SemaOverload.cpp revision b1c2ea5dddc9188e2ea30de7f6546f640b85dead
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, false, SourceLocation()) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407/// If @p UserCast, the implicit conversion is being done for a user-specified
408/// cast.
409ImplicitConversionSequence
410Sema::TryImplicitConversion(Expr* From, QualType ToType,
411                            bool SuppressUserConversions,
412                            bool AllowExplicit, bool ForceRValue,
413                            bool InOverloadResolution,
414                            bool UserCast) {
415  ImplicitConversionSequence ICS;
416  OverloadCandidateSet Conversions;
417  OverloadingResult UserDefResult = OR_Success;
418  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
419    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
420  else if (getLangOptions().CPlusPlus &&
421           (UserDefResult = IsUserDefinedConversion(From, ToType,
422                                   ICS.UserDefined,
423                                   Conversions,
424                                   !SuppressUserConversions, AllowExplicit,
425				   ForceRValue, UserCast)) == OR_Success) {
426    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
427    // C++ [over.ics.user]p4:
428    //   A conversion of an expression of class type to the same class
429    //   type is given Exact Match rank, and a conversion of an
430    //   expression of class type to a base class of that type is
431    //   given Conversion rank, in spite of the fact that a copy
432    //   constructor (i.e., a user-defined conversion function) is
433    //   called for those cases.
434    if (CXXConstructorDecl *Constructor
435          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
436      QualType FromCanon
437        = Context.getCanonicalType(From->getType().getUnqualifiedType());
438      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
439      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
440        // Turn this into a "standard" conversion sequence, so that it
441        // gets ranked with standard conversion sequences.
442        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
443        ICS.Standard.setAsIdentityConversion();
444        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
445        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
446        ICS.Standard.CopyConstructor = Constructor;
447        if (ToCanon != FromCanon)
448          ICS.Standard.Second = ICK_Derived_To_Base;
449      }
450    }
451
452    // C++ [over.best.ics]p4:
453    //   However, when considering the argument of a user-defined
454    //   conversion function that is a candidate by 13.3.1.3 when
455    //   invoked for the copying of the temporary in the second step
456    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
457    //   13.3.1.6 in all cases, only standard conversion sequences and
458    //   ellipsis conversion sequences are allowed.
459    if (SuppressUserConversions &&
460        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
461      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
462  } else {
463    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
464    if (UserDefResult == OR_Ambiguous) {
465      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
466           Cand != Conversions.end(); ++Cand)
467        if (Cand->Viable)
468          ICS.ConversionFunctionSet.push_back(Cand->Function);
469    }
470  }
471
472  return ICS;
473}
474
475/// IsStandardConversion - Determines whether there is a standard
476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
477/// expression From to the type ToType. Standard conversion sequences
478/// only consider non-class types; for conversions that involve class
479/// types, use TryImplicitConversion. If a conversion exists, SCS will
480/// contain the standard conversion sequence required to perform this
481/// conversion and this routine will return true. Otherwise, this
482/// routine will return false and the value of SCS is unspecified.
483bool
484Sema::IsStandardConversion(Expr* From, QualType ToType,
485                           bool InOverloadResolution,
486                           StandardConversionSequence &SCS) {
487  QualType FromType = From->getType();
488
489  // Standard conversions (C++ [conv])
490  SCS.setAsIdentityConversion();
491  SCS.Deprecated = false;
492  SCS.IncompatibleObjC = false;
493  SCS.FromTypePtr = FromType.getAsOpaquePtr();
494  SCS.CopyConstructor = 0;
495
496  // There are no standard conversions for class types in C++, so
497  // abort early. When overloading in C, however, we do permit
498  if (FromType->isRecordType() || ToType->isRecordType()) {
499    if (getLangOptions().CPlusPlus)
500      return false;
501
502    // When we're overloading in C, we allow, as standard conversions,
503  }
504
505  // The first conversion can be an lvalue-to-rvalue conversion,
506  // array-to-pointer conversion, or function-to-pointer conversion
507  // (C++ 4p1).
508
509  // Lvalue-to-rvalue conversion (C++ 4.1):
510  //   An lvalue (3.10) of a non-function, non-array type T can be
511  //   converted to an rvalue.
512  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
513  if (argIsLvalue == Expr::LV_Valid &&
514      !FromType->isFunctionType() && !FromType->isArrayType() &&
515      Context.getCanonicalType(FromType) != Context.OverloadTy) {
516    SCS.First = ICK_Lvalue_To_Rvalue;
517
518    // If T is a non-class type, the type of the rvalue is the
519    // cv-unqualified version of T. Otherwise, the type of the rvalue
520    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
521    // just strip the qualifiers because they don't matter.
522
523    // FIXME: Doesn't see through to qualifiers behind a typedef!
524    FromType = FromType.getUnqualifiedType();
525  } else if (FromType->isArrayType()) {
526    // Array-to-pointer conversion (C++ 4.2)
527    SCS.First = ICK_Array_To_Pointer;
528
529    // An lvalue or rvalue of type "array of N T" or "array of unknown
530    // bound of T" can be converted to an rvalue of type "pointer to
531    // T" (C++ 4.2p1).
532    FromType = Context.getArrayDecayedType(FromType);
533
534    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
535      // This conversion is deprecated. (C++ D.4).
536      SCS.Deprecated = true;
537
538      // For the purpose of ranking in overload resolution
539      // (13.3.3.1.1), this conversion is considered an
540      // array-to-pointer conversion followed by a qualification
541      // conversion (4.4). (C++ 4.2p2)
542      SCS.Second = ICK_Identity;
543      SCS.Third = ICK_Qualification;
544      SCS.ToTypePtr = ToType.getAsOpaquePtr();
545      return true;
546    }
547  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
548    // Function-to-pointer conversion (C++ 4.3).
549    SCS.First = ICK_Function_To_Pointer;
550
551    // An lvalue of function type T can be converted to an rvalue of
552    // type "pointer to T." The result is a pointer to the
553    // function. (C++ 4.3p1).
554    FromType = Context.getPointerType(FromType);
555  } else if (FunctionDecl *Fn
556             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
557    // Address of overloaded function (C++ [over.over]).
558    SCS.First = ICK_Function_To_Pointer;
559
560    // We were able to resolve the address of the overloaded function,
561    // so we can convert to the type of that function.
562    FromType = Fn->getType();
563    if (ToType->isLValueReferenceType())
564      FromType = Context.getLValueReferenceType(FromType);
565    else if (ToType->isRValueReferenceType())
566      FromType = Context.getRValueReferenceType(FromType);
567    else if (ToType->isMemberPointerType()) {
568      // Resolve address only succeeds if both sides are member pointers,
569      // but it doesn't have to be the same class. See DR 247.
570      // Note that this means that the type of &Derived::fn can be
571      // Ret (Base::*)(Args) if the fn overload actually found is from the
572      // base class, even if it was brought into the derived class via a
573      // using declaration. The standard isn't clear on this issue at all.
574      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
575      FromType = Context.getMemberPointerType(FromType,
576                    Context.getTypeDeclType(M->getParent()).getTypePtr());
577    } else
578      FromType = Context.getPointerType(FromType);
579  } else {
580    // We don't require any conversions for the first step.
581    SCS.First = ICK_Identity;
582  }
583
584  // The second conversion can be an integral promotion, floating
585  // point promotion, integral conversion, floating point conversion,
586  // floating-integral conversion, pointer conversion,
587  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
588  // For overloading in C, this can also be a "compatible-type"
589  // conversion.
590  bool IncompatibleObjC = false;
591  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
592    // The unqualified versions of the types are the same: there's no
593    // conversion to do.
594    SCS.Second = ICK_Identity;
595  } else if (IsIntegralPromotion(From, FromType, ToType)) {
596    // Integral promotion (C++ 4.5).
597    SCS.Second = ICK_Integral_Promotion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (IsFloatingPointPromotion(FromType, ToType)) {
600    // Floating point promotion (C++ 4.6).
601    SCS.Second = ICK_Floating_Promotion;
602    FromType = ToType.getUnqualifiedType();
603  } else if (IsComplexPromotion(FromType, ToType)) {
604    // Complex promotion (Clang extension)
605    SCS.Second = ICK_Complex_Promotion;
606    FromType = ToType.getUnqualifiedType();
607  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
608           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
609    // Integral conversions (C++ 4.7).
610    // FIXME: isIntegralType shouldn't be true for enums in C++.
611    SCS.Second = ICK_Integral_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
614    // Floating point conversions (C++ 4.8).
615    SCS.Second = ICK_Floating_Conversion;
616    FromType = ToType.getUnqualifiedType();
617  } else if (FromType->isComplexType() && ToType->isComplexType()) {
618    // Complex conversions (C99 6.3.1.6)
619    SCS.Second = ICK_Complex_Conversion;
620    FromType = ToType.getUnqualifiedType();
621  } else if ((FromType->isFloatingType() &&
622              ToType->isIntegralType() && (!ToType->isBooleanType() &&
623                                           !ToType->isEnumeralType())) ||
624             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625              ToType->isFloatingType())) {
626    // Floating-integral conversions (C++ 4.9).
627    // FIXME: isIntegralType shouldn't be true for enums in C++.
628    SCS.Second = ICK_Floating_Integral;
629    FromType = ToType.getUnqualifiedType();
630  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631             (ToType->isComplexType() && FromType->isArithmeticType())) {
632    // Complex-real conversions (C99 6.3.1.7)
633    SCS.Second = ICK_Complex_Real;
634    FromType = ToType.getUnqualifiedType();
635  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
636                                 FromType, IncompatibleObjC)) {
637    // Pointer conversions (C++ 4.10).
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  } else if (IsMemberPointerConversion(From, FromType, ToType,
641                                       InOverloadResolution, FromType)) {
642    // Pointer to member conversions (4.11).
643    SCS.Second = ICK_Pointer_Member;
644  } else if (ToType->isBooleanType() &&
645             (FromType->isArithmeticType() ||
646              FromType->isEnumeralType() ||
647              FromType->isPointerType() ||
648              FromType->isBlockPointerType() ||
649              FromType->isMemberPointerType() ||
650              FromType->isNullPtrType())) {
651    // Boolean conversions (C++ 4.12).
652    SCS.Second = ICK_Boolean_Conversion;
653    FromType = Context.BoolTy;
654  } else if (!getLangOptions().CPlusPlus &&
655             Context.typesAreCompatible(ToType, FromType)) {
656    // Compatible conversions (Clang extension for C function overloading)
657    SCS.Second = ICK_Compatible_Conversion;
658  } else {
659    // No second conversion required.
660    SCS.Second = ICK_Identity;
661  }
662
663  QualType CanonFrom;
664  QualType CanonTo;
665  // The third conversion can be a qualification conversion (C++ 4p1).
666  if (IsQualificationConversion(FromType, ToType)) {
667    SCS.Third = ICK_Qualification;
668    FromType = ToType;
669    CanonFrom = Context.getCanonicalType(FromType);
670    CanonTo = Context.getCanonicalType(ToType);
671  } else {
672    // No conversion required
673    SCS.Third = ICK_Identity;
674
675    // C++ [over.best.ics]p6:
676    //   [...] Any difference in top-level cv-qualification is
677    //   subsumed by the initialization itself and does not constitute
678    //   a conversion. [...]
679    CanonFrom = Context.getCanonicalType(FromType);
680    CanonTo = Context.getCanonicalType(ToType);
681    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
682        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
683      FromType = ToType;
684      CanonFrom = CanonTo;
685    }
686  }
687
688  // If we have not converted the argument type to the parameter type,
689  // this is a bad conversion sequence.
690  if (CanonFrom != CanonTo)
691    return false;
692
693  SCS.ToTypePtr = FromType.getAsOpaquePtr();
694  return true;
695}
696
697/// IsIntegralPromotion - Determines whether the conversion from the
698/// expression From (whose potentially-adjusted type is FromType) to
699/// ToType is an integral promotion (C++ 4.5). If so, returns true and
700/// sets PromotedType to the promoted type.
701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
702  const BuiltinType *To = ToType->getAs<BuiltinType>();
703  // All integers are built-in.
704  if (!To) {
705    return false;
706  }
707
708  // An rvalue of type char, signed char, unsigned char, short int, or
709  // unsigned short int can be converted to an rvalue of type int if
710  // int can represent all the values of the source type; otherwise,
711  // the source rvalue can be converted to an rvalue of type unsigned
712  // int (C++ 4.5p1).
713  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
714    if (// We can promote any signed, promotable integer type to an int
715        (FromType->isSignedIntegerType() ||
716         // We can promote any unsigned integer type whose size is
717         // less than int to an int.
718         (!FromType->isSignedIntegerType() &&
719          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
720      return To->getKind() == BuiltinType::Int;
721    }
722
723    return To->getKind() == BuiltinType::UInt;
724  }
725
726  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
727  // can be converted to an rvalue of the first of the following types
728  // that can represent all the values of its underlying type: int,
729  // unsigned int, long, or unsigned long (C++ 4.5p2).
730  if ((FromType->isEnumeralType() || FromType->isWideCharType())
731      && ToType->isIntegerType()) {
732    // Determine whether the type we're converting from is signed or
733    // unsigned.
734    bool FromIsSigned;
735    uint64_t FromSize = Context.getTypeSize(FromType);
736    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
737      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
738      FromIsSigned = UnderlyingType->isSignedIntegerType();
739    } else {
740      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
741      FromIsSigned = true;
742    }
743
744    // The types we'll try to promote to, in the appropriate
745    // order. Try each of these types.
746    QualType PromoteTypes[6] = {
747      Context.IntTy, Context.UnsignedIntTy,
748      Context.LongTy, Context.UnsignedLongTy ,
749      Context.LongLongTy, Context.UnsignedLongLongTy
750    };
751    for (int Idx = 0; Idx < 6; ++Idx) {
752      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
753      if (FromSize < ToSize ||
754          (FromSize == ToSize &&
755           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
756        // We found the type that we can promote to. If this is the
757        // type we wanted, we have a promotion. Otherwise, no
758        // promotion.
759        return Context.getCanonicalType(ToType).getUnqualifiedType()
760          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
761      }
762    }
763  }
764
765  // An rvalue for an integral bit-field (9.6) can be converted to an
766  // rvalue of type int if int can represent all the values of the
767  // bit-field; otherwise, it can be converted to unsigned int if
768  // unsigned int can represent all the values of the bit-field. If
769  // the bit-field is larger yet, no integral promotion applies to
770  // it. If the bit-field has an enumerated type, it is treated as any
771  // other value of that type for promotion purposes (C++ 4.5p3).
772  // FIXME: We should delay checking of bit-fields until we actually perform the
773  // conversion.
774  using llvm::APSInt;
775  if (From)
776    if (FieldDecl *MemberDecl = From->getBitField()) {
777      APSInt BitWidth;
778      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
779          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
780        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
781        ToSize = Context.getTypeSize(ToType);
782
783        // Are we promoting to an int from a bitfield that fits in an int?
784        if (BitWidth < ToSize ||
785            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
786          return To->getKind() == BuiltinType::Int;
787        }
788
789        // Are we promoting to an unsigned int from an unsigned bitfield
790        // that fits into an unsigned int?
791        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
792          return To->getKind() == BuiltinType::UInt;
793        }
794
795        return false;
796      }
797    }
798
799  // An rvalue of type bool can be converted to an rvalue of type int,
800  // with false becoming zero and true becoming one (C++ 4.5p4).
801  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
802    return true;
803  }
804
805  return false;
806}
807
808/// IsFloatingPointPromotion - Determines whether the conversion from
809/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
810/// returns true and sets PromotedType to the promoted type.
811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
812  /// An rvalue of type float can be converted to an rvalue of type
813  /// double. (C++ 4.6p1).
814  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
815    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
816      if (FromBuiltin->getKind() == BuiltinType::Float &&
817          ToBuiltin->getKind() == BuiltinType::Double)
818        return true;
819
820      // C99 6.3.1.5p1:
821      //   When a float is promoted to double or long double, or a
822      //   double is promoted to long double [...].
823      if (!getLangOptions().CPlusPlus &&
824          (FromBuiltin->getKind() == BuiltinType::Float ||
825           FromBuiltin->getKind() == BuiltinType::Double) &&
826          (ToBuiltin->getKind() == BuiltinType::LongDouble))
827        return true;
828    }
829
830  return false;
831}
832
833/// \brief Determine if a conversion is a complex promotion.
834///
835/// A complex promotion is defined as a complex -> complex conversion
836/// where the conversion between the underlying real types is a
837/// floating-point or integral promotion.
838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
839  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
840  if (!FromComplex)
841    return false;
842
843  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
844  if (!ToComplex)
845    return false;
846
847  return IsFloatingPointPromotion(FromComplex->getElementType(),
848                                  ToComplex->getElementType()) ||
849    IsIntegralPromotion(0, FromComplex->getElementType(),
850                        ToComplex->getElementType());
851}
852
853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
854/// the pointer type FromPtr to a pointer to type ToPointee, with the
855/// same type qualifiers as FromPtr has on its pointee type. ToType,
856/// if non-empty, will be a pointer to ToType that may or may not have
857/// the right set of qualifiers on its pointee.
858static QualType
859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
860                                   QualType ToPointee, QualType ToType,
861                                   ASTContext &Context) {
862  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
863  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
864  Qualifiers Quals = CanonFromPointee.getQualifiers();
865
866  // Exact qualifier match -> return the pointer type we're converting to.
867  if (CanonToPointee.getQualifiers() == Quals) {
868    // ToType is exactly what we need. Return it.
869    if (!ToType.isNull())
870      return ToType;
871
872    // Build a pointer to ToPointee. It has the right qualifiers
873    // already.
874    return Context.getPointerType(ToPointee);
875  }
876
877  // Just build a canonical type that has the right qualifiers.
878  return Context.getPointerType(
879         Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals));
880}
881
882static bool isNullPointerConstantForConversion(Expr *Expr,
883                                               bool InOverloadResolution,
884                                               ASTContext &Context) {
885  // Handle value-dependent integral null pointer constants correctly.
886  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
887  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
888      Expr->getType()->isIntegralType())
889    return !InOverloadResolution;
890
891  return Expr->isNullPointerConstant(Context,
892                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
893                                        : Expr::NPC_ValueDependentIsNull);
894}
895
896/// IsPointerConversion - Determines whether the conversion of the
897/// expression From, which has the (possibly adjusted) type FromType,
898/// can be converted to the type ToType via a pointer conversion (C++
899/// 4.10). If so, returns true and places the converted type (that
900/// might differ from ToType in its cv-qualifiers at some level) into
901/// ConvertedType.
902///
903/// This routine also supports conversions to and from block pointers
904/// and conversions with Objective-C's 'id', 'id<protocols...>', and
905/// pointers to interfaces. FIXME: Once we've determined the
906/// appropriate overloading rules for Objective-C, we may want to
907/// split the Objective-C checks into a different routine; however,
908/// GCC seems to consider all of these conversions to be pointer
909/// conversions, so for now they live here. IncompatibleObjC will be
910/// set if the conversion is an allowed Objective-C conversion that
911/// should result in a warning.
912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
913                               bool InOverloadResolution,
914                               QualType& ConvertedType,
915                               bool &IncompatibleObjC) {
916  IncompatibleObjC = false;
917  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
918    return true;
919
920  // Conversion from a null pointer constant to any Objective-C pointer type.
921  if (ToType->isObjCObjectPointerType() &&
922      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
923    ConvertedType = ToType;
924    return true;
925  }
926
927  // Blocks: Block pointers can be converted to void*.
928  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
929      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
930    ConvertedType = ToType;
931    return true;
932  }
933  // Blocks: A null pointer constant can be converted to a block
934  // pointer type.
935  if (ToType->isBlockPointerType() &&
936      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
937    ConvertedType = ToType;
938    return true;
939  }
940
941  // If the left-hand-side is nullptr_t, the right side can be a null
942  // pointer constant.
943  if (ToType->isNullPtrType() &&
944      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
945    ConvertedType = ToType;
946    return true;
947  }
948
949  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
950  if (!ToTypePtr)
951    return false;
952
953  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
954  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
955    ConvertedType = ToType;
956    return true;
957  }
958
959  // Beyond this point, both types need to be pointers.
960  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
961  if (!FromTypePtr)
962    return false;
963
964  QualType FromPointeeType = FromTypePtr->getPointeeType();
965  QualType ToPointeeType = ToTypePtr->getPointeeType();
966
967  // An rvalue of type "pointer to cv T," where T is an object type,
968  // can be converted to an rvalue of type "pointer to cv void" (C++
969  // 4.10p2).
970  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
971    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
972                                                       ToPointeeType,
973                                                       ToType, Context);
974    return true;
975  }
976
977  // When we're overloading in C, we allow a special kind of pointer
978  // conversion for compatible-but-not-identical pointee types.
979  if (!getLangOptions().CPlusPlus &&
980      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
981    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
982                                                       ToPointeeType,
983                                                       ToType, Context);
984    return true;
985  }
986
987  // C++ [conv.ptr]p3:
988  //
989  //   An rvalue of type "pointer to cv D," where D is a class type,
990  //   can be converted to an rvalue of type "pointer to cv B," where
991  //   B is a base class (clause 10) of D. If B is an inaccessible
992  //   (clause 11) or ambiguous (10.2) base class of D, a program that
993  //   necessitates this conversion is ill-formed. The result of the
994  //   conversion is a pointer to the base class sub-object of the
995  //   derived class object. The null pointer value is converted to
996  //   the null pointer value of the destination type.
997  //
998  // Note that we do not check for ambiguity or inaccessibility
999  // here. That is handled by CheckPointerConversion.
1000  if (getLangOptions().CPlusPlus &&
1001      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1002      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1003      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1004    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1005                                                       ToPointeeType,
1006                                                       ToType, Context);
1007    return true;
1008  }
1009
1010  return false;
1011}
1012
1013/// isObjCPointerConversion - Determines whether this is an
1014/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1015/// with the same arguments and return values.
1016bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1017                                   QualType& ConvertedType,
1018                                   bool &IncompatibleObjC) {
1019  if (!getLangOptions().ObjC1)
1020    return false;
1021
1022  // First, we handle all conversions on ObjC object pointer types.
1023  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1024  const ObjCObjectPointerType *FromObjCPtr =
1025    FromType->getAs<ObjCObjectPointerType>();
1026
1027  if (ToObjCPtr && FromObjCPtr) {
1028    // Objective C++: We're able to convert between "id" or "Class" and a
1029    // pointer to any interface (in both directions).
1030    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1031      ConvertedType = ToType;
1032      return true;
1033    }
1034    // Conversions with Objective-C's id<...>.
1035    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1036         ToObjCPtr->isObjCQualifiedIdType()) &&
1037        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1038                                                  /*compare=*/false)) {
1039      ConvertedType = ToType;
1040      return true;
1041    }
1042    // Objective C++: We're able to convert from a pointer to an
1043    // interface to a pointer to a different interface.
1044    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1045      ConvertedType = ToType;
1046      return true;
1047    }
1048
1049    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1050      // Okay: this is some kind of implicit downcast of Objective-C
1051      // interfaces, which is permitted. However, we're going to
1052      // complain about it.
1053      IncompatibleObjC = true;
1054      ConvertedType = FromType;
1055      return true;
1056    }
1057  }
1058  // Beyond this point, both types need to be C pointers or block pointers.
1059  QualType ToPointeeType;
1060  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1061    ToPointeeType = ToCPtr->getPointeeType();
1062  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1063    ToPointeeType = ToBlockPtr->getPointeeType();
1064  else
1065    return false;
1066
1067  QualType FromPointeeType;
1068  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1069    FromPointeeType = FromCPtr->getPointeeType();
1070  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1071    FromPointeeType = FromBlockPtr->getPointeeType();
1072  else
1073    return false;
1074
1075  // If we have pointers to pointers, recursively check whether this
1076  // is an Objective-C conversion.
1077  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1078      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1079                              IncompatibleObjC)) {
1080    // We always complain about this conversion.
1081    IncompatibleObjC = true;
1082    ConvertedType = ToType;
1083    return true;
1084  }
1085  // If we have pointers to functions or blocks, check whether the only
1086  // differences in the argument and result types are in Objective-C
1087  // pointer conversions. If so, we permit the conversion (but
1088  // complain about it).
1089  const FunctionProtoType *FromFunctionType
1090    = FromPointeeType->getAs<FunctionProtoType>();
1091  const FunctionProtoType *ToFunctionType
1092    = ToPointeeType->getAs<FunctionProtoType>();
1093  if (FromFunctionType && ToFunctionType) {
1094    // If the function types are exactly the same, this isn't an
1095    // Objective-C pointer conversion.
1096    if (Context.getCanonicalType(FromPointeeType)
1097          == Context.getCanonicalType(ToPointeeType))
1098      return false;
1099
1100    // Perform the quick checks that will tell us whether these
1101    // function types are obviously different.
1102    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1103        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1104        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1105      return false;
1106
1107    bool HasObjCConversion = false;
1108    if (Context.getCanonicalType(FromFunctionType->getResultType())
1109          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1110      // Okay, the types match exactly. Nothing to do.
1111    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1112                                       ToFunctionType->getResultType(),
1113                                       ConvertedType, IncompatibleObjC)) {
1114      // Okay, we have an Objective-C pointer conversion.
1115      HasObjCConversion = true;
1116    } else {
1117      // Function types are too different. Abort.
1118      return false;
1119    }
1120
1121    // Check argument types.
1122    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1123         ArgIdx != NumArgs; ++ArgIdx) {
1124      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1125      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1126      if (Context.getCanonicalType(FromArgType)
1127            == Context.getCanonicalType(ToArgType)) {
1128        // Okay, the types match exactly. Nothing to do.
1129      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1130                                         ConvertedType, IncompatibleObjC)) {
1131        // Okay, we have an Objective-C pointer conversion.
1132        HasObjCConversion = true;
1133      } else {
1134        // Argument types are too different. Abort.
1135        return false;
1136      }
1137    }
1138
1139    if (HasObjCConversion) {
1140      // We had an Objective-C conversion. Allow this pointer
1141      // conversion, but complain about it.
1142      ConvertedType = ToType;
1143      IncompatibleObjC = true;
1144      return true;
1145    }
1146  }
1147
1148  return false;
1149}
1150
1151/// CheckPointerConversion - Check the pointer conversion from the
1152/// expression From to the type ToType. This routine checks for
1153/// ambiguous or inaccessible derived-to-base pointer
1154/// conversions for which IsPointerConversion has already returned
1155/// true. It returns true and produces a diagnostic if there was an
1156/// error, or returns false otherwise.
1157bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1158                                  CastExpr::CastKind &Kind) {
1159  QualType FromType = From->getType();
1160
1161  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1162    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1163      QualType FromPointeeType = FromPtrType->getPointeeType(),
1164               ToPointeeType   = ToPtrType->getPointeeType();
1165
1166      if (FromPointeeType->isRecordType() &&
1167          ToPointeeType->isRecordType()) {
1168        // We must have a derived-to-base conversion. Check an
1169        // ambiguous or inaccessible conversion.
1170        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1171                                         From->getExprLoc(),
1172                                         From->getSourceRange()))
1173          return true;
1174
1175        // The conversion was successful.
1176        Kind = CastExpr::CK_DerivedToBase;
1177      }
1178    }
1179  if (const ObjCObjectPointerType *FromPtrType =
1180        FromType->getAs<ObjCObjectPointerType>())
1181    if (const ObjCObjectPointerType *ToPtrType =
1182          ToType->getAs<ObjCObjectPointerType>()) {
1183      // Objective-C++ conversions are always okay.
1184      // FIXME: We should have a different class of conversions for the
1185      // Objective-C++ implicit conversions.
1186      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1187        return false;
1188
1189  }
1190  return false;
1191}
1192
1193/// IsMemberPointerConversion - Determines whether the conversion of the
1194/// expression From, which has the (possibly adjusted) type FromType, can be
1195/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1196/// If so, returns true and places the converted type (that might differ from
1197/// ToType in its cv-qualifiers at some level) into ConvertedType.
1198bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1199                                     QualType ToType,
1200                                     bool InOverloadResolution,
1201                                     QualType &ConvertedType) {
1202  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1203  if (!ToTypePtr)
1204    return false;
1205
1206  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1207  if (From->isNullPointerConstant(Context,
1208                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1209                                        : Expr::NPC_ValueDependentIsNull)) {
1210    ConvertedType = ToType;
1211    return true;
1212  }
1213
1214  // Otherwise, both types have to be member pointers.
1215  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1216  if (!FromTypePtr)
1217    return false;
1218
1219  // A pointer to member of B can be converted to a pointer to member of D,
1220  // where D is derived from B (C++ 4.11p2).
1221  QualType FromClass(FromTypePtr->getClass(), 0);
1222  QualType ToClass(ToTypePtr->getClass(), 0);
1223  // FIXME: What happens when these are dependent? Is this function even called?
1224
1225  if (IsDerivedFrom(ToClass, FromClass)) {
1226    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1227                                                 ToClass.getTypePtr());
1228    return true;
1229  }
1230
1231  return false;
1232}
1233
1234/// CheckMemberPointerConversion - Check the member pointer conversion from the
1235/// expression From to the type ToType. This routine checks for ambiguous or
1236/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1237/// for which IsMemberPointerConversion has already returned true. It returns
1238/// true and produces a diagnostic if there was an error, or returns false
1239/// otherwise.
1240bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1241                                        CastExpr::CastKind &Kind) {
1242  QualType FromType = From->getType();
1243  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1244  if (!FromPtrType) {
1245    // This must be a null pointer to member pointer conversion
1246    assert(From->isNullPointerConstant(Context,
1247                                       Expr::NPC_ValueDependentIsNull) &&
1248           "Expr must be null pointer constant!");
1249    Kind = CastExpr::CK_NullToMemberPointer;
1250    return false;
1251  }
1252
1253  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1254  assert(ToPtrType && "No member pointer cast has a target type "
1255                      "that is not a member pointer.");
1256
1257  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1258  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1259
1260  // FIXME: What about dependent types?
1261  assert(FromClass->isRecordType() && "Pointer into non-class.");
1262  assert(ToClass->isRecordType() && "Pointer into non-class.");
1263
1264  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1265                     /*DetectVirtual=*/true);
1266  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1267  assert(DerivationOkay &&
1268         "Should not have been called if derivation isn't OK.");
1269  (void)DerivationOkay;
1270
1271  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1272                                  getUnqualifiedType())) {
1273    // Derivation is ambiguous. Redo the check to find the exact paths.
1274    Paths.clear();
1275    Paths.setRecordingPaths(true);
1276    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1277    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1278    (void)StillOkay;
1279
1280    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1281    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1282      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1283    return true;
1284  }
1285
1286  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1287    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1288      << FromClass << ToClass << QualType(VBase, 0)
1289      << From->getSourceRange();
1290    return true;
1291  }
1292
1293  // Must be a base to derived member conversion.
1294  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1295  return false;
1296}
1297
1298/// IsQualificationConversion - Determines whether the conversion from
1299/// an rvalue of type FromType to ToType is a qualification conversion
1300/// (C++ 4.4).
1301bool
1302Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1303  FromType = Context.getCanonicalType(FromType);
1304  ToType = Context.getCanonicalType(ToType);
1305
1306  // If FromType and ToType are the same type, this is not a
1307  // qualification conversion.
1308  if (FromType == ToType)
1309    return false;
1310
1311  // (C++ 4.4p4):
1312  //   A conversion can add cv-qualifiers at levels other than the first
1313  //   in multi-level pointers, subject to the following rules: [...]
1314  bool PreviousToQualsIncludeConst = true;
1315  bool UnwrappedAnyPointer = false;
1316  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1317    // Within each iteration of the loop, we check the qualifiers to
1318    // determine if this still looks like a qualification
1319    // conversion. Then, if all is well, we unwrap one more level of
1320    // pointers or pointers-to-members and do it all again
1321    // until there are no more pointers or pointers-to-members left to
1322    // unwrap.
1323    UnwrappedAnyPointer = true;
1324
1325    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1326    //      2,j, and similarly for volatile.
1327    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1328      return false;
1329
1330    //   -- if the cv 1,j and cv 2,j are different, then const is in
1331    //      every cv for 0 < k < j.
1332    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1333        && !PreviousToQualsIncludeConst)
1334      return false;
1335
1336    // Keep track of whether all prior cv-qualifiers in the "to" type
1337    // include const.
1338    PreviousToQualsIncludeConst
1339      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1340  }
1341
1342  // We are left with FromType and ToType being the pointee types
1343  // after unwrapping the original FromType and ToType the same number
1344  // of types. If we unwrapped any pointers, and if FromType and
1345  // ToType have the same unqualified type (since we checked
1346  // qualifiers above), then this is a qualification conversion.
1347  return UnwrappedAnyPointer &&
1348    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1349}
1350
1351/// \brief Given a function template or function, extract the function template
1352/// declaration (if any) and the underlying function declaration.
1353template<typename T>
1354static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1355                                   FunctionTemplateDecl *&FunctionTemplate) {
1356  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1357  if (FunctionTemplate)
1358    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1359  else
1360    Function = cast<T>(Orig);
1361}
1362
1363/// Determines whether there is a user-defined conversion sequence
1364/// (C++ [over.ics.user]) that converts expression From to the type
1365/// ToType. If such a conversion exists, User will contain the
1366/// user-defined conversion sequence that performs such a conversion
1367/// and this routine will return true. Otherwise, this routine returns
1368/// false and User is unspecified.
1369///
1370/// \param AllowConversionFunctions true if the conversion should
1371/// consider conversion functions at all. If false, only constructors
1372/// will be considered.
1373///
1374/// \param AllowExplicit  true if the conversion should consider C++0x
1375/// "explicit" conversion functions as well as non-explicit conversion
1376/// functions (C++0x [class.conv.fct]p2).
1377///
1378/// \param ForceRValue  true if the expression should be treated as an rvalue
1379/// for overload resolution.
1380/// \param UserCast true if looking for user defined conversion for a static
1381/// cast.
1382Sema::OverloadingResult Sema::IsUserDefinedConversion(
1383                                   Expr *From, QualType ToType,
1384                                   UserDefinedConversionSequence& User,
1385                                   OverloadCandidateSet& CandidateSet,
1386                                   bool AllowConversionFunctions,
1387                                   bool AllowExplicit, bool ForceRValue,
1388                                   bool UserCast) {
1389  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1390    if (CXXRecordDecl *ToRecordDecl
1391          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1392      // C++ [over.match.ctor]p1:
1393      //   When objects of class type are direct-initialized (8.5), or
1394      //   copy-initialized from an expression of the same or a
1395      //   derived class type (8.5), overload resolution selects the
1396      //   constructor. [...] For copy-initialization, the candidate
1397      //   functions are all the converting constructors (12.3.1) of
1398      //   that class. The argument list is the expression-list within
1399      //   the parentheses of the initializer.
1400      DeclarationName ConstructorName
1401        = Context.DeclarationNames.getCXXConstructorName(
1402                          Context.getCanonicalType(ToType).getUnqualifiedType());
1403      DeclContext::lookup_iterator Con, ConEnd;
1404      for (llvm::tie(Con, ConEnd)
1405             = ToRecordDecl->lookup(ConstructorName);
1406           Con != ConEnd; ++Con) {
1407        // Find the constructor (which may be a template).
1408        CXXConstructorDecl *Constructor = 0;
1409        FunctionTemplateDecl *ConstructorTmpl
1410          = dyn_cast<FunctionTemplateDecl>(*Con);
1411        if (ConstructorTmpl)
1412          Constructor
1413            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1414        else
1415          Constructor = cast<CXXConstructorDecl>(*Con);
1416
1417        if (!Constructor->isInvalidDecl() &&
1418            Constructor->isConvertingConstructor(AllowExplicit)) {
1419          if (ConstructorTmpl)
1420            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1421                                         1, CandidateSet,
1422                                         /*SuppressUserConversions=*/!UserCast,
1423                                         ForceRValue);
1424          else
1425            // Allow one user-defined conversion when user specifies a
1426            // From->ToType conversion via an static cast (c-style, etc).
1427            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1428                                 /*SuppressUserConversions=*/!UserCast,
1429                                 ForceRValue);
1430        }
1431      }
1432    }
1433  }
1434
1435  if (!AllowConversionFunctions) {
1436    // Don't allow any conversion functions to enter the overload set.
1437  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1438                                 PDiag(0)
1439                                   << From->getSourceRange())) {
1440    // No conversion functions from incomplete types.
1441  } else if (const RecordType *FromRecordType
1442               = From->getType()->getAs<RecordType>()) {
1443    if (CXXRecordDecl *FromRecordDecl
1444         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1445      // Add all of the conversion functions as candidates.
1446      OverloadedFunctionDecl *Conversions
1447        = FromRecordDecl->getVisibleConversionFunctions();
1448      for (OverloadedFunctionDecl::function_iterator Func
1449             = Conversions->function_begin();
1450           Func != Conversions->function_end(); ++Func) {
1451        CXXConversionDecl *Conv;
1452        FunctionTemplateDecl *ConvTemplate;
1453        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1454        if (ConvTemplate)
1455          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1456        else
1457          Conv = dyn_cast<CXXConversionDecl>(*Func);
1458
1459        if (AllowExplicit || !Conv->isExplicit()) {
1460          if (ConvTemplate)
1461            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1462                                           CandidateSet);
1463          else
1464            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1465        }
1466      }
1467    }
1468  }
1469
1470  OverloadCandidateSet::iterator Best;
1471  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1472    case OR_Success:
1473      // Record the standard conversion we used and the conversion function.
1474      if (CXXConstructorDecl *Constructor
1475            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1476        // C++ [over.ics.user]p1:
1477        //   If the user-defined conversion is specified by a
1478        //   constructor (12.3.1), the initial standard conversion
1479        //   sequence converts the source type to the type required by
1480        //   the argument of the constructor.
1481        //
1482        // FIXME: What about ellipsis conversions?
1483        QualType ThisType = Constructor->getThisType(Context);
1484        User.Before = Best->Conversions[0].Standard;
1485        User.ConversionFunction = Constructor;
1486        User.After.setAsIdentityConversion();
1487        User.After.FromTypePtr
1488          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1489        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1490        return OR_Success;
1491      } else if (CXXConversionDecl *Conversion
1492                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1493        // C++ [over.ics.user]p1:
1494        //
1495        //   [...] If the user-defined conversion is specified by a
1496        //   conversion function (12.3.2), the initial standard
1497        //   conversion sequence converts the source type to the
1498        //   implicit object parameter of the conversion function.
1499        User.Before = Best->Conversions[0].Standard;
1500        User.ConversionFunction = Conversion;
1501
1502        // C++ [over.ics.user]p2:
1503        //   The second standard conversion sequence converts the
1504        //   result of the user-defined conversion to the target type
1505        //   for the sequence. Since an implicit conversion sequence
1506        //   is an initialization, the special rules for
1507        //   initialization by user-defined conversion apply when
1508        //   selecting the best user-defined conversion for a
1509        //   user-defined conversion sequence (see 13.3.3 and
1510        //   13.3.3.1).
1511        User.After = Best->FinalConversion;
1512        return OR_Success;
1513      } else {
1514        assert(false && "Not a constructor or conversion function?");
1515        return OR_No_Viable_Function;
1516      }
1517
1518    case OR_No_Viable_Function:
1519      return OR_No_Viable_Function;
1520    case OR_Deleted:
1521      // No conversion here! We're done.
1522      return OR_Deleted;
1523
1524    case OR_Ambiguous:
1525      return OR_Ambiguous;
1526    }
1527
1528  return OR_No_Viable_Function;
1529}
1530
1531bool
1532Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) {
1533  ImplicitConversionSequence ICS;
1534  OverloadCandidateSet CandidateSet;
1535  OverloadingResult OvResult =
1536    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1537                            CandidateSet, true, false, false);
1538  if (OvResult != OR_Ambiguous)
1539    return false;
1540  Diag(From->getSourceRange().getBegin(),
1541       diag::err_typecheck_ambiguous_condition)
1542  << From->getType() << ToType << From->getSourceRange();
1543    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1544  return true;
1545}
1546
1547/// CompareImplicitConversionSequences - Compare two implicit
1548/// conversion sequences to determine whether one is better than the
1549/// other or if they are indistinguishable (C++ 13.3.3.2).
1550ImplicitConversionSequence::CompareKind
1551Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1552                                         const ImplicitConversionSequence& ICS2)
1553{
1554  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1555  // conversion sequences (as defined in 13.3.3.1)
1556  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1557  //      conversion sequence than a user-defined conversion sequence or
1558  //      an ellipsis conversion sequence, and
1559  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1560  //      conversion sequence than an ellipsis conversion sequence
1561  //      (13.3.3.1.3).
1562  //
1563  if (ICS1.ConversionKind < ICS2.ConversionKind)
1564    return ImplicitConversionSequence::Better;
1565  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1566    return ImplicitConversionSequence::Worse;
1567
1568  // Two implicit conversion sequences of the same form are
1569  // indistinguishable conversion sequences unless one of the
1570  // following rules apply: (C++ 13.3.3.2p3):
1571  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1572    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1573  else if (ICS1.ConversionKind ==
1574             ImplicitConversionSequence::UserDefinedConversion) {
1575    // User-defined conversion sequence U1 is a better conversion
1576    // sequence than another user-defined conversion sequence U2 if
1577    // they contain the same user-defined conversion function or
1578    // constructor and if the second standard conversion sequence of
1579    // U1 is better than the second standard conversion sequence of
1580    // U2 (C++ 13.3.3.2p3).
1581    if (ICS1.UserDefined.ConversionFunction ==
1582          ICS2.UserDefined.ConversionFunction)
1583      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1584                                                ICS2.UserDefined.After);
1585  }
1586
1587  return ImplicitConversionSequence::Indistinguishable;
1588}
1589
1590/// CompareStandardConversionSequences - Compare two standard
1591/// conversion sequences to determine whether one is better than the
1592/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1593ImplicitConversionSequence::CompareKind
1594Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1595                                         const StandardConversionSequence& SCS2)
1596{
1597  // Standard conversion sequence S1 is a better conversion sequence
1598  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1599
1600  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1601  //     sequences in the canonical form defined by 13.3.3.1.1,
1602  //     excluding any Lvalue Transformation; the identity conversion
1603  //     sequence is considered to be a subsequence of any
1604  //     non-identity conversion sequence) or, if not that,
1605  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1606    // Neither is a proper subsequence of the other. Do nothing.
1607    ;
1608  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1609           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1610           (SCS1.Second == ICK_Identity &&
1611            SCS1.Third == ICK_Identity))
1612    // SCS1 is a proper subsequence of SCS2.
1613    return ImplicitConversionSequence::Better;
1614  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1615           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1616           (SCS2.Second == ICK_Identity &&
1617            SCS2.Third == ICK_Identity))
1618    // SCS2 is a proper subsequence of SCS1.
1619    return ImplicitConversionSequence::Worse;
1620
1621  //  -- the rank of S1 is better than the rank of S2 (by the rules
1622  //     defined below), or, if not that,
1623  ImplicitConversionRank Rank1 = SCS1.getRank();
1624  ImplicitConversionRank Rank2 = SCS2.getRank();
1625  if (Rank1 < Rank2)
1626    return ImplicitConversionSequence::Better;
1627  else if (Rank2 < Rank1)
1628    return ImplicitConversionSequence::Worse;
1629
1630  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1631  // are indistinguishable unless one of the following rules
1632  // applies:
1633
1634  //   A conversion that is not a conversion of a pointer, or
1635  //   pointer to member, to bool is better than another conversion
1636  //   that is such a conversion.
1637  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1638    return SCS2.isPointerConversionToBool()
1639             ? ImplicitConversionSequence::Better
1640             : ImplicitConversionSequence::Worse;
1641
1642  // C++ [over.ics.rank]p4b2:
1643  //
1644  //   If class B is derived directly or indirectly from class A,
1645  //   conversion of B* to A* is better than conversion of B* to
1646  //   void*, and conversion of A* to void* is better than conversion
1647  //   of B* to void*.
1648  bool SCS1ConvertsToVoid
1649    = SCS1.isPointerConversionToVoidPointer(Context);
1650  bool SCS2ConvertsToVoid
1651    = SCS2.isPointerConversionToVoidPointer(Context);
1652  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1653    // Exactly one of the conversion sequences is a conversion to
1654    // a void pointer; it's the worse conversion.
1655    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1656                              : ImplicitConversionSequence::Worse;
1657  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1658    // Neither conversion sequence converts to a void pointer; compare
1659    // their derived-to-base conversions.
1660    if (ImplicitConversionSequence::CompareKind DerivedCK
1661          = CompareDerivedToBaseConversions(SCS1, SCS2))
1662      return DerivedCK;
1663  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1664    // Both conversion sequences are conversions to void
1665    // pointers. Compare the source types to determine if there's an
1666    // inheritance relationship in their sources.
1667    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1668    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1669
1670    // Adjust the types we're converting from via the array-to-pointer
1671    // conversion, if we need to.
1672    if (SCS1.First == ICK_Array_To_Pointer)
1673      FromType1 = Context.getArrayDecayedType(FromType1);
1674    if (SCS2.First == ICK_Array_To_Pointer)
1675      FromType2 = Context.getArrayDecayedType(FromType2);
1676
1677    QualType FromPointee1
1678      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1679    QualType FromPointee2
1680      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1681
1682    if (IsDerivedFrom(FromPointee2, FromPointee1))
1683      return ImplicitConversionSequence::Better;
1684    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1685      return ImplicitConversionSequence::Worse;
1686
1687    // Objective-C++: If one interface is more specific than the
1688    // other, it is the better one.
1689    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1690    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1691    if (FromIface1 && FromIface1) {
1692      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1693        return ImplicitConversionSequence::Better;
1694      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1695        return ImplicitConversionSequence::Worse;
1696    }
1697  }
1698
1699  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1700  // bullet 3).
1701  if (ImplicitConversionSequence::CompareKind QualCK
1702        = CompareQualificationConversions(SCS1, SCS2))
1703    return QualCK;
1704
1705  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1706    // C++0x [over.ics.rank]p3b4:
1707    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1708    //      implicit object parameter of a non-static member function declared
1709    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1710    //      rvalue and S2 binds an lvalue reference.
1711    // FIXME: We don't know if we're dealing with the implicit object parameter,
1712    // or if the member function in this case has a ref qualifier.
1713    // (Of course, we don't have ref qualifiers yet.)
1714    if (SCS1.RRefBinding != SCS2.RRefBinding)
1715      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1716                              : ImplicitConversionSequence::Worse;
1717
1718    // C++ [over.ics.rank]p3b4:
1719    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1720    //      which the references refer are the same type except for
1721    //      top-level cv-qualifiers, and the type to which the reference
1722    //      initialized by S2 refers is more cv-qualified than the type
1723    //      to which the reference initialized by S1 refers.
1724    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1725    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1726    T1 = Context.getCanonicalType(T1);
1727    T2 = Context.getCanonicalType(T2);
1728    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1729      if (T2.isMoreQualifiedThan(T1))
1730        return ImplicitConversionSequence::Better;
1731      else if (T1.isMoreQualifiedThan(T2))
1732        return ImplicitConversionSequence::Worse;
1733    }
1734  }
1735
1736  return ImplicitConversionSequence::Indistinguishable;
1737}
1738
1739/// CompareQualificationConversions - Compares two standard conversion
1740/// sequences to determine whether they can be ranked based on their
1741/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1742ImplicitConversionSequence::CompareKind
1743Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1744                                      const StandardConversionSequence& SCS2) {
1745  // C++ 13.3.3.2p3:
1746  //  -- S1 and S2 differ only in their qualification conversion and
1747  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1748  //     cv-qualification signature of type T1 is a proper subset of
1749  //     the cv-qualification signature of type T2, and S1 is not the
1750  //     deprecated string literal array-to-pointer conversion (4.2).
1751  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1752      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1753    return ImplicitConversionSequence::Indistinguishable;
1754
1755  // FIXME: the example in the standard doesn't use a qualification
1756  // conversion (!)
1757  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1758  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1759  T1 = Context.getCanonicalType(T1);
1760  T2 = Context.getCanonicalType(T2);
1761
1762  // If the types are the same, we won't learn anything by unwrapped
1763  // them.
1764  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1765    return ImplicitConversionSequence::Indistinguishable;
1766
1767  ImplicitConversionSequence::CompareKind Result
1768    = ImplicitConversionSequence::Indistinguishable;
1769  while (UnwrapSimilarPointerTypes(T1, T2)) {
1770    // Within each iteration of the loop, we check the qualifiers to
1771    // determine if this still looks like a qualification
1772    // conversion. Then, if all is well, we unwrap one more level of
1773    // pointers or pointers-to-members and do it all again
1774    // until there are no more pointers or pointers-to-members left
1775    // to unwrap. This essentially mimics what
1776    // IsQualificationConversion does, but here we're checking for a
1777    // strict subset of qualifiers.
1778    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1779      // The qualifiers are the same, so this doesn't tell us anything
1780      // about how the sequences rank.
1781      ;
1782    else if (T2.isMoreQualifiedThan(T1)) {
1783      // T1 has fewer qualifiers, so it could be the better sequence.
1784      if (Result == ImplicitConversionSequence::Worse)
1785        // Neither has qualifiers that are a subset of the other's
1786        // qualifiers.
1787        return ImplicitConversionSequence::Indistinguishable;
1788
1789      Result = ImplicitConversionSequence::Better;
1790    } else if (T1.isMoreQualifiedThan(T2)) {
1791      // T2 has fewer qualifiers, so it could be the better sequence.
1792      if (Result == ImplicitConversionSequence::Better)
1793        // Neither has qualifiers that are a subset of the other's
1794        // qualifiers.
1795        return ImplicitConversionSequence::Indistinguishable;
1796
1797      Result = ImplicitConversionSequence::Worse;
1798    } else {
1799      // Qualifiers are disjoint.
1800      return ImplicitConversionSequence::Indistinguishable;
1801    }
1802
1803    // If the types after this point are equivalent, we're done.
1804    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1805      break;
1806  }
1807
1808  // Check that the winning standard conversion sequence isn't using
1809  // the deprecated string literal array to pointer conversion.
1810  switch (Result) {
1811  case ImplicitConversionSequence::Better:
1812    if (SCS1.Deprecated)
1813      Result = ImplicitConversionSequence::Indistinguishable;
1814    break;
1815
1816  case ImplicitConversionSequence::Indistinguishable:
1817    break;
1818
1819  case ImplicitConversionSequence::Worse:
1820    if (SCS2.Deprecated)
1821      Result = ImplicitConversionSequence::Indistinguishable;
1822    break;
1823  }
1824
1825  return Result;
1826}
1827
1828/// CompareDerivedToBaseConversions - Compares two standard conversion
1829/// sequences to determine whether they can be ranked based on their
1830/// various kinds of derived-to-base conversions (C++
1831/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1832/// conversions between Objective-C interface types.
1833ImplicitConversionSequence::CompareKind
1834Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1835                                      const StandardConversionSequence& SCS2) {
1836  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1837  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1838  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1839  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1840
1841  // Adjust the types we're converting from via the array-to-pointer
1842  // conversion, if we need to.
1843  if (SCS1.First == ICK_Array_To_Pointer)
1844    FromType1 = Context.getArrayDecayedType(FromType1);
1845  if (SCS2.First == ICK_Array_To_Pointer)
1846    FromType2 = Context.getArrayDecayedType(FromType2);
1847
1848  // Canonicalize all of the types.
1849  FromType1 = Context.getCanonicalType(FromType1);
1850  ToType1 = Context.getCanonicalType(ToType1);
1851  FromType2 = Context.getCanonicalType(FromType2);
1852  ToType2 = Context.getCanonicalType(ToType2);
1853
1854  // C++ [over.ics.rank]p4b3:
1855  //
1856  //   If class B is derived directly or indirectly from class A and
1857  //   class C is derived directly or indirectly from B,
1858  //
1859  // For Objective-C, we let A, B, and C also be Objective-C
1860  // interfaces.
1861
1862  // Compare based on pointer conversions.
1863  if (SCS1.Second == ICK_Pointer_Conversion &&
1864      SCS2.Second == ICK_Pointer_Conversion &&
1865      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1866      FromType1->isPointerType() && FromType2->isPointerType() &&
1867      ToType1->isPointerType() && ToType2->isPointerType()) {
1868    QualType FromPointee1
1869      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1870    QualType ToPointee1
1871      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1872    QualType FromPointee2
1873      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1874    QualType ToPointee2
1875      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1876
1877    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1878    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1879    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1880    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1881
1882    //   -- conversion of C* to B* is better than conversion of C* to A*,
1883    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1884      if (IsDerivedFrom(ToPointee1, ToPointee2))
1885        return ImplicitConversionSequence::Better;
1886      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1887        return ImplicitConversionSequence::Worse;
1888
1889      if (ToIface1 && ToIface2) {
1890        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1891          return ImplicitConversionSequence::Better;
1892        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1893          return ImplicitConversionSequence::Worse;
1894      }
1895    }
1896
1897    //   -- conversion of B* to A* is better than conversion of C* to A*,
1898    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1899      if (IsDerivedFrom(FromPointee2, FromPointee1))
1900        return ImplicitConversionSequence::Better;
1901      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1902        return ImplicitConversionSequence::Worse;
1903
1904      if (FromIface1 && FromIface2) {
1905        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1906          return ImplicitConversionSequence::Better;
1907        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1908          return ImplicitConversionSequence::Worse;
1909      }
1910    }
1911  }
1912
1913  // Compare based on reference bindings.
1914  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1915      SCS1.Second == ICK_Derived_To_Base) {
1916    //   -- binding of an expression of type C to a reference of type
1917    //      B& is better than binding an expression of type C to a
1918    //      reference of type A&,
1919    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1920        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1921      if (IsDerivedFrom(ToType1, ToType2))
1922        return ImplicitConversionSequence::Better;
1923      else if (IsDerivedFrom(ToType2, ToType1))
1924        return ImplicitConversionSequence::Worse;
1925    }
1926
1927    //   -- binding of an expression of type B to a reference of type
1928    //      A& is better than binding an expression of type C to a
1929    //      reference of type A&,
1930    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1931        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1932      if (IsDerivedFrom(FromType2, FromType1))
1933        return ImplicitConversionSequence::Better;
1934      else if (IsDerivedFrom(FromType1, FromType2))
1935        return ImplicitConversionSequence::Worse;
1936    }
1937  }
1938
1939  // Ranking of member-pointer types.
1940  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
1941      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
1942      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
1943    const MemberPointerType * FromMemPointer1 =
1944                                        FromType1->getAs<MemberPointerType>();
1945    const MemberPointerType * ToMemPointer1 =
1946                                          ToType1->getAs<MemberPointerType>();
1947    const MemberPointerType * FromMemPointer2 =
1948                                          FromType2->getAs<MemberPointerType>();
1949    const MemberPointerType * ToMemPointer2 =
1950                                          ToType2->getAs<MemberPointerType>();
1951    const Type *FromPointeeType1 = FromMemPointer1->getClass();
1952    const Type *ToPointeeType1 = ToMemPointer1->getClass();
1953    const Type *FromPointeeType2 = FromMemPointer2->getClass();
1954    const Type *ToPointeeType2 = ToMemPointer2->getClass();
1955    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
1956    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
1957    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
1958    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
1959    // conversion of A::* to B::* is better than conversion of A::* to C::*,
1960    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1961      if (IsDerivedFrom(ToPointee1, ToPointee2))
1962        return ImplicitConversionSequence::Worse;
1963      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1964        return ImplicitConversionSequence::Better;
1965    }
1966    // conversion of B::* to C::* is better than conversion of A::* to C::*
1967    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
1968      if (IsDerivedFrom(FromPointee1, FromPointee2))
1969        return ImplicitConversionSequence::Better;
1970      else if (IsDerivedFrom(FromPointee2, FromPointee1))
1971        return ImplicitConversionSequence::Worse;
1972    }
1973  }
1974
1975  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1976      SCS1.Second == ICK_Derived_To_Base) {
1977    //   -- conversion of C to B is better than conversion of C to A,
1978    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1979        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1980      if (IsDerivedFrom(ToType1, ToType2))
1981        return ImplicitConversionSequence::Better;
1982      else if (IsDerivedFrom(ToType2, ToType1))
1983        return ImplicitConversionSequence::Worse;
1984    }
1985
1986    //   -- conversion of B to A is better than conversion of C to A.
1987    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1988        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1989      if (IsDerivedFrom(FromType2, FromType1))
1990        return ImplicitConversionSequence::Better;
1991      else if (IsDerivedFrom(FromType1, FromType2))
1992        return ImplicitConversionSequence::Worse;
1993    }
1994  }
1995
1996  return ImplicitConversionSequence::Indistinguishable;
1997}
1998
1999/// TryCopyInitialization - Try to copy-initialize a value of type
2000/// ToType from the expression From. Return the implicit conversion
2001/// sequence required to pass this argument, which may be a bad
2002/// conversion sequence (meaning that the argument cannot be passed to
2003/// a parameter of this type). If @p SuppressUserConversions, then we
2004/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2005/// then we treat @p From as an rvalue, even if it is an lvalue.
2006ImplicitConversionSequence
2007Sema::TryCopyInitialization(Expr *From, QualType ToType,
2008                            bool SuppressUserConversions, bool ForceRValue,
2009                            bool InOverloadResolution) {
2010  if (ToType->isReferenceType()) {
2011    ImplicitConversionSequence ICS;
2012    CheckReferenceInit(From, ToType,
2013                       /*FIXME:*/From->getLocStart(),
2014                       SuppressUserConversions,
2015                       /*AllowExplicit=*/false,
2016                       ForceRValue,
2017                       &ICS);
2018    return ICS;
2019  } else {
2020    return TryImplicitConversion(From, ToType,
2021                                 SuppressUserConversions,
2022                                 /*AllowExplicit=*/false,
2023                                 ForceRValue,
2024                                 InOverloadResolution);
2025  }
2026}
2027
2028/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2029/// the expression @p From. Returns true (and emits a diagnostic) if there was
2030/// an error, returns false if the initialization succeeded. Elidable should
2031/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2032/// differently in C++0x for this case.
2033bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2034                                     const char* Flavor, bool Elidable) {
2035  if (!getLangOptions().CPlusPlus) {
2036    // In C, argument passing is the same as performing an assignment.
2037    QualType FromType = From->getType();
2038
2039    AssignConvertType ConvTy =
2040      CheckSingleAssignmentConstraints(ToType, From);
2041    if (ConvTy != Compatible &&
2042        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2043      ConvTy = Compatible;
2044
2045    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2046                                    FromType, From, Flavor);
2047  }
2048
2049  if (ToType->isReferenceType())
2050    return CheckReferenceInit(From, ToType,
2051                              /*FIXME:*/From->getLocStart(),
2052                              /*SuppressUserConversions=*/false,
2053                              /*AllowExplicit=*/false,
2054                              /*ForceRValue=*/false);
2055
2056  if (!PerformImplicitConversion(From, ToType, Flavor,
2057                                 /*AllowExplicit=*/false, Elidable))
2058    return false;
2059  if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType))
2060    return Diag(From->getSourceRange().getBegin(),
2061                diag::err_typecheck_convert_incompatible)
2062      << ToType << From->getType() << Flavor << From->getSourceRange();
2063  return true;
2064}
2065
2066/// TryObjectArgumentInitialization - Try to initialize the object
2067/// parameter of the given member function (@c Method) from the
2068/// expression @p From.
2069ImplicitConversionSequence
2070Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2071  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2072  QualType ImplicitParamType
2073    = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers());
2074
2075  // Set up the conversion sequence as a "bad" conversion, to allow us
2076  // to exit early.
2077  ImplicitConversionSequence ICS;
2078  ICS.Standard.setAsIdentityConversion();
2079  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2080
2081  // We need to have an object of class type.
2082  QualType FromType = From->getType();
2083  if (const PointerType *PT = FromType->getAs<PointerType>())
2084    FromType = PT->getPointeeType();
2085
2086  assert(FromType->isRecordType());
2087
2088  // The implicit object parmeter is has the type "reference to cv X",
2089  // where X is the class of which the function is a member
2090  // (C++ [over.match.funcs]p4). However, when finding an implicit
2091  // conversion sequence for the argument, we are not allowed to
2092  // create temporaries or perform user-defined conversions
2093  // (C++ [over.match.funcs]p5). We perform a simplified version of
2094  // reference binding here, that allows class rvalues to bind to
2095  // non-constant references.
2096
2097  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2098  // with the implicit object parameter (C++ [over.match.funcs]p5).
2099  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2100  if (ImplicitParamType.getCVRQualifiers() != FromTypeCanon.getCVRQualifiers() &&
2101      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon))
2102    return ICS;
2103
2104  // Check that we have either the same type or a derived type. It
2105  // affects the conversion rank.
2106  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2107  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2108    ICS.Standard.Second = ICK_Identity;
2109  else if (IsDerivedFrom(FromType, ClassType))
2110    ICS.Standard.Second = ICK_Derived_To_Base;
2111  else
2112    return ICS;
2113
2114  // Success. Mark this as a reference binding.
2115  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2116  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2117  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2118  ICS.Standard.ReferenceBinding = true;
2119  ICS.Standard.DirectBinding = true;
2120  ICS.Standard.RRefBinding = false;
2121  return ICS;
2122}
2123
2124/// PerformObjectArgumentInitialization - Perform initialization of
2125/// the implicit object parameter for the given Method with the given
2126/// expression.
2127bool
2128Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2129  QualType FromRecordType, DestType;
2130  QualType ImplicitParamRecordType  =
2131    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2132
2133  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2134    FromRecordType = PT->getPointeeType();
2135    DestType = Method->getThisType(Context);
2136  } else {
2137    FromRecordType = From->getType();
2138    DestType = ImplicitParamRecordType;
2139  }
2140
2141  ImplicitConversionSequence ICS
2142    = TryObjectArgumentInitialization(From, Method);
2143  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2144    return Diag(From->getSourceRange().getBegin(),
2145                diag::err_implicit_object_parameter_init)
2146       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2147
2148  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2149      CheckDerivedToBaseConversion(FromRecordType,
2150                                   ImplicitParamRecordType,
2151                                   From->getSourceRange().getBegin(),
2152                                   From->getSourceRange()))
2153    return true;
2154
2155  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2156                    /*isLvalue=*/true);
2157  return false;
2158}
2159
2160/// TryContextuallyConvertToBool - Attempt to contextually convert the
2161/// expression From to bool (C++0x [conv]p3).
2162ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2163  return TryImplicitConversion(From, Context.BoolTy,
2164                               // FIXME: Are these flags correct?
2165                               /*SuppressUserConversions=*/false,
2166                               /*AllowExplicit=*/true,
2167                               /*ForceRValue=*/false,
2168                               /*InOverloadResolution=*/false);
2169}
2170
2171/// PerformContextuallyConvertToBool - Perform a contextual conversion
2172/// of the expression From to bool (C++0x [conv]p3).
2173bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2174  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2175  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2176    return false;
2177
2178  if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy))
2179    return  Diag(From->getSourceRange().getBegin(),
2180                 diag::err_typecheck_bool_condition)
2181                  << From->getType() << From->getSourceRange();
2182  return true;
2183}
2184
2185/// AddOverloadCandidate - Adds the given function to the set of
2186/// candidate functions, using the given function call arguments.  If
2187/// @p SuppressUserConversions, then don't allow user-defined
2188/// conversions via constructors or conversion operators.
2189/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2190/// hacky way to implement the overloading rules for elidable copy
2191/// initialization in C++0x (C++0x 12.8p15).
2192///
2193/// \para PartialOverloading true if we are performing "partial" overloading
2194/// based on an incomplete set of function arguments. This feature is used by
2195/// code completion.
2196void
2197Sema::AddOverloadCandidate(FunctionDecl *Function,
2198                           Expr **Args, unsigned NumArgs,
2199                           OverloadCandidateSet& CandidateSet,
2200                           bool SuppressUserConversions,
2201                           bool ForceRValue,
2202                           bool PartialOverloading) {
2203  const FunctionProtoType* Proto
2204    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2205  assert(Proto && "Functions without a prototype cannot be overloaded");
2206  assert(!isa<CXXConversionDecl>(Function) &&
2207         "Use AddConversionCandidate for conversion functions");
2208  assert(!Function->getDescribedFunctionTemplate() &&
2209         "Use AddTemplateOverloadCandidate for function templates");
2210
2211  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2212    if (!isa<CXXConstructorDecl>(Method)) {
2213      // If we get here, it's because we're calling a member function
2214      // that is named without a member access expression (e.g.,
2215      // "this->f") that was either written explicitly or created
2216      // implicitly. This can happen with a qualified call to a member
2217      // function, e.g., X::f(). We use a NULL object as the implied
2218      // object argument (C++ [over.call.func]p3).
2219      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2220                         SuppressUserConversions, ForceRValue);
2221      return;
2222    }
2223    // We treat a constructor like a non-member function, since its object
2224    // argument doesn't participate in overload resolution.
2225  }
2226
2227  if (!CandidateSet.isNewCandidate(Function))
2228    return;
2229
2230  // Add this candidate
2231  CandidateSet.push_back(OverloadCandidate());
2232  OverloadCandidate& Candidate = CandidateSet.back();
2233  Candidate.Function = Function;
2234  Candidate.Viable = true;
2235  Candidate.IsSurrogate = false;
2236  Candidate.IgnoreObjectArgument = false;
2237
2238  unsigned NumArgsInProto = Proto->getNumArgs();
2239
2240  // (C++ 13.3.2p2): A candidate function having fewer than m
2241  // parameters is viable only if it has an ellipsis in its parameter
2242  // list (8.3.5).
2243  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2244      !Proto->isVariadic()) {
2245    Candidate.Viable = false;
2246    return;
2247  }
2248
2249  // (C++ 13.3.2p2): A candidate function having more than m parameters
2250  // is viable only if the (m+1)st parameter has a default argument
2251  // (8.3.6). For the purposes of overload resolution, the
2252  // parameter list is truncated on the right, so that there are
2253  // exactly m parameters.
2254  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2255  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2256    // Not enough arguments.
2257    Candidate.Viable = false;
2258    return;
2259  }
2260
2261  // Determine the implicit conversion sequences for each of the
2262  // arguments.
2263  Candidate.Conversions.resize(NumArgs);
2264  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2265    if (ArgIdx < NumArgsInProto) {
2266      // (C++ 13.3.2p3): for F to be a viable function, there shall
2267      // exist for each argument an implicit conversion sequence
2268      // (13.3.3.1) that converts that argument to the corresponding
2269      // parameter of F.
2270      QualType ParamType = Proto->getArgType(ArgIdx);
2271      Candidate.Conversions[ArgIdx]
2272        = TryCopyInitialization(Args[ArgIdx], ParamType,
2273                                SuppressUserConversions, ForceRValue,
2274                                /*InOverloadResolution=*/true);
2275      if (Candidate.Conversions[ArgIdx].ConversionKind
2276            == ImplicitConversionSequence::BadConversion) {
2277      // 13.3.3.1-p10 If several different sequences of conversions exist that
2278      // each convert the argument to the parameter type, the implicit conversion
2279      // sequence associated with the parameter is defined to be the unique conversion
2280      // sequence designated the ambiguous conversion sequence. For the purpose of
2281      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2282      // conversion sequence is treated as a user-defined sequence that is
2283      // indistinguishable from any other user-defined conversion sequence
2284        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2285          Candidate.Conversions[ArgIdx].ConversionKind =
2286            ImplicitConversionSequence::UserDefinedConversion;
2287          // Set the conversion function to one of them. As due to ambiguity,
2288          // they carry the same weight and is needed for overload resolution
2289          // later.
2290          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2291            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2292        }
2293        else {
2294          Candidate.Viable = false;
2295          break;
2296        }
2297      }
2298    } else {
2299      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2300      // argument for which there is no corresponding parameter is
2301      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2302      Candidate.Conversions[ArgIdx].ConversionKind
2303        = ImplicitConversionSequence::EllipsisConversion;
2304    }
2305  }
2306}
2307
2308/// \brief Add all of the function declarations in the given function set to
2309/// the overload canddiate set.
2310void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2311                                 Expr **Args, unsigned NumArgs,
2312                                 OverloadCandidateSet& CandidateSet,
2313                                 bool SuppressUserConversions) {
2314  for (FunctionSet::const_iterator F = Functions.begin(),
2315                                FEnd = Functions.end();
2316       F != FEnd; ++F) {
2317    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2318      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2319        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2320                           Args[0], Args + 1, NumArgs - 1,
2321                           CandidateSet, SuppressUserConversions);
2322      else
2323        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2324                             SuppressUserConversions);
2325    } else {
2326      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2327      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2328          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2329        AddMethodTemplateCandidate(FunTmpl,
2330                                   /*FIXME: explicit args */false, 0, 0,
2331                                   Args[0], Args + 1, NumArgs - 1,
2332                                   CandidateSet,
2333                                   SuppressUserConversions);
2334      else
2335        AddTemplateOverloadCandidate(FunTmpl,
2336                                     /*FIXME: explicit args */false, 0, 0,
2337                                     Args, NumArgs, CandidateSet,
2338                                     SuppressUserConversions);
2339    }
2340  }
2341}
2342
2343/// AddMethodCandidate - Adds the given C++ member function to the set
2344/// of candidate functions, using the given function call arguments
2345/// and the object argument (@c Object). For example, in a call
2346/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2347/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2348/// allow user-defined conversions via constructors or conversion
2349/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2350/// a slightly hacky way to implement the overloading rules for elidable copy
2351/// initialization in C++0x (C++0x 12.8p15).
2352void
2353Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2354                         Expr **Args, unsigned NumArgs,
2355                         OverloadCandidateSet& CandidateSet,
2356                         bool SuppressUserConversions, bool ForceRValue) {
2357  const FunctionProtoType* Proto
2358    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2359  assert(Proto && "Methods without a prototype cannot be overloaded");
2360  assert(!isa<CXXConversionDecl>(Method) &&
2361         "Use AddConversionCandidate for conversion functions");
2362  assert(!isa<CXXConstructorDecl>(Method) &&
2363         "Use AddOverloadCandidate for constructors");
2364
2365  if (!CandidateSet.isNewCandidate(Method))
2366    return;
2367
2368  // Add this candidate
2369  CandidateSet.push_back(OverloadCandidate());
2370  OverloadCandidate& Candidate = CandidateSet.back();
2371  Candidate.Function = Method;
2372  Candidate.IsSurrogate = false;
2373  Candidate.IgnoreObjectArgument = false;
2374
2375  unsigned NumArgsInProto = Proto->getNumArgs();
2376
2377  // (C++ 13.3.2p2): A candidate function having fewer than m
2378  // parameters is viable only if it has an ellipsis in its parameter
2379  // list (8.3.5).
2380  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2381    Candidate.Viable = false;
2382    return;
2383  }
2384
2385  // (C++ 13.3.2p2): A candidate function having more than m parameters
2386  // is viable only if the (m+1)st parameter has a default argument
2387  // (8.3.6). For the purposes of overload resolution, the
2388  // parameter list is truncated on the right, so that there are
2389  // exactly m parameters.
2390  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2391  if (NumArgs < MinRequiredArgs) {
2392    // Not enough arguments.
2393    Candidate.Viable = false;
2394    return;
2395  }
2396
2397  Candidate.Viable = true;
2398  Candidate.Conversions.resize(NumArgs + 1);
2399
2400  if (Method->isStatic() || !Object)
2401    // The implicit object argument is ignored.
2402    Candidate.IgnoreObjectArgument = true;
2403  else {
2404    // Determine the implicit conversion sequence for the object
2405    // parameter.
2406    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2407    if (Candidate.Conversions[0].ConversionKind
2408          == ImplicitConversionSequence::BadConversion) {
2409      Candidate.Viable = false;
2410      return;
2411    }
2412  }
2413
2414  // Determine the implicit conversion sequences for each of the
2415  // arguments.
2416  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2417    if (ArgIdx < NumArgsInProto) {
2418      // (C++ 13.3.2p3): for F to be a viable function, there shall
2419      // exist for each argument an implicit conversion sequence
2420      // (13.3.3.1) that converts that argument to the corresponding
2421      // parameter of F.
2422      QualType ParamType = Proto->getArgType(ArgIdx);
2423      Candidate.Conversions[ArgIdx + 1]
2424        = TryCopyInitialization(Args[ArgIdx], ParamType,
2425                                SuppressUserConversions, ForceRValue,
2426                                /*InOverloadResolution=*/true);
2427      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2428            == ImplicitConversionSequence::BadConversion) {
2429        Candidate.Viable = false;
2430        break;
2431      }
2432    } else {
2433      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2434      // argument for which there is no corresponding parameter is
2435      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2436      Candidate.Conversions[ArgIdx + 1].ConversionKind
2437        = ImplicitConversionSequence::EllipsisConversion;
2438    }
2439  }
2440}
2441
2442/// \brief Add a C++ member function template as a candidate to the candidate
2443/// set, using template argument deduction to produce an appropriate member
2444/// function template specialization.
2445void
2446Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2447                                 bool HasExplicitTemplateArgs,
2448                             const TemplateArgumentLoc *ExplicitTemplateArgs,
2449                                 unsigned NumExplicitTemplateArgs,
2450                                 Expr *Object, Expr **Args, unsigned NumArgs,
2451                                 OverloadCandidateSet& CandidateSet,
2452                                 bool SuppressUserConversions,
2453                                 bool ForceRValue) {
2454  if (!CandidateSet.isNewCandidate(MethodTmpl))
2455    return;
2456
2457  // C++ [over.match.funcs]p7:
2458  //   In each case where a candidate is a function template, candidate
2459  //   function template specializations are generated using template argument
2460  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2461  //   candidate functions in the usual way.113) A given name can refer to one
2462  //   or more function templates and also to a set of overloaded non-template
2463  //   functions. In such a case, the candidate functions generated from each
2464  //   function template are combined with the set of non-template candidate
2465  //   functions.
2466  TemplateDeductionInfo Info(Context);
2467  FunctionDecl *Specialization = 0;
2468  if (TemplateDeductionResult Result
2469      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2470                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2471                                Args, NumArgs, Specialization, Info)) {
2472        // FIXME: Record what happened with template argument deduction, so
2473        // that we can give the user a beautiful diagnostic.
2474        (void)Result;
2475        return;
2476      }
2477
2478  // Add the function template specialization produced by template argument
2479  // deduction as a candidate.
2480  assert(Specialization && "Missing member function template specialization?");
2481  assert(isa<CXXMethodDecl>(Specialization) &&
2482         "Specialization is not a member function?");
2483  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2484                     CandidateSet, SuppressUserConversions, ForceRValue);
2485}
2486
2487/// \brief Add a C++ function template specialization as a candidate
2488/// in the candidate set, using template argument deduction to produce
2489/// an appropriate function template specialization.
2490void
2491Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2492                                   bool HasExplicitTemplateArgs,
2493                          const TemplateArgumentLoc *ExplicitTemplateArgs,
2494                                   unsigned NumExplicitTemplateArgs,
2495                                   Expr **Args, unsigned NumArgs,
2496                                   OverloadCandidateSet& CandidateSet,
2497                                   bool SuppressUserConversions,
2498                                   bool ForceRValue) {
2499  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2500    return;
2501
2502  // C++ [over.match.funcs]p7:
2503  //   In each case where a candidate is a function template, candidate
2504  //   function template specializations are generated using template argument
2505  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2506  //   candidate functions in the usual way.113) A given name can refer to one
2507  //   or more function templates and also to a set of overloaded non-template
2508  //   functions. In such a case, the candidate functions generated from each
2509  //   function template are combined with the set of non-template candidate
2510  //   functions.
2511  TemplateDeductionInfo Info(Context);
2512  FunctionDecl *Specialization = 0;
2513  if (TemplateDeductionResult Result
2514        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2515                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2516                                  Args, NumArgs, Specialization, Info)) {
2517    // FIXME: Record what happened with template argument deduction, so
2518    // that we can give the user a beautiful diagnostic.
2519    (void)Result;
2520    return;
2521  }
2522
2523  // Add the function template specialization produced by template argument
2524  // deduction as a candidate.
2525  assert(Specialization && "Missing function template specialization?");
2526  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2527                       SuppressUserConversions, ForceRValue);
2528}
2529
2530/// AddConversionCandidate - Add a C++ conversion function as a
2531/// candidate in the candidate set (C++ [over.match.conv],
2532/// C++ [over.match.copy]). From is the expression we're converting from,
2533/// and ToType is the type that we're eventually trying to convert to
2534/// (which may or may not be the same type as the type that the
2535/// conversion function produces).
2536void
2537Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2538                             Expr *From, QualType ToType,
2539                             OverloadCandidateSet& CandidateSet) {
2540  assert(!Conversion->getDescribedFunctionTemplate() &&
2541         "Conversion function templates use AddTemplateConversionCandidate");
2542
2543  if (!CandidateSet.isNewCandidate(Conversion))
2544    return;
2545
2546  // Add this candidate
2547  CandidateSet.push_back(OverloadCandidate());
2548  OverloadCandidate& Candidate = CandidateSet.back();
2549  Candidate.Function = Conversion;
2550  Candidate.IsSurrogate = false;
2551  Candidate.IgnoreObjectArgument = false;
2552  Candidate.FinalConversion.setAsIdentityConversion();
2553  Candidate.FinalConversion.FromTypePtr
2554    = Conversion->getConversionType().getAsOpaquePtr();
2555  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2556
2557  // Determine the implicit conversion sequence for the implicit
2558  // object parameter.
2559  Candidate.Viable = true;
2560  Candidate.Conversions.resize(1);
2561  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2562  // Conversion functions to a different type in the base class is visible in
2563  // the derived class.  So, a derived to base conversion should not participate
2564  // in overload resolution.
2565  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2566    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2567  if (Candidate.Conversions[0].ConversionKind
2568      == ImplicitConversionSequence::BadConversion) {
2569    Candidate.Viable = false;
2570    return;
2571  }
2572
2573  // We won't go through a user-define type conversion function to convert a
2574  // derived to base as such conversions are given Conversion Rank. They only
2575  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2576  QualType FromCanon
2577    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2578  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2579  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2580    Candidate.Viable = false;
2581    return;
2582  }
2583
2584
2585  // To determine what the conversion from the result of calling the
2586  // conversion function to the type we're eventually trying to
2587  // convert to (ToType), we need to synthesize a call to the
2588  // conversion function and attempt copy initialization from it. This
2589  // makes sure that we get the right semantics with respect to
2590  // lvalues/rvalues and the type. Fortunately, we can allocate this
2591  // call on the stack and we don't need its arguments to be
2592  // well-formed.
2593  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2594                            SourceLocation());
2595  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2596                                CastExpr::CK_FunctionToPointerDecay,
2597                                &ConversionRef, false);
2598
2599  // Note that it is safe to allocate CallExpr on the stack here because
2600  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2601  // allocator).
2602  CallExpr Call(Context, &ConversionFn, 0, 0,
2603                Conversion->getConversionType().getNonReferenceType(),
2604                SourceLocation());
2605  ImplicitConversionSequence ICS =
2606    TryCopyInitialization(&Call, ToType,
2607                          /*SuppressUserConversions=*/true,
2608                          /*ForceRValue=*/false,
2609                          /*InOverloadResolution=*/false);
2610
2611  switch (ICS.ConversionKind) {
2612  case ImplicitConversionSequence::StandardConversion:
2613    Candidate.FinalConversion = ICS.Standard;
2614    break;
2615
2616  case ImplicitConversionSequence::BadConversion:
2617    Candidate.Viable = false;
2618    break;
2619
2620  default:
2621    assert(false &&
2622           "Can only end up with a standard conversion sequence or failure");
2623  }
2624}
2625
2626/// \brief Adds a conversion function template specialization
2627/// candidate to the overload set, using template argument deduction
2628/// to deduce the template arguments of the conversion function
2629/// template from the type that we are converting to (C++
2630/// [temp.deduct.conv]).
2631void
2632Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2633                                     Expr *From, QualType ToType,
2634                                     OverloadCandidateSet &CandidateSet) {
2635  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2636         "Only conversion function templates permitted here");
2637
2638  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2639    return;
2640
2641  TemplateDeductionInfo Info(Context);
2642  CXXConversionDecl *Specialization = 0;
2643  if (TemplateDeductionResult Result
2644        = DeduceTemplateArguments(FunctionTemplate, ToType,
2645                                  Specialization, Info)) {
2646    // FIXME: Record what happened with template argument deduction, so
2647    // that we can give the user a beautiful diagnostic.
2648    (void)Result;
2649    return;
2650  }
2651
2652  // Add the conversion function template specialization produced by
2653  // template argument deduction as a candidate.
2654  assert(Specialization && "Missing function template specialization?");
2655  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2656}
2657
2658/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2659/// converts the given @c Object to a function pointer via the
2660/// conversion function @c Conversion, and then attempts to call it
2661/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2662/// the type of function that we'll eventually be calling.
2663void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2664                                 const FunctionProtoType *Proto,
2665                                 Expr *Object, Expr **Args, unsigned NumArgs,
2666                                 OverloadCandidateSet& CandidateSet) {
2667  if (!CandidateSet.isNewCandidate(Conversion))
2668    return;
2669
2670  CandidateSet.push_back(OverloadCandidate());
2671  OverloadCandidate& Candidate = CandidateSet.back();
2672  Candidate.Function = 0;
2673  Candidate.Surrogate = Conversion;
2674  Candidate.Viable = true;
2675  Candidate.IsSurrogate = true;
2676  Candidate.IgnoreObjectArgument = false;
2677  Candidate.Conversions.resize(NumArgs + 1);
2678
2679  // Determine the implicit conversion sequence for the implicit
2680  // object parameter.
2681  ImplicitConversionSequence ObjectInit
2682    = TryObjectArgumentInitialization(Object, Conversion);
2683  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2684    Candidate.Viable = false;
2685    return;
2686  }
2687
2688  // The first conversion is actually a user-defined conversion whose
2689  // first conversion is ObjectInit's standard conversion (which is
2690  // effectively a reference binding). Record it as such.
2691  Candidate.Conversions[0].ConversionKind
2692    = ImplicitConversionSequence::UserDefinedConversion;
2693  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2694  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2695  Candidate.Conversions[0].UserDefined.After
2696    = Candidate.Conversions[0].UserDefined.Before;
2697  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2698
2699  // Find the
2700  unsigned NumArgsInProto = Proto->getNumArgs();
2701
2702  // (C++ 13.3.2p2): A candidate function having fewer than m
2703  // parameters is viable only if it has an ellipsis in its parameter
2704  // list (8.3.5).
2705  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2706    Candidate.Viable = false;
2707    return;
2708  }
2709
2710  // Function types don't have any default arguments, so just check if
2711  // we have enough arguments.
2712  if (NumArgs < NumArgsInProto) {
2713    // Not enough arguments.
2714    Candidate.Viable = false;
2715    return;
2716  }
2717
2718  // Determine the implicit conversion sequences for each of the
2719  // arguments.
2720  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2721    if (ArgIdx < NumArgsInProto) {
2722      // (C++ 13.3.2p3): for F to be a viable function, there shall
2723      // exist for each argument an implicit conversion sequence
2724      // (13.3.3.1) that converts that argument to the corresponding
2725      // parameter of F.
2726      QualType ParamType = Proto->getArgType(ArgIdx);
2727      Candidate.Conversions[ArgIdx + 1]
2728        = TryCopyInitialization(Args[ArgIdx], ParamType,
2729                                /*SuppressUserConversions=*/false,
2730                                /*ForceRValue=*/false,
2731                                /*InOverloadResolution=*/false);
2732      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2733            == ImplicitConversionSequence::BadConversion) {
2734        Candidate.Viable = false;
2735        break;
2736      }
2737    } else {
2738      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2739      // argument for which there is no corresponding parameter is
2740      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2741      Candidate.Conversions[ArgIdx + 1].ConversionKind
2742        = ImplicitConversionSequence::EllipsisConversion;
2743    }
2744  }
2745}
2746
2747// FIXME: This will eventually be removed, once we've migrated all of the
2748// operator overloading logic over to the scheme used by binary operators, which
2749// works for template instantiation.
2750void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2751                                 SourceLocation OpLoc,
2752                                 Expr **Args, unsigned NumArgs,
2753                                 OverloadCandidateSet& CandidateSet,
2754                                 SourceRange OpRange) {
2755  FunctionSet Functions;
2756
2757  QualType T1 = Args[0]->getType();
2758  QualType T2;
2759  if (NumArgs > 1)
2760    T2 = Args[1]->getType();
2761
2762  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2763  if (S)
2764    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2765  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2766  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2767  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2768  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2769}
2770
2771/// \brief Add overload candidates for overloaded operators that are
2772/// member functions.
2773///
2774/// Add the overloaded operator candidates that are member functions
2775/// for the operator Op that was used in an operator expression such
2776/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2777/// CandidateSet will store the added overload candidates. (C++
2778/// [over.match.oper]).
2779void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2780                                       SourceLocation OpLoc,
2781                                       Expr **Args, unsigned NumArgs,
2782                                       OverloadCandidateSet& CandidateSet,
2783                                       SourceRange OpRange) {
2784  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2785
2786  // C++ [over.match.oper]p3:
2787  //   For a unary operator @ with an operand of a type whose
2788  //   cv-unqualified version is T1, and for a binary operator @ with
2789  //   a left operand of a type whose cv-unqualified version is T1 and
2790  //   a right operand of a type whose cv-unqualified version is T2,
2791  //   three sets of candidate functions, designated member
2792  //   candidates, non-member candidates and built-in candidates, are
2793  //   constructed as follows:
2794  QualType T1 = Args[0]->getType();
2795  QualType T2;
2796  if (NumArgs > 1)
2797    T2 = Args[1]->getType();
2798
2799  //     -- If T1 is a class type, the set of member candidates is the
2800  //        result of the qualified lookup of T1::operator@
2801  //        (13.3.1.1.1); otherwise, the set of member candidates is
2802  //        empty.
2803  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2804    // Complete the type if it can be completed. Otherwise, we're done.
2805    if (RequireCompleteType(OpLoc, T1, PDiag()))
2806      return;
2807
2808    LookupResult Operators;
2809    LookupQualifiedName(Operators, T1Rec->getDecl(), OpName,
2810                        LookupOrdinaryName, false);
2811    for (LookupResult::iterator Oper = Operators.begin(),
2812                             OperEnd = Operators.end();
2813         Oper != OperEnd;
2814         ++Oper) {
2815      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) {
2816        AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2817                           /*SuppressUserConversions=*/false);
2818        continue;
2819      }
2820
2821      assert(isa<FunctionTemplateDecl>(*Oper) &&
2822             isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper)
2823                                                        ->getTemplatedDecl()) &&
2824             "Expected a member function template");
2825      AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0,
2826                                 Args[0], Args+1, NumArgs - 1, CandidateSet,
2827                                 /*SuppressUserConversions=*/false);
2828    }
2829  }
2830}
2831
2832/// AddBuiltinCandidate - Add a candidate for a built-in
2833/// operator. ResultTy and ParamTys are the result and parameter types
2834/// of the built-in candidate, respectively. Args and NumArgs are the
2835/// arguments being passed to the candidate. IsAssignmentOperator
2836/// should be true when this built-in candidate is an assignment
2837/// operator. NumContextualBoolArguments is the number of arguments
2838/// (at the beginning of the argument list) that will be contextually
2839/// converted to bool.
2840void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2841                               Expr **Args, unsigned NumArgs,
2842                               OverloadCandidateSet& CandidateSet,
2843                               bool IsAssignmentOperator,
2844                               unsigned NumContextualBoolArguments) {
2845  // Add this candidate
2846  CandidateSet.push_back(OverloadCandidate());
2847  OverloadCandidate& Candidate = CandidateSet.back();
2848  Candidate.Function = 0;
2849  Candidate.IsSurrogate = false;
2850  Candidate.IgnoreObjectArgument = false;
2851  Candidate.BuiltinTypes.ResultTy = ResultTy;
2852  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2853    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2854
2855  // Determine the implicit conversion sequences for each of the
2856  // arguments.
2857  Candidate.Viable = true;
2858  Candidate.Conversions.resize(NumArgs);
2859  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2860    // C++ [over.match.oper]p4:
2861    //   For the built-in assignment operators, conversions of the
2862    //   left operand are restricted as follows:
2863    //     -- no temporaries are introduced to hold the left operand, and
2864    //     -- no user-defined conversions are applied to the left
2865    //        operand to achieve a type match with the left-most
2866    //        parameter of a built-in candidate.
2867    //
2868    // We block these conversions by turning off user-defined
2869    // conversions, since that is the only way that initialization of
2870    // a reference to a non-class type can occur from something that
2871    // is not of the same type.
2872    if (ArgIdx < NumContextualBoolArguments) {
2873      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2874             "Contextual conversion to bool requires bool type");
2875      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2876    } else {
2877      Candidate.Conversions[ArgIdx]
2878        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2879                                ArgIdx == 0 && IsAssignmentOperator,
2880                                /*ForceRValue=*/false,
2881                                /*InOverloadResolution=*/false);
2882    }
2883    if (Candidate.Conversions[ArgIdx].ConversionKind
2884        == ImplicitConversionSequence::BadConversion) {
2885      Candidate.Viable = false;
2886      break;
2887    }
2888  }
2889}
2890
2891/// BuiltinCandidateTypeSet - A set of types that will be used for the
2892/// candidate operator functions for built-in operators (C++
2893/// [over.built]). The types are separated into pointer types and
2894/// enumeration types.
2895class BuiltinCandidateTypeSet  {
2896  /// TypeSet - A set of types.
2897  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2898
2899  /// PointerTypes - The set of pointer types that will be used in the
2900  /// built-in candidates.
2901  TypeSet PointerTypes;
2902
2903  /// MemberPointerTypes - The set of member pointer types that will be
2904  /// used in the built-in candidates.
2905  TypeSet MemberPointerTypes;
2906
2907  /// EnumerationTypes - The set of enumeration types that will be
2908  /// used in the built-in candidates.
2909  TypeSet EnumerationTypes;
2910
2911  /// Sema - The semantic analysis instance where we are building the
2912  /// candidate type set.
2913  Sema &SemaRef;
2914
2915  /// Context - The AST context in which we will build the type sets.
2916  ASTContext &Context;
2917
2918  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2919                                               const Qualifiers &VisibleQuals);
2920  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2921
2922public:
2923  /// iterator - Iterates through the types that are part of the set.
2924  typedef TypeSet::iterator iterator;
2925
2926  BuiltinCandidateTypeSet(Sema &SemaRef)
2927    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2928
2929  void AddTypesConvertedFrom(QualType Ty,
2930                             SourceLocation Loc,
2931                             bool AllowUserConversions,
2932                             bool AllowExplicitConversions,
2933                             const Qualifiers &VisibleTypeConversionsQuals);
2934
2935  /// pointer_begin - First pointer type found;
2936  iterator pointer_begin() { return PointerTypes.begin(); }
2937
2938  /// pointer_end - Past the last pointer type found;
2939  iterator pointer_end() { return PointerTypes.end(); }
2940
2941  /// member_pointer_begin - First member pointer type found;
2942  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2943
2944  /// member_pointer_end - Past the last member pointer type found;
2945  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2946
2947  /// enumeration_begin - First enumeration type found;
2948  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2949
2950  /// enumeration_end - Past the last enumeration type found;
2951  iterator enumeration_end() { return EnumerationTypes.end(); }
2952};
2953
2954/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2955/// the set of pointer types along with any more-qualified variants of
2956/// that type. For example, if @p Ty is "int const *", this routine
2957/// will add "int const *", "int const volatile *", "int const
2958/// restrict *", and "int const volatile restrict *" to the set of
2959/// pointer types. Returns true if the add of @p Ty itself succeeded,
2960/// false otherwise.
2961///
2962/// FIXME: what to do about extended qualifiers?
2963bool
2964BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2965                                             const Qualifiers &VisibleQuals) {
2966
2967  // Insert this type.
2968  if (!PointerTypes.insert(Ty))
2969    return false;
2970
2971  const PointerType *PointerTy = Ty->getAs<PointerType>();
2972  assert(PointerTy && "type was not a pointer type!");
2973
2974  QualType PointeeTy = PointerTy->getPointeeType();
2975  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
2976  bool hasVolatile = VisibleQuals.hasVolatile();
2977  bool hasRestrict = VisibleQuals.hasRestrict();
2978
2979  // Iterate through all strict supersets of BaseCVR.
2980  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
2981    if ((CVR | BaseCVR) != CVR) continue;
2982    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
2983    // in the types.
2984    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
2985    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
2986    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
2987    PointerTypes.insert(Context.getPointerType(QPointeeTy));
2988  }
2989
2990  return true;
2991}
2992
2993/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2994/// to the set of pointer types along with any more-qualified variants of
2995/// that type. For example, if @p Ty is "int const *", this routine
2996/// will add "int const *", "int const volatile *", "int const
2997/// restrict *", and "int const volatile restrict *" to the set of
2998/// pointer types. Returns true if the add of @p Ty itself succeeded,
2999/// false otherwise.
3000///
3001/// FIXME: what to do about extended qualifiers?
3002bool
3003BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3004    QualType Ty) {
3005  // Insert this type.
3006  if (!MemberPointerTypes.insert(Ty))
3007    return false;
3008
3009  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3010  assert(PointerTy && "type was not a member pointer type!");
3011
3012  QualType PointeeTy = PointerTy->getPointeeType();
3013  const Type *ClassTy = PointerTy->getClass();
3014
3015  // Iterate through all strict supersets of the pointee type's CVR
3016  // qualifiers.
3017  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3018  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3019    if ((CVR | BaseCVR) != CVR) continue;
3020
3021    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3022    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3023  }
3024
3025  return true;
3026}
3027
3028/// AddTypesConvertedFrom - Add each of the types to which the type @p
3029/// Ty can be implicit converted to the given set of @p Types. We're
3030/// primarily interested in pointer types and enumeration types. We also
3031/// take member pointer types, for the conditional operator.
3032/// AllowUserConversions is true if we should look at the conversion
3033/// functions of a class type, and AllowExplicitConversions if we
3034/// should also include the explicit conversion functions of a class
3035/// type.
3036void
3037BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3038                                               SourceLocation Loc,
3039                                               bool AllowUserConversions,
3040                                               bool AllowExplicitConversions,
3041                                               const Qualifiers &VisibleQuals) {
3042  // Only deal with canonical types.
3043  Ty = Context.getCanonicalType(Ty);
3044
3045  // Look through reference types; they aren't part of the type of an
3046  // expression for the purposes of conversions.
3047  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3048    Ty = RefTy->getPointeeType();
3049
3050  // We don't care about qualifiers on the type.
3051  Ty = Ty.getUnqualifiedType();
3052
3053  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3054    QualType PointeeTy = PointerTy->getPointeeType();
3055
3056    // Insert our type, and its more-qualified variants, into the set
3057    // of types.
3058    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3059      return;
3060  } else if (Ty->isMemberPointerType()) {
3061    // Member pointers are far easier, since the pointee can't be converted.
3062    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3063      return;
3064  } else if (Ty->isEnumeralType()) {
3065    EnumerationTypes.insert(Ty);
3066  } else if (AllowUserConversions) {
3067    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3068      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3069        // No conversion functions in incomplete types.
3070        return;
3071      }
3072
3073      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3074      OverloadedFunctionDecl *Conversions
3075        = ClassDecl->getVisibleConversionFunctions();
3076      for (OverloadedFunctionDecl::function_iterator Func
3077             = Conversions->function_begin();
3078           Func != Conversions->function_end(); ++Func) {
3079        CXXConversionDecl *Conv;
3080        FunctionTemplateDecl *ConvTemplate;
3081        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
3082
3083        // Skip conversion function templates; they don't tell us anything
3084        // about which builtin types we can convert to.
3085        if (ConvTemplate)
3086          continue;
3087
3088        if (AllowExplicitConversions || !Conv->isExplicit()) {
3089          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3090                                VisibleQuals);
3091        }
3092      }
3093    }
3094  }
3095}
3096
3097/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3098/// the volatile- and non-volatile-qualified assignment operators for the
3099/// given type to the candidate set.
3100static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3101                                                   QualType T,
3102                                                   Expr **Args,
3103                                                   unsigned NumArgs,
3104                                    OverloadCandidateSet &CandidateSet) {
3105  QualType ParamTypes[2];
3106
3107  // T& operator=(T&, T)
3108  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3109  ParamTypes[1] = T;
3110  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3111                        /*IsAssignmentOperator=*/true);
3112
3113  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3114    // volatile T& operator=(volatile T&, T)
3115    ParamTypes[0]
3116      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3117    ParamTypes[1] = T;
3118    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3119                          /*IsAssignmentOperator=*/true);
3120  }
3121}
3122
3123/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3124/// if any, found in visible type conversion functions found in ArgExpr's type.
3125static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3126    Qualifiers VRQuals;
3127    const RecordType *TyRec;
3128    if (const MemberPointerType *RHSMPType =
3129        ArgExpr->getType()->getAs<MemberPointerType>())
3130      TyRec = cast<RecordType>(RHSMPType->getClass());
3131    else
3132      TyRec = ArgExpr->getType()->getAs<RecordType>();
3133    if (!TyRec) {
3134      // Just to be safe, assume the worst case.
3135      VRQuals.addVolatile();
3136      VRQuals.addRestrict();
3137      return VRQuals;
3138    }
3139
3140    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3141    OverloadedFunctionDecl *Conversions =
3142      ClassDecl->getVisibleConversionFunctions();
3143
3144    for (OverloadedFunctionDecl::function_iterator Func
3145         = Conversions->function_begin();
3146         Func != Conversions->function_end(); ++Func) {
3147      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) {
3148        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3149        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3150          CanTy = ResTypeRef->getPointeeType();
3151        // Need to go down the pointer/mempointer chain and add qualifiers
3152        // as see them.
3153        bool done = false;
3154        while (!done) {
3155          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3156            CanTy = ResTypePtr->getPointeeType();
3157          else if (const MemberPointerType *ResTypeMPtr =
3158                CanTy->getAs<MemberPointerType>())
3159            CanTy = ResTypeMPtr->getPointeeType();
3160          else
3161            done = true;
3162          if (CanTy.isVolatileQualified())
3163            VRQuals.addVolatile();
3164          if (CanTy.isRestrictQualified())
3165            VRQuals.addRestrict();
3166          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3167            return VRQuals;
3168        }
3169      }
3170    }
3171    return VRQuals;
3172}
3173
3174/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3175/// operator overloads to the candidate set (C++ [over.built]), based
3176/// on the operator @p Op and the arguments given. For example, if the
3177/// operator is a binary '+', this routine might add "int
3178/// operator+(int, int)" to cover integer addition.
3179void
3180Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3181                                   SourceLocation OpLoc,
3182                                   Expr **Args, unsigned NumArgs,
3183                                   OverloadCandidateSet& CandidateSet) {
3184  // The set of "promoted arithmetic types", which are the arithmetic
3185  // types are that preserved by promotion (C++ [over.built]p2). Note
3186  // that the first few of these types are the promoted integral
3187  // types; these types need to be first.
3188  // FIXME: What about complex?
3189  const unsigned FirstIntegralType = 0;
3190  const unsigned LastIntegralType = 13;
3191  const unsigned FirstPromotedIntegralType = 7,
3192                 LastPromotedIntegralType = 13;
3193  const unsigned FirstPromotedArithmeticType = 7,
3194                 LastPromotedArithmeticType = 16;
3195  const unsigned NumArithmeticTypes = 16;
3196  QualType ArithmeticTypes[NumArithmeticTypes] = {
3197    Context.BoolTy, Context.CharTy, Context.WCharTy,
3198// FIXME:   Context.Char16Ty, Context.Char32Ty,
3199    Context.SignedCharTy, Context.ShortTy,
3200    Context.UnsignedCharTy, Context.UnsignedShortTy,
3201    Context.IntTy, Context.LongTy, Context.LongLongTy,
3202    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3203    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3204  };
3205  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3206         "Invalid first promoted integral type");
3207  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3208           == Context.UnsignedLongLongTy &&
3209         "Invalid last promoted integral type");
3210  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3211         "Invalid first promoted arithmetic type");
3212  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3213            == Context.LongDoubleTy &&
3214         "Invalid last promoted arithmetic type");
3215
3216  // Find all of the types that the arguments can convert to, but only
3217  // if the operator we're looking at has built-in operator candidates
3218  // that make use of these types.
3219  Qualifiers VisibleTypeConversionsQuals;
3220  VisibleTypeConversionsQuals.addConst();
3221  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3222    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3223
3224  BuiltinCandidateTypeSet CandidateTypes(*this);
3225  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3226      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3227      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3228      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3229      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3230      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3231    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3232      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3233                                           OpLoc,
3234                                           true,
3235                                           (Op == OO_Exclaim ||
3236                                            Op == OO_AmpAmp ||
3237                                            Op == OO_PipePipe),
3238                                           VisibleTypeConversionsQuals);
3239  }
3240
3241  bool isComparison = false;
3242  switch (Op) {
3243  case OO_None:
3244  case NUM_OVERLOADED_OPERATORS:
3245    assert(false && "Expected an overloaded operator");
3246    break;
3247
3248  case OO_Star: // '*' is either unary or binary
3249    if (NumArgs == 1)
3250      goto UnaryStar;
3251    else
3252      goto BinaryStar;
3253    break;
3254
3255  case OO_Plus: // '+' is either unary or binary
3256    if (NumArgs == 1)
3257      goto UnaryPlus;
3258    else
3259      goto BinaryPlus;
3260    break;
3261
3262  case OO_Minus: // '-' is either unary or binary
3263    if (NumArgs == 1)
3264      goto UnaryMinus;
3265    else
3266      goto BinaryMinus;
3267    break;
3268
3269  case OO_Amp: // '&' is either unary or binary
3270    if (NumArgs == 1)
3271      goto UnaryAmp;
3272    else
3273      goto BinaryAmp;
3274
3275  case OO_PlusPlus:
3276  case OO_MinusMinus:
3277    // C++ [over.built]p3:
3278    //
3279    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3280    //   is either volatile or empty, there exist candidate operator
3281    //   functions of the form
3282    //
3283    //       VQ T&      operator++(VQ T&);
3284    //       T          operator++(VQ T&, int);
3285    //
3286    // C++ [over.built]p4:
3287    //
3288    //   For every pair (T, VQ), where T is an arithmetic type other
3289    //   than bool, and VQ is either volatile or empty, there exist
3290    //   candidate operator functions of the form
3291    //
3292    //       VQ T&      operator--(VQ T&);
3293    //       T          operator--(VQ T&, int);
3294    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3295         Arith < NumArithmeticTypes; ++Arith) {
3296      QualType ArithTy = ArithmeticTypes[Arith];
3297      QualType ParamTypes[2]
3298        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3299
3300      // Non-volatile version.
3301      if (NumArgs == 1)
3302        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3303      else
3304        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3305      // heuristic to reduce number of builtin candidates in the set.
3306      // Add volatile version only if there are conversions to a volatile type.
3307      if (VisibleTypeConversionsQuals.hasVolatile()) {
3308        // Volatile version
3309        ParamTypes[0]
3310          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3311        if (NumArgs == 1)
3312          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3313        else
3314          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3315      }
3316    }
3317
3318    // C++ [over.built]p5:
3319    //
3320    //   For every pair (T, VQ), where T is a cv-qualified or
3321    //   cv-unqualified object type, and VQ is either volatile or
3322    //   empty, there exist candidate operator functions of the form
3323    //
3324    //       T*VQ&      operator++(T*VQ&);
3325    //       T*VQ&      operator--(T*VQ&);
3326    //       T*         operator++(T*VQ&, int);
3327    //       T*         operator--(T*VQ&, int);
3328    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3329         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3330      // Skip pointer types that aren't pointers to object types.
3331      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3332        continue;
3333
3334      QualType ParamTypes[2] = {
3335        Context.getLValueReferenceType(*Ptr), Context.IntTy
3336      };
3337
3338      // Without volatile
3339      if (NumArgs == 1)
3340        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3341      else
3342        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3343
3344      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3345          VisibleTypeConversionsQuals.hasVolatile()) {
3346        // With volatile
3347        ParamTypes[0]
3348          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3349        if (NumArgs == 1)
3350          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3351        else
3352          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3353      }
3354    }
3355    break;
3356
3357  UnaryStar:
3358    // C++ [over.built]p6:
3359    //   For every cv-qualified or cv-unqualified object type T, there
3360    //   exist candidate operator functions of the form
3361    //
3362    //       T&         operator*(T*);
3363    //
3364    // C++ [over.built]p7:
3365    //   For every function type T, there exist candidate operator
3366    //   functions of the form
3367    //       T&         operator*(T*);
3368    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3369         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3370      QualType ParamTy = *Ptr;
3371      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3372      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3373                          &ParamTy, Args, 1, CandidateSet);
3374    }
3375    break;
3376
3377  UnaryPlus:
3378    // C++ [over.built]p8:
3379    //   For every type T, there exist candidate operator functions of
3380    //   the form
3381    //
3382    //       T*         operator+(T*);
3383    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3384         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3385      QualType ParamTy = *Ptr;
3386      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3387    }
3388
3389    // Fall through
3390
3391  UnaryMinus:
3392    // C++ [over.built]p9:
3393    //  For every promoted arithmetic type T, there exist candidate
3394    //  operator functions of the form
3395    //
3396    //       T         operator+(T);
3397    //       T         operator-(T);
3398    for (unsigned Arith = FirstPromotedArithmeticType;
3399         Arith < LastPromotedArithmeticType; ++Arith) {
3400      QualType ArithTy = ArithmeticTypes[Arith];
3401      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3402    }
3403    break;
3404
3405  case OO_Tilde:
3406    // C++ [over.built]p10:
3407    //   For every promoted integral type T, there exist candidate
3408    //   operator functions of the form
3409    //
3410    //        T         operator~(T);
3411    for (unsigned Int = FirstPromotedIntegralType;
3412         Int < LastPromotedIntegralType; ++Int) {
3413      QualType IntTy = ArithmeticTypes[Int];
3414      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3415    }
3416    break;
3417
3418  case OO_New:
3419  case OO_Delete:
3420  case OO_Array_New:
3421  case OO_Array_Delete:
3422  case OO_Call:
3423    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3424    break;
3425
3426  case OO_Comma:
3427  UnaryAmp:
3428  case OO_Arrow:
3429    // C++ [over.match.oper]p3:
3430    //   -- For the operator ',', the unary operator '&', or the
3431    //      operator '->', the built-in candidates set is empty.
3432    break;
3433
3434  case OO_EqualEqual:
3435  case OO_ExclaimEqual:
3436    // C++ [over.match.oper]p16:
3437    //   For every pointer to member type T, there exist candidate operator
3438    //   functions of the form
3439    //
3440    //        bool operator==(T,T);
3441    //        bool operator!=(T,T);
3442    for (BuiltinCandidateTypeSet::iterator
3443           MemPtr = CandidateTypes.member_pointer_begin(),
3444           MemPtrEnd = CandidateTypes.member_pointer_end();
3445         MemPtr != MemPtrEnd;
3446         ++MemPtr) {
3447      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3448      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3449    }
3450
3451    // Fall through
3452
3453  case OO_Less:
3454  case OO_Greater:
3455  case OO_LessEqual:
3456  case OO_GreaterEqual:
3457    // C++ [over.built]p15:
3458    //
3459    //   For every pointer or enumeration type T, there exist
3460    //   candidate operator functions of the form
3461    //
3462    //        bool       operator<(T, T);
3463    //        bool       operator>(T, T);
3464    //        bool       operator<=(T, T);
3465    //        bool       operator>=(T, T);
3466    //        bool       operator==(T, T);
3467    //        bool       operator!=(T, T);
3468    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3469         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3470      QualType ParamTypes[2] = { *Ptr, *Ptr };
3471      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3472    }
3473    for (BuiltinCandidateTypeSet::iterator Enum
3474           = CandidateTypes.enumeration_begin();
3475         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3476      QualType ParamTypes[2] = { *Enum, *Enum };
3477      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3478    }
3479
3480    // Fall through.
3481    isComparison = true;
3482
3483  BinaryPlus:
3484  BinaryMinus:
3485    if (!isComparison) {
3486      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3487
3488      // C++ [over.built]p13:
3489      //
3490      //   For every cv-qualified or cv-unqualified object type T
3491      //   there exist candidate operator functions of the form
3492      //
3493      //      T*         operator+(T*, ptrdiff_t);
3494      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3495      //      T*         operator-(T*, ptrdiff_t);
3496      //      T*         operator+(ptrdiff_t, T*);
3497      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3498      //
3499      // C++ [over.built]p14:
3500      //
3501      //   For every T, where T is a pointer to object type, there
3502      //   exist candidate operator functions of the form
3503      //
3504      //      ptrdiff_t  operator-(T, T);
3505      for (BuiltinCandidateTypeSet::iterator Ptr
3506             = CandidateTypes.pointer_begin();
3507           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3508        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3509
3510        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3511        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3512
3513        if (Op == OO_Plus) {
3514          // T* operator+(ptrdiff_t, T*);
3515          ParamTypes[0] = ParamTypes[1];
3516          ParamTypes[1] = *Ptr;
3517          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3518        } else {
3519          // ptrdiff_t operator-(T, T);
3520          ParamTypes[1] = *Ptr;
3521          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3522                              Args, 2, CandidateSet);
3523        }
3524      }
3525    }
3526    // Fall through
3527
3528  case OO_Slash:
3529  BinaryStar:
3530  Conditional:
3531    // C++ [over.built]p12:
3532    //
3533    //   For every pair of promoted arithmetic types L and R, there
3534    //   exist candidate operator functions of the form
3535    //
3536    //        LR         operator*(L, R);
3537    //        LR         operator/(L, R);
3538    //        LR         operator+(L, R);
3539    //        LR         operator-(L, R);
3540    //        bool       operator<(L, R);
3541    //        bool       operator>(L, R);
3542    //        bool       operator<=(L, R);
3543    //        bool       operator>=(L, R);
3544    //        bool       operator==(L, R);
3545    //        bool       operator!=(L, R);
3546    //
3547    //   where LR is the result of the usual arithmetic conversions
3548    //   between types L and R.
3549    //
3550    // C++ [over.built]p24:
3551    //
3552    //   For every pair of promoted arithmetic types L and R, there exist
3553    //   candidate operator functions of the form
3554    //
3555    //        LR       operator?(bool, L, R);
3556    //
3557    //   where LR is the result of the usual arithmetic conversions
3558    //   between types L and R.
3559    // Our candidates ignore the first parameter.
3560    for (unsigned Left = FirstPromotedArithmeticType;
3561         Left < LastPromotedArithmeticType; ++Left) {
3562      for (unsigned Right = FirstPromotedArithmeticType;
3563           Right < LastPromotedArithmeticType; ++Right) {
3564        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3565        QualType Result
3566          = isComparison
3567          ? Context.BoolTy
3568          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3569        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3570      }
3571    }
3572    break;
3573
3574  case OO_Percent:
3575  BinaryAmp:
3576  case OO_Caret:
3577  case OO_Pipe:
3578  case OO_LessLess:
3579  case OO_GreaterGreater:
3580    // C++ [over.built]p17:
3581    //
3582    //   For every pair of promoted integral types L and R, there
3583    //   exist candidate operator functions of the form
3584    //
3585    //      LR         operator%(L, R);
3586    //      LR         operator&(L, R);
3587    //      LR         operator^(L, R);
3588    //      LR         operator|(L, R);
3589    //      L          operator<<(L, R);
3590    //      L          operator>>(L, R);
3591    //
3592    //   where LR is the result of the usual arithmetic conversions
3593    //   between types L and R.
3594    for (unsigned Left = FirstPromotedIntegralType;
3595         Left < LastPromotedIntegralType; ++Left) {
3596      for (unsigned Right = FirstPromotedIntegralType;
3597           Right < LastPromotedIntegralType; ++Right) {
3598        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3599        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3600            ? LandR[0]
3601            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3602        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3603      }
3604    }
3605    break;
3606
3607  case OO_Equal:
3608    // C++ [over.built]p20:
3609    //
3610    //   For every pair (T, VQ), where T is an enumeration or
3611    //   pointer to member type and VQ is either volatile or
3612    //   empty, there exist candidate operator functions of the form
3613    //
3614    //        VQ T&      operator=(VQ T&, T);
3615    for (BuiltinCandidateTypeSet::iterator
3616           Enum = CandidateTypes.enumeration_begin(),
3617           EnumEnd = CandidateTypes.enumeration_end();
3618         Enum != EnumEnd; ++Enum)
3619      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3620                                             CandidateSet);
3621    for (BuiltinCandidateTypeSet::iterator
3622           MemPtr = CandidateTypes.member_pointer_begin(),
3623         MemPtrEnd = CandidateTypes.member_pointer_end();
3624         MemPtr != MemPtrEnd; ++MemPtr)
3625      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3626                                             CandidateSet);
3627      // Fall through.
3628
3629  case OO_PlusEqual:
3630  case OO_MinusEqual:
3631    // C++ [over.built]p19:
3632    //
3633    //   For every pair (T, VQ), where T is any type and VQ is either
3634    //   volatile or empty, there exist candidate operator functions
3635    //   of the form
3636    //
3637    //        T*VQ&      operator=(T*VQ&, T*);
3638    //
3639    // C++ [over.built]p21:
3640    //
3641    //   For every pair (T, VQ), where T is a cv-qualified or
3642    //   cv-unqualified object type and VQ is either volatile or
3643    //   empty, there exist candidate operator functions of the form
3644    //
3645    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3646    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3647    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3648         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3649      QualType ParamTypes[2];
3650      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3651
3652      // non-volatile version
3653      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3654      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3655                          /*IsAssigmentOperator=*/Op == OO_Equal);
3656
3657      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3658          VisibleTypeConversionsQuals.hasVolatile()) {
3659        // volatile version
3660        ParamTypes[0]
3661          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3662        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3663                            /*IsAssigmentOperator=*/Op == OO_Equal);
3664      }
3665    }
3666    // Fall through.
3667
3668  case OO_StarEqual:
3669  case OO_SlashEqual:
3670    // C++ [over.built]p18:
3671    //
3672    //   For every triple (L, VQ, R), where L is an arithmetic type,
3673    //   VQ is either volatile or empty, and R is a promoted
3674    //   arithmetic type, there exist candidate operator functions of
3675    //   the form
3676    //
3677    //        VQ L&      operator=(VQ L&, R);
3678    //        VQ L&      operator*=(VQ L&, R);
3679    //        VQ L&      operator/=(VQ L&, R);
3680    //        VQ L&      operator+=(VQ L&, R);
3681    //        VQ L&      operator-=(VQ L&, R);
3682    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3683      for (unsigned Right = FirstPromotedArithmeticType;
3684           Right < LastPromotedArithmeticType; ++Right) {
3685        QualType ParamTypes[2];
3686        ParamTypes[1] = ArithmeticTypes[Right];
3687
3688        // Add this built-in operator as a candidate (VQ is empty).
3689        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3690        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3691                            /*IsAssigmentOperator=*/Op == OO_Equal);
3692
3693        // Add this built-in operator as a candidate (VQ is 'volatile').
3694        if (VisibleTypeConversionsQuals.hasVolatile()) {
3695          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3696          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3697          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3698                              /*IsAssigmentOperator=*/Op == OO_Equal);
3699        }
3700      }
3701    }
3702    break;
3703
3704  case OO_PercentEqual:
3705  case OO_LessLessEqual:
3706  case OO_GreaterGreaterEqual:
3707  case OO_AmpEqual:
3708  case OO_CaretEqual:
3709  case OO_PipeEqual:
3710    // C++ [over.built]p22:
3711    //
3712    //   For every triple (L, VQ, R), where L is an integral type, VQ
3713    //   is either volatile or empty, and R is a promoted integral
3714    //   type, there exist candidate operator functions of the form
3715    //
3716    //        VQ L&       operator%=(VQ L&, R);
3717    //        VQ L&       operator<<=(VQ L&, R);
3718    //        VQ L&       operator>>=(VQ L&, R);
3719    //        VQ L&       operator&=(VQ L&, R);
3720    //        VQ L&       operator^=(VQ L&, R);
3721    //        VQ L&       operator|=(VQ L&, R);
3722    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3723      for (unsigned Right = FirstPromotedIntegralType;
3724           Right < LastPromotedIntegralType; ++Right) {
3725        QualType ParamTypes[2];
3726        ParamTypes[1] = ArithmeticTypes[Right];
3727
3728        // Add this built-in operator as a candidate (VQ is empty).
3729        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3730        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3731        if (VisibleTypeConversionsQuals.hasVolatile()) {
3732          // Add this built-in operator as a candidate (VQ is 'volatile').
3733          ParamTypes[0] = ArithmeticTypes[Left];
3734          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3735          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3736          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3737        }
3738      }
3739    }
3740    break;
3741
3742  case OO_Exclaim: {
3743    // C++ [over.operator]p23:
3744    //
3745    //   There also exist candidate operator functions of the form
3746    //
3747    //        bool        operator!(bool);
3748    //        bool        operator&&(bool, bool);     [BELOW]
3749    //        bool        operator||(bool, bool);     [BELOW]
3750    QualType ParamTy = Context.BoolTy;
3751    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3752                        /*IsAssignmentOperator=*/false,
3753                        /*NumContextualBoolArguments=*/1);
3754    break;
3755  }
3756
3757  case OO_AmpAmp:
3758  case OO_PipePipe: {
3759    // C++ [over.operator]p23:
3760    //
3761    //   There also exist candidate operator functions of the form
3762    //
3763    //        bool        operator!(bool);            [ABOVE]
3764    //        bool        operator&&(bool, bool);
3765    //        bool        operator||(bool, bool);
3766    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3767    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3768                        /*IsAssignmentOperator=*/false,
3769                        /*NumContextualBoolArguments=*/2);
3770    break;
3771  }
3772
3773  case OO_Subscript:
3774    // C++ [over.built]p13:
3775    //
3776    //   For every cv-qualified or cv-unqualified object type T there
3777    //   exist candidate operator functions of the form
3778    //
3779    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3780    //        T&         operator[](T*, ptrdiff_t);
3781    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3782    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3783    //        T&         operator[](ptrdiff_t, T*);
3784    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3785         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3786      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3787      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3788      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3789
3790      // T& operator[](T*, ptrdiff_t)
3791      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3792
3793      // T& operator[](ptrdiff_t, T*);
3794      ParamTypes[0] = ParamTypes[1];
3795      ParamTypes[1] = *Ptr;
3796      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3797    }
3798    break;
3799
3800  case OO_ArrowStar:
3801    // C++ [over.built]p11:
3802    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3803    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3804    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3805    //    there exist candidate operator functions of the form
3806    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3807    //    where CV12 is the union of CV1 and CV2.
3808    {
3809      for (BuiltinCandidateTypeSet::iterator Ptr =
3810             CandidateTypes.pointer_begin();
3811           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3812        QualType C1Ty = (*Ptr);
3813        QualType C1;
3814        QualifierCollector Q1;
3815        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3816          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3817          if (!isa<RecordType>(C1))
3818            continue;
3819          // heuristic to reduce number of builtin candidates in the set.
3820          // Add volatile/restrict version only if there are conversions to a
3821          // volatile/restrict type.
3822          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3823            continue;
3824          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3825            continue;
3826        }
3827        for (BuiltinCandidateTypeSet::iterator
3828             MemPtr = CandidateTypes.member_pointer_begin(),
3829             MemPtrEnd = CandidateTypes.member_pointer_end();
3830             MemPtr != MemPtrEnd; ++MemPtr) {
3831          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3832          QualType C2 = QualType(mptr->getClass(), 0);
3833          C2 = C2.getUnqualifiedType();
3834          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3835            break;
3836          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3837          // build CV12 T&
3838          QualType T = mptr->getPointeeType();
3839          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3840              T.isVolatileQualified())
3841            continue;
3842          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3843              T.isRestrictQualified())
3844            continue;
3845          T = Q1.apply(T);
3846          QualType ResultTy = Context.getLValueReferenceType(T);
3847          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3848        }
3849      }
3850    }
3851    break;
3852
3853  case OO_Conditional:
3854    // Note that we don't consider the first argument, since it has been
3855    // contextually converted to bool long ago. The candidates below are
3856    // therefore added as binary.
3857    //
3858    // C++ [over.built]p24:
3859    //   For every type T, where T is a pointer or pointer-to-member type,
3860    //   there exist candidate operator functions of the form
3861    //
3862    //        T        operator?(bool, T, T);
3863    //
3864    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3865         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3866      QualType ParamTypes[2] = { *Ptr, *Ptr };
3867      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3868    }
3869    for (BuiltinCandidateTypeSet::iterator Ptr =
3870           CandidateTypes.member_pointer_begin(),
3871         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3872      QualType ParamTypes[2] = { *Ptr, *Ptr };
3873      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3874    }
3875    goto Conditional;
3876  }
3877}
3878
3879/// \brief Add function candidates found via argument-dependent lookup
3880/// to the set of overloading candidates.
3881///
3882/// This routine performs argument-dependent name lookup based on the
3883/// given function name (which may also be an operator name) and adds
3884/// all of the overload candidates found by ADL to the overload
3885/// candidate set (C++ [basic.lookup.argdep]).
3886void
3887Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3888                                           Expr **Args, unsigned NumArgs,
3889                                           bool HasExplicitTemplateArgs,
3890                            const TemplateArgumentLoc *ExplicitTemplateArgs,
3891                                           unsigned NumExplicitTemplateArgs,
3892                                           OverloadCandidateSet& CandidateSet,
3893                                           bool PartialOverloading) {
3894  FunctionSet Functions;
3895
3896  // FIXME: Should we be trafficking in canonical function decls throughout?
3897
3898  // Record all of the function candidates that we've already
3899  // added to the overload set, so that we don't add those same
3900  // candidates a second time.
3901  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3902                                   CandEnd = CandidateSet.end();
3903       Cand != CandEnd; ++Cand)
3904    if (Cand->Function) {
3905      Functions.insert(Cand->Function);
3906      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3907        Functions.insert(FunTmpl);
3908    }
3909
3910  // FIXME: Pass in the explicit template arguments?
3911  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
3912
3913  // Erase all of the candidates we already knew about.
3914  // FIXME: This is suboptimal. Is there a better way?
3915  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3916                                   CandEnd = CandidateSet.end();
3917       Cand != CandEnd; ++Cand)
3918    if (Cand->Function) {
3919      Functions.erase(Cand->Function);
3920      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3921        Functions.erase(FunTmpl);
3922    }
3923
3924  // For each of the ADL candidates we found, add it to the overload
3925  // set.
3926  for (FunctionSet::iterator Func = Functions.begin(),
3927                          FuncEnd = Functions.end();
3928       Func != FuncEnd; ++Func) {
3929    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3930      if (HasExplicitTemplateArgs)
3931        continue;
3932
3933      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3934                           false, false, PartialOverloading);
3935    } else
3936      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3937                                   HasExplicitTemplateArgs,
3938                                   ExplicitTemplateArgs,
3939                                   NumExplicitTemplateArgs,
3940                                   Args, NumArgs, CandidateSet);
3941  }
3942}
3943
3944/// isBetterOverloadCandidate - Determines whether the first overload
3945/// candidate is a better candidate than the second (C++ 13.3.3p1).
3946bool
3947Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3948                                const OverloadCandidate& Cand2) {
3949  // Define viable functions to be better candidates than non-viable
3950  // functions.
3951  if (!Cand2.Viable)
3952    return Cand1.Viable;
3953  else if (!Cand1.Viable)
3954    return false;
3955
3956  // C++ [over.match.best]p1:
3957  //
3958  //   -- if F is a static member function, ICS1(F) is defined such
3959  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3960  //      any function G, and, symmetrically, ICS1(G) is neither
3961  //      better nor worse than ICS1(F).
3962  unsigned StartArg = 0;
3963  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3964    StartArg = 1;
3965
3966  // C++ [over.match.best]p1:
3967  //   A viable function F1 is defined to be a better function than another
3968  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3969  //   conversion sequence than ICSi(F2), and then...
3970  unsigned NumArgs = Cand1.Conversions.size();
3971  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3972  bool HasBetterConversion = false;
3973  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3974    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3975                                               Cand2.Conversions[ArgIdx])) {
3976    case ImplicitConversionSequence::Better:
3977      // Cand1 has a better conversion sequence.
3978      HasBetterConversion = true;
3979      break;
3980
3981    case ImplicitConversionSequence::Worse:
3982      // Cand1 can't be better than Cand2.
3983      return false;
3984
3985    case ImplicitConversionSequence::Indistinguishable:
3986      // Do nothing.
3987      break;
3988    }
3989  }
3990
3991  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3992  //       ICSj(F2), or, if not that,
3993  if (HasBetterConversion)
3994    return true;
3995
3996  //     - F1 is a non-template function and F2 is a function template
3997  //       specialization, or, if not that,
3998  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3999      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4000    return true;
4001
4002  //   -- F1 and F2 are function template specializations, and the function
4003  //      template for F1 is more specialized than the template for F2
4004  //      according to the partial ordering rules described in 14.5.5.2, or,
4005  //      if not that,
4006  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4007      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4008    if (FunctionTemplateDecl *BetterTemplate
4009          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4010                                       Cand2.Function->getPrimaryTemplate(),
4011                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4012                                                             : TPOC_Call))
4013      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4014
4015  //   -- the context is an initialization by user-defined conversion
4016  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4017  //      from the return type of F1 to the destination type (i.e.,
4018  //      the type of the entity being initialized) is a better
4019  //      conversion sequence than the standard conversion sequence
4020  //      from the return type of F2 to the destination type.
4021  if (Cand1.Function && Cand2.Function &&
4022      isa<CXXConversionDecl>(Cand1.Function) &&
4023      isa<CXXConversionDecl>(Cand2.Function)) {
4024    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4025                                               Cand2.FinalConversion)) {
4026    case ImplicitConversionSequence::Better:
4027      // Cand1 has a better conversion sequence.
4028      return true;
4029
4030    case ImplicitConversionSequence::Worse:
4031      // Cand1 can't be better than Cand2.
4032      return false;
4033
4034    case ImplicitConversionSequence::Indistinguishable:
4035      // Do nothing
4036      break;
4037    }
4038  }
4039
4040  return false;
4041}
4042
4043/// \brief Computes the best viable function (C++ 13.3.3)
4044/// within an overload candidate set.
4045///
4046/// \param CandidateSet the set of candidate functions.
4047///
4048/// \param Loc the location of the function name (or operator symbol) for
4049/// which overload resolution occurs.
4050///
4051/// \param Best f overload resolution was successful or found a deleted
4052/// function, Best points to the candidate function found.
4053///
4054/// \returns The result of overload resolution.
4055Sema::OverloadingResult
4056Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4057                         SourceLocation Loc,
4058                         OverloadCandidateSet::iterator& Best) {
4059  // Find the best viable function.
4060  Best = CandidateSet.end();
4061  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4062       Cand != CandidateSet.end(); ++Cand) {
4063    if (Cand->Viable) {
4064      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4065        Best = Cand;
4066    }
4067  }
4068
4069  // If we didn't find any viable functions, abort.
4070  if (Best == CandidateSet.end())
4071    return OR_No_Viable_Function;
4072
4073  // Make sure that this function is better than every other viable
4074  // function. If not, we have an ambiguity.
4075  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4076       Cand != CandidateSet.end(); ++Cand) {
4077    if (Cand->Viable &&
4078        Cand != Best &&
4079        !isBetterOverloadCandidate(*Best, *Cand)) {
4080      Best = CandidateSet.end();
4081      return OR_Ambiguous;
4082    }
4083  }
4084
4085  // Best is the best viable function.
4086  if (Best->Function &&
4087      (Best->Function->isDeleted() ||
4088       Best->Function->getAttr<UnavailableAttr>()))
4089    return OR_Deleted;
4090
4091  // C++ [basic.def.odr]p2:
4092  //   An overloaded function is used if it is selected by overload resolution
4093  //   when referred to from a potentially-evaluated expression. [Note: this
4094  //   covers calls to named functions (5.2.2), operator overloading
4095  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4096  //   placement new (5.3.4), as well as non-default initialization (8.5).
4097  if (Best->Function)
4098    MarkDeclarationReferenced(Loc, Best->Function);
4099  return OR_Success;
4100}
4101
4102/// PrintOverloadCandidates - When overload resolution fails, prints
4103/// diagnostic messages containing the candidates in the candidate
4104/// set. If OnlyViable is true, only viable candidates will be printed.
4105void
4106Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4107                              bool OnlyViable,
4108                              const char *Opc,
4109                              SourceLocation OpLoc) {
4110  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4111                             LastCand = CandidateSet.end();
4112  bool Reported = false;
4113  for (; Cand != LastCand; ++Cand) {
4114    if (Cand->Viable || !OnlyViable) {
4115      if (Cand->Function) {
4116        if (Cand->Function->isDeleted() ||
4117            Cand->Function->getAttr<UnavailableAttr>()) {
4118          // Deleted or "unavailable" function.
4119          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4120            << Cand->Function->isDeleted();
4121        } else if (FunctionTemplateDecl *FunTmpl
4122                     = Cand->Function->getPrimaryTemplate()) {
4123          // Function template specialization
4124          // FIXME: Give a better reason!
4125          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4126            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4127                              *Cand->Function->getTemplateSpecializationArgs());
4128        } else {
4129          // Normal function
4130          bool errReported = false;
4131          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4132            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4133              const ImplicitConversionSequence &Conversion =
4134                                                        Cand->Conversions[i];
4135              if ((Conversion.ConversionKind !=
4136                   ImplicitConversionSequence::BadConversion) ||
4137                  Conversion.ConversionFunctionSet.size() == 0)
4138                continue;
4139              Diag(Cand->Function->getLocation(),
4140                   diag::err_ovl_candidate_not_viable) << (i+1);
4141              errReported = true;
4142              for (int j = Conversion.ConversionFunctionSet.size()-1;
4143                   j >= 0; j--) {
4144                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4145                Diag(Func->getLocation(), diag::err_ovl_candidate);
4146              }
4147            }
4148          }
4149          if (!errReported)
4150            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4151        }
4152      } else if (Cand->IsSurrogate) {
4153        // Desugar the type of the surrogate down to a function type,
4154        // retaining as many typedefs as possible while still showing
4155        // the function type (and, therefore, its parameter types).
4156        QualType FnType = Cand->Surrogate->getConversionType();
4157        bool isLValueReference = false;
4158        bool isRValueReference = false;
4159        bool isPointer = false;
4160        if (const LValueReferenceType *FnTypeRef =
4161              FnType->getAs<LValueReferenceType>()) {
4162          FnType = FnTypeRef->getPointeeType();
4163          isLValueReference = true;
4164        } else if (const RValueReferenceType *FnTypeRef =
4165                     FnType->getAs<RValueReferenceType>()) {
4166          FnType = FnTypeRef->getPointeeType();
4167          isRValueReference = true;
4168        }
4169        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4170          FnType = FnTypePtr->getPointeeType();
4171          isPointer = true;
4172        }
4173        // Desugar down to a function type.
4174        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4175        // Reconstruct the pointer/reference as appropriate.
4176        if (isPointer) FnType = Context.getPointerType(FnType);
4177        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4178        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4179
4180        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4181          << FnType;
4182      } else if (OnlyViable) {
4183        assert(Cand->Conversions.size() <= 2 &&
4184               "builtin-binary-operator-not-binary");
4185        std::string TypeStr("operator");
4186        TypeStr += Opc;
4187        TypeStr += "(";
4188        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4189        if (Cand->Conversions.size() == 1) {
4190          TypeStr += ")";
4191          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4192        }
4193        else {
4194          TypeStr += ", ";
4195          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4196          TypeStr += ")";
4197          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4198        }
4199      }
4200      else if (!Cand->Viable && !Reported) {
4201        // Non-viability might be due to ambiguous user-defined conversions,
4202        // needed for built-in operators. Report them as well, but only once
4203        // as we have typically many built-in candidates.
4204        unsigned NoOperands = Cand->Conversions.size();
4205        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4206          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4207          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4208              ICS.ConversionFunctionSet.empty())
4209            continue;
4210          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4211                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4212            QualType FromTy =
4213              QualType(
4214                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4215            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4216                  << FromTy << Func->getConversionType();
4217          }
4218          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4219            FunctionDecl *Func =
4220              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4221            Diag(Func->getLocation(),diag::err_ovl_candidate);
4222          }
4223        }
4224        Reported = true;
4225      }
4226    }
4227  }
4228}
4229
4230/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4231/// an overloaded function (C++ [over.over]), where @p From is an
4232/// expression with overloaded function type and @p ToType is the type
4233/// we're trying to resolve to. For example:
4234///
4235/// @code
4236/// int f(double);
4237/// int f(int);
4238///
4239/// int (*pfd)(double) = f; // selects f(double)
4240/// @endcode
4241///
4242/// This routine returns the resulting FunctionDecl if it could be
4243/// resolved, and NULL otherwise. When @p Complain is true, this
4244/// routine will emit diagnostics if there is an error.
4245FunctionDecl *
4246Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4247                                         bool Complain) {
4248  QualType FunctionType = ToType;
4249  bool IsMember = false;
4250  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4251    FunctionType = ToTypePtr->getPointeeType();
4252  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4253    FunctionType = ToTypeRef->getPointeeType();
4254  else if (const MemberPointerType *MemTypePtr =
4255                    ToType->getAs<MemberPointerType>()) {
4256    FunctionType = MemTypePtr->getPointeeType();
4257    IsMember = true;
4258  }
4259
4260  // We only look at pointers or references to functions.
4261  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4262  if (!FunctionType->isFunctionType())
4263    return 0;
4264
4265  // Find the actual overloaded function declaration.
4266  OverloadedFunctionDecl *Ovl = 0;
4267
4268  // C++ [over.over]p1:
4269  //   [...] [Note: any redundant set of parentheses surrounding the
4270  //   overloaded function name is ignored (5.1). ]
4271  Expr *OvlExpr = From->IgnoreParens();
4272
4273  // C++ [over.over]p1:
4274  //   [...] The overloaded function name can be preceded by the &
4275  //   operator.
4276  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4277    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4278      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4279  }
4280
4281  bool HasExplicitTemplateArgs = false;
4282  const TemplateArgumentLoc *ExplicitTemplateArgs = 0;
4283  unsigned NumExplicitTemplateArgs = 0;
4284
4285  // Try to dig out the overloaded function.
4286  FunctionTemplateDecl *FunctionTemplate = 0;
4287  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4288    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
4289    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4290    HasExplicitTemplateArgs = DR->hasExplicitTemplateArgumentList();
4291    ExplicitTemplateArgs = DR->getTemplateArgs();
4292    NumExplicitTemplateArgs = DR->getNumTemplateArgs();
4293  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) {
4294    Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl());
4295    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl());
4296    HasExplicitTemplateArgs = ME->hasExplicitTemplateArgumentList();
4297    ExplicitTemplateArgs = ME->getTemplateArgs();
4298    NumExplicitTemplateArgs = ME->getNumTemplateArgs();
4299  } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) {
4300    TemplateName Name = TIRE->getTemplateName();
4301    Ovl = Name.getAsOverloadedFunctionDecl();
4302    FunctionTemplate =
4303      dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4304
4305    HasExplicitTemplateArgs = true;
4306    ExplicitTemplateArgs = TIRE->getTemplateArgs();
4307    NumExplicitTemplateArgs = TIRE->getNumTemplateArgs();
4308  }
4309
4310  // If there's no overloaded function declaration or function template,
4311  // we're done.
4312  if (!Ovl && !FunctionTemplate)
4313    return 0;
4314
4315  OverloadIterator Fun;
4316  if (Ovl)
4317    Fun = Ovl;
4318  else
4319    Fun = FunctionTemplate;
4320
4321  // Look through all of the overloaded functions, searching for one
4322  // whose type matches exactly.
4323  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4324  bool FoundNonTemplateFunction = false;
4325  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
4326    // C++ [over.over]p3:
4327    //   Non-member functions and static member functions match
4328    //   targets of type "pointer-to-function" or "reference-to-function."
4329    //   Nonstatic member functions match targets of
4330    //   type "pointer-to-member-function."
4331    // Note that according to DR 247, the containing class does not matter.
4332
4333    if (FunctionTemplateDecl *FunctionTemplate
4334          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
4335      if (CXXMethodDecl *Method
4336            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4337        // Skip non-static function templates when converting to pointer, and
4338        // static when converting to member pointer.
4339        if (Method->isStatic() == IsMember)
4340          continue;
4341      } else if (IsMember)
4342        continue;
4343
4344      // C++ [over.over]p2:
4345      //   If the name is a function template, template argument deduction is
4346      //   done (14.8.2.2), and if the argument deduction succeeds, the
4347      //   resulting template argument list is used to generate a single
4348      //   function template specialization, which is added to the set of
4349      //   overloaded functions considered.
4350      // FIXME: We don't really want to build the specialization here, do we?
4351      FunctionDecl *Specialization = 0;
4352      TemplateDeductionInfo Info(Context);
4353      if (TemplateDeductionResult Result
4354            = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
4355                                      ExplicitTemplateArgs,
4356                                      NumExplicitTemplateArgs,
4357                                      FunctionType, Specialization, Info)) {
4358        // FIXME: make a note of the failed deduction for diagnostics.
4359        (void)Result;
4360      } else {
4361        // FIXME: If the match isn't exact, shouldn't we just drop this as
4362        // a candidate? Find a testcase before changing the code.
4363        assert(FunctionType
4364                 == Context.getCanonicalType(Specialization->getType()));
4365        Matches.insert(
4366                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4367      }
4368    }
4369
4370    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
4371      // Skip non-static functions when converting to pointer, and static
4372      // when converting to member pointer.
4373      if (Method->isStatic() == IsMember)
4374        continue;
4375
4376      // If we have explicit template arguments, skip non-templates.
4377      if (HasExplicitTemplateArgs)
4378        continue;
4379    } else if (IsMember)
4380      continue;
4381
4382    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
4383      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4384        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
4385        FoundNonTemplateFunction = true;
4386      }
4387    }
4388  }
4389
4390  // If there were 0 or 1 matches, we're done.
4391  if (Matches.empty())
4392    return 0;
4393  else if (Matches.size() == 1) {
4394    FunctionDecl *Result = *Matches.begin();
4395    MarkDeclarationReferenced(From->getLocStart(), Result);
4396    return Result;
4397  }
4398
4399  // C++ [over.over]p4:
4400  //   If more than one function is selected, [...]
4401  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4402  if (!FoundNonTemplateFunction) {
4403    //   [...] and any given function template specialization F1 is
4404    //   eliminated if the set contains a second function template
4405    //   specialization whose function template is more specialized
4406    //   than the function template of F1 according to the partial
4407    //   ordering rules of 14.5.5.2.
4408
4409    // The algorithm specified above is quadratic. We instead use a
4410    // two-pass algorithm (similar to the one used to identify the
4411    // best viable function in an overload set) that identifies the
4412    // best function template (if it exists).
4413    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4414                                                         Matches.end());
4415    FunctionDecl *Result =
4416        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4417                           TPOC_Other, From->getLocStart(),
4418                           PDiag(),
4419                           PDiag(diag::err_addr_ovl_ambiguous)
4420                               << TemplateMatches[0]->getDeclName(),
4421                           PDiag(diag::err_ovl_template_candidate));
4422    MarkDeclarationReferenced(From->getLocStart(), Result);
4423    return Result;
4424  }
4425
4426  //   [...] any function template specializations in the set are
4427  //   eliminated if the set also contains a non-template function, [...]
4428  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4429  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4430    if ((*M)->getPrimaryTemplate() == 0)
4431      RemainingMatches.push_back(*M);
4432
4433  // [...] After such eliminations, if any, there shall remain exactly one
4434  // selected function.
4435  if (RemainingMatches.size() == 1) {
4436    FunctionDecl *Result = RemainingMatches.front();
4437    MarkDeclarationReferenced(From->getLocStart(), Result);
4438    return Result;
4439  }
4440
4441  // FIXME: We should probably return the same thing that BestViableFunction
4442  // returns (even if we issue the diagnostics here).
4443  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4444    << RemainingMatches[0]->getDeclName();
4445  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4446    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4447  return 0;
4448}
4449
4450/// \brief Add a single candidate to the overload set.
4451static void AddOverloadedCallCandidate(Sema &S,
4452                                       AnyFunctionDecl Callee,
4453                                       bool &ArgumentDependentLookup,
4454                                       bool HasExplicitTemplateArgs,
4455                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4456                                       unsigned NumExplicitTemplateArgs,
4457                                       Expr **Args, unsigned NumArgs,
4458                                       OverloadCandidateSet &CandidateSet,
4459                                       bool PartialOverloading) {
4460  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4461    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4462    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4463                           PartialOverloading);
4464
4465    if (Func->getDeclContext()->isRecord() ||
4466        Func->getDeclContext()->isFunctionOrMethod())
4467      ArgumentDependentLookup = false;
4468    return;
4469  }
4470
4471  FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee);
4472  S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4473                                 ExplicitTemplateArgs,
4474                                 NumExplicitTemplateArgs,
4475                                 Args, NumArgs, CandidateSet);
4476
4477  if (FuncTemplate->getDeclContext()->isRecord())
4478    ArgumentDependentLookup = false;
4479}
4480
4481/// \brief Add the overload candidates named by callee and/or found by argument
4482/// dependent lookup to the given overload set.
4483void Sema::AddOverloadedCallCandidates(NamedDecl *Callee,
4484                                       DeclarationName &UnqualifiedName,
4485                                       bool &ArgumentDependentLookup,
4486                                       bool HasExplicitTemplateArgs,
4487                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4488                                       unsigned NumExplicitTemplateArgs,
4489                                       Expr **Args, unsigned NumArgs,
4490                                       OverloadCandidateSet &CandidateSet,
4491                                       bool PartialOverloading) {
4492  // Add the functions denoted by Callee to the set of candidate
4493  // functions. While we're doing so, track whether argument-dependent
4494  // lookup still applies, per:
4495  //
4496  // C++0x [basic.lookup.argdep]p3:
4497  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4498  //   and let Y be the lookup set produced by argument dependent
4499  //   lookup (defined as follows). If X contains
4500  //
4501  //     -- a declaration of a class member, or
4502  //
4503  //     -- a block-scope function declaration that is not a
4504  //        using-declaration (FIXME: check for using declaration), or
4505  //
4506  //     -- a declaration that is neither a function or a function
4507  //        template
4508  //
4509  //   then Y is empty.
4510  if (!Callee) {
4511    // Nothing to do.
4512  } else if (OverloadedFunctionDecl *Ovl
4513               = dyn_cast<OverloadedFunctionDecl>(Callee)) {
4514    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4515                                                FuncEnd = Ovl->function_end();
4516         Func != FuncEnd; ++Func)
4517      AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup,
4518                                 HasExplicitTemplateArgs,
4519                                 ExplicitTemplateArgs, NumExplicitTemplateArgs,
4520                                 Args, NumArgs, CandidateSet,
4521                                 PartialOverloading);
4522  } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee))
4523    AddOverloadedCallCandidate(*this,
4524                               AnyFunctionDecl::getFromNamedDecl(Callee),
4525                               ArgumentDependentLookup,
4526                               HasExplicitTemplateArgs,
4527                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
4528                               Args, NumArgs, CandidateSet,
4529                               PartialOverloading);
4530  // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than
4531  // checking dynamically.
4532
4533  if (Callee)
4534    UnqualifiedName = Callee->getDeclName();
4535
4536  if (ArgumentDependentLookup)
4537    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4538                                         HasExplicitTemplateArgs,
4539                                         ExplicitTemplateArgs,
4540                                         NumExplicitTemplateArgs,
4541                                         CandidateSet,
4542                                         PartialOverloading);
4543}
4544
4545/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4546/// (which eventually refers to the declaration Func) and the call
4547/// arguments Args/NumArgs, attempt to resolve the function call down
4548/// to a specific function. If overload resolution succeeds, returns
4549/// the function declaration produced by overload
4550/// resolution. Otherwise, emits diagnostics, deletes all of the
4551/// arguments and Fn, and returns NULL.
4552FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4553                                            DeclarationName UnqualifiedName,
4554                                            bool HasExplicitTemplateArgs,
4555                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4556                                            unsigned NumExplicitTemplateArgs,
4557                                            SourceLocation LParenLoc,
4558                                            Expr **Args, unsigned NumArgs,
4559                                            SourceLocation *CommaLocs,
4560                                            SourceLocation RParenLoc,
4561                                            bool &ArgumentDependentLookup) {
4562  OverloadCandidateSet CandidateSet;
4563
4564  // Add the functions denoted by Callee to the set of candidate
4565  // functions.
4566  AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup,
4567                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
4568                              NumExplicitTemplateArgs, Args, NumArgs,
4569                              CandidateSet);
4570  OverloadCandidateSet::iterator Best;
4571  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4572  case OR_Success:
4573    return Best->Function;
4574
4575  case OR_No_Viable_Function:
4576    Diag(Fn->getSourceRange().getBegin(),
4577         diag::err_ovl_no_viable_function_in_call)
4578      << UnqualifiedName << Fn->getSourceRange();
4579    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4580    break;
4581
4582  case OR_Ambiguous:
4583    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4584      << UnqualifiedName << Fn->getSourceRange();
4585    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4586    break;
4587
4588  case OR_Deleted:
4589    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4590      << Best->Function->isDeleted()
4591      << UnqualifiedName
4592      << Fn->getSourceRange();
4593    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4594    break;
4595  }
4596
4597  // Overload resolution failed. Destroy all of the subexpressions and
4598  // return NULL.
4599  Fn->Destroy(Context);
4600  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4601    Args[Arg]->Destroy(Context);
4602  return 0;
4603}
4604
4605/// \brief Create a unary operation that may resolve to an overloaded
4606/// operator.
4607///
4608/// \param OpLoc The location of the operator itself (e.g., '*').
4609///
4610/// \param OpcIn The UnaryOperator::Opcode that describes this
4611/// operator.
4612///
4613/// \param Functions The set of non-member functions that will be
4614/// considered by overload resolution. The caller needs to build this
4615/// set based on the context using, e.g.,
4616/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4617/// set should not contain any member functions; those will be added
4618/// by CreateOverloadedUnaryOp().
4619///
4620/// \param input The input argument.
4621Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4622                                                     unsigned OpcIn,
4623                                                     FunctionSet &Functions,
4624                                                     ExprArg input) {
4625  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4626  Expr *Input = (Expr *)input.get();
4627
4628  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4629  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4630  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4631
4632  Expr *Args[2] = { Input, 0 };
4633  unsigned NumArgs = 1;
4634
4635  // For post-increment and post-decrement, add the implicit '0' as
4636  // the second argument, so that we know this is a post-increment or
4637  // post-decrement.
4638  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4639    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4640    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4641                                           SourceLocation());
4642    NumArgs = 2;
4643  }
4644
4645  if (Input->isTypeDependent()) {
4646    OverloadedFunctionDecl *Overloads
4647      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4648    for (FunctionSet::iterator Func = Functions.begin(),
4649                            FuncEnd = Functions.end();
4650         Func != FuncEnd; ++Func)
4651      Overloads->addOverload(*Func);
4652
4653    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4654                                                OpLoc, false, false);
4655
4656    input.release();
4657    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4658                                                   &Args[0], NumArgs,
4659                                                   Context.DependentTy,
4660                                                   OpLoc));
4661  }
4662
4663  // Build an empty overload set.
4664  OverloadCandidateSet CandidateSet;
4665
4666  // Add the candidates from the given function set.
4667  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4668
4669  // Add operator candidates that are member functions.
4670  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4671
4672  // Add builtin operator candidates.
4673  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4674
4675  // Perform overload resolution.
4676  OverloadCandidateSet::iterator Best;
4677  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4678  case OR_Success: {
4679    // We found a built-in operator or an overloaded operator.
4680    FunctionDecl *FnDecl = Best->Function;
4681
4682    if (FnDecl) {
4683      // We matched an overloaded operator. Build a call to that
4684      // operator.
4685
4686      // Convert the arguments.
4687      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4688        if (PerformObjectArgumentInitialization(Input, Method))
4689          return ExprError();
4690      } else {
4691        // Convert the arguments.
4692        if (PerformCopyInitialization(Input,
4693                                      FnDecl->getParamDecl(0)->getType(),
4694                                      "passing"))
4695          return ExprError();
4696      }
4697
4698      // Determine the result type
4699      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4700
4701      // Build the actual expression node.
4702      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4703                                               SourceLocation());
4704      UsualUnaryConversions(FnExpr);
4705
4706      input.release();
4707
4708      ExprOwningPtr<CallExpr> TheCall(this,
4709        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4710                                          &Input, 1, ResultTy, OpLoc));
4711
4712      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4713                              FnDecl))
4714        return ExprError();
4715
4716      return MaybeBindToTemporary(TheCall.release());
4717    } else {
4718      // We matched a built-in operator. Convert the arguments, then
4719      // break out so that we will build the appropriate built-in
4720      // operator node.
4721        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4722                                      Best->Conversions[0], "passing"))
4723          return ExprError();
4724
4725        break;
4726      }
4727    }
4728
4729    case OR_No_Viable_Function:
4730      // No viable function; fall through to handling this as a
4731      // built-in operator, which will produce an error message for us.
4732      break;
4733
4734    case OR_Ambiguous:
4735      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4736          << UnaryOperator::getOpcodeStr(Opc)
4737          << Input->getSourceRange();
4738      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4739                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4740      return ExprError();
4741
4742    case OR_Deleted:
4743      Diag(OpLoc, diag::err_ovl_deleted_oper)
4744        << Best->Function->isDeleted()
4745        << UnaryOperator::getOpcodeStr(Opc)
4746        << Input->getSourceRange();
4747      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4748      return ExprError();
4749    }
4750
4751  // Either we found no viable overloaded operator or we matched a
4752  // built-in operator. In either case, fall through to trying to
4753  // build a built-in operation.
4754  input.release();
4755  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4756}
4757
4758/// \brief Create a binary operation that may resolve to an overloaded
4759/// operator.
4760///
4761/// \param OpLoc The location of the operator itself (e.g., '+').
4762///
4763/// \param OpcIn The BinaryOperator::Opcode that describes this
4764/// operator.
4765///
4766/// \param Functions The set of non-member functions that will be
4767/// considered by overload resolution. The caller needs to build this
4768/// set based on the context using, e.g.,
4769/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4770/// set should not contain any member functions; those will be added
4771/// by CreateOverloadedBinOp().
4772///
4773/// \param LHS Left-hand argument.
4774/// \param RHS Right-hand argument.
4775Sema::OwningExprResult
4776Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4777                            unsigned OpcIn,
4778                            FunctionSet &Functions,
4779                            Expr *LHS, Expr *RHS) {
4780  Expr *Args[2] = { LHS, RHS };
4781  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4782
4783  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4784  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4785  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4786
4787  // If either side is type-dependent, create an appropriate dependent
4788  // expression.
4789  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4790    // .* cannot be overloaded.
4791    if (Opc == BinaryOperator::PtrMemD)
4792      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4793                                                Context.DependentTy, OpLoc));
4794
4795    OverloadedFunctionDecl *Overloads
4796      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4797    for (FunctionSet::iterator Func = Functions.begin(),
4798                            FuncEnd = Functions.end();
4799         Func != FuncEnd; ++Func)
4800      Overloads->addOverload(*Func);
4801
4802    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4803                                                OpLoc, false, false);
4804
4805    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4806                                                   Args, 2,
4807                                                   Context.DependentTy,
4808                                                   OpLoc));
4809  }
4810
4811  // If this is the .* operator, which is not overloadable, just
4812  // create a built-in binary operator.
4813  if (Opc == BinaryOperator::PtrMemD)
4814    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4815
4816  // If this is one of the assignment operators, we only perform
4817  // overload resolution if the left-hand side is a class or
4818  // enumeration type (C++ [expr.ass]p3).
4819  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4820      !Args[0]->getType()->isOverloadableType())
4821    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4822
4823  // Build an empty overload set.
4824  OverloadCandidateSet CandidateSet;
4825
4826  // Add the candidates from the given function set.
4827  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4828
4829  // Add operator candidates that are member functions.
4830  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4831
4832  // Add builtin operator candidates.
4833  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4834
4835  // Perform overload resolution.
4836  OverloadCandidateSet::iterator Best;
4837  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4838    case OR_Success: {
4839      // We found a built-in operator or an overloaded operator.
4840      FunctionDecl *FnDecl = Best->Function;
4841
4842      if (FnDecl) {
4843        // We matched an overloaded operator. Build a call to that
4844        // operator.
4845
4846        // Convert the arguments.
4847        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4848          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4849              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4850                                        "passing"))
4851            return ExprError();
4852        } else {
4853          // Convert the arguments.
4854          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4855                                        "passing") ||
4856              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4857                                        "passing"))
4858            return ExprError();
4859        }
4860
4861        // Determine the result type
4862        QualType ResultTy
4863          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4864        ResultTy = ResultTy.getNonReferenceType();
4865
4866        // Build the actual expression node.
4867        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4868                                                 OpLoc);
4869        UsualUnaryConversions(FnExpr);
4870
4871        ExprOwningPtr<CXXOperatorCallExpr>
4872          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4873                                                          Args, 2, ResultTy,
4874                                                          OpLoc));
4875
4876        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4877                                FnDecl))
4878          return ExprError();
4879
4880        return MaybeBindToTemporary(TheCall.release());
4881      } else {
4882        // We matched a built-in operator. Convert the arguments, then
4883        // break out so that we will build the appropriate built-in
4884        // operator node.
4885        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4886                                      Best->Conversions[0], "passing") ||
4887            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4888                                      Best->Conversions[1], "passing"))
4889          return ExprError();
4890
4891        break;
4892      }
4893    }
4894
4895    case OR_No_Viable_Function: {
4896      // C++ [over.match.oper]p9:
4897      //   If the operator is the operator , [...] and there are no
4898      //   viable functions, then the operator is assumed to be the
4899      //   built-in operator and interpreted according to clause 5.
4900      if (Opc == BinaryOperator::Comma)
4901        break;
4902
4903      // For class as left operand for assignment or compound assigment operator
4904      // do not fall through to handling in built-in, but report that no overloaded
4905      // assignment operator found
4906      OwningExprResult Result = ExprError();
4907      if (Args[0]->getType()->isRecordType() &&
4908          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4909        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4910             << BinaryOperator::getOpcodeStr(Opc)
4911             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4912      } else {
4913        // No viable function; try to create a built-in operation, which will
4914        // produce an error. Then, show the non-viable candidates.
4915        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4916      }
4917      assert(Result.isInvalid() &&
4918             "C++ binary operator overloading is missing candidates!");
4919      if (Result.isInvalid())
4920        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
4921                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
4922      return move(Result);
4923    }
4924
4925    case OR_Ambiguous:
4926      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4927          << BinaryOperator::getOpcodeStr(Opc)
4928          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4929      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4930                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
4931      return ExprError();
4932
4933    case OR_Deleted:
4934      Diag(OpLoc, diag::err_ovl_deleted_oper)
4935        << Best->Function->isDeleted()
4936        << BinaryOperator::getOpcodeStr(Opc)
4937        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4938      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4939      return ExprError();
4940    }
4941
4942  // We matched a built-in operator; build it.
4943  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4944}
4945
4946Action::OwningExprResult
4947Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
4948                                         SourceLocation RLoc,
4949                                         ExprArg Base, ExprArg Idx) {
4950  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
4951                    static_cast<Expr*>(Idx.get()) };
4952  DeclarationName OpName =
4953      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
4954
4955  // If either side is type-dependent, create an appropriate dependent
4956  // expression.
4957  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4958
4959    OverloadedFunctionDecl *Overloads
4960      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4961
4962    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4963                                                LLoc, false, false);
4964
4965    Base.release();
4966    Idx.release();
4967    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
4968                                                   Args, 2,
4969                                                   Context.DependentTy,
4970                                                   RLoc));
4971  }
4972
4973  // Build an empty overload set.
4974  OverloadCandidateSet CandidateSet;
4975
4976  // Subscript can only be overloaded as a member function.
4977
4978  // Add operator candidates that are member functions.
4979  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
4980
4981  // Add builtin operator candidates.
4982  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
4983
4984  // Perform overload resolution.
4985  OverloadCandidateSet::iterator Best;
4986  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
4987    case OR_Success: {
4988      // We found a built-in operator or an overloaded operator.
4989      FunctionDecl *FnDecl = Best->Function;
4990
4991      if (FnDecl) {
4992        // We matched an overloaded operator. Build a call to that
4993        // operator.
4994
4995        // Convert the arguments.
4996        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4997        if (PerformObjectArgumentInitialization(Args[0], Method) ||
4998            PerformCopyInitialization(Args[1],
4999                                      FnDecl->getParamDecl(0)->getType(),
5000                                      "passing"))
5001          return ExprError();
5002
5003        // Determine the result type
5004        QualType ResultTy
5005          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5006        ResultTy = ResultTy.getNonReferenceType();
5007
5008        // Build the actual expression node.
5009        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5010                                                 LLoc);
5011        UsualUnaryConversions(FnExpr);
5012
5013        Base.release();
5014        Idx.release();
5015        ExprOwningPtr<CXXOperatorCallExpr>
5016          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5017                                                          FnExpr, Args, 2,
5018                                                          ResultTy, RLoc));
5019
5020        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5021                                FnDecl))
5022          return ExprError();
5023
5024        return MaybeBindToTemporary(TheCall.release());
5025      } else {
5026        // We matched a built-in operator. Convert the arguments, then
5027        // break out so that we will build the appropriate built-in
5028        // operator node.
5029        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5030                                      Best->Conversions[0], "passing") ||
5031            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5032                                      Best->Conversions[1], "passing"))
5033          return ExprError();
5034
5035        break;
5036      }
5037    }
5038
5039    case OR_No_Viable_Function: {
5040      // No viable function; try to create a built-in operation, which will
5041      // produce an error. Then, show the non-viable candidates.
5042      OwningExprResult Result =
5043          CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
5044      assert(Result.isInvalid() &&
5045             "C++ subscript operator overloading is missing candidates!");
5046      if (Result.isInvalid())
5047        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5048                                "[]", LLoc);
5049      return move(Result);
5050    }
5051
5052    case OR_Ambiguous:
5053      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5054          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5055      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5056                              "[]", LLoc);
5057      return ExprError();
5058
5059    case OR_Deleted:
5060      Diag(LLoc, diag::err_ovl_deleted_oper)
5061        << Best->Function->isDeleted() << "[]"
5062        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5063      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5064      return ExprError();
5065    }
5066
5067  // We matched a built-in operator; build it.
5068  Base.release();
5069  Idx.release();
5070  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5071                                         Owned(Args[1]), RLoc);
5072}
5073
5074/// BuildCallToMemberFunction - Build a call to a member
5075/// function. MemExpr is the expression that refers to the member
5076/// function (and includes the object parameter), Args/NumArgs are the
5077/// arguments to the function call (not including the object
5078/// parameter). The caller needs to validate that the member
5079/// expression refers to a member function or an overloaded member
5080/// function.
5081Sema::ExprResult
5082Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5083                                SourceLocation LParenLoc, Expr **Args,
5084                                unsigned NumArgs, SourceLocation *CommaLocs,
5085                                SourceLocation RParenLoc) {
5086  // Dig out the member expression. This holds both the object
5087  // argument and the member function we're referring to.
5088  MemberExpr *MemExpr = 0;
5089  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
5090    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
5091  else
5092    MemExpr = dyn_cast<MemberExpr>(MemExprE);
5093  assert(MemExpr && "Building member call without member expression");
5094
5095  // Extract the object argument.
5096  Expr *ObjectArg = MemExpr->getBase();
5097
5098  CXXMethodDecl *Method = 0;
5099  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
5100      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
5101    // Add overload candidates
5102    OverloadCandidateSet CandidateSet;
5103    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
5104
5105    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
5106         Func != FuncEnd; ++Func) {
5107      if ((Method = dyn_cast<CXXMethodDecl>(*Func))) {
5108        // If explicit template arguments were provided, we can't call a
5109        // non-template member function.
5110        if (MemExpr->hasExplicitTemplateArgumentList())
5111          continue;
5112
5113        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
5114                           /*SuppressUserConversions=*/false);
5115      } else
5116        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
5117                                   MemExpr->hasExplicitTemplateArgumentList(),
5118                                   MemExpr->getTemplateArgs(),
5119                                   MemExpr->getNumTemplateArgs(),
5120                                   ObjectArg, Args, NumArgs,
5121                                   CandidateSet,
5122                                   /*SuppressUsedConversions=*/false);
5123    }
5124
5125    OverloadCandidateSet::iterator Best;
5126    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
5127    case OR_Success:
5128      Method = cast<CXXMethodDecl>(Best->Function);
5129      break;
5130
5131    case OR_No_Viable_Function:
5132      Diag(MemExpr->getSourceRange().getBegin(),
5133           diag::err_ovl_no_viable_member_function_in_call)
5134        << DeclName << MemExprE->getSourceRange();
5135      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5136      // FIXME: Leaking incoming expressions!
5137      return true;
5138
5139    case OR_Ambiguous:
5140      Diag(MemExpr->getSourceRange().getBegin(),
5141           diag::err_ovl_ambiguous_member_call)
5142        << DeclName << MemExprE->getSourceRange();
5143      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5144      // FIXME: Leaking incoming expressions!
5145      return true;
5146
5147    case OR_Deleted:
5148      Diag(MemExpr->getSourceRange().getBegin(),
5149           diag::err_ovl_deleted_member_call)
5150        << Best->Function->isDeleted()
5151        << DeclName << MemExprE->getSourceRange();
5152      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5153      // FIXME: Leaking incoming expressions!
5154      return true;
5155    }
5156
5157    FixOverloadedFunctionReference(MemExpr, Method);
5158  } else {
5159    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5160  }
5161
5162  assert(Method && "Member call to something that isn't a method?");
5163  ExprOwningPtr<CXXMemberCallExpr>
5164    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
5165                                                  NumArgs,
5166                                  Method->getResultType().getNonReferenceType(),
5167                                  RParenLoc));
5168
5169  // Check for a valid return type.
5170  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5171                          TheCall.get(), Method))
5172    return true;
5173
5174  // Convert the object argument (for a non-static member function call).
5175  if (!Method->isStatic() &&
5176      PerformObjectArgumentInitialization(ObjectArg, Method))
5177    return true;
5178  MemExpr->setBase(ObjectArg);
5179
5180  // Convert the rest of the arguments
5181  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5182  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5183                              RParenLoc))
5184    return true;
5185
5186  if (CheckFunctionCall(Method, TheCall.get()))
5187    return true;
5188
5189  return MaybeBindToTemporary(TheCall.release()).release();
5190}
5191
5192/// BuildCallToObjectOfClassType - Build a call to an object of class
5193/// type (C++ [over.call.object]), which can end up invoking an
5194/// overloaded function call operator (@c operator()) or performing a
5195/// user-defined conversion on the object argument.
5196Sema::ExprResult
5197Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5198                                   SourceLocation LParenLoc,
5199                                   Expr **Args, unsigned NumArgs,
5200                                   SourceLocation *CommaLocs,
5201                                   SourceLocation RParenLoc) {
5202  assert(Object->getType()->isRecordType() && "Requires object type argument");
5203  const RecordType *Record = Object->getType()->getAs<RecordType>();
5204
5205  // C++ [over.call.object]p1:
5206  //  If the primary-expression E in the function call syntax
5207  //  evaluates to a class object of type "cv T", then the set of
5208  //  candidate functions includes at least the function call
5209  //  operators of T. The function call operators of T are obtained by
5210  //  ordinary lookup of the name operator() in the context of
5211  //  (E).operator().
5212  OverloadCandidateSet CandidateSet;
5213  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5214  DeclContext::lookup_const_iterator Oper, OperEnd;
5215  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
5216       Oper != OperEnd; ++Oper)
5217    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
5218                       CandidateSet, /*SuppressUserConversions=*/false);
5219
5220  if (RequireCompleteType(LParenLoc, Object->getType(),
5221                          PartialDiagnostic(diag::err_incomplete_object_call)
5222                            << Object->getSourceRange()))
5223    return true;
5224
5225  // C++ [over.call.object]p2:
5226  //   In addition, for each conversion function declared in T of the
5227  //   form
5228  //
5229  //        operator conversion-type-id () cv-qualifier;
5230  //
5231  //   where cv-qualifier is the same cv-qualification as, or a
5232  //   greater cv-qualification than, cv, and where conversion-type-id
5233  //   denotes the type "pointer to function of (P1,...,Pn) returning
5234  //   R", or the type "reference to pointer to function of
5235  //   (P1,...,Pn) returning R", or the type "reference to function
5236  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5237  //   is also considered as a candidate function. Similarly,
5238  //   surrogate call functions are added to the set of candidate
5239  //   functions for each conversion function declared in an
5240  //   accessible base class provided the function is not hidden
5241  //   within T by another intervening declaration.
5242  // FIXME: Look in base classes for more conversion operators!
5243  OverloadedFunctionDecl *Conversions
5244    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5245  for (OverloadedFunctionDecl::function_iterator
5246         Func = Conversions->function_begin(),
5247         FuncEnd = Conversions->function_end();
5248       Func != FuncEnd; ++Func) {
5249    CXXConversionDecl *Conv;
5250    FunctionTemplateDecl *ConvTemplate;
5251    GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
5252
5253    // Skip over templated conversion functions; they aren't
5254    // surrogates.
5255    if (ConvTemplate)
5256      continue;
5257
5258    // Strip the reference type (if any) and then the pointer type (if
5259    // any) to get down to what might be a function type.
5260    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5261    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5262      ConvType = ConvPtrType->getPointeeType();
5263
5264    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5265      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
5266  }
5267
5268  // Perform overload resolution.
5269  OverloadCandidateSet::iterator Best;
5270  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5271  case OR_Success:
5272    // Overload resolution succeeded; we'll build the appropriate call
5273    // below.
5274    break;
5275
5276  case OR_No_Viable_Function:
5277    Diag(Object->getSourceRange().getBegin(),
5278         diag::err_ovl_no_viable_object_call)
5279      << Object->getType() << Object->getSourceRange();
5280    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5281    break;
5282
5283  case OR_Ambiguous:
5284    Diag(Object->getSourceRange().getBegin(),
5285         diag::err_ovl_ambiguous_object_call)
5286      << Object->getType() << Object->getSourceRange();
5287    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5288    break;
5289
5290  case OR_Deleted:
5291    Diag(Object->getSourceRange().getBegin(),
5292         diag::err_ovl_deleted_object_call)
5293      << Best->Function->isDeleted()
5294      << Object->getType() << Object->getSourceRange();
5295    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5296    break;
5297  }
5298
5299  if (Best == CandidateSet.end()) {
5300    // We had an error; delete all of the subexpressions and return
5301    // the error.
5302    Object->Destroy(Context);
5303    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5304      Args[ArgIdx]->Destroy(Context);
5305    return true;
5306  }
5307
5308  if (Best->Function == 0) {
5309    // Since there is no function declaration, this is one of the
5310    // surrogate candidates. Dig out the conversion function.
5311    CXXConversionDecl *Conv
5312      = cast<CXXConversionDecl>(
5313                         Best->Conversions[0].UserDefined.ConversionFunction);
5314
5315    // We selected one of the surrogate functions that converts the
5316    // object parameter to a function pointer. Perform the conversion
5317    // on the object argument, then let ActOnCallExpr finish the job.
5318
5319    // Create an implicit member expr to refer to the conversion operator.
5320    // and then call it.
5321    CXXMemberCallExpr *CE =
5322    BuildCXXMemberCallExpr(Object, Conv);
5323
5324    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5325                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5326                         CommaLocs, RParenLoc).release();
5327  }
5328
5329  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5330  // that calls this method, using Object for the implicit object
5331  // parameter and passing along the remaining arguments.
5332  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5333  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5334
5335  unsigned NumArgsInProto = Proto->getNumArgs();
5336  unsigned NumArgsToCheck = NumArgs;
5337
5338  // Build the full argument list for the method call (the
5339  // implicit object parameter is placed at the beginning of the
5340  // list).
5341  Expr **MethodArgs;
5342  if (NumArgs < NumArgsInProto) {
5343    NumArgsToCheck = NumArgsInProto;
5344    MethodArgs = new Expr*[NumArgsInProto + 1];
5345  } else {
5346    MethodArgs = new Expr*[NumArgs + 1];
5347  }
5348  MethodArgs[0] = Object;
5349  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5350    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5351
5352  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5353                                          SourceLocation());
5354  UsualUnaryConversions(NewFn);
5355
5356  // Once we've built TheCall, all of the expressions are properly
5357  // owned.
5358  QualType ResultTy = Method->getResultType().getNonReferenceType();
5359  ExprOwningPtr<CXXOperatorCallExpr>
5360    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5361                                                    MethodArgs, NumArgs + 1,
5362                                                    ResultTy, RParenLoc));
5363  delete [] MethodArgs;
5364
5365  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5366                          Method))
5367    return true;
5368
5369  // We may have default arguments. If so, we need to allocate more
5370  // slots in the call for them.
5371  if (NumArgs < NumArgsInProto)
5372    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5373  else if (NumArgs > NumArgsInProto)
5374    NumArgsToCheck = NumArgsInProto;
5375
5376  bool IsError = false;
5377
5378  // Initialize the implicit object parameter.
5379  IsError |= PerformObjectArgumentInitialization(Object, Method);
5380  TheCall->setArg(0, Object);
5381
5382
5383  // Check the argument types.
5384  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5385    Expr *Arg;
5386    if (i < NumArgs) {
5387      Arg = Args[i];
5388
5389      // Pass the argument.
5390      QualType ProtoArgType = Proto->getArgType(i);
5391      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5392    } else {
5393      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
5394    }
5395
5396    TheCall->setArg(i + 1, Arg);
5397  }
5398
5399  // If this is a variadic call, handle args passed through "...".
5400  if (Proto->isVariadic()) {
5401    // Promote the arguments (C99 6.5.2.2p7).
5402    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5403      Expr *Arg = Args[i];
5404      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5405      TheCall->setArg(i + 1, Arg);
5406    }
5407  }
5408
5409  if (IsError) return true;
5410
5411  if (CheckFunctionCall(Method, TheCall.get()))
5412    return true;
5413
5414  return MaybeBindToTemporary(TheCall.release()).release();
5415}
5416
5417/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5418///  (if one exists), where @c Base is an expression of class type and
5419/// @c Member is the name of the member we're trying to find.
5420Sema::OwningExprResult
5421Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5422  Expr *Base = static_cast<Expr *>(BaseIn.get());
5423  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5424
5425  // C++ [over.ref]p1:
5426  //
5427  //   [...] An expression x->m is interpreted as (x.operator->())->m
5428  //   for a class object x of type T if T::operator->() exists and if
5429  //   the operator is selected as the best match function by the
5430  //   overload resolution mechanism (13.3).
5431  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5432  OverloadCandidateSet CandidateSet;
5433  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5434
5435  LookupResult R;
5436  LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName);
5437
5438  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5439       Oper != OperEnd; ++Oper)
5440    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5441                       /*SuppressUserConversions=*/false);
5442
5443  // Perform overload resolution.
5444  OverloadCandidateSet::iterator Best;
5445  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5446  case OR_Success:
5447    // Overload resolution succeeded; we'll build the call below.
5448    break;
5449
5450  case OR_No_Viable_Function:
5451    if (CandidateSet.empty())
5452      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5453        << Base->getType() << Base->getSourceRange();
5454    else
5455      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5456        << "operator->" << Base->getSourceRange();
5457    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5458    return ExprError();
5459
5460  case OR_Ambiguous:
5461    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5462      << "->" << Base->getSourceRange();
5463    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5464    return ExprError();
5465
5466  case OR_Deleted:
5467    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5468      << Best->Function->isDeleted()
5469      << "->" << Base->getSourceRange();
5470    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5471    return ExprError();
5472  }
5473
5474  // Convert the object parameter.
5475  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5476  if (PerformObjectArgumentInitialization(Base, Method))
5477    return ExprError();
5478
5479  // No concerns about early exits now.
5480  BaseIn.release();
5481
5482  // Build the operator call.
5483  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5484                                           SourceLocation());
5485  UsualUnaryConversions(FnExpr);
5486
5487  QualType ResultTy = Method->getResultType().getNonReferenceType();
5488  ExprOwningPtr<CXXOperatorCallExpr>
5489    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5490                                                    &Base, 1, ResultTy, OpLoc));
5491
5492  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5493                          Method))
5494          return ExprError();
5495  return move(TheCall);
5496}
5497
5498/// FixOverloadedFunctionReference - E is an expression that refers to
5499/// a C++ overloaded function (possibly with some parentheses and
5500/// perhaps a '&' around it). We have resolved the overloaded function
5501/// to the function declaration Fn, so patch up the expression E to
5502/// refer (possibly indirectly) to Fn. Returns the new expr.
5503Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5504  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5505    Expr *NewExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5506    PE->setSubExpr(NewExpr);
5507    PE->setType(NewExpr->getType());
5508  } else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5509    Expr *NewExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
5510    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
5511                               NewExpr->getType()) &&
5512           "Implicit cast type cannot be determined from overload");
5513    ICE->setSubExpr(NewExpr);
5514  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5515    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5516           "Can only take the address of an overloaded function");
5517    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5518      if (Method->isStatic()) {
5519        // Do nothing: static member functions aren't any different
5520        // from non-member functions.
5521      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr())) {
5522        if (DRE->getQualifier()) {
5523          // We have taken the address of a pointer to member
5524          // function. Perform the computation here so that we get the
5525          // appropriate pointer to member type.
5526          DRE->setDecl(Fn);
5527          DRE->setType(Fn->getType());
5528          QualType ClassType
5529            = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5530          E->setType(Context.getMemberPointerType(Fn->getType(),
5531                                                  ClassType.getTypePtr()));
5532          return E;
5533        }
5534      }
5535      // FIXME: TemplateIdRefExpr referring to a member function template
5536      // specialization!
5537    }
5538    Expr *NewExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5539    UnOp->setSubExpr(NewExpr);
5540    UnOp->setType(Context.getPointerType(NewExpr->getType()));
5541
5542    return UnOp;
5543  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
5544    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
5545            isa<FunctionTemplateDecl>(DR->getDecl()) ||
5546            isa<FunctionDecl>(DR->getDecl())) &&
5547           "Expected function or function template");
5548    DR->setDecl(Fn);
5549    E->setType(Fn->getType());
5550  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5551    MemExpr->setMemberDecl(Fn);
5552    E->setType(Fn->getType());
5553  } else if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) {
5554    E = DeclRefExpr::Create(Context,
5555                            TID->getQualifier(), TID->getQualifierRange(),
5556                            Fn, TID->getTemplateNameLoc(),
5557                            true,
5558                            TID->getLAngleLoc(),
5559                            TID->getTemplateArgs(),
5560                            TID->getNumTemplateArgs(),
5561                            TID->getRAngleLoc(),
5562                            Fn->getType(),
5563                            /*FIXME?*/false, /*FIXME?*/false);
5564
5565    // FIXME: Don't destroy TID here, since we need its template arguments
5566    // to survive.
5567    // TID->Destroy(Context);
5568  } else if (isa<UnresolvedFunctionNameExpr>(E)) {
5569    return DeclRefExpr::Create(Context,
5570                               /*Qualifier=*/0,
5571                               /*QualifierRange=*/SourceRange(),
5572                               Fn, E->getLocStart(),
5573                               Fn->getType(), false, false);
5574  } else {
5575    assert(false && "Invalid reference to overloaded function");
5576  }
5577
5578  return E;
5579}
5580
5581} // end namespace clang
5582