourceRange();
6428      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6429      // FIXME: Leaking incoming expressions!
6430      return ExprError();
6431
6432    case OR_Deleted:
6433      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6434        << Best->Function->isDeleted()
6435        << DeclName << MemExprE->getSourceRange();
6436      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6437      // FIXME: Leaking incoming expressions!
6438      return ExprError();
6439    }
6440
6441    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6442
6443    // If overload resolution picked a static member, build a
6444    // non-member call based on that function.
6445    if (Method->isStatic()) {
6446      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6447                                   Args, NumArgs, RParenLoc);
6448    }
6449
6450    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6451  }
6452
6453  assert(Method && "Member call to something that isn't a method?");
6454  ExprOwningPtr<CXXMemberCallExpr>
6455    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6456                                                  NumArgs,
6457                                  Method->getResultType().getNonReferenceType(),
6458                                  RParenLoc));
6459
6460  // Check for a valid return type.
6461  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6462                          TheCall.get(), Method))
6463    return ExprError();
6464
6465  // Convert the object argument (for a non-static member function call).
6466  // We only need to do this if there was actually an overload; otherwise
6467  // it was done at lookup.
6468  Expr *ObjectArg = MemExpr->getBase();
6469  if (!Method->isStatic() &&
6470      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6471                                          FoundDecl, Method))
6472    return ExprError();
6473  MemExpr->setBase(ObjectArg);
6474
6475  // Convert the rest of the arguments
6476  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6477  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6478                              RParenLoc))
6479    return ExprError();
6480
6481  if (CheckFunctionCall(Method, TheCall.get()))
6482    return ExprError();
6483
6484  return MaybeBindToTemporary(TheCall.release());
6485}
6486
6487/// BuildCallToObjectOfClassType - Build a call to an object of class
6488/// type (C++ [over.call.object]), which can end up invoking an
6489/// overloaded function call operator (@c operator()) or performing a
6490/// user-defined conversion on the object argument.
6491Sema::ExprResult
6492Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6493                                   SourceLocation LParenLoc,
6494                                   Expr **Args, unsigned NumArgs,
6495                                   SourceLocation *CommaLocs,
6496                                   SourceLocation RParenLoc) {
6497  assert(Object->getType()->isRecordType() && "Requires object type argument");
6498  const RecordType *Record = Object->getType()->getAs<RecordType>();
6499
6500  // C++ [over.call.object]p1:
6501  //  If the primary-expression E in the function call syntax
6502  //  evaluates to a class object of type "cv T", then the set of
6503  //  candidate functions includes at least the function call
6504  //  operators of T. The function call operators of T are obtained by
6505  //  ordinary lookup of the name operator() in the context of
6506  //  (E).operator().
6507  OverloadCandidateSet CandidateSet(LParenLoc);
6508  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6509
6510  if (RequireCompleteType(LParenLoc, Object->getType(),
6511                          PDiag(diag::err_incomplete_object_call)
6512                          << Object->getSourceRange()))
6513    return true;
6514
6515  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6516  LookupQualifiedName(R, Record->getDecl());
6517  R.suppressDiagnostics();
6518
6519  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6520       Oper != OperEnd; ++Oper) {
6521    AddMethodCandidate(Oper.getPair(), Object->getType(),
6522                       Args, NumArgs, CandidateSet,
6523                       /*SuppressUserConversions=*/ false);
6524  }
6525
6526  // C++ [over.call.object]p2:
6527  //   In addition, for each conversion function declared in T of the
6528  //   form
6529  //
6530  //        operator conversion-type-id () cv-qualifier;
6531  //
6532  //   where cv-qualifier is the same cv-qualification as, or a
6533  //   greater cv-qualification than, cv, and where conversion-type-id
6534  //   denotes the type "pointer to function of (P1,...,Pn) returning
6535  //   R", or the type "reference to pointer to function of
6536  //   (P1,...,Pn) returning R", or the type "reference to function
6537  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6538  //   is also considered as a candidate function. Similarly,
6539  //   surrogate call functions are added to the set of candidate
6540  //   functions for each conversion function declared in an
6541  //   accessible base class provided the function is not hidden
6542  //   within T by another intervening declaration.
6543  const UnresolvedSetImpl *Conversions
6544    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6545  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6546         E = Conversions->end(); I != E; ++I) {
6547    NamedDecl *D = *I;
6548    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6549    if (isa<UsingShadowDecl>(D))
6550      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6551
6552    // Skip over templated conversion functions; they aren't
6553    // surrogates.
6554    if (isa<FunctionTemplateDecl>(D))
6555      continue;
6556
6557    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6558
6559    // Strip the reference type (if any) and then the pointer type (if
6560    // any) to get down to what might be a function type.
6561    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6562    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6563      ConvType = ConvPtrType->getPointeeType();
6564
6565    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6566      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6567                            Object->getType(), Args, NumArgs,
6568                            CandidateSet);
6569  }
6570
6571  // Perform overload resolution.
6572  OverloadCandidateSet::iterator Best;
6573  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6574  case OR_Success:
6575    // Overload resolution succeeded; we'll build the appropriate call
6576    // below.
6577    break;
6578
6579  case OR_No_Viable_Function:
6580    if (CandidateSet.empty())
6581      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6582        << Object->getType() << /*call*/ 1
6583        << Object->getSourceRange();
6584    else
6585      Diag(Object->getSourceRange().getBegin(),
6586           diag::err_ovl_no_viable_object_call)
6587        << Object->getType() << Object->getSourceRange();
6588    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6589    break;
6590
6591  case OR_Ambiguous:
6592    Diag(Object->getSourceRange().getBegin(),
6593         diag::err_ovl_ambiguous_object_call)
6594      << Object->getType() << Object->getSourceRange();
6595    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6596    break;
6597
6598  case OR_Deleted:
6599    Diag(Object->getSourceRange().getBegin(),
6600         diag::err_ovl_deleted_object_call)
6601      << Best->Function->isDeleted()
6602      << Object->getType() << Object->getSourceRange();
6603    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6604    break;
6605  }
6606
6607  if (Best == CandidateSet.end()) {
6608    // We had an error; delete all of the subexpressions and return
6609    // the error.
6610    Object->Destroy(Context);
6611    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6612      Args[ArgIdx]->Destroy(Context);
6613    return true;
6614  }
6615
6616  if (Best->Function == 0) {
6617    // Since there is no function declaration, this is one of the
6618    // surrogate candidates. Dig out the conversion function.
6619    CXXConversionDecl *Conv
6620      = cast<CXXConversionDecl>(
6621                         Best->Conversions[0].UserDefined.ConversionFunction);
6622
6623    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6624
6625    // We selected one of the surrogate functions that converts the
6626    // object parameter to a function pointer. Perform the conversion
6627    // on the object argument, then let ActOnCallExpr finish the job.
6628
6629    // Create an implicit member expr to refer to the conversion operator.
6630    // and then call it.
6631    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6632                                                   Conv);
6633
6634    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6635                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6636                         CommaLocs, RParenLoc).result();
6637  }
6638
6639  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6640
6641  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6642  // that calls this method, using Object for the implicit object
6643  // parameter and passing along the remaining arguments.
6644  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6645  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6646
6647  unsigned NumArgsInProto = Proto->getNumArgs();
6648  unsigned NumArgsToCheck = NumArgs;
6649
6650  // Build the full argument list for the method call (the
6651  // implicit object parameter is placed at the beginning of the
6652  // list).
6653  Expr **MethodArgs;
6654  if (NumArgs < NumArgsInProto) {
6655    NumArgsToCheck = NumArgsInProto;
6656    MethodArgs = new Expr*[NumArgsInProto + 1];
6657  } else {
6658    MethodArgs = new Expr*[NumArgs + 1];
6659  }
6660  MethodArgs[0] = Object;
6661  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6662    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6663
6664  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6665                                          SourceLocation());
6666  UsualUnaryConversions(NewFn);
6667
6668  // Once we've built TheCall, all of the expressions are properly
6669  // owned.
6670  QualType ResultTy = Method->getResultType().getNonReferenceType();
6671  ExprOwningPtr<CXXOperatorCallExpr>
6672    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6673                                                    MethodArgs, NumArgs + 1,
6674                                                    ResultTy, RParenLoc));
6675  delete [] MethodArgs;
6676
6677  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6678                          Method))
6679    return true;
6680
6681  // We may have default arguments. If so, we need to allocate more
6682  // slots in the call for them.
6683  if (NumArgs < NumArgsInProto)
6684    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6685  else if (NumArgs > NumArgsInProto)
6686    NumArgsToCheck = NumArgsInProto;
6687
6688  bool IsError = false;
6689
6690  // Initialize the implicit object parameter.
6691  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6692                                                 Best->FoundDecl, Method);
6693  TheCall->setArg(0, Object);
6694
6695
6696  // Check the argument types.
6697  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6698    Expr *Arg;
6699    if (i < NumArgs) {
6700      Arg = Args[i];
6701
6702      // Pass the argument.
6703
6704      OwningExprResult InputInit
6705        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6706                                                    Method->getParamDecl(i)),
6707                                    SourceLocation(), Owned(Arg));
6708
6709      IsError |= InputInit.isInvalid();
6710      Arg = InputInit.takeAs<Expr>();
6711    } else {
6712      OwningExprResult DefArg
6713        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6714      if (DefArg.isInvalid()) {
6715        IsError = true;
6716        break;
6717      }
6718
6719      Arg = DefArg.takeAs<Expr>();
6720    }
6721
6722    TheCall->setArg(i + 1, Arg);
6723  }
6724
6725  // If this is a variadic call, handle args passed through "...".
6726  if (Proto->isVariadic()) {
6727    // Promote the arguments (C99 6.5.2.2p7).
6728    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6729      Expr *Arg = Args[i];
6730      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6731      TheCall->setArg(i + 1, Arg);
6732    }
6733  }
6734
6735  if (IsError) return true;
6736
6737  if (CheckFunctionCall(Method, TheCall.get()))
6738    return true;
6739
6740  return MaybeBindToTemporary(TheCall.release()).result();
6741}
6742
6743/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6744///  (if one exists), where @c Base is an expression of class type and
6745/// @c Member is the name of the member we're trying to find.
6746Sema::OwningExprResult
6747Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6748  Expr *Base = static_cast<Expr *>(BaseIn.get());
6749  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6750
6751  SourceLocation Loc = Base->getExprLoc();
6752
6753  // C++ [over.ref]p1:
6754  //
6755  //   [...] An expression x->m is interpreted as (x.operator->())->m
6756  //   for a class object x of type T if T::operator->() exists and if
6757  //   the operator is selected as the best match function by the
6758  //   overload resolution mechanism (13.3).
6759  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6760  OverloadCandidateSet CandidateSet(Loc);
6761  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6762
6763  if (RequireCompleteType(Loc, Base->getType(),
6764                          PDiag(diag::err_typecheck_incomplete_tag)
6765                            << Base->getSourceRange()))
6766    return ExprError();
6767
6768  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6769  LookupQualifiedName(R, BaseRecord->getDecl());
6770  R.suppressDiagnostics();
6771
6772  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6773       Oper != OperEnd; ++Oper) {
6774    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6775                       /*SuppressUserConversions=*/false);
6776  }
6777
6778  // Perform overload resolution.
6779  OverloadCandidateSet::iterator Best;
6780  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6781  case OR_Success:
6782    // Overload resolution succeeded; we'll build the call below.
6783    break;
6784
6785  case OR_No_Viable_Function:
6786    if (CandidateSet.empty())
6787      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6788        << Base->getType() << Base->getSourceRange();
6789    else
6790      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6791        << "operator->" << Base->getSourceRange();
6792    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6793    return ExprError();
6794
6795  case OR_Ambiguous:
6796    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6797      << "->" << Base->getSourceRange();
6798    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6799    return ExprError();
6800
6801  case OR_Deleted:
6802    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6803      << Best->Function->isDeleted()
6804      << "->" << Base->getSourceRange();
6805    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6806    return ExprError();
6807  }
6808
6809  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6810
6811  // Convert the object parameter.
6812  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6813  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6814                                          Best->FoundDecl, Method))
6815    return ExprError();
6816
6817  // No concerns about early exits now.
6818  BaseIn.release();
6819
6820  // Build the operator call.
6821  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6822                                           SourceLocation());
6823  UsualUnaryConversions(FnExpr);
6824
6825  QualType ResultTy = Method->getResultType().getNonReferenceType();
6826  ExprOwningPtr<CXXOperatorCallExpr>
6827    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6828                                                    &Base, 1, ResultTy, OpLoc));
6829
6830  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6831                          Method))
6832          return ExprError();
6833  return move(TheCall);
6834}
6835
6836/// FixOverloadedFunctionReference - E is an expression that refers to
6837/// a C++ overloaded function (possibly with some parentheses and
6838/// perhaps a '&' around it). We have resolved the overloaded function
6839/// to the function declaration Fn, so patch up the expression E to
6840/// refer (possibly indirectly) to Fn. Returns the new expr.
6841Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6842                                           FunctionDecl *Fn) {
6843  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6844    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6845                                                   Found, Fn);
6846    if (SubExpr == PE->getSubExpr())
6847      return PE->Retain();
6848
6849    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6850  }
6851
6852  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6853    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6854                                                   Found, Fn);
6855    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6856                               SubExpr->getType()) &&
6857           "Implicit cast type cannot be determined from overload");
6858    if (SubExpr == ICE->getSubExpr())
6859      return ICE->Retain();
6860
6861    return new (Context) ImplicitCastExpr(ICE->getType(),
6862                                          ICE->getCastKind(),
6863                                          SubExpr, CXXBaseSpecifierArray(),
6864                                          ICE->isLvalueCast());
6865  }
6866
6867  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6868    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6869           "Can only take the address of an overloaded function");
6870    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6871      if (Method->isStatic()) {
6872        // Do nothing: static member functions aren't any different
6873        // from non-member functions.
6874      } else {
6875        // Fix the sub expression, which really has to be an
6876        // UnresolvedLookupExpr holding an overloaded member function
6877        // or template.
6878        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6879                                                       Found, Fn);
6880        if (SubExpr == UnOp->getSubExpr())
6881          return UnOp->Retain();
6882
6883        assert(isa<DeclRefExpr>(SubExpr)
6884               && "fixed to something other than a decl ref");
6885        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6886               && "fixed to a member ref with no nested name qualifier");
6887
6888        // We have taken the address of a pointer to member
6889        // function. Perform the computation here so that we get the
6890        // appropriate pointer to member type.
6891        QualType ClassType
6892          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6893        QualType MemPtrType
6894          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6895
6896        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6897                                           MemPtrType, UnOp->getOperatorLoc());
6898      }
6899    }
6900    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6901                                                   Found, Fn);
6902    if (SubExpr == UnOp->getSubExpr())
6903      return UnOp->Retain();
6904
6905    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6906                                     Context.getPointerType(SubExpr->getType()),
6907                                       UnOp->getOperatorLoc());
6908  }
6909
6910  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6911    // FIXME: avoid copy.
6912    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6913    if (ULE->hasExplicitTemplateArgs()) {
6914      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6915      TemplateArgs = &TemplateArgsBuffer;
6916    }
6917
6918    return DeclRefExpr::Create(Context,
6919                               ULE->getQualifier(),
6920                               ULE->getQualifierRange(),
6921                               Fn,
6922                               ULE->getNameLoc(),
6923                               Fn->getType(),
6924                               TemplateArgs);
6925  }
6926
6927  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6928    // FIXME: avoid copy.
6929    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6930    if (MemExpr->hasExplicitTemplateArgs()) {
6931      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6932      TemplateArgs = &TemplateArgsBuffer;
6933    }
6934
6935    Expr *Base;
6936
6937    // If we're filling in
6938    if (MemExpr->isImplicitAccess()) {
6939      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6940        return DeclRefExpr::Create(Context,
6941                                   MemExpr->getQualifier(),
6942                                   MemExpr->getQualifierRange(),
6943                                   Fn,
6944                                   MemExpr->getMemberLoc(),
6945                                   Fn->getType(),
6946                                   TemplateArgs);
6947      } else {
6948        SourceLocation Loc = MemExpr->getMemberLoc();
6949        if (MemExpr->getQualifier())
6950          Loc = MemExpr->getQualifierRange().getBegin();
6951        Base = new (Context) CXXThisExpr(Loc,
6952                                         MemExpr->getBaseType(),
6953                                         /*isImplicit=*/true);
6954      }
6955    } else
6956      Base = MemExpr->getBase()->Retain();
6957
6958    return MemberExpr::Create(Context, Base,
6959                              MemExpr->isArrow(),
6960                              MemExpr->getQualifier(),
6961                              MemExpr->getQualifierRange(),
6962                              Fn,
6963                              Found,
6964                              MemExpr->getMemberLoc(),
6965                              TemplateArgs,
6966                              Fn->getType());
6967  }
6968
6969  assert(false && "Invalid reference to overloaded function");
6970  return E->Retain();
6971}
6972
6973Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6974                                                          DeclAccessPair Found,
6975                                                            FunctionDecl *Fn) {
6976  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6977}
6978
6979} // end namespace clang
6980