SemaStmt.cpp revision 154440e6a8fa6ac5bca395876d79b530b39a2c1c
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/StmtObjC.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24using namespace clang;
25
26Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
27  Expr *E = expr->takeAs<Expr>();
28  assert(E && "ActOnExprStmt(): missing expression");
29
30  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
31  // void expression for its side effects.  Conversion to void allows any
32  // operand, even incomplete types.
33
34  // Same thing in for stmt first clause (when expr) and third clause.
35  return Owned(static_cast<Stmt*>(E));
36}
37
38
39Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
40  return Owned(new (Context) NullStmt(SemiLoc));
41}
42
43Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
44                                           SourceLocation StartLoc,
45                                           SourceLocation EndLoc) {
46  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
47
48  // If we have an invalid decl, just return an error.
49  if (DG.isNull()) return StmtError();
50
51  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
52}
53
54void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
55  const Expr *E = dyn_cast_or_null<Expr>(S);
56  if (!E)
57    return;
58
59  // Ignore expressions that have void type.
60  if (E->getType()->isVoidType())
61    return;
62
63  SourceLocation Loc;
64  SourceRange R1, R2;
65  if (!E->isUnusedResultAWarning(Loc, R1, R2))
66    return;
67
68  // Okay, we have an unused result.  Depending on what the base expression is,
69  // we might want to make a more specific diagnostic.  Check for one of these
70  // cases now.
71  unsigned DiagID = diag::warn_unused_expr;
72  E = E->IgnoreParens();
73  if (isa<ObjCImplctSetterGetterRefExpr>(E))
74    DiagID = diag::warn_unused_property_expr;
75
76  Diag(Loc, DiagID) << R1 << R2;
77}
78
79Action::OwningStmtResult
80Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
81                        MultiStmtArg elts, bool isStmtExpr) {
82  unsigned NumElts = elts.size();
83  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
84  // If we're in C89 mode, check that we don't have any decls after stmts.  If
85  // so, emit an extension diagnostic.
86  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
87    // Note that __extension__ can be around a decl.
88    unsigned i = 0;
89    // Skip over all declarations.
90    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
91      /*empty*/;
92
93    // We found the end of the list or a statement.  Scan for another declstmt.
94    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
95      /*empty*/;
96
97    if (i != NumElts) {
98      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
99      Diag(D->getLocation(), diag::ext_mixed_decls_code);
100    }
101  }
102  // Warn about unused expressions in statements.
103  for (unsigned i = 0; i != NumElts; ++i) {
104    // Ignore statements that are last in a statement expression.
105    if (isStmtExpr && i == NumElts - 1)
106      continue;
107
108    DiagnoseUnusedExprResult(Elts[i]);
109  }
110
111  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
112}
113
114Action::OwningStmtResult
115Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
116                    SourceLocation DotDotDotLoc, ExprArg rhsval,
117                    SourceLocation ColonLoc) {
118  assert((lhsval.get() != 0) && "missing expression in case statement");
119
120  // C99 6.8.4.2p3: The expression shall be an integer constant.
121  // However, GCC allows any evaluatable integer expression.
122  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
123  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
124      VerifyIntegerConstantExpression(LHSVal))
125    return StmtError();
126
127  // GCC extension: The expression shall be an integer constant.
128
129  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
130  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
131      VerifyIntegerConstantExpression(RHSVal)) {
132    RHSVal = 0;  // Recover by just forgetting about it.
133    rhsval = 0;
134  }
135
136  if (getSwitchStack().empty()) {
137    Diag(CaseLoc, diag::err_case_not_in_switch);
138    return StmtError();
139  }
140
141  // Only now release the smart pointers.
142  lhsval.release();
143  rhsval.release();
144  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
145                                        ColonLoc);
146  getSwitchStack().back()->addSwitchCase(CS);
147  return Owned(CS);
148}
149
150/// ActOnCaseStmtBody - This installs a statement as the body of a case.
151void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
152  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
153  Stmt *SubStmt = subStmt.takeAs<Stmt>();
154  CS->setSubStmt(SubStmt);
155}
156
157Action::OwningStmtResult
158Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
159                       StmtArg subStmt, Scope *CurScope) {
160  Stmt *SubStmt = subStmt.takeAs<Stmt>();
161
162  if (getSwitchStack().empty()) {
163    Diag(DefaultLoc, diag::err_default_not_in_switch);
164    return Owned(SubStmt);
165  }
166
167  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
168  getSwitchStack().back()->addSwitchCase(DS);
169  return Owned(DS);
170}
171
172Action::OwningStmtResult
173Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
174                     SourceLocation ColonLoc, StmtArg subStmt) {
175  Stmt *SubStmt = subStmt.takeAs<Stmt>();
176  // Look up the record for this label identifier.
177  LabelStmt *&LabelDecl = getLabelMap()[II];
178
179  // If not forward referenced or defined already, just create a new LabelStmt.
180  if (LabelDecl == 0)
181    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
182
183  assert(LabelDecl->getID() == II && "Label mismatch!");
184
185  // Otherwise, this label was either forward reference or multiply defined.  If
186  // multiply defined, reject it now.
187  if (LabelDecl->getSubStmt()) {
188    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
189    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
190    return Owned(SubStmt);
191  }
192
193  // Otherwise, this label was forward declared, and we just found its real
194  // definition.  Fill in the forward definition and return it.
195  LabelDecl->setIdentLoc(IdentLoc);
196  LabelDecl->setSubStmt(SubStmt);
197  return Owned(LabelDecl);
198}
199
200Action::OwningStmtResult
201Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal,
202                  StmtArg ThenVal, SourceLocation ElseLoc,
203                  StmtArg ElseVal) {
204  OwningExprResult CondResult(CondVal.release());
205
206  Expr *condExpr = CondResult.takeAs<Expr>();
207
208  assert(condExpr && "ActOnIfStmt(): missing expression");
209
210  if (!condExpr->isTypeDependent()) {
211    DefaultFunctionArrayConversion(condExpr);
212    // Take ownership again until we're past the error checking.
213    CondResult = condExpr;
214    QualType condType = condExpr->getType();
215
216    if (getLangOptions().CPlusPlus) {
217      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
218        return StmtError();
219    } else if (!condType->isScalarType()) // C99 6.8.4.1p1
220      return StmtError(Diag(IfLoc,
221                            diag::err_typecheck_statement_requires_scalar)
222                       << condType << condExpr->getSourceRange());
223  }
224
225  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
226  DiagnoseUnusedExprResult(thenStmt);
227
228  // Warn if the if block has a null body without an else value.
229  // this helps prevent bugs due to typos, such as
230  // if (condition);
231  //   do_stuff();
232  if (!ElseVal.get()) {
233    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
234      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
235  }
236
237  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
238  DiagnoseUnusedExprResult(elseStmt);
239
240  CondResult.release();
241  return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
242                                    ElseLoc, elseStmt));
243}
244
245Action::OwningStmtResult
246Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
247  Expr *Cond = cond.takeAs<Expr>();
248
249  if (getLangOptions().CPlusPlus) {
250    // C++ 6.4.2.p2:
251    // The condition shall be of integral type, enumeration type, or of a class
252    // type for which a single conversion function to integral or enumeration
253    // type exists (12.3). If the condition is of class type, the condition is
254    // converted by calling that conversion function, and the result of the
255    // conversion is used in place of the original condition for the remainder
256    // of this section. Integral promotions are performed.
257    if (!Cond->isTypeDependent()) {
258      QualType Ty = Cond->getType();
259
260      // FIXME: Handle class types.
261
262      // If the type is wrong a diagnostic will be emitted later at
263      // ActOnFinishSwitchStmt.
264      if (Ty->isIntegralType() || Ty->isEnumeralType()) {
265        // Integral promotions are performed.
266        // FIXME: Integral promotions for C++ are not complete.
267        UsualUnaryConversions(Cond);
268      }
269    }
270  } else {
271    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
272    UsualUnaryConversions(Cond);
273  }
274
275  SwitchStmt *SS = new (Context) SwitchStmt(Cond);
276  getSwitchStack().push_back(SS);
277  return Owned(SS);
278}
279
280/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
281/// the specified width and sign.  If an overflow occurs, detect it and emit
282/// the specified diagnostic.
283void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
284                                              unsigned NewWidth, bool NewSign,
285                                              SourceLocation Loc,
286                                              unsigned DiagID) {
287  // Perform a conversion to the promoted condition type if needed.
288  if (NewWidth > Val.getBitWidth()) {
289    // If this is an extension, just do it.
290    llvm::APSInt OldVal(Val);
291    Val.extend(NewWidth);
292
293    // If the input was signed and negative and the output is unsigned,
294    // warn.
295    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
296      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
297
298    Val.setIsSigned(NewSign);
299  } else if (NewWidth < Val.getBitWidth()) {
300    // If this is a truncation, check for overflow.
301    llvm::APSInt ConvVal(Val);
302    ConvVal.trunc(NewWidth);
303    ConvVal.setIsSigned(NewSign);
304    ConvVal.extend(Val.getBitWidth());
305    ConvVal.setIsSigned(Val.isSigned());
306    if (ConvVal != Val)
307      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
308
309    // Regardless of whether a diagnostic was emitted, really do the
310    // truncation.
311    Val.trunc(NewWidth);
312    Val.setIsSigned(NewSign);
313  } else if (NewSign != Val.isSigned()) {
314    // Convert the sign to match the sign of the condition.  This can cause
315    // overflow as well: unsigned(INTMIN)
316    llvm::APSInt OldVal(Val);
317    Val.setIsSigned(NewSign);
318
319    if (Val.isNegative())  // Sign bit changes meaning.
320      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
321  }
322}
323
324namespace {
325  struct CaseCompareFunctor {
326    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
327                    const llvm::APSInt &RHS) {
328      return LHS.first < RHS;
329    }
330    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
331                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
332      return LHS.first < RHS.first;
333    }
334    bool operator()(const llvm::APSInt &LHS,
335                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
336      return LHS < RHS.first;
337    }
338  };
339}
340
341/// CmpCaseVals - Comparison predicate for sorting case values.
342///
343static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
344                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
345  if (lhs.first < rhs.first)
346    return true;
347
348  if (lhs.first == rhs.first &&
349      lhs.second->getCaseLoc().getRawEncoding()
350       < rhs.second->getCaseLoc().getRawEncoding())
351    return true;
352  return false;
353}
354
355Action::OwningStmtResult
356Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
357                            StmtArg Body) {
358  Stmt *BodyStmt = Body.takeAs<Stmt>();
359
360  SwitchStmt *SS = getSwitchStack().back();
361  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
362
363  SS->setBody(BodyStmt, SwitchLoc);
364  getSwitchStack().pop_back();
365
366  Expr *CondExpr = SS->getCond();
367  QualType CondType = CondExpr->getType();
368
369  if (!CondExpr->isTypeDependent() &&
370      !CondType->isIntegerType()) { // C99 6.8.4.2p1
371    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
372      << CondType << CondExpr->getSourceRange();
373    return StmtError();
374  }
375
376  // Get the bitwidth of the switched-on value before promotions.  We must
377  // convert the integer case values to this width before comparison.
378  bool HasDependentValue
379    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
380  unsigned CondWidth
381    = HasDependentValue? 0
382                       : static_cast<unsigned>(Context.getTypeSize(CondType));
383  bool CondIsSigned = CondType->isSignedIntegerType();
384
385  // Accumulate all of the case values in a vector so that we can sort them
386  // and detect duplicates.  This vector contains the APInt for the case after
387  // it has been converted to the condition type.
388  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
389  CaseValsTy CaseVals;
390
391  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
392  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
393
394  DefaultStmt *TheDefaultStmt = 0;
395
396  bool CaseListIsErroneous = false;
397
398  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
399       SC = SC->getNextSwitchCase()) {
400
401    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
402      if (TheDefaultStmt) {
403        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
404        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
405
406        // FIXME: Remove the default statement from the switch block so that
407        // we'll return a valid AST.  This requires recursing down the AST and
408        // finding it, not something we are set up to do right now.  For now,
409        // just lop the entire switch stmt out of the AST.
410        CaseListIsErroneous = true;
411      }
412      TheDefaultStmt = DS;
413
414    } else {
415      CaseStmt *CS = cast<CaseStmt>(SC);
416
417      // We already verified that the expression has a i-c-e value (C99
418      // 6.8.4.2p3) - get that value now.
419      Expr *Lo = CS->getLHS();
420
421      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
422        HasDependentValue = true;
423        break;
424      }
425
426      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
427
428      // Convert the value to the same width/sign as the condition.
429      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
430                                         CS->getLHS()->getLocStart(),
431                                         diag::warn_case_value_overflow);
432
433      // If the LHS is not the same type as the condition, insert an implicit
434      // cast.
435      ImpCastExprToType(Lo, CondType);
436      CS->setLHS(Lo);
437
438      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
439      if (CS->getRHS()) {
440        if (CS->getRHS()->isTypeDependent() ||
441            CS->getRHS()->isValueDependent()) {
442          HasDependentValue = true;
443          break;
444        }
445        CaseRanges.push_back(std::make_pair(LoVal, CS));
446      } else
447        CaseVals.push_back(std::make_pair(LoVal, CS));
448    }
449  }
450
451  if (!HasDependentValue) {
452    // Sort all the scalar case values so we can easily detect duplicates.
453    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
454
455    if (!CaseVals.empty()) {
456      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
457        if (CaseVals[i].first == CaseVals[i+1].first) {
458          // If we have a duplicate, report it.
459          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
460               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
461          Diag(CaseVals[i].second->getLHS()->getLocStart(),
462               diag::note_duplicate_case_prev);
463          // FIXME: We really want to remove the bogus case stmt from the
464          // substmt, but we have no way to do this right now.
465          CaseListIsErroneous = true;
466        }
467      }
468    }
469
470    // Detect duplicate case ranges, which usually don't exist at all in
471    // the first place.
472    if (!CaseRanges.empty()) {
473      // Sort all the case ranges by their low value so we can easily detect
474      // overlaps between ranges.
475      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
476
477      // Scan the ranges, computing the high values and removing empty ranges.
478      std::vector<llvm::APSInt> HiVals;
479      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
480        CaseStmt *CR = CaseRanges[i].second;
481        Expr *Hi = CR->getRHS();
482        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
483
484        // Convert the value to the same width/sign as the condition.
485        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
486                                           CR->getRHS()->getLocStart(),
487                                           diag::warn_case_value_overflow);
488
489        // If the LHS is not the same type as the condition, insert an implicit
490        // cast.
491        ImpCastExprToType(Hi, CondType);
492        CR->setRHS(Hi);
493
494        // If the low value is bigger than the high value, the case is empty.
495        if (CaseRanges[i].first > HiVal) {
496          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
497            << SourceRange(CR->getLHS()->getLocStart(),
498                           CR->getRHS()->getLocEnd());
499          CaseRanges.erase(CaseRanges.begin()+i);
500          --i, --e;
501          continue;
502        }
503        HiVals.push_back(HiVal);
504      }
505
506      // Rescan the ranges, looking for overlap with singleton values and other
507      // ranges.  Since the range list is sorted, we only need to compare case
508      // ranges with their neighbors.
509      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
510        llvm::APSInt &CRLo = CaseRanges[i].first;
511        llvm::APSInt &CRHi = HiVals[i];
512        CaseStmt *CR = CaseRanges[i].second;
513
514        // Check to see whether the case range overlaps with any
515        // singleton cases.
516        CaseStmt *OverlapStmt = 0;
517        llvm::APSInt OverlapVal(32);
518
519        // Find the smallest value >= the lower bound.  If I is in the
520        // case range, then we have overlap.
521        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
522                                                  CaseVals.end(), CRLo,
523                                                  CaseCompareFunctor());
524        if (I != CaseVals.end() && I->first < CRHi) {
525          OverlapVal  = I->first;   // Found overlap with scalar.
526          OverlapStmt = I->second;
527        }
528
529        // Find the smallest value bigger than the upper bound.
530        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
531        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
532          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
533          OverlapStmt = (I-1)->second;
534        }
535
536        // Check to see if this case stmt overlaps with the subsequent
537        // case range.
538        if (i && CRLo <= HiVals[i-1]) {
539          OverlapVal  = HiVals[i-1];       // Found overlap with range.
540          OverlapStmt = CaseRanges[i-1].second;
541        }
542
543        if (OverlapStmt) {
544          // If we have a duplicate, report it.
545          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
546            << OverlapVal.toString(10);
547          Diag(OverlapStmt->getLHS()->getLocStart(),
548               diag::note_duplicate_case_prev);
549          // FIXME: We really want to remove the bogus case stmt from the
550          // substmt, but we have no way to do this right now.
551          CaseListIsErroneous = true;
552        }
553      }
554    }
555  }
556
557  // FIXME: If the case list was broken is some way, we don't have a good system
558  // to patch it up.  Instead, just return the whole substmt as broken.
559  if (CaseListIsErroneous)
560    return StmtError();
561
562  Switch.release();
563  return Owned(SS);
564}
565
566Action::OwningStmtResult
567Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, StmtArg Body) {
568  ExprArg CondArg(Cond.release());
569  Expr *condExpr = CondArg.takeAs<Expr>();
570  assert(condExpr && "ActOnWhileStmt(): missing expression");
571
572  if (!condExpr->isTypeDependent()) {
573    DefaultFunctionArrayConversion(condExpr);
574    CondArg = condExpr;
575    QualType condType = condExpr->getType();
576
577    if (getLangOptions().CPlusPlus) {
578      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
579        return StmtError();
580    } else if (!condType->isScalarType()) // C99 6.8.5p2
581      return StmtError(Diag(WhileLoc,
582                            diag::err_typecheck_statement_requires_scalar)
583                       << condType << condExpr->getSourceRange());
584  }
585
586  Stmt *bodyStmt = Body.takeAs<Stmt>();
587  DiagnoseUnusedExprResult(bodyStmt);
588
589  CondArg.release();
590  return Owned(new (Context) WhileStmt(condExpr, bodyStmt, WhileLoc));
591}
592
593Action::OwningStmtResult
594Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
595                  SourceLocation WhileLoc, SourceLocation CondLParen,
596                  ExprArg Cond, SourceLocation CondRParen) {
597  Expr *condExpr = Cond.takeAs<Expr>();
598  assert(condExpr && "ActOnDoStmt(): missing expression");
599
600  if (!condExpr->isTypeDependent()) {
601    DefaultFunctionArrayConversion(condExpr);
602    Cond = condExpr;
603    QualType condType = condExpr->getType();
604
605    if (getLangOptions().CPlusPlus) {
606      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
607        return StmtError();
608    } else if (!condType->isScalarType()) // C99 6.8.5p2
609      return StmtError(Diag(DoLoc,
610                            diag::err_typecheck_statement_requires_scalar)
611                       << condType << condExpr->getSourceRange());
612  }
613
614  Stmt *bodyStmt = Body.takeAs<Stmt>();
615  DiagnoseUnusedExprResult(bodyStmt);
616
617  Cond.release();
618  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
619                                    WhileLoc, CondRParen));
620}
621
622Action::OwningStmtResult
623Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
624                   StmtArg first, ExprArg second, ExprArg third,
625                   SourceLocation RParenLoc, StmtArg body) {
626  Stmt *First  = static_cast<Stmt*>(first.get());
627  Expr *Second = static_cast<Expr*>(second.get());
628  Expr *Third  = static_cast<Expr*>(third.get());
629  Stmt *Body  = static_cast<Stmt*>(body.get());
630
631  if (!getLangOptions().CPlusPlus) {
632    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
633      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
634      // declare identifiers for objects having storage class 'auto' or
635      // 'register'.
636      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
637           DI!=DE; ++DI) {
638        VarDecl *VD = dyn_cast<VarDecl>(*DI);
639        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
640          VD = 0;
641        if (VD == 0)
642          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
643        // FIXME: mark decl erroneous!
644      }
645    }
646  }
647  if (Second && !Second->isTypeDependent()) {
648    DefaultFunctionArrayConversion(Second);
649    QualType SecondType = Second->getType();
650
651    if (getLangOptions().CPlusPlus) {
652      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
653        return StmtError();
654    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
655      return StmtError(Diag(ForLoc,
656                            diag::err_typecheck_statement_requires_scalar)
657        << SecondType << Second->getSourceRange());
658  }
659
660  DiagnoseUnusedExprResult(First);
661  DiagnoseUnusedExprResult(Third);
662  DiagnoseUnusedExprResult(Body);
663
664  first.release();
665  second.release();
666  third.release();
667  body.release();
668  return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc,
669                                     LParenLoc, RParenLoc));
670}
671
672Action::OwningStmtResult
673Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
674                                 SourceLocation LParenLoc,
675                                 StmtArg first, ExprArg second,
676                                 SourceLocation RParenLoc, StmtArg body) {
677  Stmt *First  = static_cast<Stmt*>(first.get());
678  Expr *Second = static_cast<Expr*>(second.get());
679  Stmt *Body  = static_cast<Stmt*>(body.get());
680  if (First) {
681    QualType FirstType;
682    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
683      if (!DS->isSingleDecl())
684        return StmtError(Diag((*DS->decl_begin())->getLocation(),
685                         diag::err_toomany_element_decls));
686
687      Decl *D = DS->getSingleDecl();
688      FirstType = cast<ValueDecl>(D)->getType();
689      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
690      // declare identifiers for objects having storage class 'auto' or
691      // 'register'.
692      VarDecl *VD = cast<VarDecl>(D);
693      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
694        return StmtError(Diag(VD->getLocation(),
695                              diag::err_non_variable_decl_in_for));
696    } else {
697      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
698        return StmtError(Diag(First->getLocStart(),
699                   diag::err_selector_element_not_lvalue)
700          << First->getSourceRange());
701
702      FirstType = static_cast<Expr*>(First)->getType();
703    }
704    if (!FirstType->isObjCObjectPointerType() &&
705        !FirstType->isBlockPointerType())
706        Diag(ForLoc, diag::err_selector_element_type)
707          << FirstType << First->getSourceRange();
708  }
709  if (Second) {
710    DefaultFunctionArrayConversion(Second);
711    QualType SecondType = Second->getType();
712    if (!SecondType->isObjCObjectPointerType())
713      Diag(ForLoc, diag::err_collection_expr_type)
714        << SecondType << Second->getSourceRange();
715  }
716  first.release();
717  second.release();
718  body.release();
719  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
720                                                   ForLoc, RParenLoc));
721}
722
723Action::OwningStmtResult
724Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
725                    IdentifierInfo *LabelII) {
726  // If we are in a block, reject all gotos for now.
727  if (CurBlock)
728    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
729
730  // Look up the record for this label identifier.
731  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
732
733  // If we haven't seen this label yet, create a forward reference.
734  if (LabelDecl == 0)
735    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
736
737  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
738}
739
740Action::OwningStmtResult
741Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
742                            ExprArg DestExp) {
743  // Convert operand to void*
744  Expr* E = DestExp.takeAs<Expr>();
745  if (!E->isTypeDependent()) {
746    QualType ETy = E->getType();
747    AssignConvertType ConvTy =
748      CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
749    if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
750                                 E, "passing"))
751      return StmtError();
752  }
753  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
754}
755
756Action::OwningStmtResult
757Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
758  Scope *S = CurScope->getContinueParent();
759  if (!S) {
760    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
761    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
762  }
763
764  return Owned(new (Context) ContinueStmt(ContinueLoc));
765}
766
767Action::OwningStmtResult
768Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
769  Scope *S = CurScope->getBreakParent();
770  if (!S) {
771    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
772    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
773  }
774
775  return Owned(new (Context) BreakStmt(BreakLoc));
776}
777
778/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
779///
780Action::OwningStmtResult
781Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
782  // If this is the first return we've seen in the block, infer the type of
783  // the block from it.
784  if (CurBlock->ReturnType.isNull()) {
785    if (RetValExp) {
786      // Don't call UsualUnaryConversions(), since we don't want to do
787      // integer promotions here.
788      DefaultFunctionArrayConversion(RetValExp);
789      CurBlock->ReturnType = RetValExp->getType();
790      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
791        // We have to remove a 'const' added to copied-in variable which was
792        // part of the implementation spec. and not the actual qualifier for
793        // the variable.
794        if (CDRE->isConstQualAdded())
795           CurBlock->ReturnType.removeConst();
796      }
797    } else
798      CurBlock->ReturnType = Context.VoidTy;
799  }
800  QualType FnRetType = CurBlock->ReturnType;
801
802  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
803    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
804      << getCurFunctionOrMethodDecl()->getDeclName();
805    return StmtError();
806  }
807
808  // Otherwise, verify that this result type matches the previous one.  We are
809  // pickier with blocks than for normal functions because we don't have GCC
810  // compatibility to worry about here.
811  if (CurBlock->ReturnType->isVoidType()) {
812    if (RetValExp) {
813      Diag(ReturnLoc, diag::err_return_block_has_expr);
814      RetValExp->Destroy(Context);
815      RetValExp = 0;
816    }
817    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
818  }
819
820  if (!RetValExp)
821    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
822
823  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
824    // we have a non-void block with an expression, continue checking
825    QualType RetValType = RetValExp->getType();
826
827    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
828    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
829    // function return.
830
831    // In C++ the return statement is handled via a copy initialization.
832    // the C version of which boils down to CheckSingleAssignmentConstraints.
833    // FIXME: Leaks RetValExp.
834    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
835      return StmtError();
836
837    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
838  }
839
840  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
841}
842
843/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
844/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
845static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
846                                 Expr *RetExpr) {
847  QualType ExprType = RetExpr->getType();
848  // - in a return statement in a function with ...
849  // ... a class return type ...
850  if (!RetType->isRecordType())
851    return false;
852  // ... the same cv-unqualified type as the function return type ...
853  if (Ctx.getCanonicalType(RetType).getUnqualifiedType() !=
854      Ctx.getCanonicalType(ExprType).getUnqualifiedType())
855    return false;
856  // ... the expression is the name of a non-volatile automatic object ...
857  // We ignore parentheses here.
858  // FIXME: Is this compliant?
859  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
860  if (!DR)
861    return false;
862  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
863  if (!VD)
864    return false;
865  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
866    && !VD->getType().isVolatileQualified();
867}
868
869Action::OwningStmtResult
870Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
871  Expr *RetValExp = rex.takeAs<Expr>();
872  if (CurBlock)
873    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
874
875  QualType FnRetType;
876  if (const FunctionDecl *FD = getCurFunctionDecl()) {
877    FnRetType = FD->getResultType();
878    if (FD->hasAttr<NoReturnAttr>())
879      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
880        << getCurFunctionOrMethodDecl()->getDeclName();
881  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
882    FnRetType = MD->getResultType();
883  else // If we don't have a function/method context, bail.
884    return StmtError();
885
886  if (FnRetType->isVoidType()) {
887    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
888      unsigned D = diag::ext_return_has_expr;
889      if (RetValExp->getType()->isVoidType())
890        D = diag::ext_return_has_void_expr;
891
892      // return (some void expression); is legal in C++.
893      if (D != diag::ext_return_has_void_expr ||
894          !getLangOptions().CPlusPlus) {
895        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
896        Diag(ReturnLoc, D)
897          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
898          << RetValExp->getSourceRange();
899      }
900
901      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp, true);
902    }
903    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
904  }
905
906  if (!RetValExp && !FnRetType->isDependentType()) {
907    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
908    // C99 6.8.6.4p1 (ext_ since GCC warns)
909    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
910
911    if (FunctionDecl *FD = getCurFunctionDecl())
912      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
913    else
914      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
915    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
916  }
917
918  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
919    // we have a non-void function with an expression, continue checking
920
921    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
922    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
923    // function return.
924
925    // C++0x 12.8p15: When certain criteria are met, an implementation is
926    //   allowed to omit the copy construction of a class object, [...]
927    //   - in a return statement in a function with a class return type, when
928    //     the expression is the name of a non-volatile automatic object with
929    //     the same cv-unqualified type as the function return type, the copy
930    //     operation can be omitted [...]
931    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
932    //   and the object to be copied is designated by an lvalue, overload
933    //   resolution to select the constructor for the copy is first performed
934    //   as if the object were designated by an rvalue.
935    // Note that we only compute Elidable if we're in C++0x, since we don't
936    // care otherwise.
937    bool Elidable = getLangOptions().CPlusPlus0x ?
938                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
939                      false;
940
941    // In C++ the return statement is handled via a copy initialization.
942    // the C version of which boils down to CheckSingleAssignmentConstraints.
943    // FIXME: Leaks RetValExp on error.
944    if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable))
945      return StmtError();
946
947    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
948  }
949
950  if (RetValExp)
951    RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp, true);
952  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
953}
954
955/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
956/// ignore "noop" casts in places where an lvalue is required by an inline asm.
957/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
958/// provide a strong guidance to not use it.
959///
960/// This method checks to see if the argument is an acceptable l-value and
961/// returns false if it is a case we can handle.
962static bool CheckAsmLValue(const Expr *E, Sema &S) {
963  if (E->isLvalue(S.Context) == Expr::LV_Valid)
964    return false;  // Cool, this is an lvalue.
965
966  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
967  // are supposed to allow.
968  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
969  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
970    if (!S.getLangOptions().HeinousExtensions)
971      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
972        << E->getSourceRange();
973    else
974      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
975        << E->getSourceRange();
976    // Accept, even if we emitted an error diagnostic.
977    return false;
978  }
979
980  // None of the above, just randomly invalid non-lvalue.
981  return true;
982}
983
984
985Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
986                                          bool IsSimple,
987                                          bool IsVolatile,
988                                          unsigned NumOutputs,
989                                          unsigned NumInputs,
990                                          std::string *Names,
991                                          MultiExprArg constraints,
992                                          MultiExprArg exprs,
993                                          ExprArg asmString,
994                                          MultiExprArg clobbers,
995                                          SourceLocation RParenLoc) {
996  unsigned NumClobbers = clobbers.size();
997  StringLiteral **Constraints =
998    reinterpret_cast<StringLiteral**>(constraints.get());
999  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
1000  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
1001  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1002
1003  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1004
1005  // The parser verifies that there is a string literal here.
1006  if (AsmString->isWide())
1007    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1008      << AsmString->getSourceRange());
1009
1010  for (unsigned i = 0; i != NumOutputs; i++) {
1011    StringLiteral *Literal = Constraints[i];
1012    if (Literal->isWide())
1013      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1014        << Literal->getSourceRange());
1015
1016    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
1017                                    Literal->getByteLength(),
1018                                    Names[i]);
1019    if (!Context.Target.validateOutputConstraint(Info))
1020      return StmtError(Diag(Literal->getLocStart(),
1021                            diag::err_asm_invalid_output_constraint)
1022                       << Info.getConstraintStr());
1023
1024    // Check that the output exprs are valid lvalues.
1025    Expr *OutputExpr = Exprs[i];
1026    if (CheckAsmLValue(OutputExpr, *this)) {
1027      return StmtError(Diag(OutputExpr->getLocStart(),
1028                  diag::err_asm_invalid_lvalue_in_output)
1029        << OutputExpr->getSourceRange());
1030    }
1031
1032    OutputConstraintInfos.push_back(Info);
1033  }
1034
1035  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1036
1037  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1038    StringLiteral *Literal = Constraints[i];
1039    if (Literal->isWide())
1040      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1041        << Literal->getSourceRange());
1042
1043    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
1044                                    Literal->getByteLength(),
1045                                    Names[i]);
1046    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1047                                                NumOutputs, Info)) {
1048      return StmtError(Diag(Literal->getLocStart(),
1049                            diag::err_asm_invalid_input_constraint)
1050                       << Info.getConstraintStr());
1051    }
1052
1053    Expr *InputExpr = Exprs[i];
1054
1055    // Only allow void types for memory constraints.
1056    if (Info.allowsMemory() && !Info.allowsRegister()) {
1057      if (CheckAsmLValue(InputExpr, *this))
1058        return StmtError(Diag(InputExpr->getLocStart(),
1059                              diag::err_asm_invalid_lvalue_in_input)
1060                         << Info.getConstraintStr()
1061                         << InputExpr->getSourceRange());
1062    }
1063
1064    if (Info.allowsRegister()) {
1065      if (InputExpr->getType()->isVoidType()) {
1066        return StmtError(Diag(InputExpr->getLocStart(),
1067                              diag::err_asm_invalid_type_in_input)
1068          << InputExpr->getType() << Info.getConstraintStr()
1069          << InputExpr->getSourceRange());
1070      }
1071    }
1072
1073    DefaultFunctionArrayConversion(Exprs[i]);
1074
1075    InputConstraintInfos.push_back(Info);
1076  }
1077
1078  // Check that the clobbers are valid.
1079  for (unsigned i = 0; i != NumClobbers; i++) {
1080    StringLiteral *Literal = Clobbers[i];
1081    if (Literal->isWide())
1082      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1083        << Literal->getSourceRange());
1084
1085    llvm::SmallString<16> Clobber(Literal->getStrData(),
1086                                  Literal->getStrData() +
1087                                  Literal->getByteLength());
1088
1089    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
1090      return StmtError(Diag(Literal->getLocStart(),
1091                  diag::err_asm_unknown_register_name) << Clobber.c_str());
1092  }
1093
1094  constraints.release();
1095  exprs.release();
1096  asmString.release();
1097  clobbers.release();
1098  AsmStmt *NS =
1099    new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
1100                          Names, Constraints, Exprs, AsmString, NumClobbers,
1101                          Clobbers, RParenLoc);
1102  // Validate the asm string, ensuring it makes sense given the operands we
1103  // have.
1104  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1105  unsigned DiagOffs;
1106  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1107    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1108           << AsmString->getSourceRange();
1109    DeleteStmt(NS);
1110    return StmtError();
1111  }
1112
1113  // Validate tied input operands for type mismatches.
1114  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1115    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1116
1117    // If this is a tied constraint, verify that the output and input have
1118    // either exactly the same type, or that they are int/ptr operands with the
1119    // same size (int/long, int*/long, are ok etc).
1120    if (!Info.hasTiedOperand()) continue;
1121
1122    unsigned TiedTo = Info.getTiedOperand();
1123    Expr *OutputExpr = Exprs[TiedTo];
1124    Expr *InputExpr = Exprs[i+NumOutputs];
1125    QualType InTy = InputExpr->getType();
1126    QualType OutTy = OutputExpr->getType();
1127    if (Context.hasSameType(InTy, OutTy))
1128      continue;  // All types can be tied to themselves.
1129
1130    // Int/ptr operands have some special cases that we allow.
1131    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1132        (InTy->isIntegerType() || InTy->isPointerType())) {
1133
1134      // They are ok if they are the same size.  Tying void* to int is ok if
1135      // they are the same size, for example.  This also allows tying void* to
1136      // int*.
1137      uint64_t OutSize = Context.getTypeSize(OutTy);
1138      uint64_t InSize = Context.getTypeSize(InTy);
1139      if (OutSize == InSize)
1140        continue;
1141
1142      // If the smaller input/output operand is not mentioned in the asm string,
1143      // then we can promote it and the asm string won't notice.  Check this
1144      // case now.
1145      bool SmallerValueMentioned = false;
1146      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1147        AsmStmt::AsmStringPiece &Piece = Pieces[p];
1148        if (!Piece.isOperand()) continue;
1149
1150        // If this is a reference to the input and if the input was the smaller
1151        // one, then we have to reject this asm.
1152        if (Piece.getOperandNo() == i+NumOutputs) {
1153          if (InSize < OutSize) {
1154            SmallerValueMentioned = true;
1155            break;
1156          }
1157        }
1158
1159        // If this is a reference to the input and if the input was the smaller
1160        // one, then we have to reject this asm.
1161        if (Piece.getOperandNo() == TiedTo) {
1162          if (InSize > OutSize) {
1163            SmallerValueMentioned = true;
1164            break;
1165          }
1166        }
1167      }
1168
1169      // If the smaller value wasn't mentioned in the asm string, and if the
1170      // output was a register, just extend the shorter one to the size of the
1171      // larger one.
1172      if (!SmallerValueMentioned &&
1173          OutputConstraintInfos[TiedTo].allowsRegister())
1174        continue;
1175    }
1176
1177    Diag(InputExpr->getLocStart(),
1178         diag::err_asm_tying_incompatible_types)
1179      << InTy << OutTy << OutputExpr->getSourceRange()
1180      << InputExpr->getSourceRange();
1181    DeleteStmt(NS);
1182    return StmtError();
1183  }
1184
1185  return Owned(NS);
1186}
1187
1188Action::OwningStmtResult
1189Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1190                           SourceLocation RParen, DeclPtrTy Parm,
1191                           StmtArg Body, StmtArg catchList) {
1192  Stmt *CatchList = catchList.takeAs<Stmt>();
1193  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1194
1195  // PVD == 0 implies @catch(...).
1196  if (PVD) {
1197    // If we already know the decl is invalid, reject it.
1198    if (PVD->isInvalidDecl())
1199      return StmtError();
1200
1201    if (!PVD->getType()->isObjCObjectPointerType())
1202      return StmtError(Diag(PVD->getLocation(),
1203                       diag::err_catch_param_not_objc_type));
1204    if (PVD->getType()->isObjCQualifiedIdType())
1205      return StmtError(Diag(PVD->getLocation(),
1206                       diag::err_illegal_qualifiers_on_catch_parm));
1207  }
1208
1209  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1210    PVD, Body.takeAs<Stmt>(), CatchList);
1211  return Owned(CatchList ? CatchList : CS);
1212}
1213
1214Action::OwningStmtResult
1215Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1216  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1217                                           static_cast<Stmt*>(Body.release())));
1218}
1219
1220Action::OwningStmtResult
1221Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1222                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
1223  CurFunctionNeedsScopeChecking = true;
1224  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1225                                           Catch.takeAs<Stmt>(),
1226                                           Finally.takeAs<Stmt>()));
1227}
1228
1229Action::OwningStmtResult
1230Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1231  Expr *ThrowExpr = expr.takeAs<Expr>();
1232  if (!ThrowExpr) {
1233    // @throw without an expression designates a rethrow (which much occur
1234    // in the context of an @catch clause).
1235    Scope *AtCatchParent = CurScope;
1236    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1237      AtCatchParent = AtCatchParent->getParent();
1238    if (!AtCatchParent)
1239      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1240  } else {
1241    QualType ThrowType = ThrowExpr->getType();
1242    // Make sure the expression type is an ObjC pointer or "void *".
1243    if (!ThrowType->isObjCObjectPointerType()) {
1244      const PointerType *PT = ThrowType->getAs<PointerType>();
1245      if (!PT || !PT->getPointeeType()->isVoidType())
1246        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1247                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1248    }
1249  }
1250  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1251}
1252
1253Action::OwningStmtResult
1254Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1255                                  StmtArg SynchBody) {
1256  CurFunctionNeedsScopeChecking = true;
1257
1258  // Make sure the expression type is an ObjC pointer or "void *".
1259  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1260  if (!SyncExpr->getType()->isObjCObjectPointerType()) {
1261    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1262    if (!PT || !PT->getPointeeType()->isVoidType())
1263      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1264                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1265  }
1266
1267  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1268                                                    SynchExpr.takeAs<Stmt>(),
1269                                                    SynchBody.takeAs<Stmt>()));
1270}
1271
1272/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1273/// and creates a proper catch handler from them.
1274Action::OwningStmtResult
1275Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1276                         StmtArg HandlerBlock) {
1277  // There's nothing to test that ActOnExceptionDecl didn't already test.
1278  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1279                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1280                                          HandlerBlock.takeAs<Stmt>()));
1281}
1282
1283class TypeWithHandler {
1284  QualType t;
1285  CXXCatchStmt *stmt;
1286public:
1287  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1288  : t(type), stmt(statement) {}
1289
1290  bool operator<(const TypeWithHandler &y) const {
1291    if (t.getTypePtr() < y.t.getTypePtr())
1292      return true;
1293    else if (t.getTypePtr() > y.t.getTypePtr())
1294      return false;
1295    else if (t.getCVRQualifiers() < y.t.getCVRQualifiers())
1296      return true;
1297    else if (t.getCVRQualifiers() < y.t.getCVRQualifiers())
1298      return false;
1299    else
1300      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1301  }
1302
1303  bool operator==(const TypeWithHandler& other) const {
1304    return t.getTypePtr() == other.t.getTypePtr()
1305        && t.getCVRQualifiers() == other.t.getCVRQualifiers();
1306  }
1307
1308  QualType getQualType() const { return t; }
1309  CXXCatchStmt *getCatchStmt() const { return stmt; }
1310  SourceLocation getTypeSpecStartLoc() const {
1311    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1312  }
1313};
1314
1315/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1316/// handlers and creates a try statement from them.
1317Action::OwningStmtResult
1318Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1319                       MultiStmtArg RawHandlers) {
1320  unsigned NumHandlers = RawHandlers.size();
1321  assert(NumHandlers > 0 &&
1322         "The parser shouldn't call this if there are no handlers.");
1323  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1324
1325  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1326
1327  for(unsigned i = 0; i < NumHandlers; ++i) {
1328    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1329    if (!Handler->getExceptionDecl()) {
1330      if (i < NumHandlers - 1)
1331        return StmtError(Diag(Handler->getLocStart(),
1332                              diag::err_early_catch_all));
1333
1334      continue;
1335    }
1336
1337    const QualType CaughtType = Handler->getCaughtType();
1338    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1339    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1340  }
1341
1342  // Detect handlers for the same type as an earlier one.
1343  if (NumHandlers > 1) {
1344    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1345
1346    TypeWithHandler prev = TypesWithHandlers[0];
1347    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1348      TypeWithHandler curr = TypesWithHandlers[i];
1349
1350      if (curr == prev) {
1351        Diag(curr.getTypeSpecStartLoc(),
1352             diag::warn_exception_caught_by_earlier_handler)
1353          << curr.getCatchStmt()->getCaughtType().getAsString();
1354        Diag(prev.getTypeSpecStartLoc(),
1355             diag::note_previous_exception_handler)
1356          << prev.getCatchStmt()->getCaughtType().getAsString();
1357      }
1358
1359      prev = curr;
1360    }
1361  }
1362
1363  // FIXME: We should detect handlers that cannot catch anything because an
1364  // earlier handler catches a superclass. Need to find a method that is not
1365  // quadratic for this.
1366  // Neither of these are explicitly forbidden, but every compiler detects them
1367  // and warns.
1368
1369  CurFunctionNeedsScopeChecking = true;
1370  RawHandlers.release();
1371  return Owned(new (Context) CXXTryStmt(TryLoc,
1372                                        static_cast<Stmt*>(TryBlock.release()),
1373                                        Handlers, NumHandlers));
1374}
1375