SemaStmt.cpp revision 28bbe4b8acc338476fe0825769b41fb32b423c72
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               SourceLocation LeadingEmptyMacroLoc) {
51  return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacroLoc));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  // suppress any potential 'unused variable' warning.
70  DG.getSingleDecl()->setUsed();
71}
72
73void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
74  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
75    return DiagnoseUnusedExprResult(Label->getSubStmt());
76
77  const Expr *E = dyn_cast_or_null<Expr>(S);
78  if (!E)
79    return;
80
81  SourceLocation Loc;
82  SourceRange R1, R2;
83  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
84    return;
85
86  // Okay, we have an unused result.  Depending on what the base expression is,
87  // we might want to make a more specific diagnostic.  Check for one of these
88  // cases now.
89  unsigned DiagID = diag::warn_unused_expr;
90  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
91    E = Temps->getSubExpr();
92  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
93    E = TempExpr->getSubExpr();
94
95  E = E->IgnoreParenImpCasts();
96  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
97    if (E->getType()->isVoidType())
98      return;
99
100    // If the callee has attribute pure, const, or warn_unused_result, warn with
101    // a more specific message to make it clear what is happening.
102    if (const Decl *FD = CE->getCalleeDecl()) {
103      if (FD->getAttr<WarnUnusedResultAttr>()) {
104        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
105        return;
106      }
107      if (FD->getAttr<PureAttr>()) {
108        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
109        return;
110      }
111      if (FD->getAttr<ConstAttr>()) {
112        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
113        return;
114      }
115    }
116  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
117    const ObjCMethodDecl *MD = ME->getMethodDecl();
118    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
119      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
120      return;
121    }
122  } else if (isa<ObjCPropertyRefExpr>(E)) {
123    DiagID = diag::warn_unused_property_expr;
124  } else if (const CXXFunctionalCastExpr *FC
125                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
126    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
127        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
128      return;
129  }
130  // Diagnose "(void*) blah" as a typo for "(void) blah".
131  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
132    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
133    QualType T = TI->getType();
134
135    // We really do want to use the non-canonical type here.
136    if (T == Context.VoidPtrTy) {
137      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
138
139      Diag(Loc, diag::warn_unused_voidptr)
140        << FixItHint::CreateRemoval(TL.getStarLoc());
141      return;
142    }
143  }
144
145  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
146}
147
148StmtResult
149Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
150                        MultiStmtArg elts, bool isStmtExpr) {
151  unsigned NumElts = elts.size();
152  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
153  // If we're in C89 mode, check that we don't have any decls after stmts.  If
154  // so, emit an extension diagnostic.
155  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
156    // Note that __extension__ can be around a decl.
157    unsigned i = 0;
158    // Skip over all declarations.
159    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
160      /*empty*/;
161
162    // We found the end of the list or a statement.  Scan for another declstmt.
163    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
164      /*empty*/;
165
166    if (i != NumElts) {
167      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
168      Diag(D->getLocation(), diag::ext_mixed_decls_code);
169    }
170  }
171  // Warn about unused expressions in statements.
172  for (unsigned i = 0; i != NumElts; ++i) {
173    // Ignore statements that are last in a statement expression.
174    if (isStmtExpr && i == NumElts - 1)
175      continue;
176
177    DiagnoseUnusedExprResult(Elts[i]);
178  }
179
180  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
181}
182
183StmtResult
184Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
185                    SourceLocation DotDotDotLoc, Expr *RHSVal,
186                    SourceLocation ColonLoc) {
187  assert((LHSVal != 0) && "missing expression in case statement");
188
189  // C99 6.8.4.2p3: The expression shall be an integer constant.
190  // However, GCC allows any evaluatable integer expression.
191  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
192      VerifyIntegerConstantExpression(LHSVal))
193    return StmtError();
194
195  // GCC extension: The expression shall be an integer constant.
196
197  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
198      VerifyIntegerConstantExpression(RHSVal)) {
199    RHSVal = 0;  // Recover by just forgetting about it.
200  }
201
202  if (getCurFunction()->SwitchStack.empty()) {
203    Diag(CaseLoc, diag::err_case_not_in_switch);
204    return StmtError();
205  }
206
207  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
208                                        ColonLoc);
209  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
210  return Owned(CS);
211}
212
213/// ActOnCaseStmtBody - This installs a statement as the body of a case.
214void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
215  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
216  CS->setSubStmt(SubStmt);
217}
218
219StmtResult
220Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
221                       Stmt *SubStmt, Scope *CurScope) {
222  if (getCurFunction()->SwitchStack.empty()) {
223    Diag(DefaultLoc, diag::err_default_not_in_switch);
224    return Owned(SubStmt);
225  }
226
227  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
228  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
229  return Owned(DS);
230}
231
232StmtResult
233Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
234                     SourceLocation ColonLoc, Stmt *SubStmt) {
235
236  // If the label was multiply defined, reject it now.
237  if (TheDecl->getStmt()) {
238    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
239    Diag(TheDecl->getLocation(), diag::note_previous_definition);
240    return Owned(SubStmt);
241  }
242
243  // Otherwise, things are good.  Fill in the declaration and return it.
244  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
245  TheDecl->setStmt(LS);
246  if (!TheDecl->isGnuLocal())
247    TheDecl->setLocation(IdentLoc);
248  return Owned(LS);
249}
250
251StmtResult
252Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
253                  Stmt *thenStmt, SourceLocation ElseLoc,
254                  Stmt *elseStmt) {
255  ExprResult CondResult(CondVal.release());
256
257  VarDecl *ConditionVar = 0;
258  if (CondVar) {
259    ConditionVar = cast<VarDecl>(CondVar);
260    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
261    if (CondResult.isInvalid())
262      return StmtError();
263  }
264  Expr *ConditionExpr = CondResult.takeAs<Expr>();
265  if (!ConditionExpr)
266    return StmtError();
267
268  DiagnoseUnusedExprResult(thenStmt);
269
270  // Warn if the if block has a null body without an else value.
271  // this helps prevent bugs due to typos, such as
272  // if (condition);
273  //   do_stuff();
274  //
275  if (!elseStmt) {
276    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
277      // But do not warn if the body is a macro that expands to nothing, e.g:
278      //
279      // #define CALL(x)
280      // if (condition)
281      //   CALL(0);
282      //
283      if (!stmt->hasLeadingEmptyMacro())
284        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
285  }
286
287  DiagnoseUnusedExprResult(elseStmt);
288
289  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
290                                    thenStmt, ElseLoc, elseStmt));
291}
292
293/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
294/// the specified width and sign.  If an overflow occurs, detect it and emit
295/// the specified diagnostic.
296void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
297                                              unsigned NewWidth, bool NewSign,
298                                              SourceLocation Loc,
299                                              unsigned DiagID) {
300  // Perform a conversion to the promoted condition type if needed.
301  if (NewWidth > Val.getBitWidth()) {
302    // If this is an extension, just do it.
303    Val = Val.extend(NewWidth);
304    Val.setIsSigned(NewSign);
305
306    // If the input was signed and negative and the output is
307    // unsigned, don't bother to warn: this is implementation-defined
308    // behavior.
309    // FIXME: Introduce a second, default-ignored warning for this case?
310  } else if (NewWidth < Val.getBitWidth()) {
311    // If this is a truncation, check for overflow.
312    llvm::APSInt ConvVal(Val);
313    ConvVal = ConvVal.trunc(NewWidth);
314    ConvVal.setIsSigned(NewSign);
315    ConvVal = ConvVal.extend(Val.getBitWidth());
316    ConvVal.setIsSigned(Val.isSigned());
317    if (ConvVal != Val)
318      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
319
320    // Regardless of whether a diagnostic was emitted, really do the
321    // truncation.
322    Val = Val.trunc(NewWidth);
323    Val.setIsSigned(NewSign);
324  } else if (NewSign != Val.isSigned()) {
325    // Convert the sign to match the sign of the condition.  This can cause
326    // overflow as well: unsigned(INTMIN)
327    // We don't diagnose this overflow, because it is implementation-defined
328    // behavior.
329    // FIXME: Introduce a second, default-ignored warning for this case?
330    llvm::APSInt OldVal(Val);
331    Val.setIsSigned(NewSign);
332  }
333}
334
335namespace {
336  struct CaseCompareFunctor {
337    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
338                    const llvm::APSInt &RHS) {
339      return LHS.first < RHS;
340    }
341    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
342                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
343      return LHS.first < RHS.first;
344    }
345    bool operator()(const llvm::APSInt &LHS,
346                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
347      return LHS < RHS.first;
348    }
349  };
350}
351
352/// CmpCaseVals - Comparison predicate for sorting case values.
353///
354static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
355                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
356  if (lhs.first < rhs.first)
357    return true;
358
359  if (lhs.first == rhs.first &&
360      lhs.second->getCaseLoc().getRawEncoding()
361       < rhs.second->getCaseLoc().getRawEncoding())
362    return true;
363  return false;
364}
365
366/// CmpEnumVals - Comparison predicate for sorting enumeration values.
367///
368static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
369                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
370{
371  return lhs.first < rhs.first;
372}
373
374/// EqEnumVals - Comparison preficate for uniqing enumeration values.
375///
376static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
377                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
378{
379  return lhs.first == rhs.first;
380}
381
382/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
383/// potentially integral-promoted expression @p expr.
384static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
385  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
386    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
387    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
388    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
389      return TypeBeforePromotion;
390    }
391  }
392  return expr->getType();
393}
394
395StmtResult
396Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
397                             Decl *CondVar) {
398  ExprResult CondResult;
399
400  VarDecl *ConditionVar = 0;
401  if (CondVar) {
402    ConditionVar = cast<VarDecl>(CondVar);
403    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
404    if (CondResult.isInvalid())
405      return StmtError();
406
407    Cond = CondResult.release();
408  }
409
410  if (!Cond)
411    return StmtError();
412
413  CondResult
414    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
415                          PDiag(diag::err_typecheck_statement_requires_integer),
416                                   PDiag(diag::err_switch_incomplete_class_type)
417                                     << Cond->getSourceRange(),
418                                   PDiag(diag::err_switch_explicit_conversion),
419                                         PDiag(diag::note_switch_conversion),
420                                   PDiag(diag::err_switch_multiple_conversions),
421                                         PDiag(diag::note_switch_conversion),
422                                         PDiag(0));
423  if (CondResult.isInvalid()) return StmtError();
424  Cond = CondResult.take();
425
426  if (!CondVar) {
427    CheckImplicitConversions(Cond, SwitchLoc);
428    CondResult = MaybeCreateExprWithCleanups(Cond);
429    if (CondResult.isInvalid())
430      return StmtError();
431    Cond = CondResult.take();
432  }
433
434  getCurFunction()->setHasBranchIntoScope();
435
436  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
437  getCurFunction()->SwitchStack.push_back(SS);
438  return Owned(SS);
439}
440
441static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
442  if (Val.getBitWidth() < BitWidth)
443    Val = Val.extend(BitWidth);
444  else if (Val.getBitWidth() > BitWidth)
445    Val = Val.trunc(BitWidth);
446  Val.setIsSigned(IsSigned);
447}
448
449StmtResult
450Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
451                            Stmt *BodyStmt) {
452  SwitchStmt *SS = cast<SwitchStmt>(Switch);
453  assert(SS == getCurFunction()->SwitchStack.back() &&
454         "switch stack missing push/pop!");
455
456  SS->setBody(BodyStmt, SwitchLoc);
457  getCurFunction()->SwitchStack.pop_back();
458
459  if (SS->getCond() == 0)
460    return StmtError();
461
462  Expr *CondExpr = SS->getCond();
463  Expr *CondExprBeforePromotion = CondExpr;
464  QualType CondTypeBeforePromotion =
465      GetTypeBeforeIntegralPromotion(CondExpr);
466
467  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
468  ExprResult CondResult = UsualUnaryConversions(CondExpr);
469  if (CondResult.isInvalid())
470    return StmtError();
471  CondExpr = CondResult.take();
472  QualType CondType = CondExpr->getType();
473  SS->setCond(CondExpr);
474
475  // C++ 6.4.2.p2:
476  // Integral promotions are performed (on the switch condition).
477  //
478  // A case value unrepresentable by the original switch condition
479  // type (before the promotion) doesn't make sense, even when it can
480  // be represented by the promoted type.  Therefore we need to find
481  // the pre-promotion type of the switch condition.
482  if (!CondExpr->isTypeDependent()) {
483    // We have already converted the expression to an integral or enumeration
484    // type, when we started the switch statement. If we don't have an
485    // appropriate type now, just return an error.
486    if (!CondType->isIntegralOrEnumerationType())
487      return StmtError();
488
489    if (CondExpr->isKnownToHaveBooleanValue()) {
490      // switch(bool_expr) {...} is often a programmer error, e.g.
491      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
492      // One can always use an if statement instead of switch(bool_expr).
493      Diag(SwitchLoc, diag::warn_bool_switch_condition)
494          << CondExpr->getSourceRange();
495    }
496  }
497
498  // Get the bitwidth of the switched-on value before promotions.  We must
499  // convert the integer case values to this width before comparison.
500  bool HasDependentValue
501    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
502  unsigned CondWidth
503    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
504  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
505
506  // Accumulate all of the case values in a vector so that we can sort them
507  // and detect duplicates.  This vector contains the APInt for the case after
508  // it has been converted to the condition type.
509  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
510  CaseValsTy CaseVals;
511
512  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
513  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
514  CaseRangesTy CaseRanges;
515
516  DefaultStmt *TheDefaultStmt = 0;
517
518  bool CaseListIsErroneous = false;
519
520  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
521       SC = SC->getNextSwitchCase()) {
522
523    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
524      if (TheDefaultStmt) {
525        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
526        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
527
528        // FIXME: Remove the default statement from the switch block so that
529        // we'll return a valid AST.  This requires recursing down the AST and
530        // finding it, not something we are set up to do right now.  For now,
531        // just lop the entire switch stmt out of the AST.
532        CaseListIsErroneous = true;
533      }
534      TheDefaultStmt = DS;
535
536    } else {
537      CaseStmt *CS = cast<CaseStmt>(SC);
538
539      // We already verified that the expression has a i-c-e value (C99
540      // 6.8.4.2p3) - get that value now.
541      Expr *Lo = CS->getLHS();
542
543      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
544        HasDependentValue = true;
545        break;
546      }
547
548      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
549
550      // Convert the value to the same width/sign as the condition.
551      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
552                                         Lo->getLocStart(),
553                                         diag::warn_case_value_overflow);
554
555      // If the LHS is not the same type as the condition, insert an implicit
556      // cast.
557      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
558      CS->setLHS(Lo);
559
560      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
561      if (CS->getRHS()) {
562        if (CS->getRHS()->isTypeDependent() ||
563            CS->getRHS()->isValueDependent()) {
564          HasDependentValue = true;
565          break;
566        }
567        CaseRanges.push_back(std::make_pair(LoVal, CS));
568      } else
569        CaseVals.push_back(std::make_pair(LoVal, CS));
570    }
571  }
572
573  if (!HasDependentValue) {
574    // If we don't have a default statement, check whether the
575    // condition is constant.
576    llvm::APSInt ConstantCondValue;
577    bool HasConstantCond = false;
578    bool ShouldCheckConstantCond = false;
579    if (!HasDependentValue && !TheDefaultStmt) {
580      Expr::EvalResult Result;
581      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
582      if (HasConstantCond) {
583        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
584        ConstantCondValue = Result.Val.getInt();
585        ShouldCheckConstantCond = true;
586
587        assert(ConstantCondValue.getBitWidth() == CondWidth &&
588               ConstantCondValue.isSigned() == CondIsSigned);
589      }
590    }
591
592    // Sort all the scalar case values so we can easily detect duplicates.
593    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
594
595    if (!CaseVals.empty()) {
596      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
597        if (ShouldCheckConstantCond &&
598            CaseVals[i].first == ConstantCondValue)
599          ShouldCheckConstantCond = false;
600
601        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
602          // If we have a duplicate, report it.
603          Diag(CaseVals[i].second->getLHS()->getLocStart(),
604               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
605          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
606               diag::note_duplicate_case_prev);
607          // FIXME: We really want to remove the bogus case stmt from the
608          // substmt, but we have no way to do this right now.
609          CaseListIsErroneous = true;
610        }
611      }
612    }
613
614    // Detect duplicate case ranges, which usually don't exist at all in
615    // the first place.
616    if (!CaseRanges.empty()) {
617      // Sort all the case ranges by their low value so we can easily detect
618      // overlaps between ranges.
619      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
620
621      // Scan the ranges, computing the high values and removing empty ranges.
622      std::vector<llvm::APSInt> HiVals;
623      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
624        llvm::APSInt &LoVal = CaseRanges[i].first;
625        CaseStmt *CR = CaseRanges[i].second;
626        Expr *Hi = CR->getRHS();
627        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
628
629        // Convert the value to the same width/sign as the condition.
630        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
631                                           Hi->getLocStart(),
632                                           diag::warn_case_value_overflow);
633
634        // If the LHS is not the same type as the condition, insert an implicit
635        // cast.
636        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
637        CR->setRHS(Hi);
638
639        // If the low value is bigger than the high value, the case is empty.
640        if (LoVal > HiVal) {
641          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
642            << SourceRange(CR->getLHS()->getLocStart(),
643                           Hi->getLocEnd());
644          CaseRanges.erase(CaseRanges.begin()+i);
645          --i, --e;
646          continue;
647        }
648
649        if (ShouldCheckConstantCond &&
650            LoVal <= ConstantCondValue &&
651            ConstantCondValue <= HiVal)
652          ShouldCheckConstantCond = false;
653
654        HiVals.push_back(HiVal);
655      }
656
657      // Rescan the ranges, looking for overlap with singleton values and other
658      // ranges.  Since the range list is sorted, we only need to compare case
659      // ranges with their neighbors.
660      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
661        llvm::APSInt &CRLo = CaseRanges[i].first;
662        llvm::APSInt &CRHi = HiVals[i];
663        CaseStmt *CR = CaseRanges[i].second;
664
665        // Check to see whether the case range overlaps with any
666        // singleton cases.
667        CaseStmt *OverlapStmt = 0;
668        llvm::APSInt OverlapVal(32);
669
670        // Find the smallest value >= the lower bound.  If I is in the
671        // case range, then we have overlap.
672        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
673                                                  CaseVals.end(), CRLo,
674                                                  CaseCompareFunctor());
675        if (I != CaseVals.end() && I->first < CRHi) {
676          OverlapVal  = I->first;   // Found overlap with scalar.
677          OverlapStmt = I->second;
678        }
679
680        // Find the smallest value bigger than the upper bound.
681        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
682        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
683          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
684          OverlapStmt = (I-1)->second;
685        }
686
687        // Check to see if this case stmt overlaps with the subsequent
688        // case range.
689        if (i && CRLo <= HiVals[i-1]) {
690          OverlapVal  = HiVals[i-1];       // Found overlap with range.
691          OverlapStmt = CaseRanges[i-1].second;
692        }
693
694        if (OverlapStmt) {
695          // If we have a duplicate, report it.
696          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
697            << OverlapVal.toString(10);
698          Diag(OverlapStmt->getLHS()->getLocStart(),
699               diag::note_duplicate_case_prev);
700          // FIXME: We really want to remove the bogus case stmt from the
701          // substmt, but we have no way to do this right now.
702          CaseListIsErroneous = true;
703        }
704      }
705    }
706
707    // Complain if we have a constant condition and we didn't find a match.
708    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
709      // TODO: it would be nice if we printed enums as enums, chars as
710      // chars, etc.
711      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
712        << ConstantCondValue.toString(10)
713        << CondExpr->getSourceRange();
714    }
715
716    // Check to see if switch is over an Enum and handles all of its
717    // values.  We only issue a warning if there is not 'default:', but
718    // we still do the analysis to preserve this information in the AST
719    // (which can be used by flow-based analyes).
720    //
721    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
722
723    // If switch has default case, then ignore it.
724    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
725      const EnumDecl *ED = ET->getDecl();
726      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
727      EnumValsTy EnumVals;
728
729      // Gather all enum values, set their type and sort them,
730      // allowing easier comparison with CaseVals.
731      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
732           EDI != ED->enumerator_end(); ++EDI) {
733        llvm::APSInt Val = EDI->getInitVal();
734        AdjustAPSInt(Val, CondWidth, CondIsSigned);
735        EnumVals.push_back(std::make_pair(Val, *EDI));
736      }
737      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
738      EnumValsTy::iterator EIend =
739        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
740
741      // See which case values aren't in enum.
742      // TODO: we might want to check whether case values are out of the
743      // enum even if we don't want to check whether all cases are handled.
744      if (!TheDefaultStmt) {
745        EnumValsTy::const_iterator EI = EnumVals.begin();
746        for (CaseValsTy::const_iterator CI = CaseVals.begin();
747             CI != CaseVals.end(); CI++) {
748          while (EI != EIend && EI->first < CI->first)
749            EI++;
750          if (EI == EIend || EI->first > CI->first)
751            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
752              << ED->getDeclName();
753        }
754        // See which of case ranges aren't in enum
755        EI = EnumVals.begin();
756        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
757             RI != CaseRanges.end() && EI != EIend; RI++) {
758          while (EI != EIend && EI->first < RI->first)
759            EI++;
760
761          if (EI == EIend || EI->first != RI->first) {
762            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
763              << ED->getDeclName();
764          }
765
766          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
767          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
768          while (EI != EIend && EI->first < Hi)
769            EI++;
770          if (EI == EIend || EI->first != Hi)
771            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
772              << ED->getDeclName();
773        }
774      }
775
776      // Check which enum vals aren't in switch
777      CaseValsTy::const_iterator CI = CaseVals.begin();
778      CaseRangesTy::const_iterator RI = CaseRanges.begin();
779      bool hasCasesNotInSwitch = false;
780
781      llvm::SmallVector<DeclarationName,8> UnhandledNames;
782
783      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
784        // Drop unneeded case values
785        llvm::APSInt CIVal;
786        while (CI != CaseVals.end() && CI->first < EI->first)
787          CI++;
788
789        if (CI != CaseVals.end() && CI->first == EI->first)
790          continue;
791
792        // Drop unneeded case ranges
793        for (; RI != CaseRanges.end(); RI++) {
794          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
795          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
796          if (EI->first <= Hi)
797            break;
798        }
799
800        if (RI == CaseRanges.end() || EI->first < RI->first) {
801          hasCasesNotInSwitch = true;
802          if (!TheDefaultStmt)
803            UnhandledNames.push_back(EI->second->getDeclName());
804        }
805      }
806
807      // Produce a nice diagnostic if multiple values aren't handled.
808      switch (UnhandledNames.size()) {
809      case 0: break;
810      case 1:
811        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
812          << UnhandledNames[0];
813        break;
814      case 2:
815        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
816          << UnhandledNames[0] << UnhandledNames[1];
817        break;
818      case 3:
819        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
820          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
821        break;
822      default:
823        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
824          << (unsigned)UnhandledNames.size()
825          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
826        break;
827      }
828
829      if (!hasCasesNotInSwitch)
830        SS->setAllEnumCasesCovered();
831    }
832  }
833
834  // FIXME: If the case list was broken is some way, we don't have a good system
835  // to patch it up.  Instead, just return the whole substmt as broken.
836  if (CaseListIsErroneous)
837    return StmtError();
838
839  return Owned(SS);
840}
841
842StmtResult
843Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
844                     Decl *CondVar, Stmt *Body) {
845  ExprResult CondResult(Cond.release());
846
847  VarDecl *ConditionVar = 0;
848  if (CondVar) {
849    ConditionVar = cast<VarDecl>(CondVar);
850    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
851    if (CondResult.isInvalid())
852      return StmtError();
853  }
854  Expr *ConditionExpr = CondResult.take();
855  if (!ConditionExpr)
856    return StmtError();
857
858  DiagnoseUnusedExprResult(Body);
859
860  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
861                                       Body, WhileLoc));
862}
863
864StmtResult
865Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
866                  SourceLocation WhileLoc, SourceLocation CondLParen,
867                  Expr *Cond, SourceLocation CondRParen) {
868  assert(Cond && "ActOnDoStmt(): missing expression");
869
870  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
871  if (CondResult.isInvalid() || CondResult.isInvalid())
872    return StmtError();
873  Cond = CondResult.take();
874
875  CheckImplicitConversions(Cond, DoLoc);
876  CondResult = MaybeCreateExprWithCleanups(Cond);
877  if (CondResult.isInvalid())
878    return StmtError();
879  Cond = CondResult.take();
880
881  DiagnoseUnusedExprResult(Body);
882
883  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
884}
885
886StmtResult
887Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
888                   Stmt *First, FullExprArg second, Decl *secondVar,
889                   FullExprArg third,
890                   SourceLocation RParenLoc, Stmt *Body) {
891  if (!getLangOptions().CPlusPlus) {
892    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
893      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
894      // declare identifiers for objects having storage class 'auto' or
895      // 'register'.
896      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
897           DI!=DE; ++DI) {
898        VarDecl *VD = dyn_cast<VarDecl>(*DI);
899        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
900          VD = 0;
901        if (VD == 0)
902          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
903        // FIXME: mark decl erroneous!
904      }
905    }
906  }
907
908  ExprResult SecondResult(second.release());
909  VarDecl *ConditionVar = 0;
910  if (secondVar) {
911    ConditionVar = cast<VarDecl>(secondVar);
912    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
913    if (SecondResult.isInvalid())
914      return StmtError();
915  }
916
917  Expr *Third  = third.release().takeAs<Expr>();
918
919  DiagnoseUnusedExprResult(First);
920  DiagnoseUnusedExprResult(Third);
921  DiagnoseUnusedExprResult(Body);
922
923  return Owned(new (Context) ForStmt(Context, First,
924                                     SecondResult.take(), ConditionVar,
925                                     Third, Body, ForLoc, LParenLoc,
926                                     RParenLoc));
927}
928
929/// In an Objective C collection iteration statement:
930///   for (x in y)
931/// x can be an arbitrary l-value expression.  Bind it up as a
932/// full-expression.
933StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
934  CheckImplicitConversions(E);
935  ExprResult Result = MaybeCreateExprWithCleanups(E);
936  if (Result.isInvalid()) return StmtError();
937  return Owned(static_cast<Stmt*>(Result.get()));
938}
939
940StmtResult
941Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
942                                 SourceLocation LParenLoc,
943                                 Stmt *First, Expr *Second,
944                                 SourceLocation RParenLoc, Stmt *Body) {
945  if (First) {
946    QualType FirstType;
947    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
948      if (!DS->isSingleDecl())
949        return StmtError(Diag((*DS->decl_begin())->getLocation(),
950                         diag::err_toomany_element_decls));
951
952      Decl *D = DS->getSingleDecl();
953      FirstType = cast<ValueDecl>(D)->getType();
954      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
955      // declare identifiers for objects having storage class 'auto' or
956      // 'register'.
957      VarDecl *VD = cast<VarDecl>(D);
958      if (VD->isLocalVarDecl() && !VD->hasLocalStorage())
959        return StmtError(Diag(VD->getLocation(),
960                              diag::err_non_variable_decl_in_for));
961    } else {
962      Expr *FirstE = cast<Expr>(First);
963      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
964        return StmtError(Diag(First->getLocStart(),
965                   diag::err_selector_element_not_lvalue)
966          << First->getSourceRange());
967
968      FirstType = static_cast<Expr*>(First)->getType();
969    }
970    if (!FirstType->isDependentType() &&
971        !FirstType->isObjCObjectPointerType() &&
972        !FirstType->isBlockPointerType())
973        Diag(ForLoc, diag::err_selector_element_type)
974          << FirstType << First->getSourceRange();
975  }
976  if (Second && !Second->isTypeDependent()) {
977    ExprResult Result = DefaultFunctionArrayLvalueConversion(Second);
978    if (Result.isInvalid())
979      return StmtError();
980    Second = Result.take();
981    QualType SecondType = Second->getType();
982    if (!SecondType->isObjCObjectPointerType())
983      Diag(ForLoc, diag::err_collection_expr_type)
984        << SecondType << Second->getSourceRange();
985    else if (const ObjCObjectPointerType *OPT =
986             SecondType->getAsObjCInterfacePointerType()) {
987      llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
988      IdentifierInfo* selIdent =
989        &Context.Idents.get("countByEnumeratingWithState");
990      KeyIdents.push_back(selIdent);
991      selIdent = &Context.Idents.get("objects");
992      KeyIdents.push_back(selIdent);
993      selIdent = &Context.Idents.get("count");
994      KeyIdents.push_back(selIdent);
995      Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
996      if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
997        if (!IDecl->isForwardDecl() &&
998            !IDecl->lookupInstanceMethod(CSelector) &&
999            !LookupMethodInQualifiedType(CSelector, OPT, true)) {
1000          // Must further look into private implementation methods.
1001          if (!LookupPrivateInstanceMethod(CSelector, IDecl))
1002            Diag(ForLoc, diag::warn_collection_expr_type)
1003              << SecondType << CSelector << Second->getSourceRange();
1004        }
1005      }
1006    }
1007  }
1008  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1009                                                   ForLoc, RParenLoc));
1010}
1011
1012namespace {
1013
1014enum BeginEndFunction {
1015  BEF_begin,
1016  BEF_end
1017};
1018
1019/// Build a variable declaration for a for-range statement.
1020static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1021                                     QualType Type, const char *Name) {
1022  DeclContext *DC = SemaRef.CurContext;
1023  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1024  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1025  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1026                                  TInfo, SC_Auto, SC_None);
1027  Decl->setImplicit();
1028  return Decl;
1029}
1030
1031/// Finish building a variable declaration for a for-range statement.
1032/// \return true if an error occurs.
1033static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1034                                  SourceLocation Loc, int diag) {
1035  // Deduce the type for the iterator variable now rather than leaving it to
1036  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1037  TypeSourceInfo *InitTSI = 0;
1038  if (Init->getType()->isVoidType() ||
1039      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1040    SemaRef.Diag(Loc, diag) << Init->getType();
1041  if (!InitTSI) {
1042    Decl->setInvalidDecl();
1043    return true;
1044  }
1045  Decl->setTypeSourceInfo(InitTSI);
1046  Decl->setType(InitTSI->getType());
1047
1048  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1049                               /*TypeMayContainAuto=*/false);
1050  SemaRef.FinalizeDeclaration(Decl);
1051  SemaRef.CurContext->addHiddenDecl(Decl);
1052  return false;
1053}
1054
1055/// Produce a note indicating which begin/end function was implicitly called
1056/// by a C++0x for-range statement. This is often not obvious from the code,
1057/// nor from the diagnostics produced when analysing the implicit expressions
1058/// required in a for-range statement.
1059void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1060                                  BeginEndFunction BEF) {
1061  CallExpr *CE = dyn_cast<CallExpr>(E);
1062  if (!CE)
1063    return;
1064  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1065  if (!D)
1066    return;
1067  SourceLocation Loc = D->getLocation();
1068
1069  std::string Description;
1070  bool IsTemplate = false;
1071  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1072    Description = SemaRef.getTemplateArgumentBindingsText(
1073      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1074    IsTemplate = true;
1075  }
1076
1077  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1078    << BEF << IsTemplate << Description << E->getType();
1079}
1080
1081/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1082/// given LookupResult is non-empty, it is assumed to describe a member which
1083/// will be invoked. Otherwise, the function will be found via argument
1084/// dependent lookup.
1085static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1086                                            SourceLocation Loc,
1087                                            VarDecl *Decl,
1088                                            BeginEndFunction BEF,
1089                                            const DeclarationNameInfo &NameInfo,
1090                                            LookupResult &MemberLookup,
1091                                            Expr *Range) {
1092  ExprResult CallExpr;
1093  if (!MemberLookup.empty()) {
1094    ExprResult MemberRef =
1095      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1096                                       /*IsPtr=*/false, CXXScopeSpec(),
1097                                       /*Qualifier=*/0, MemberLookup,
1098                                       /*TemplateArgs=*/0);
1099    if (MemberRef.isInvalid())
1100      return ExprError();
1101    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1102                                     Loc, 0);
1103    if (CallExpr.isInvalid())
1104      return ExprError();
1105  } else {
1106    UnresolvedSet<0> FoundNames;
1107    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1108    // std is an associated namespace.
1109    UnresolvedLookupExpr *Fn =
1110      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1111                                   NestedNameSpecifierLoc(), NameInfo,
1112                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1113                                   FoundNames.begin(), FoundNames.end(),
1114                                   /*LookInStdNamespace=*/true);
1115    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1116                                               0);
1117    if (CallExpr.isInvalid()) {
1118      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1119        << Range->getType();
1120      return ExprError();
1121    }
1122  }
1123  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1124                            diag::err_for_range_iter_deduction_failure)) {
1125    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1126    return ExprError();
1127  }
1128  return CallExpr;
1129}
1130
1131}
1132
1133/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1134///
1135/// C++0x [stmt.ranged]:
1136///   A range-based for statement is equivalent to
1137///
1138///   {
1139///     auto && __range = range-init;
1140///     for ( auto __begin = begin-expr,
1141///           __end = end-expr;
1142///           __begin != __end;
1143///           ++__begin ) {
1144///       for-range-declaration = *__begin;
1145///       statement
1146///     }
1147///   }
1148///
1149/// The body of the loop is not available yet, since it cannot be analysed until
1150/// we have determined the type of the for-range-declaration.
1151StmtResult
1152Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1153                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1154                           SourceLocation RParenLoc) {
1155  if (!First || !Range)
1156    return StmtError();
1157
1158  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1159  assert(DS && "first part of for range not a decl stmt");
1160
1161  if (!DS->isSingleDecl()) {
1162    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1163    return StmtError();
1164  }
1165  if (DS->getSingleDecl()->isInvalidDecl())
1166    return StmtError();
1167
1168  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1169    return StmtError();
1170
1171  // Build  auto && __range = range-init
1172  SourceLocation RangeLoc = Range->getLocStart();
1173  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1174                                           Context.getAutoRRefDeductType(),
1175                                           "__range");
1176  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1177                            diag::err_for_range_deduction_failure))
1178    return StmtError();
1179
1180  // Claim the type doesn't contain auto: we've already done the checking.
1181  DeclGroupPtrTy RangeGroup =
1182    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1183  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1184  if (RangeDecl.isInvalid())
1185    return StmtError();
1186
1187  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1188                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1189                              RParenLoc);
1190}
1191
1192/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1193StmtResult
1194Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1195                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1196                           Expr *Inc, Stmt *LoopVarDecl,
1197                           SourceLocation RParenLoc) {
1198  Scope *S = getCurScope();
1199
1200  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1201  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1202  QualType RangeVarType = RangeVar->getType();
1203
1204  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1205  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1206
1207  StmtResult BeginEndDecl = BeginEnd;
1208  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1209
1210  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1211    SourceLocation RangeLoc = RangeVar->getLocation();
1212
1213    ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
1214                                           RangeVarType.getNonReferenceType(),
1215                                           VK_LValue, ColonLoc);
1216    if (RangeRef.isInvalid())
1217      return StmtError();
1218
1219    QualType AutoType = Context.getAutoDeductType();
1220    Expr *Range = RangeVar->getInit();
1221    if (!Range)
1222      return StmtError();
1223    QualType RangeType = Range->getType();
1224
1225    if (RequireCompleteType(RangeLoc, RangeType,
1226                            PDiag(diag::err_for_range_incomplete_type)))
1227      return StmtError();
1228
1229    // Build auto __begin = begin-expr, __end = end-expr.
1230    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1231                                             "__begin");
1232    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1233                                           "__end");
1234
1235    // Build begin-expr and end-expr and attach to __begin and __end variables.
1236    ExprResult BeginExpr, EndExpr;
1237    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1238      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1239      //   __range + __bound, respectively, where __bound is the array bound. If
1240      //   _RangeT is an array of unknown size or an array of incomplete type,
1241      //   the program is ill-formed;
1242
1243      // begin-expr is __range.
1244      BeginExpr = RangeRef;
1245      if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
1246                                diag::err_for_range_iter_deduction_failure)) {
1247        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1248        return StmtError();
1249      }
1250
1251      // Find the array bound.
1252      ExprResult BoundExpr;
1253      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1254        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1255                                                 Context.IntTy, RangeLoc));
1256      else if (const VariableArrayType *VAT =
1257               dyn_cast<VariableArrayType>(UnqAT))
1258        BoundExpr = VAT->getSizeExpr();
1259      else {
1260        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1261        // UnqAT is not incomplete and Range is not type-dependent.
1262        assert(0 && "Unexpected array type in for-range");
1263        return StmtError();
1264      }
1265
1266      // end-expr is __range + __bound.
1267      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
1268                           BoundExpr.get());
1269      if (EndExpr.isInvalid())
1270        return StmtError();
1271      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1272                                diag::err_for_range_iter_deduction_failure)) {
1273        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1274        return StmtError();
1275      }
1276    } else {
1277      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1278                                        ColonLoc);
1279      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1280                                      ColonLoc);
1281
1282      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1283      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1284
1285      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1286        // - if _RangeT is a class type, the unqualified-ids begin and end are
1287        //   looked up in the scope of class _RangeT as if by class member access
1288        //   lookup (3.4.5), and if either (or both) finds at least one
1289        //   declaration, begin-expr and end-expr are __range.begin() and
1290        //   __range.end(), respectively;
1291        LookupQualifiedName(BeginMemberLookup, D);
1292        LookupQualifiedName(EndMemberLookup, D);
1293
1294        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1295          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1296            << RangeType << BeginMemberLookup.empty();
1297          return StmtError();
1298        }
1299      } else {
1300        // - otherwise, begin-expr and end-expr are begin(__range) and
1301        //   end(__range), respectively, where begin and end are looked up with
1302        //   argument-dependent lookup (3.4.2). For the purposes of this name
1303        //   lookup, namespace std is an associated namespace.
1304      }
1305
1306      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1307                                            BEF_begin, BeginNameInfo,
1308                                            BeginMemberLookup, RangeRef.get());
1309      if (BeginExpr.isInvalid())
1310        return StmtError();
1311
1312      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1313                                          BEF_end, EndNameInfo,
1314                                          EndMemberLookup, RangeRef.get());
1315      if (EndExpr.isInvalid())
1316        return StmtError();
1317    }
1318
1319    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1320    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1321    if (!Context.hasSameType(BeginType, EndType)) {
1322      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1323        << BeginType << EndType;
1324      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1325      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1326    }
1327
1328    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1329    // Claim the type doesn't contain auto: we've already done the checking.
1330    DeclGroupPtrTy BeginEndGroup =
1331      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1332    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1333
1334    ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
1335                                           BeginType.getNonReferenceType(),
1336                                           VK_LValue, ColonLoc);
1337    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1338                                         VK_LValue, ColonLoc);
1339
1340    // Build and check __begin != __end expression.
1341    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1342                           BeginRef.get(), EndRef.get());
1343    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1344    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1345    if (NotEqExpr.isInvalid()) {
1346      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1347      if (!Context.hasSameType(BeginType, EndType))
1348        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1349      return StmtError();
1350    }
1351
1352    // Build and check ++__begin expression.
1353    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1354    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1355    if (IncrExpr.isInvalid()) {
1356      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1357      return StmtError();
1358    }
1359
1360    // Build and check *__begin  expression.
1361    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1362    if (DerefExpr.isInvalid()) {
1363      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1364      return StmtError();
1365    }
1366
1367    // Attach  *__begin  as initializer for VD.
1368    if (!LoopVar->isInvalidDecl()) {
1369      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1370                           /*TypeMayContainAuto=*/true);
1371      if (LoopVar->isInvalidDecl())
1372        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1373    }
1374  }
1375
1376  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1377                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1378                                             NotEqExpr.take(), IncrExpr.take(),
1379                                             LoopVarDS, /*Body=*/0, ForLoc,
1380                                             ColonLoc, RParenLoc));
1381}
1382
1383/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1384/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1385/// body cannot be performed until after the type of the range variable is
1386/// determined.
1387StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1388  if (!S || !B)
1389    return StmtError();
1390
1391  cast<CXXForRangeStmt>(S)->setBody(B);
1392  return S;
1393}
1394
1395StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1396                               SourceLocation LabelLoc,
1397                               LabelDecl *TheDecl) {
1398  getCurFunction()->setHasBranchIntoScope();
1399  TheDecl->setUsed();
1400  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1401}
1402
1403StmtResult
1404Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1405                            Expr *E) {
1406  // Convert operand to void*
1407  if (!E->isTypeDependent()) {
1408    QualType ETy = E->getType();
1409    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1410    ExprResult ExprRes = Owned(E);
1411    AssignConvertType ConvTy =
1412      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1413    if (ExprRes.isInvalid())
1414      return StmtError();
1415    E = ExprRes.take();
1416    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1417      return StmtError();
1418  }
1419
1420  getCurFunction()->setHasIndirectGoto();
1421
1422  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1423}
1424
1425StmtResult
1426Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1427  Scope *S = CurScope->getContinueParent();
1428  if (!S) {
1429    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1430    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1431  }
1432
1433  return Owned(new (Context) ContinueStmt(ContinueLoc));
1434}
1435
1436StmtResult
1437Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1438  Scope *S = CurScope->getBreakParent();
1439  if (!S) {
1440    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1441    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1442  }
1443
1444  return Owned(new (Context) BreakStmt(BreakLoc));
1445}
1446
1447/// \brief Determine whether the given expression is a candidate for
1448/// copy elision in either a return statement or a throw expression.
1449///
1450/// \param ReturnType If we're determining the copy elision candidate for
1451/// a return statement, this is the return type of the function. If we're
1452/// determining the copy elision candidate for a throw expression, this will
1453/// be a NULL type.
1454///
1455/// \param E The expression being returned from the function or block, or
1456/// being thrown.
1457///
1458/// \param AllowFunctionParameter
1459///
1460/// \returns The NRVO candidate variable, if the return statement may use the
1461/// NRVO, or NULL if there is no such candidate.
1462const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1463                                             Expr *E,
1464                                             bool AllowFunctionParameter) {
1465  QualType ExprType = E->getType();
1466  // - in a return statement in a function with ...
1467  // ... a class return type ...
1468  if (!ReturnType.isNull()) {
1469    if (!ReturnType->isRecordType())
1470      return 0;
1471    // ... the same cv-unqualified type as the function return type ...
1472    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1473      return 0;
1474  }
1475
1476  // ... the expression is the name of a non-volatile automatic object
1477  // (other than a function or catch-clause parameter)) ...
1478  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1479  if (!DR)
1480    return 0;
1481  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1482  if (!VD)
1483    return 0;
1484
1485  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1486      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1487      !VD->getType().isVolatileQualified() &&
1488      ((VD->getKind() == Decl::Var) ||
1489       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1490    return VD;
1491
1492  return 0;
1493}
1494
1495/// \brief Perform the initialization of a potentially-movable value, which
1496/// is the result of return value.
1497///
1498/// This routine implements C++0x [class.copy]p33, which attempts to treat
1499/// returned lvalues as rvalues in certain cases (to prefer move construction),
1500/// then falls back to treating them as lvalues if that failed.
1501ExprResult
1502Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1503                                      const VarDecl *NRVOCandidate,
1504                                      QualType ResultType,
1505                                      Expr *Value) {
1506  // C++0x [class.copy]p33:
1507  //   When the criteria for elision of a copy operation are met or would
1508  //   be met save for the fact that the source object is a function
1509  //   parameter, and the object to be copied is designated by an lvalue,
1510  //   overload resolution to select the constructor for the copy is first
1511  //   performed as if the object were designated by an rvalue.
1512  ExprResult Res = ExprError();
1513  if (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true)) {
1514    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1515                              Value->getType(), CK_LValueToRValue,
1516                              Value, VK_XValue);
1517
1518    Expr *InitExpr = &AsRvalue;
1519    InitializationKind Kind
1520      = InitializationKind::CreateCopy(Value->getLocStart(),
1521                                       Value->getLocStart());
1522    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1523
1524    //   [...] If overload resolution fails, or if the type of the first
1525    //   parameter of the selected constructor is not an rvalue reference
1526    //   to the object's type (possibly cv-qualified), overload resolution
1527    //   is performed again, considering the object as an lvalue.
1528    if (Seq.getKind() != InitializationSequence::FailedSequence) {
1529      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1530           StepEnd = Seq.step_end();
1531           Step != StepEnd; ++Step) {
1532        if (Step->Kind
1533            != InitializationSequence::SK_ConstructorInitialization)
1534          continue;
1535
1536        CXXConstructorDecl *Constructor
1537        = cast<CXXConstructorDecl>(Step->Function.Function);
1538
1539        const RValueReferenceType *RRefType
1540          = Constructor->getParamDecl(0)->getType()
1541                                                 ->getAs<RValueReferenceType>();
1542
1543        // If we don't meet the criteria, break out now.
1544        if (!RRefType ||
1545            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1546                            Context.getTypeDeclType(Constructor->getParent())))
1547          break;
1548
1549        // Promote "AsRvalue" to the heap, since we now need this
1550        // expression node to persist.
1551        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1552                                         CK_LValueToRValue, Value, 0,
1553                                         VK_XValue);
1554
1555        // Complete type-checking the initialization of the return type
1556        // using the constructor we found.
1557        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1558      }
1559    }
1560  }
1561
1562  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1563  // above, or overload resolution failed. Either way, we need to try
1564  // (again) now with the return value expression as written.
1565  if (Res.isInvalid())
1566    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1567
1568  return Res;
1569}
1570
1571/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1572///
1573StmtResult
1574Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1575  // If this is the first return we've seen in the block, infer the type of
1576  // the block from it.
1577  BlockScopeInfo *CurBlock = getCurBlock();
1578  if (CurBlock->ReturnType.isNull()) {
1579    if (RetValExp) {
1580      // Don't call UsualUnaryConversions(), since we don't want to do
1581      // integer promotions here.
1582      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1583      if (Result.isInvalid())
1584        return StmtError();
1585      RetValExp = Result.take();
1586      CurBlock->ReturnType = RetValExp->getType();
1587      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1588        // We have to remove a 'const' added to copied-in variable which was
1589        // part of the implementation spec. and not the actual qualifier for
1590        // the variable.
1591        if (CDRE->isConstQualAdded())
1592          CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1593      }
1594    } else
1595      CurBlock->ReturnType = Context.VoidTy;
1596  }
1597  QualType FnRetType = CurBlock->ReturnType;
1598
1599  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1600    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1601      << getCurFunctionOrMethodDecl()->getDeclName();
1602    return StmtError();
1603  }
1604
1605  // Otherwise, verify that this result type matches the previous one.  We are
1606  // pickier with blocks than for normal functions because we don't have GCC
1607  // compatibility to worry about here.
1608  ReturnStmt *Result = 0;
1609  if (CurBlock->ReturnType->isVoidType()) {
1610    if (RetValExp) {
1611      Diag(ReturnLoc, diag::err_return_block_has_expr);
1612      RetValExp = 0;
1613    }
1614    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1615  } else if (!RetValExp) {
1616    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1617  } else {
1618    const VarDecl *NRVOCandidate = 0;
1619
1620    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1621      // we have a non-void block with an expression, continue checking
1622
1623      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1624      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1625      // function return.
1626
1627      // In C++ the return statement is handled via a copy initialization.
1628      // the C version of which boils down to CheckSingleAssignmentConstraints.
1629      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1630      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1631                                                                     FnRetType,
1632                                                           NRVOCandidate != 0);
1633      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1634                                                       FnRetType, RetValExp);
1635      if (Res.isInvalid()) {
1636        // FIXME: Cleanup temporaries here, anyway?
1637        return StmtError();
1638      }
1639
1640      if (RetValExp) {
1641        CheckImplicitConversions(RetValExp, ReturnLoc);
1642        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1643      }
1644
1645      RetValExp = Res.takeAs<Expr>();
1646      if (RetValExp)
1647        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1648    }
1649
1650    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1651  }
1652
1653  // If we need to check for the named return value optimization, save the
1654  // return statement in our scope for later processing.
1655  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1656      !CurContext->isDependentContext())
1657    FunctionScopes.back()->Returns.push_back(Result);
1658
1659  return Owned(Result);
1660}
1661
1662StmtResult
1663Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1664  if (getCurBlock())
1665    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1666
1667  QualType FnRetType;
1668  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1669    FnRetType = FD->getResultType();
1670    if (FD->hasAttr<NoReturnAttr>() ||
1671        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1672      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1673        << getCurFunctionOrMethodDecl()->getDeclName();
1674  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1675    FnRetType = MD->getResultType();
1676  else // If we don't have a function/method context, bail.
1677    return StmtError();
1678
1679  ReturnStmt *Result = 0;
1680  if (FnRetType->isVoidType()) {
1681    if (RetValExp && !RetValExp->isTypeDependent()) {
1682      // C99 6.8.6.4p1 (ext_ since GCC warns)
1683      unsigned D = diag::ext_return_has_expr;
1684      if (RetValExp->getType()->isVoidType())
1685        D = diag::ext_return_has_void_expr;
1686      else {
1687        ExprResult Result = Owned(RetValExp);
1688        Result = IgnoredValueConversions(Result.take());
1689        if (Result.isInvalid())
1690          return StmtError();
1691        RetValExp = Result.take();
1692        RetValExp = ImpCastExprToType(RetValExp, Context.VoidTy, CK_ToVoid).take();
1693      }
1694
1695      // return (some void expression); is legal in C++.
1696      if (D != diag::ext_return_has_void_expr ||
1697          !getLangOptions().CPlusPlus) {
1698        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1699        Diag(ReturnLoc, D)
1700          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1701          << RetValExp->getSourceRange();
1702      }
1703
1704      CheckImplicitConversions(RetValExp, ReturnLoc);
1705      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1706    }
1707
1708    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1709  } else if (!RetValExp && !FnRetType->isDependentType()) {
1710    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1711    // C99 6.8.6.4p1 (ext_ since GCC warns)
1712    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1713
1714    if (FunctionDecl *FD = getCurFunctionDecl())
1715      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1716    else
1717      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1718    Result = new (Context) ReturnStmt(ReturnLoc);
1719  } else {
1720    const VarDecl *NRVOCandidate = 0;
1721    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1722      // we have a non-void function with an expression, continue checking
1723
1724      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1725      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1726      // function return.
1727
1728      // In C++ the return statement is handled via a copy initialization.
1729      // the C version of which boils down to CheckSingleAssignmentConstraints.
1730      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1731      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1732                                                                     FnRetType,
1733                                                                     NRVOCandidate != 0);
1734      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1735                                                       FnRetType, RetValExp);
1736      if (Res.isInvalid()) {
1737        // FIXME: Cleanup temporaries here, anyway?
1738        return StmtError();
1739      }
1740
1741      RetValExp = Res.takeAs<Expr>();
1742      if (RetValExp)
1743        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1744    }
1745
1746    if (RetValExp) {
1747      CheckImplicitConversions(RetValExp, ReturnLoc);
1748      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1749    }
1750    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1751  }
1752
1753  // If we need to check for the named return value optimization, save the
1754  // return statement in our scope for later processing.
1755  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1756      !CurContext->isDependentContext())
1757    FunctionScopes.back()->Returns.push_back(Result);
1758
1759  return Owned(Result);
1760}
1761
1762/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1763/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1764/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1765/// provide a strong guidance to not use it.
1766///
1767/// This method checks to see if the argument is an acceptable l-value and
1768/// returns false if it is a case we can handle.
1769static bool CheckAsmLValue(const Expr *E, Sema &S) {
1770  // Type dependent expressions will be checked during instantiation.
1771  if (E->isTypeDependent())
1772    return false;
1773
1774  if (E->isLValue())
1775    return false;  // Cool, this is an lvalue.
1776
1777  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1778  // are supposed to allow.
1779  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1780  if (E != E2 && E2->isLValue()) {
1781    if (!S.getLangOptions().HeinousExtensions)
1782      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1783        << E->getSourceRange();
1784    else
1785      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1786        << E->getSourceRange();
1787    // Accept, even if we emitted an error diagnostic.
1788    return false;
1789  }
1790
1791  // None of the above, just randomly invalid non-lvalue.
1792  return true;
1793}
1794
1795/// isOperandMentioned - Return true if the specified operand # is mentioned
1796/// anywhere in the decomposed asm string.
1797static bool isOperandMentioned(unsigned OpNo,
1798                         llvm::ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
1799  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
1800    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
1801    if (!Piece.isOperand()) continue;
1802
1803    // If this is a reference to the input and if the input was the smaller
1804    // one, then we have to reject this asm.
1805    if (Piece.getOperandNo() == OpNo)
1806      return true;
1807  }
1808
1809  return false;
1810}
1811
1812StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1813                              bool IsVolatile, unsigned NumOutputs,
1814                              unsigned NumInputs, IdentifierInfo **Names,
1815                              MultiExprArg constraints, MultiExprArg exprs,
1816                              Expr *asmString, MultiExprArg clobbers,
1817                              SourceLocation RParenLoc, bool MSAsm) {
1818  unsigned NumClobbers = clobbers.size();
1819  StringLiteral **Constraints =
1820    reinterpret_cast<StringLiteral**>(constraints.get());
1821  Expr **Exprs = exprs.get();
1822  StringLiteral *AsmString = cast<StringLiteral>(asmString);
1823  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1824
1825  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1826
1827  // The parser verifies that there is a string literal here.
1828  if (AsmString->isWide())
1829    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1830      << AsmString->getSourceRange());
1831
1832  for (unsigned i = 0; i != NumOutputs; i++) {
1833    StringLiteral *Literal = Constraints[i];
1834    if (Literal->isWide())
1835      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1836        << Literal->getSourceRange());
1837
1838    llvm::StringRef OutputName;
1839    if (Names[i])
1840      OutputName = Names[i]->getName();
1841
1842    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1843    if (!Context.Target.validateOutputConstraint(Info))
1844      return StmtError(Diag(Literal->getLocStart(),
1845                            diag::err_asm_invalid_output_constraint)
1846                       << Info.getConstraintStr());
1847
1848    // Check that the output exprs are valid lvalues.
1849    Expr *OutputExpr = Exprs[i];
1850    if (CheckAsmLValue(OutputExpr, *this)) {
1851      return StmtError(Diag(OutputExpr->getLocStart(),
1852                  diag::err_asm_invalid_lvalue_in_output)
1853        << OutputExpr->getSourceRange());
1854    }
1855
1856    OutputConstraintInfos.push_back(Info);
1857  }
1858
1859  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1860
1861  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1862    StringLiteral *Literal = Constraints[i];
1863    if (Literal->isWide())
1864      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1865        << Literal->getSourceRange());
1866
1867    llvm::StringRef InputName;
1868    if (Names[i])
1869      InputName = Names[i]->getName();
1870
1871    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1872    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1873                                                NumOutputs, Info)) {
1874      return StmtError(Diag(Literal->getLocStart(),
1875                            diag::err_asm_invalid_input_constraint)
1876                       << Info.getConstraintStr());
1877    }
1878
1879    Expr *InputExpr = Exprs[i];
1880
1881    // Only allow void types for memory constraints.
1882    if (Info.allowsMemory() && !Info.allowsRegister()) {
1883      if (CheckAsmLValue(InputExpr, *this))
1884        return StmtError(Diag(InputExpr->getLocStart(),
1885                              diag::err_asm_invalid_lvalue_in_input)
1886                         << Info.getConstraintStr()
1887                         << InputExpr->getSourceRange());
1888    }
1889
1890    if (Info.allowsRegister()) {
1891      if (InputExpr->getType()->isVoidType()) {
1892        return StmtError(Diag(InputExpr->getLocStart(),
1893                              diag::err_asm_invalid_type_in_input)
1894          << InputExpr->getType() << Info.getConstraintStr()
1895          << InputExpr->getSourceRange());
1896      }
1897    }
1898
1899    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
1900    if (Result.isInvalid())
1901      return StmtError();
1902
1903    Exprs[i] = Result.take();
1904    InputConstraintInfos.push_back(Info);
1905  }
1906
1907  // Check that the clobbers are valid.
1908  for (unsigned i = 0; i != NumClobbers; i++) {
1909    StringLiteral *Literal = Clobbers[i];
1910    if (Literal->isWide())
1911      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1912        << Literal->getSourceRange());
1913
1914    llvm::StringRef Clobber = Literal->getString();
1915
1916    if (!Context.Target.isValidGCCRegisterName(Clobber))
1917      return StmtError(Diag(Literal->getLocStart(),
1918                  diag::err_asm_unknown_register_name) << Clobber);
1919  }
1920
1921  AsmStmt *NS =
1922    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1923                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1924                          AsmString, NumClobbers, Clobbers, RParenLoc);
1925  // Validate the asm string, ensuring it makes sense given the operands we
1926  // have.
1927  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1928  unsigned DiagOffs;
1929  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1930    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1931           << AsmString->getSourceRange();
1932    return StmtError();
1933  }
1934
1935  // Validate tied input operands for type mismatches.
1936  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1937    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1938
1939    // If this is a tied constraint, verify that the output and input have
1940    // either exactly the same type, or that they are int/ptr operands with the
1941    // same size (int/long, int*/long, are ok etc).
1942    if (!Info.hasTiedOperand()) continue;
1943
1944    unsigned TiedTo = Info.getTiedOperand();
1945    unsigned InputOpNo = i+NumOutputs;
1946    Expr *OutputExpr = Exprs[TiedTo];
1947    Expr *InputExpr = Exprs[InputOpNo];
1948    QualType InTy = InputExpr->getType();
1949    QualType OutTy = OutputExpr->getType();
1950    if (Context.hasSameType(InTy, OutTy))
1951      continue;  // All types can be tied to themselves.
1952
1953    // Decide if the input and output are in the same domain (integer/ptr or
1954    // floating point.
1955    enum AsmDomain {
1956      AD_Int, AD_FP, AD_Other
1957    } InputDomain, OutputDomain;
1958
1959    if (InTy->isIntegerType() || InTy->isPointerType())
1960      InputDomain = AD_Int;
1961    else if (InTy->isRealFloatingType())
1962      InputDomain = AD_FP;
1963    else
1964      InputDomain = AD_Other;
1965
1966    if (OutTy->isIntegerType() || OutTy->isPointerType())
1967      OutputDomain = AD_Int;
1968    else if (OutTy->isRealFloatingType())
1969      OutputDomain = AD_FP;
1970    else
1971      OutputDomain = AD_Other;
1972
1973    // They are ok if they are the same size and in the same domain.  This
1974    // allows tying things like:
1975    //   void* to int*
1976    //   void* to int            if they are the same size.
1977    //   double to long double   if they are the same size.
1978    //
1979    uint64_t OutSize = Context.getTypeSize(OutTy);
1980    uint64_t InSize = Context.getTypeSize(InTy);
1981    if (OutSize == InSize && InputDomain == OutputDomain &&
1982        InputDomain != AD_Other)
1983      continue;
1984
1985    // If the smaller input/output operand is not mentioned in the asm string,
1986    // then we can promote the smaller one to a larger input and the asm string
1987    // won't notice.
1988    bool SmallerValueMentioned = false;
1989
1990    // If this is a reference to the input and if the input was the smaller
1991    // one, then we have to reject this asm.
1992    if (isOperandMentioned(InputOpNo, Pieces)) {
1993      // This is a use in the asm string of the smaller operand.  Since we
1994      // codegen this by promoting to a wider value, the asm will get printed
1995      // "wrong".
1996      SmallerValueMentioned |= InSize < OutSize;
1997    }
1998    if (isOperandMentioned(TiedTo, Pieces)) {
1999      // If this is a reference to the output, and if the output is the larger
2000      // value, then it's ok because we'll promote the input to the larger type.
2001      SmallerValueMentioned |= OutSize < InSize;
2002    }
2003
2004    // If the smaller value wasn't mentioned in the asm string, and if the
2005    // output was a register, just extend the shorter one to the size of the
2006    // larger one.
2007    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2008        OutputConstraintInfos[TiedTo].allowsRegister())
2009      continue;
2010
2011    // Either both of the operands were mentioned or the smaller one was
2012    // mentioned.  One more special case that we'll allow: if the tied input is
2013    // integer, unmentioned, and is a constant, then we'll allow truncating it
2014    // down to the size of the destination.
2015    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2016        !isOperandMentioned(InputOpNo, Pieces) &&
2017        InputExpr->isEvaluatable(Context)) {
2018      InputExpr = ImpCastExprToType(InputExpr, OutTy, CK_IntegralCast).take();
2019      Exprs[InputOpNo] = InputExpr;
2020      NS->setInputExpr(i, InputExpr);
2021      continue;
2022    }
2023
2024    Diag(InputExpr->getLocStart(),
2025         diag::err_asm_tying_incompatible_types)
2026      << InTy << OutTy << OutputExpr->getSourceRange()
2027      << InputExpr->getSourceRange();
2028    return StmtError();
2029  }
2030
2031  return Owned(NS);
2032}
2033
2034StmtResult
2035Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2036                           SourceLocation RParen, Decl *Parm,
2037                           Stmt *Body) {
2038  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2039  if (Var && Var->isInvalidDecl())
2040    return StmtError();
2041
2042  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2043}
2044
2045StmtResult
2046Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2047  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2048}
2049
2050StmtResult
2051Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2052                         MultiStmtArg CatchStmts, Stmt *Finally) {
2053  if (!getLangOptions().ObjCExceptions)
2054    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2055
2056  getCurFunction()->setHasBranchProtectedScope();
2057  unsigned NumCatchStmts = CatchStmts.size();
2058  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2059                                     CatchStmts.release(),
2060                                     NumCatchStmts,
2061                                     Finally));
2062}
2063
2064StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2065                                                  Expr *Throw) {
2066  if (Throw) {
2067    ExprResult Result = DefaultLvalueConversion(Throw);
2068    if (Result.isInvalid())
2069      return StmtError();
2070
2071    Throw = Result.take();
2072    QualType ThrowType = Throw->getType();
2073    // Make sure the expression type is an ObjC pointer or "void *".
2074    if (!ThrowType->isDependentType() &&
2075        !ThrowType->isObjCObjectPointerType()) {
2076      const PointerType *PT = ThrowType->getAs<PointerType>();
2077      if (!PT || !PT->getPointeeType()->isVoidType())
2078        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2079                         << Throw->getType() << Throw->getSourceRange());
2080    }
2081  }
2082
2083  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2084}
2085
2086StmtResult
2087Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2088                           Scope *CurScope) {
2089  if (!getLangOptions().ObjCExceptions)
2090    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2091
2092  if (!Throw) {
2093    // @throw without an expression designates a rethrow (which much occur
2094    // in the context of an @catch clause).
2095    Scope *AtCatchParent = CurScope;
2096    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2097      AtCatchParent = AtCatchParent->getParent();
2098    if (!AtCatchParent)
2099      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2100  }
2101
2102  return BuildObjCAtThrowStmt(AtLoc, Throw);
2103}
2104
2105StmtResult
2106Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2107                                  Stmt *SyncBody) {
2108  getCurFunction()->setHasBranchProtectedScope();
2109
2110  ExprResult Result = DefaultLvalueConversion(SyncExpr);
2111  if (Result.isInvalid())
2112    return StmtError();
2113
2114  SyncExpr = Result.take();
2115  // Make sure the expression type is an ObjC pointer or "void *".
2116  if (!SyncExpr->getType()->isDependentType() &&
2117      !SyncExpr->getType()->isObjCObjectPointerType()) {
2118    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
2119    if (!PT || !PT->getPointeeType()->isVoidType())
2120      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
2121                       << SyncExpr->getType() << SyncExpr->getSourceRange());
2122  }
2123
2124  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2125}
2126
2127/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2128/// and creates a proper catch handler from them.
2129StmtResult
2130Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2131                         Stmt *HandlerBlock) {
2132  // There's nothing to test that ActOnExceptionDecl didn't already test.
2133  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2134                                          cast_or_null<VarDecl>(ExDecl),
2135                                          HandlerBlock));
2136}
2137
2138namespace {
2139
2140class TypeWithHandler {
2141  QualType t;
2142  CXXCatchStmt *stmt;
2143public:
2144  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2145  : t(type), stmt(statement) {}
2146
2147  // An arbitrary order is fine as long as it places identical
2148  // types next to each other.
2149  bool operator<(const TypeWithHandler &y) const {
2150    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2151      return true;
2152    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2153      return false;
2154    else
2155      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2156  }
2157
2158  bool operator==(const TypeWithHandler& other) const {
2159    return t == other.t;
2160  }
2161
2162  CXXCatchStmt *getCatchStmt() const { return stmt; }
2163  SourceLocation getTypeSpecStartLoc() const {
2164    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2165  }
2166};
2167
2168}
2169
2170/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2171/// handlers and creates a try statement from them.
2172StmtResult
2173Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2174                       MultiStmtArg RawHandlers) {
2175  // Don't report an error if 'try' is used in system headers.
2176  if (!getLangOptions().CXXExceptions &&
2177      !getSourceManager().isInSystemHeader(TryLoc))
2178      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2179
2180  unsigned NumHandlers = RawHandlers.size();
2181  assert(NumHandlers > 0 &&
2182         "The parser shouldn't call this if there are no handlers.");
2183  Stmt **Handlers = RawHandlers.get();
2184
2185  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2186
2187  for (unsigned i = 0; i < NumHandlers; ++i) {
2188    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
2189    if (!Handler->getExceptionDecl()) {
2190      if (i < NumHandlers - 1)
2191        return StmtError(Diag(Handler->getLocStart(),
2192                              diag::err_early_catch_all));
2193
2194      continue;
2195    }
2196
2197    const QualType CaughtType = Handler->getCaughtType();
2198    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2199    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2200  }
2201
2202  // Detect handlers for the same type as an earlier one.
2203  if (NumHandlers > 1) {
2204    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2205
2206    TypeWithHandler prev = TypesWithHandlers[0];
2207    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2208      TypeWithHandler curr = TypesWithHandlers[i];
2209
2210      if (curr == prev) {
2211        Diag(curr.getTypeSpecStartLoc(),
2212             diag::warn_exception_caught_by_earlier_handler)
2213          << curr.getCatchStmt()->getCaughtType().getAsString();
2214        Diag(prev.getTypeSpecStartLoc(),
2215             diag::note_previous_exception_handler)
2216          << prev.getCatchStmt()->getCaughtType().getAsString();
2217      }
2218
2219      prev = curr;
2220    }
2221  }
2222
2223  getCurFunction()->setHasBranchProtectedScope();
2224
2225  // FIXME: We should detect handlers that cannot catch anything because an
2226  // earlier handler catches a superclass. Need to find a method that is not
2227  // quadratic for this.
2228  // Neither of these are explicitly forbidden, but every compiler detects them
2229  // and warns.
2230
2231  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2232                                  Handlers, NumHandlers));
2233}
2234
2235StmtResult
2236Sema::ActOnSEHTryBlock(bool IsCXXTry,
2237                       SourceLocation TryLoc,
2238                       Stmt *TryBlock,
2239                       Stmt *Handler) {
2240  assert(TryBlock && Handler);
2241
2242  getCurFunction()->setHasBranchProtectedScope();
2243
2244  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2245}
2246
2247StmtResult
2248Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2249                          Expr *FilterExpr,
2250                          Stmt *Block) {
2251  assert(FilterExpr && Block);
2252
2253  if(!FilterExpr->getType()->isIntegerType()) {
2254    return StmtError(Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral) << FilterExpr->getType());
2255  }
2256
2257  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2258}
2259
2260StmtResult
2261Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2262                           Stmt *Block) {
2263  assert(Block);
2264  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2265}
2266
2267