SemaStmt.cpp revision 327a50f46449c946c42d50d97689bcb30e2af7d9
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
156    return;
157
158  // Okay, we have an unused result.  Depending on what the base expression is,
159  // we might want to make a more specific diagnostic.  Check for one of these
160  // cases now.
161  unsigned DiagID = diag::warn_unused_expr;
162  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
163    E = Temps->getSubExpr();
164  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
165    E = TempExpr->getSubExpr();
166
167  if (DiagnoseUnusedComparison(*this, E))
168    return;
169
170  E = E->IgnoreParenImpCasts();
171  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
172    if (E->getType()->isVoidType())
173      return;
174
175    // If the callee has attribute pure, const, or warn_unused_result, warn with
176    // a more specific message to make it clear what is happening.
177    if (const Decl *FD = CE->getCalleeDecl()) {
178      if (FD->getAttr<WarnUnusedResultAttr>()) {
179        Diag(Loc, diag::warn_unused_result) << R1 << R2;
180        return;
181      }
182      if (FD->getAttr<PureAttr>()) {
183        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
184        return;
185      }
186      if (FD->getAttr<ConstAttr>()) {
187        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
188        return;
189      }
190    }
191  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
192    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
193      Diag(Loc, diag::err_arc_unused_init_message) << R1;
194      return;
195    }
196    const ObjCMethodDecl *MD = ME->getMethodDecl();
197    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
198      Diag(Loc, diag::warn_unused_result) << R1 << R2;
199      return;
200    }
201  } else if (isa<ObjCPropertyRefExpr>(E)) {
202    DiagID = diag::warn_unused_property_expr;
203  } else if (const CXXFunctionalCastExpr *FC
204                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
205    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
206        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
207      return;
208  }
209  // Diagnose "(void*) blah" as a typo for "(void) blah".
210  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
211    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
212    QualType T = TI->getType();
213
214    // We really do want to use the non-canonical type here.
215    if (T == Context.VoidPtrTy) {
216      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
217
218      Diag(Loc, diag::warn_unused_voidptr)
219        << FixItHint::CreateRemoval(TL.getStarLoc());
220      return;
221    }
222  }
223
224  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
225}
226
227StmtResult
228Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
229                        MultiStmtArg elts, bool isStmtExpr) {
230  unsigned NumElts = elts.size();
231  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
232  // If we're in C89 mode, check that we don't have any decls after stmts.  If
233  // so, emit an extension diagnostic.
234  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
235    // Note that __extension__ can be around a decl.
236    unsigned i = 0;
237    // Skip over all declarations.
238    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
239      /*empty*/;
240
241    // We found the end of the list or a statement.  Scan for another declstmt.
242    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
243      /*empty*/;
244
245    if (i != NumElts) {
246      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
247      Diag(D->getLocation(), diag::ext_mixed_decls_code);
248    }
249  }
250  // Warn about unused expressions in statements.
251  for (unsigned i = 0; i != NumElts; ++i) {
252    // Ignore statements that are last in a statement expression.
253    if (isStmtExpr && i == NumElts - 1)
254      continue;
255
256    DiagnoseUnusedExprResult(Elts[i]);
257  }
258
259  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
260}
261
262StmtResult
263Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
264                    SourceLocation DotDotDotLoc, Expr *RHSVal,
265                    SourceLocation ColonLoc) {
266  assert((LHSVal != 0) && "missing expression in case statement");
267
268  // C99 6.8.4.2p3: The expression shall be an integer constant.
269  // However, GCC allows any evaluatable integer expression.
270  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
271      VerifyIntegerConstantExpression(LHSVal))
272    return StmtError();
273
274  // GCC extension: The expression shall be an integer constant.
275
276  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
277      VerifyIntegerConstantExpression(RHSVal)) {
278    RHSVal = 0;  // Recover by just forgetting about it.
279  }
280
281  if (getCurFunction()->SwitchStack.empty()) {
282    Diag(CaseLoc, diag::err_case_not_in_switch);
283    return StmtError();
284  }
285
286  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
287                                        ColonLoc);
288  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
289  return Owned(CS);
290}
291
292/// ActOnCaseStmtBody - This installs a statement as the body of a case.
293void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
294  DiagnoseUnusedExprResult(SubStmt);
295
296  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
297  CS->setSubStmt(SubStmt);
298}
299
300StmtResult
301Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
302                       Stmt *SubStmt, Scope *CurScope) {
303  DiagnoseUnusedExprResult(SubStmt);
304
305  if (getCurFunction()->SwitchStack.empty()) {
306    Diag(DefaultLoc, diag::err_default_not_in_switch);
307    return Owned(SubStmt);
308  }
309
310  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
311  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
312  return Owned(DS);
313}
314
315StmtResult
316Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
317                     SourceLocation ColonLoc, Stmt *SubStmt) {
318
319  // If the label was multiply defined, reject it now.
320  if (TheDecl->getStmt()) {
321    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
322    Diag(TheDecl->getLocation(), diag::note_previous_definition);
323    return Owned(SubStmt);
324  }
325
326  // Otherwise, things are good.  Fill in the declaration and return it.
327  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
328  TheDecl->setStmt(LS);
329  if (!TheDecl->isGnuLocal())
330    TheDecl->setLocation(IdentLoc);
331  return Owned(LS);
332}
333
334StmtResult
335Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
336                  Stmt *thenStmt, SourceLocation ElseLoc,
337                  Stmt *elseStmt) {
338  ExprResult CondResult(CondVal.release());
339
340  VarDecl *ConditionVar = 0;
341  if (CondVar) {
342    ConditionVar = cast<VarDecl>(CondVar);
343    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
344    if (CondResult.isInvalid())
345      return StmtError();
346  }
347  Expr *ConditionExpr = CondResult.takeAs<Expr>();
348  if (!ConditionExpr)
349    return StmtError();
350
351  DiagnoseUnusedExprResult(thenStmt);
352
353  // Warn if the if block has a null body without an else value.
354  // this helps prevent bugs due to typos, such as
355  // if (condition);
356  //   do_stuff();
357  //
358  if (!elseStmt) {
359    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
360      // But do not warn if the body is a macro that expands to nothing, e.g:
361      //
362      // #define CALL(x)
363      // if (condition)
364      //   CALL(0);
365      //
366      if (!stmt->hasLeadingEmptyMacro())
367        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
368  }
369
370  DiagnoseUnusedExprResult(elseStmt);
371
372  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
373                                    thenStmt, ElseLoc, elseStmt));
374}
375
376/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
377/// the specified width and sign.  If an overflow occurs, detect it and emit
378/// the specified diagnostic.
379void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
380                                              unsigned NewWidth, bool NewSign,
381                                              SourceLocation Loc,
382                                              unsigned DiagID) {
383  // Perform a conversion to the promoted condition type if needed.
384  if (NewWidth > Val.getBitWidth()) {
385    // If this is an extension, just do it.
386    Val = Val.extend(NewWidth);
387    Val.setIsSigned(NewSign);
388
389    // If the input was signed and negative and the output is
390    // unsigned, don't bother to warn: this is implementation-defined
391    // behavior.
392    // FIXME: Introduce a second, default-ignored warning for this case?
393  } else if (NewWidth < Val.getBitWidth()) {
394    // If this is a truncation, check for overflow.
395    llvm::APSInt ConvVal(Val);
396    ConvVal = ConvVal.trunc(NewWidth);
397    ConvVal.setIsSigned(NewSign);
398    ConvVal = ConvVal.extend(Val.getBitWidth());
399    ConvVal.setIsSigned(Val.isSigned());
400    if (ConvVal != Val)
401      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
402
403    // Regardless of whether a diagnostic was emitted, really do the
404    // truncation.
405    Val = Val.trunc(NewWidth);
406    Val.setIsSigned(NewSign);
407  } else if (NewSign != Val.isSigned()) {
408    // Convert the sign to match the sign of the condition.  This can cause
409    // overflow as well: unsigned(INTMIN)
410    // We don't diagnose this overflow, because it is implementation-defined
411    // behavior.
412    // FIXME: Introduce a second, default-ignored warning for this case?
413    llvm::APSInt OldVal(Val);
414    Val.setIsSigned(NewSign);
415  }
416}
417
418namespace {
419  struct CaseCompareFunctor {
420    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
421                    const llvm::APSInt &RHS) {
422      return LHS.first < RHS;
423    }
424    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
425                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
426      return LHS.first < RHS.first;
427    }
428    bool operator()(const llvm::APSInt &LHS,
429                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
430      return LHS < RHS.first;
431    }
432  };
433}
434
435/// CmpCaseVals - Comparison predicate for sorting case values.
436///
437static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
438                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
439  if (lhs.first < rhs.first)
440    return true;
441
442  if (lhs.first == rhs.first &&
443      lhs.second->getCaseLoc().getRawEncoding()
444       < rhs.second->getCaseLoc().getRawEncoding())
445    return true;
446  return false;
447}
448
449/// CmpEnumVals - Comparison predicate for sorting enumeration values.
450///
451static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
452                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
453{
454  return lhs.first < rhs.first;
455}
456
457/// EqEnumVals - Comparison preficate for uniqing enumeration values.
458///
459static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
460                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
461{
462  return lhs.first == rhs.first;
463}
464
465/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
466/// potentially integral-promoted expression @p expr.
467static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
468  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
469    expr = cleanups->getSubExpr();
470  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
471    if (impcast->getCastKind() != CK_IntegralCast) break;
472    expr = impcast->getSubExpr();
473  }
474  return expr->getType();
475}
476
477StmtResult
478Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
479                             Decl *CondVar) {
480  ExprResult CondResult;
481
482  VarDecl *ConditionVar = 0;
483  if (CondVar) {
484    ConditionVar = cast<VarDecl>(CondVar);
485    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
486    if (CondResult.isInvalid())
487      return StmtError();
488
489    Cond = CondResult.release();
490  }
491
492  if (!Cond)
493    return StmtError();
494
495  CondResult
496    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
497                          PDiag(diag::err_typecheck_statement_requires_integer),
498                                   PDiag(diag::err_switch_incomplete_class_type)
499                                     << Cond->getSourceRange(),
500                                   PDiag(diag::err_switch_explicit_conversion),
501                                         PDiag(diag::note_switch_conversion),
502                                   PDiag(diag::err_switch_multiple_conversions),
503                                         PDiag(diag::note_switch_conversion),
504                                         PDiag(0));
505  if (CondResult.isInvalid()) return StmtError();
506  Cond = CondResult.take();
507
508  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
509  CondResult = UsualUnaryConversions(Cond);
510  if (CondResult.isInvalid()) return StmtError();
511  Cond = CondResult.take();
512
513  if (!CondVar) {
514    CheckImplicitConversions(Cond, SwitchLoc);
515    CondResult = MaybeCreateExprWithCleanups(Cond);
516    if (CondResult.isInvalid())
517      return StmtError();
518    Cond = CondResult.take();
519  }
520
521  getCurFunction()->setHasBranchIntoScope();
522
523  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
524  getCurFunction()->SwitchStack.push_back(SS);
525  return Owned(SS);
526}
527
528static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
529  if (Val.getBitWidth() < BitWidth)
530    Val = Val.extend(BitWidth);
531  else if (Val.getBitWidth() > BitWidth)
532    Val = Val.trunc(BitWidth);
533  Val.setIsSigned(IsSigned);
534}
535
536StmtResult
537Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
538                            Stmt *BodyStmt) {
539  SwitchStmt *SS = cast<SwitchStmt>(Switch);
540  assert(SS == getCurFunction()->SwitchStack.back() &&
541         "switch stack missing push/pop!");
542
543  SS->setBody(BodyStmt, SwitchLoc);
544  getCurFunction()->SwitchStack.pop_back();
545
546  Expr *CondExpr = SS->getCond();
547  if (!CondExpr) return StmtError();
548
549  QualType CondType = CondExpr->getType();
550
551  Expr *CondExprBeforePromotion = CondExpr;
552  QualType CondTypeBeforePromotion =
553      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
554
555  // C++ 6.4.2.p2:
556  // Integral promotions are performed (on the switch condition).
557  //
558  // A case value unrepresentable by the original switch condition
559  // type (before the promotion) doesn't make sense, even when it can
560  // be represented by the promoted type.  Therefore we need to find
561  // the pre-promotion type of the switch condition.
562  if (!CondExpr->isTypeDependent()) {
563    // We have already converted the expression to an integral or enumeration
564    // type, when we started the switch statement. If we don't have an
565    // appropriate type now, just return an error.
566    if (!CondType->isIntegralOrEnumerationType())
567      return StmtError();
568
569    if (CondExpr->isKnownToHaveBooleanValue()) {
570      // switch(bool_expr) {...} is often a programmer error, e.g.
571      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
572      // One can always use an if statement instead of switch(bool_expr).
573      Diag(SwitchLoc, diag::warn_bool_switch_condition)
574          << CondExpr->getSourceRange();
575    }
576  }
577
578  // Get the bitwidth of the switched-on value before promotions.  We must
579  // convert the integer case values to this width before comparison.
580  bool HasDependentValue
581    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
582  unsigned CondWidth
583    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
584  bool CondIsSigned
585    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
586
587  // Accumulate all of the case values in a vector so that we can sort them
588  // and detect duplicates.  This vector contains the APInt for the case after
589  // it has been converted to the condition type.
590  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
591  CaseValsTy CaseVals;
592
593  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
594  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
595  CaseRangesTy CaseRanges;
596
597  DefaultStmt *TheDefaultStmt = 0;
598
599  bool CaseListIsErroneous = false;
600
601  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
602       SC = SC->getNextSwitchCase()) {
603
604    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
605      if (TheDefaultStmt) {
606        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
607        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
608
609        // FIXME: Remove the default statement from the switch block so that
610        // we'll return a valid AST.  This requires recursing down the AST and
611        // finding it, not something we are set up to do right now.  For now,
612        // just lop the entire switch stmt out of the AST.
613        CaseListIsErroneous = true;
614      }
615      TheDefaultStmt = DS;
616
617    } else {
618      CaseStmt *CS = cast<CaseStmt>(SC);
619
620      // We already verified that the expression has a i-c-e value (C99
621      // 6.8.4.2p3) - get that value now.
622      Expr *Lo = CS->getLHS();
623
624      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
625        HasDependentValue = true;
626        break;
627      }
628
629      llvm::APSInt LoVal = Lo->EvaluateKnownConstInt(Context);
630
631      // Convert the value to the same width/sign as the condition.
632      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
633                                         Lo->getLocStart(),
634                                         diag::warn_case_value_overflow);
635
636      // If the LHS is not the same type as the condition, insert an implicit
637      // cast.
638      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
639      CS->setLHS(Lo);
640
641      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
642      if (CS->getRHS()) {
643        if (CS->getRHS()->isTypeDependent() ||
644            CS->getRHS()->isValueDependent()) {
645          HasDependentValue = true;
646          break;
647        }
648        CaseRanges.push_back(std::make_pair(LoVal, CS));
649      } else
650        CaseVals.push_back(std::make_pair(LoVal, CS));
651    }
652  }
653
654  if (!HasDependentValue) {
655    // If we don't have a default statement, check whether the
656    // condition is constant.
657    llvm::APSInt ConstantCondValue;
658    bool HasConstantCond = false;
659    bool ShouldCheckConstantCond = false;
660    if (!HasDependentValue && !TheDefaultStmt) {
661      Expr::EvalResult Result;
662      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
663      if (HasConstantCond) {
664        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
665        ConstantCondValue = Result.Val.getInt();
666        ShouldCheckConstantCond = true;
667
668        assert(ConstantCondValue.getBitWidth() == CondWidth &&
669               ConstantCondValue.isSigned() == CondIsSigned);
670      }
671    }
672
673    // Sort all the scalar case values so we can easily detect duplicates.
674    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
675
676    if (!CaseVals.empty()) {
677      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
678        if (ShouldCheckConstantCond &&
679            CaseVals[i].first == ConstantCondValue)
680          ShouldCheckConstantCond = false;
681
682        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
683          // If we have a duplicate, report it.
684          Diag(CaseVals[i].second->getLHS()->getLocStart(),
685               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
686          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
687               diag::note_duplicate_case_prev);
688          // FIXME: We really want to remove the bogus case stmt from the
689          // substmt, but we have no way to do this right now.
690          CaseListIsErroneous = true;
691        }
692      }
693    }
694
695    // Detect duplicate case ranges, which usually don't exist at all in
696    // the first place.
697    if (!CaseRanges.empty()) {
698      // Sort all the case ranges by their low value so we can easily detect
699      // overlaps between ranges.
700      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
701
702      // Scan the ranges, computing the high values and removing empty ranges.
703      std::vector<llvm::APSInt> HiVals;
704      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
705        llvm::APSInt &LoVal = CaseRanges[i].first;
706        CaseStmt *CR = CaseRanges[i].second;
707        Expr *Hi = CR->getRHS();
708        llvm::APSInt HiVal = Hi->EvaluateKnownConstInt(Context);
709
710        // Convert the value to the same width/sign as the condition.
711        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
712                                           Hi->getLocStart(),
713                                           diag::warn_case_value_overflow);
714
715        // If the LHS is not the same type as the condition, insert an implicit
716        // cast.
717        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
718        CR->setRHS(Hi);
719
720        // If the low value is bigger than the high value, the case is empty.
721        if (LoVal > HiVal) {
722          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
723            << SourceRange(CR->getLHS()->getLocStart(),
724                           Hi->getLocEnd());
725          CaseRanges.erase(CaseRanges.begin()+i);
726          --i, --e;
727          continue;
728        }
729
730        if (ShouldCheckConstantCond &&
731            LoVal <= ConstantCondValue &&
732            ConstantCondValue <= HiVal)
733          ShouldCheckConstantCond = false;
734
735        HiVals.push_back(HiVal);
736      }
737
738      // Rescan the ranges, looking for overlap with singleton values and other
739      // ranges.  Since the range list is sorted, we only need to compare case
740      // ranges with their neighbors.
741      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
742        llvm::APSInt &CRLo = CaseRanges[i].first;
743        llvm::APSInt &CRHi = HiVals[i];
744        CaseStmt *CR = CaseRanges[i].second;
745
746        // Check to see whether the case range overlaps with any
747        // singleton cases.
748        CaseStmt *OverlapStmt = 0;
749        llvm::APSInt OverlapVal(32);
750
751        // Find the smallest value >= the lower bound.  If I is in the
752        // case range, then we have overlap.
753        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
754                                                  CaseVals.end(), CRLo,
755                                                  CaseCompareFunctor());
756        if (I != CaseVals.end() && I->first < CRHi) {
757          OverlapVal  = I->first;   // Found overlap with scalar.
758          OverlapStmt = I->second;
759        }
760
761        // Find the smallest value bigger than the upper bound.
762        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
763        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
764          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
765          OverlapStmt = (I-1)->second;
766        }
767
768        // Check to see if this case stmt overlaps with the subsequent
769        // case range.
770        if (i && CRLo <= HiVals[i-1]) {
771          OverlapVal  = HiVals[i-1];       // Found overlap with range.
772          OverlapStmt = CaseRanges[i-1].second;
773        }
774
775        if (OverlapStmt) {
776          // If we have a duplicate, report it.
777          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
778            << OverlapVal.toString(10);
779          Diag(OverlapStmt->getLHS()->getLocStart(),
780               diag::note_duplicate_case_prev);
781          // FIXME: We really want to remove the bogus case stmt from the
782          // substmt, but we have no way to do this right now.
783          CaseListIsErroneous = true;
784        }
785      }
786    }
787
788    // Complain if we have a constant condition and we didn't find a match.
789    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
790      // TODO: it would be nice if we printed enums as enums, chars as
791      // chars, etc.
792      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
793        << ConstantCondValue.toString(10)
794        << CondExpr->getSourceRange();
795    }
796
797    // Check to see if switch is over an Enum and handles all of its
798    // values.  We only issue a warning if there is not 'default:', but
799    // we still do the analysis to preserve this information in the AST
800    // (which can be used by flow-based analyes).
801    //
802    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
803
804    // If switch has default case, then ignore it.
805    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
806      const EnumDecl *ED = ET->getDecl();
807      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
808        EnumValsTy;
809      EnumValsTy EnumVals;
810
811      // Gather all enum values, set their type and sort them,
812      // allowing easier comparison with CaseVals.
813      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
814           EDI != ED->enumerator_end(); ++EDI) {
815        llvm::APSInt Val = EDI->getInitVal();
816        AdjustAPSInt(Val, CondWidth, CondIsSigned);
817        EnumVals.push_back(std::make_pair(Val, *EDI));
818      }
819      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
820      EnumValsTy::iterator EIend =
821        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
822
823      // See which case values aren't in enum.
824      // TODO: we might want to check whether case values are out of the
825      // enum even if we don't want to check whether all cases are handled.
826      if (!TheDefaultStmt) {
827        EnumValsTy::const_iterator EI = EnumVals.begin();
828        for (CaseValsTy::const_iterator CI = CaseVals.begin();
829             CI != CaseVals.end(); CI++) {
830          while (EI != EIend && EI->first < CI->first)
831            EI++;
832          if (EI == EIend || EI->first > CI->first)
833            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
834              << ED->getDeclName();
835        }
836        // See which of case ranges aren't in enum
837        EI = EnumVals.begin();
838        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
839             RI != CaseRanges.end() && EI != EIend; RI++) {
840          while (EI != EIend && EI->first < RI->first)
841            EI++;
842
843          if (EI == EIend || EI->first != RI->first) {
844            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
845              << ED->getDeclName();
846          }
847
848          llvm::APSInt Hi =
849            RI->second->getRHS()->EvaluateKnownConstInt(Context);
850          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
851          while (EI != EIend && EI->first < Hi)
852            EI++;
853          if (EI == EIend || EI->first != Hi)
854            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
855              << ED->getDeclName();
856        }
857      }
858
859      // Check which enum vals aren't in switch
860      CaseValsTy::const_iterator CI = CaseVals.begin();
861      CaseRangesTy::const_iterator RI = CaseRanges.begin();
862      bool hasCasesNotInSwitch = false;
863
864      SmallVector<DeclarationName,8> UnhandledNames;
865
866      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
867        // Drop unneeded case values
868        llvm::APSInt CIVal;
869        while (CI != CaseVals.end() && CI->first < EI->first)
870          CI++;
871
872        if (CI != CaseVals.end() && CI->first == EI->first)
873          continue;
874
875        // Drop unneeded case ranges
876        for (; RI != CaseRanges.end(); RI++) {
877          llvm::APSInt Hi =
878            RI->second->getRHS()->EvaluateKnownConstInt(Context);
879          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
880          if (EI->first <= Hi)
881            break;
882        }
883
884        if (RI == CaseRanges.end() || EI->first < RI->first) {
885          hasCasesNotInSwitch = true;
886          if (!TheDefaultStmt)
887            UnhandledNames.push_back(EI->second->getDeclName());
888        }
889      }
890
891      // Produce a nice diagnostic if multiple values aren't handled.
892      switch (UnhandledNames.size()) {
893      case 0: break;
894      case 1:
895        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
896          << UnhandledNames[0];
897        break;
898      case 2:
899        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
900          << UnhandledNames[0] << UnhandledNames[1];
901        break;
902      case 3:
903        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
904          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
905        break;
906      default:
907        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
908          << (unsigned)UnhandledNames.size()
909          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
910        break;
911      }
912
913      if (!hasCasesNotInSwitch)
914        SS->setAllEnumCasesCovered();
915    }
916  }
917
918  // FIXME: If the case list was broken is some way, we don't have a good system
919  // to patch it up.  Instead, just return the whole substmt as broken.
920  if (CaseListIsErroneous)
921    return StmtError();
922
923  return Owned(SS);
924}
925
926StmtResult
927Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
928                     Decl *CondVar, Stmt *Body) {
929  ExprResult CondResult(Cond.release());
930
931  VarDecl *ConditionVar = 0;
932  if (CondVar) {
933    ConditionVar = cast<VarDecl>(CondVar);
934    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
935    if (CondResult.isInvalid())
936      return StmtError();
937  }
938  Expr *ConditionExpr = CondResult.take();
939  if (!ConditionExpr)
940    return StmtError();
941
942  DiagnoseUnusedExprResult(Body);
943
944  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
945                                       Body, WhileLoc));
946}
947
948StmtResult
949Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
950                  SourceLocation WhileLoc, SourceLocation CondLParen,
951                  Expr *Cond, SourceLocation CondRParen) {
952  assert(Cond && "ActOnDoStmt(): missing expression");
953
954  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
955  if (CondResult.isInvalid() || CondResult.isInvalid())
956    return StmtError();
957  Cond = CondResult.take();
958
959  CheckImplicitConversions(Cond, DoLoc);
960  CondResult = MaybeCreateExprWithCleanups(Cond);
961  if (CondResult.isInvalid())
962    return StmtError();
963  Cond = CondResult.take();
964
965  DiagnoseUnusedExprResult(Body);
966
967  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
968}
969
970StmtResult
971Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
972                   Stmt *First, FullExprArg second, Decl *secondVar,
973                   FullExprArg third,
974                   SourceLocation RParenLoc, Stmt *Body) {
975  if (!getLangOptions().CPlusPlus) {
976    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
977      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
978      // declare identifiers for objects having storage class 'auto' or
979      // 'register'.
980      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
981           DI!=DE; ++DI) {
982        VarDecl *VD = dyn_cast<VarDecl>(*DI);
983        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
984          VD = 0;
985        if (VD == 0)
986          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
987        // FIXME: mark decl erroneous!
988      }
989    }
990  }
991
992  ExprResult SecondResult(second.release());
993  VarDecl *ConditionVar = 0;
994  if (secondVar) {
995    ConditionVar = cast<VarDecl>(secondVar);
996    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
997    if (SecondResult.isInvalid())
998      return StmtError();
999  }
1000
1001  Expr *Third  = third.release().takeAs<Expr>();
1002
1003  DiagnoseUnusedExprResult(First);
1004  DiagnoseUnusedExprResult(Third);
1005  DiagnoseUnusedExprResult(Body);
1006
1007  return Owned(new (Context) ForStmt(Context, First,
1008                                     SecondResult.take(), ConditionVar,
1009                                     Third, Body, ForLoc, LParenLoc,
1010                                     RParenLoc));
1011}
1012
1013/// In an Objective C collection iteration statement:
1014///   for (x in y)
1015/// x can be an arbitrary l-value expression.  Bind it up as a
1016/// full-expression.
1017StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1018  CheckImplicitConversions(E);
1019  ExprResult Result = MaybeCreateExprWithCleanups(E);
1020  if (Result.isInvalid()) return StmtError();
1021  return Owned(static_cast<Stmt*>(Result.get()));
1022}
1023
1024ExprResult
1025Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1026  assert(collection);
1027
1028  // Bail out early if we've got a type-dependent expression.
1029  if (collection->isTypeDependent()) return Owned(collection);
1030
1031  // Perform normal l-value conversion.
1032  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1033  if (result.isInvalid())
1034    return ExprError();
1035  collection = result.take();
1036
1037  // The operand needs to have object-pointer type.
1038  // TODO: should we do a contextual conversion?
1039  const ObjCObjectPointerType *pointerType =
1040    collection->getType()->getAs<ObjCObjectPointerType>();
1041  if (!pointerType)
1042    return Diag(forLoc, diag::err_collection_expr_type)
1043             << collection->getType() << collection->getSourceRange();
1044
1045  // Check that the operand provides
1046  //   - countByEnumeratingWithState:objects:count:
1047  const ObjCObjectType *objectType = pointerType->getObjectType();
1048  ObjCInterfaceDecl *iface = objectType->getInterface();
1049
1050  // If we have a forward-declared type, we can't do this check.
1051  if (iface && iface->isForwardDecl()) {
1052    // This is ill-formed under ARC.
1053    if (getLangOptions().ObjCAutoRefCount) {
1054      Diag(forLoc, diag::err_arc_collection_forward)
1055        << pointerType->getPointeeType() << collection->getSourceRange();
1056    }
1057
1058    // Otherwise, if we have any useful type information, check that
1059    // the type declares the appropriate method.
1060  } else if (iface || !objectType->qual_empty()) {
1061    IdentifierInfo *selectorIdents[] = {
1062      &Context.Idents.get("countByEnumeratingWithState"),
1063      &Context.Idents.get("objects"),
1064      &Context.Idents.get("count")
1065    };
1066    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1067
1068    ObjCMethodDecl *method = 0;
1069
1070    // If there's an interface, look in both the public and private APIs.
1071    if (iface) {
1072      method = iface->lookupInstanceMethod(selector);
1073      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1074    }
1075
1076    // Also check protocol qualifiers.
1077    if (!method)
1078      method = LookupMethodInQualifiedType(selector, pointerType,
1079                                           /*instance*/ true);
1080
1081    // If we didn't find it anywhere, give up.
1082    if (!method) {
1083      Diag(forLoc, diag::warn_collection_expr_type)
1084        << collection->getType() << selector << collection->getSourceRange();
1085    }
1086
1087    // TODO: check for an incompatible signature?
1088  }
1089
1090  // Wrap up any cleanups in the expression.
1091  return Owned(MaybeCreateExprWithCleanups(collection));
1092}
1093
1094StmtResult
1095Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1096                                 SourceLocation LParenLoc,
1097                                 Stmt *First, Expr *Second,
1098                                 SourceLocation RParenLoc, Stmt *Body) {
1099  if (First) {
1100    QualType FirstType;
1101    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1102      if (!DS->isSingleDecl())
1103        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1104                         diag::err_toomany_element_decls));
1105
1106      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1107      FirstType = D->getType();
1108      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1109      // declare identifiers for objects having storage class 'auto' or
1110      // 'register'.
1111      if (!D->hasLocalStorage())
1112        return StmtError(Diag(D->getLocation(),
1113                              diag::err_non_variable_decl_in_for));
1114    } else {
1115      Expr *FirstE = cast<Expr>(First);
1116      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1117        return StmtError(Diag(First->getLocStart(),
1118                   diag::err_selector_element_not_lvalue)
1119          << First->getSourceRange());
1120
1121      FirstType = static_cast<Expr*>(First)->getType();
1122    }
1123    if (!FirstType->isDependentType() &&
1124        !FirstType->isObjCObjectPointerType() &&
1125        !FirstType->isBlockPointerType())
1126        Diag(ForLoc, diag::err_selector_element_type)
1127          << FirstType << First->getSourceRange();
1128  }
1129
1130  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1131                                                   ForLoc, RParenLoc));
1132}
1133
1134namespace {
1135
1136enum BeginEndFunction {
1137  BEF_begin,
1138  BEF_end
1139};
1140
1141/// Build a variable declaration for a for-range statement.
1142static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1143                                     QualType Type, const char *Name) {
1144  DeclContext *DC = SemaRef.CurContext;
1145  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1146  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1147  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1148                                  TInfo, SC_Auto, SC_None);
1149  Decl->setImplicit();
1150  return Decl;
1151}
1152
1153/// Finish building a variable declaration for a for-range statement.
1154/// \return true if an error occurs.
1155static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1156                                  SourceLocation Loc, int diag) {
1157  // Deduce the type for the iterator variable now rather than leaving it to
1158  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1159  TypeSourceInfo *InitTSI = 0;
1160  if (Init->getType()->isVoidType() ||
1161      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1162    SemaRef.Diag(Loc, diag) << Init->getType();
1163  if (!InitTSI) {
1164    Decl->setInvalidDecl();
1165    return true;
1166  }
1167  Decl->setTypeSourceInfo(InitTSI);
1168  Decl->setType(InitTSI->getType());
1169
1170  // In ARC, infer lifetime.
1171  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1172  // we're doing the equivalent of fast iteration.
1173  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1174      SemaRef.inferObjCARCLifetime(Decl))
1175    Decl->setInvalidDecl();
1176
1177  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1178                               /*TypeMayContainAuto=*/false);
1179  SemaRef.FinalizeDeclaration(Decl);
1180  SemaRef.CurContext->addHiddenDecl(Decl);
1181  return false;
1182}
1183
1184/// Produce a note indicating which begin/end function was implicitly called
1185/// by a C++0x for-range statement. This is often not obvious from the code,
1186/// nor from the diagnostics produced when analysing the implicit expressions
1187/// required in a for-range statement.
1188void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1189                                  BeginEndFunction BEF) {
1190  CallExpr *CE = dyn_cast<CallExpr>(E);
1191  if (!CE)
1192    return;
1193  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1194  if (!D)
1195    return;
1196  SourceLocation Loc = D->getLocation();
1197
1198  std::string Description;
1199  bool IsTemplate = false;
1200  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1201    Description = SemaRef.getTemplateArgumentBindingsText(
1202      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1203    IsTemplate = true;
1204  }
1205
1206  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1207    << BEF << IsTemplate << Description << E->getType();
1208}
1209
1210/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1211/// given LookupResult is non-empty, it is assumed to describe a member which
1212/// will be invoked. Otherwise, the function will be found via argument
1213/// dependent lookup.
1214static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1215                                            SourceLocation Loc,
1216                                            VarDecl *Decl,
1217                                            BeginEndFunction BEF,
1218                                            const DeclarationNameInfo &NameInfo,
1219                                            LookupResult &MemberLookup,
1220                                            Expr *Range) {
1221  ExprResult CallExpr;
1222  if (!MemberLookup.empty()) {
1223    ExprResult MemberRef =
1224      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1225                                       /*IsPtr=*/false, CXXScopeSpec(),
1226                                       /*Qualifier=*/0, MemberLookup,
1227                                       /*TemplateArgs=*/0);
1228    if (MemberRef.isInvalid())
1229      return ExprError();
1230    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1231                                     Loc, 0);
1232    if (CallExpr.isInvalid())
1233      return ExprError();
1234  } else {
1235    UnresolvedSet<0> FoundNames;
1236    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1237    // std is an associated namespace.
1238    UnresolvedLookupExpr *Fn =
1239      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1240                                   NestedNameSpecifierLoc(), NameInfo,
1241                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1242                                   FoundNames.begin(), FoundNames.end(),
1243                                   /*LookInStdNamespace=*/true);
1244    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1245                                               0);
1246    if (CallExpr.isInvalid()) {
1247      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1248        << Range->getType();
1249      return ExprError();
1250    }
1251  }
1252  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1253                            diag::err_for_range_iter_deduction_failure)) {
1254    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1255    return ExprError();
1256  }
1257  return CallExpr;
1258}
1259
1260}
1261
1262/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1263///
1264/// C++0x [stmt.ranged]:
1265///   A range-based for statement is equivalent to
1266///
1267///   {
1268///     auto && __range = range-init;
1269///     for ( auto __begin = begin-expr,
1270///           __end = end-expr;
1271///           __begin != __end;
1272///           ++__begin ) {
1273///       for-range-declaration = *__begin;
1274///       statement
1275///     }
1276///   }
1277///
1278/// The body of the loop is not available yet, since it cannot be analysed until
1279/// we have determined the type of the for-range-declaration.
1280StmtResult
1281Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1282                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1283                           SourceLocation RParenLoc) {
1284  if (!First || !Range)
1285    return StmtError();
1286
1287  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1288  assert(DS && "first part of for range not a decl stmt");
1289
1290  if (!DS->isSingleDecl()) {
1291    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1292    return StmtError();
1293  }
1294  if (DS->getSingleDecl()->isInvalidDecl())
1295    return StmtError();
1296
1297  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1298    return StmtError();
1299
1300  // Build  auto && __range = range-init
1301  SourceLocation RangeLoc = Range->getLocStart();
1302  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1303                                           Context.getAutoRRefDeductType(),
1304                                           "__range");
1305  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1306                            diag::err_for_range_deduction_failure))
1307    return StmtError();
1308
1309  // Claim the type doesn't contain auto: we've already done the checking.
1310  DeclGroupPtrTy RangeGroup =
1311    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1312  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1313  if (RangeDecl.isInvalid())
1314    return StmtError();
1315
1316  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1317                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1318                              RParenLoc);
1319}
1320
1321/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1322StmtResult
1323Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1324                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1325                           Expr *Inc, Stmt *LoopVarDecl,
1326                           SourceLocation RParenLoc) {
1327  Scope *S = getCurScope();
1328
1329  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1330  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1331  QualType RangeVarType = RangeVar->getType();
1332
1333  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1334  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1335
1336  StmtResult BeginEndDecl = BeginEnd;
1337  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1338
1339  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1340    SourceLocation RangeLoc = RangeVar->getLocation();
1341
1342    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1343
1344    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1345                                                VK_LValue, ColonLoc);
1346    if (BeginRangeRef.isInvalid())
1347      return StmtError();
1348
1349    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1350                                              VK_LValue, ColonLoc);
1351    if (EndRangeRef.isInvalid())
1352      return StmtError();
1353
1354    QualType AutoType = Context.getAutoDeductType();
1355    Expr *Range = RangeVar->getInit();
1356    if (!Range)
1357      return StmtError();
1358    QualType RangeType = Range->getType();
1359
1360    if (RequireCompleteType(RangeLoc, RangeType,
1361                            PDiag(diag::err_for_range_incomplete_type)))
1362      return StmtError();
1363
1364    // Build auto __begin = begin-expr, __end = end-expr.
1365    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1366                                             "__begin");
1367    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1368                                           "__end");
1369
1370    // Build begin-expr and end-expr and attach to __begin and __end variables.
1371    ExprResult BeginExpr, EndExpr;
1372    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1373      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1374      //   __range + __bound, respectively, where __bound is the array bound. If
1375      //   _RangeT is an array of unknown size or an array of incomplete type,
1376      //   the program is ill-formed;
1377
1378      // begin-expr is __range.
1379      BeginExpr = BeginRangeRef;
1380      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1381                                diag::err_for_range_iter_deduction_failure)) {
1382        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1383        return StmtError();
1384      }
1385
1386      // Find the array bound.
1387      ExprResult BoundExpr;
1388      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1389        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1390                                                 Context.getPointerDiffType(),
1391                                                 RangeLoc));
1392      else if (const VariableArrayType *VAT =
1393               dyn_cast<VariableArrayType>(UnqAT))
1394        BoundExpr = VAT->getSizeExpr();
1395      else {
1396        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1397        // UnqAT is not incomplete and Range is not type-dependent.
1398        llvm_unreachable("Unexpected array type in for-range");
1399      }
1400
1401      // end-expr is __range + __bound.
1402      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1403                           BoundExpr.get());
1404      if (EndExpr.isInvalid())
1405        return StmtError();
1406      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1407                                diag::err_for_range_iter_deduction_failure)) {
1408        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1409        return StmtError();
1410      }
1411    } else {
1412      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1413                                        ColonLoc);
1414      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1415                                      ColonLoc);
1416
1417      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1418      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1419
1420      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1421        // - if _RangeT is a class type, the unqualified-ids begin and end are
1422        //   looked up in the scope of class _RangeT as if by class member access
1423        //   lookup (3.4.5), and if either (or both) finds at least one
1424        //   declaration, begin-expr and end-expr are __range.begin() and
1425        //   __range.end(), respectively;
1426        LookupQualifiedName(BeginMemberLookup, D);
1427        LookupQualifiedName(EndMemberLookup, D);
1428
1429        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1430          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1431            << RangeType << BeginMemberLookup.empty();
1432          return StmtError();
1433        }
1434      } else {
1435        // - otherwise, begin-expr and end-expr are begin(__range) and
1436        //   end(__range), respectively, where begin and end are looked up with
1437        //   argument-dependent lookup (3.4.2). For the purposes of this name
1438        //   lookup, namespace std is an associated namespace.
1439      }
1440
1441      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1442                                            BEF_begin, BeginNameInfo,
1443                                            BeginMemberLookup,
1444                                            BeginRangeRef.get());
1445      if (BeginExpr.isInvalid())
1446        return StmtError();
1447
1448      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1449                                          BEF_end, EndNameInfo,
1450                                          EndMemberLookup, EndRangeRef.get());
1451      if (EndExpr.isInvalid())
1452        return StmtError();
1453    }
1454
1455    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1456    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1457    if (!Context.hasSameType(BeginType, EndType)) {
1458      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1459        << BeginType << EndType;
1460      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1461      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1462    }
1463
1464    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1465    // Claim the type doesn't contain auto: we've already done the checking.
1466    DeclGroupPtrTy BeginEndGroup =
1467      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1468    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1469
1470    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1471    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1472                                           VK_LValue, ColonLoc);
1473    if (BeginRef.isInvalid())
1474      return StmtError();
1475
1476    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1477                                         VK_LValue, ColonLoc);
1478    if (EndRef.isInvalid())
1479      return StmtError();
1480
1481    // Build and check __begin != __end expression.
1482    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1483                           BeginRef.get(), EndRef.get());
1484    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1485    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1486    if (NotEqExpr.isInvalid()) {
1487      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1488      if (!Context.hasSameType(BeginType, EndType))
1489        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1490      return StmtError();
1491    }
1492
1493    // Build and check ++__begin expression.
1494    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1495                                VK_LValue, ColonLoc);
1496    if (BeginRef.isInvalid())
1497      return StmtError();
1498
1499    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1500    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1501    if (IncrExpr.isInvalid()) {
1502      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1503      return StmtError();
1504    }
1505
1506    // Build and check *__begin  expression.
1507    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1508                                VK_LValue, ColonLoc);
1509    if (BeginRef.isInvalid())
1510      return StmtError();
1511
1512    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1513    if (DerefExpr.isInvalid()) {
1514      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1515      return StmtError();
1516    }
1517
1518    // Attach  *__begin  as initializer for VD.
1519    if (!LoopVar->isInvalidDecl()) {
1520      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1521                           /*TypeMayContainAuto=*/true);
1522      if (LoopVar->isInvalidDecl())
1523        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1524    }
1525  } else {
1526    // The range is implicitly used as a placeholder when it is dependent.
1527    RangeVar->setUsed();
1528  }
1529
1530  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1531                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1532                                             NotEqExpr.take(), IncrExpr.take(),
1533                                             LoopVarDS, /*Body=*/0, ForLoc,
1534                                             ColonLoc, RParenLoc));
1535}
1536
1537/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1538/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1539/// body cannot be performed until after the type of the range variable is
1540/// determined.
1541StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1542  if (!S || !B)
1543    return StmtError();
1544
1545  cast<CXXForRangeStmt>(S)->setBody(B);
1546  return S;
1547}
1548
1549StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1550                               SourceLocation LabelLoc,
1551                               LabelDecl *TheDecl) {
1552  getCurFunction()->setHasBranchIntoScope();
1553  TheDecl->setUsed();
1554  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1555}
1556
1557StmtResult
1558Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1559                            Expr *E) {
1560  // Convert operand to void*
1561  if (!E->isTypeDependent()) {
1562    QualType ETy = E->getType();
1563    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1564    ExprResult ExprRes = Owned(E);
1565    AssignConvertType ConvTy =
1566      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1567    if (ExprRes.isInvalid())
1568      return StmtError();
1569    E = ExprRes.take();
1570    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1571      return StmtError();
1572  }
1573
1574  getCurFunction()->setHasIndirectGoto();
1575
1576  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1577}
1578
1579StmtResult
1580Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1581  Scope *S = CurScope->getContinueParent();
1582  if (!S) {
1583    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1584    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1585  }
1586
1587  return Owned(new (Context) ContinueStmt(ContinueLoc));
1588}
1589
1590StmtResult
1591Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1592  Scope *S = CurScope->getBreakParent();
1593  if (!S) {
1594    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1595    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1596  }
1597
1598  return Owned(new (Context) BreakStmt(BreakLoc));
1599}
1600
1601/// \brief Determine whether the given expression is a candidate for
1602/// copy elision in either a return statement or a throw expression.
1603///
1604/// \param ReturnType If we're determining the copy elision candidate for
1605/// a return statement, this is the return type of the function. If we're
1606/// determining the copy elision candidate for a throw expression, this will
1607/// be a NULL type.
1608///
1609/// \param E The expression being returned from the function or block, or
1610/// being thrown.
1611///
1612/// \param AllowFunctionParameter Whether we allow function parameters to
1613/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1614/// we re-use this logic to determine whether we should try to move as part of
1615/// a return or throw (which does allow function parameters).
1616///
1617/// \returns The NRVO candidate variable, if the return statement may use the
1618/// NRVO, or NULL if there is no such candidate.
1619const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1620                                             Expr *E,
1621                                             bool AllowFunctionParameter) {
1622  QualType ExprType = E->getType();
1623  // - in a return statement in a function with ...
1624  // ... a class return type ...
1625  if (!ReturnType.isNull()) {
1626    if (!ReturnType->isRecordType())
1627      return 0;
1628    // ... the same cv-unqualified type as the function return type ...
1629    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1630      return 0;
1631  }
1632
1633  // ... the expression is the name of a non-volatile automatic object
1634  // (other than a function or catch-clause parameter)) ...
1635  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1636  if (!DR)
1637    return 0;
1638  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1639  if (!VD)
1640    return 0;
1641
1642  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1643      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1644      !VD->getType().isVolatileQualified() &&
1645      ((VD->getKind() == Decl::Var) ||
1646       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1647    return VD;
1648
1649  return 0;
1650}
1651
1652/// \brief Perform the initialization of a potentially-movable value, which
1653/// is the result of return value.
1654///
1655/// This routine implements C++0x [class.copy]p33, which attempts to treat
1656/// returned lvalues as rvalues in certain cases (to prefer move construction),
1657/// then falls back to treating them as lvalues if that failed.
1658ExprResult
1659Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1660                                      const VarDecl *NRVOCandidate,
1661                                      QualType ResultType,
1662                                      Expr *Value,
1663                                      bool AllowNRVO) {
1664  // C++0x [class.copy]p33:
1665  //   When the criteria for elision of a copy operation are met or would
1666  //   be met save for the fact that the source object is a function
1667  //   parameter, and the object to be copied is designated by an lvalue,
1668  //   overload resolution to select the constructor for the copy is first
1669  //   performed as if the object were designated by an rvalue.
1670  ExprResult Res = ExprError();
1671  if (AllowNRVO &&
1672      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1673    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1674                              Value->getType(), CK_LValueToRValue,
1675                              Value, VK_XValue);
1676
1677    Expr *InitExpr = &AsRvalue;
1678    InitializationKind Kind
1679      = InitializationKind::CreateCopy(Value->getLocStart(),
1680                                       Value->getLocStart());
1681    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1682
1683    //   [...] If overload resolution fails, or if the type of the first
1684    //   parameter of the selected constructor is not an rvalue reference
1685    //   to the object's type (possibly cv-qualified), overload resolution
1686    //   is performed again, considering the object as an lvalue.
1687    if (Seq) {
1688      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1689           StepEnd = Seq.step_end();
1690           Step != StepEnd; ++Step) {
1691        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1692          continue;
1693
1694        CXXConstructorDecl *Constructor
1695        = cast<CXXConstructorDecl>(Step->Function.Function);
1696
1697        const RValueReferenceType *RRefType
1698          = Constructor->getParamDecl(0)->getType()
1699                                                 ->getAs<RValueReferenceType>();
1700
1701        // If we don't meet the criteria, break out now.
1702        if (!RRefType ||
1703            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1704                            Context.getTypeDeclType(Constructor->getParent())))
1705          break;
1706
1707        // Promote "AsRvalue" to the heap, since we now need this
1708        // expression node to persist.
1709        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1710                                         CK_LValueToRValue, Value, 0,
1711                                         VK_XValue);
1712
1713        // Complete type-checking the initialization of the return type
1714        // using the constructor we found.
1715        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1716      }
1717    }
1718  }
1719
1720  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1721  // above, or overload resolution failed. Either way, we need to try
1722  // (again) now with the return value expression as written.
1723  if (Res.isInvalid())
1724    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1725
1726  return Res;
1727}
1728
1729/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1730///
1731StmtResult
1732Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1733  // If this is the first return we've seen in the block, infer the type of
1734  // the block from it.
1735  BlockScopeInfo *CurBlock = getCurBlock();
1736  if (CurBlock->ReturnType.isNull()) {
1737    if (RetValExp) {
1738      // Don't call UsualUnaryConversions(), since we don't want to do
1739      // integer promotions here.
1740      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1741      if (Result.isInvalid())
1742        return StmtError();
1743      RetValExp = Result.take();
1744
1745      if (!RetValExp->isTypeDependent()) {
1746        CurBlock->ReturnType = RetValExp->getType();
1747        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1748          // We have to remove a 'const' added to copied-in variable which was
1749          // part of the implementation spec. and not the actual qualifier for
1750          // the variable.
1751          if (CDRE->isConstQualAdded())
1752            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1753        }
1754      } else
1755        CurBlock->ReturnType = Context.DependentTy;
1756    } else
1757      CurBlock->ReturnType = Context.VoidTy;
1758  }
1759  QualType FnRetType = CurBlock->ReturnType;
1760
1761  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1762    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1763      << getCurFunctionOrMethodDecl()->getDeclName();
1764    return StmtError();
1765  }
1766
1767  // Otherwise, verify that this result type matches the previous one.  We are
1768  // pickier with blocks than for normal functions because we don't have GCC
1769  // compatibility to worry about here.
1770  const VarDecl *NRVOCandidate = 0;
1771  if (FnRetType->isDependentType()) {
1772    // Delay processing for now.  TODO: there are lots of dependent
1773    // types we can conclusively prove aren't void.
1774  } else if (FnRetType->isVoidType()) {
1775    if (RetValExp &&
1776        !(getLangOptions().CPlusPlus &&
1777          (RetValExp->isTypeDependent() ||
1778           RetValExp->getType()->isVoidType()))) {
1779      Diag(ReturnLoc, diag::err_return_block_has_expr);
1780      RetValExp = 0;
1781    }
1782  } else if (!RetValExp) {
1783    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1784  } else if (!RetValExp->isTypeDependent()) {
1785    // we have a non-void block with an expression, continue checking
1786
1787    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1788    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1789    // function return.
1790
1791    // In C++ the return statement is handled via a copy initialization.
1792    // the C version of which boils down to CheckSingleAssignmentConstraints.
1793    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1794    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1795                                                                   FnRetType,
1796                                                           NRVOCandidate != 0);
1797    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1798                                                     FnRetType, RetValExp);
1799    if (Res.isInvalid()) {
1800      // FIXME: Cleanup temporaries here, anyway?
1801      return StmtError();
1802    }
1803    RetValExp = Res.take();
1804    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1805  }
1806
1807  if (RetValExp) {
1808    CheckImplicitConversions(RetValExp, ReturnLoc);
1809    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1810  }
1811  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1812                                                NRVOCandidate);
1813
1814  // If we need to check for the named return value optimization, save the
1815  // return statement in our scope for later processing.
1816  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1817      !CurContext->isDependentContext())
1818    FunctionScopes.back()->Returns.push_back(Result);
1819
1820  return Owned(Result);
1821}
1822
1823StmtResult
1824Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1825  // Check for unexpanded parameter packs.
1826  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1827    return StmtError();
1828
1829  if (getCurBlock())
1830    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1831
1832  QualType FnRetType;
1833  QualType DeclaredRetType;
1834  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1835    FnRetType = FD->getResultType();
1836    DeclaredRetType = FnRetType;
1837    if (FD->hasAttr<NoReturnAttr>() ||
1838        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1839      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1840        << getCurFunctionOrMethodDecl()->getDeclName();
1841  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1842    DeclaredRetType = MD->getResultType();
1843    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1844      // In the implementation of a method with a related return type, the
1845      // type used to type-check the validity of return statements within the
1846      // method body is a pointer to the type of the class being implemented.
1847      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1848      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1849    } else {
1850      FnRetType = DeclaredRetType;
1851    }
1852  } else // If we don't have a function/method context, bail.
1853    return StmtError();
1854
1855  ReturnStmt *Result = 0;
1856  if (FnRetType->isVoidType()) {
1857    if (RetValExp) {
1858      if (!RetValExp->isTypeDependent()) {
1859        // C99 6.8.6.4p1 (ext_ since GCC warns)
1860        unsigned D = diag::ext_return_has_expr;
1861        if (RetValExp->getType()->isVoidType())
1862          D = diag::ext_return_has_void_expr;
1863        else {
1864          ExprResult Result = Owned(RetValExp);
1865          Result = IgnoredValueConversions(Result.take());
1866          if (Result.isInvalid())
1867            return StmtError();
1868          RetValExp = Result.take();
1869          RetValExp = ImpCastExprToType(RetValExp,
1870                                        Context.VoidTy, CK_ToVoid).take();
1871        }
1872
1873        // return (some void expression); is legal in C++.
1874        if (D != diag::ext_return_has_void_expr ||
1875            !getLangOptions().CPlusPlus) {
1876          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1877
1878          int FunctionKind = 0;
1879          if (isa<ObjCMethodDecl>(CurDecl))
1880            FunctionKind = 1;
1881          else if (isa<CXXConstructorDecl>(CurDecl))
1882            FunctionKind = 2;
1883          else if (isa<CXXDestructorDecl>(CurDecl))
1884            FunctionKind = 3;
1885
1886          Diag(ReturnLoc, D)
1887            << CurDecl->getDeclName() << FunctionKind
1888            << RetValExp->getSourceRange();
1889        }
1890      }
1891
1892      CheckImplicitConversions(RetValExp, ReturnLoc);
1893      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1894    }
1895
1896    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1897  } else if (!RetValExp && !FnRetType->isDependentType()) {
1898    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1899    // C99 6.8.6.4p1 (ext_ since GCC warns)
1900    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1901
1902    if (FunctionDecl *FD = getCurFunctionDecl())
1903      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1904    else
1905      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1906    Result = new (Context) ReturnStmt(ReturnLoc);
1907  } else {
1908    const VarDecl *NRVOCandidate = 0;
1909    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1910      // we have a non-void function with an expression, continue checking
1911
1912      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1913      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1914      // function return.
1915
1916      // In C++ the return statement is handled via a copy initialization,
1917      // the C version of which boils down to CheckSingleAssignmentConstraints.
1918      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1919      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1920                                                                     FnRetType,
1921                                                            NRVOCandidate != 0);
1922      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1923                                                       FnRetType, RetValExp);
1924      if (Res.isInvalid()) {
1925        // FIXME: Cleanup temporaries here, anyway?
1926        return StmtError();
1927      }
1928
1929      RetValExp = Res.takeAs<Expr>();
1930      if (RetValExp)
1931        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1932    }
1933
1934    if (RetValExp) {
1935      // If we type-checked an Objective-C method's return type based
1936      // on a related return type, we may need to adjust the return
1937      // type again. Do so now.
1938      if (DeclaredRetType != FnRetType) {
1939        ExprResult result = PerformImplicitConversion(RetValExp,
1940                                                      DeclaredRetType,
1941                                                      AA_Returning);
1942        if (result.isInvalid()) return StmtError();
1943        RetValExp = result.take();
1944      }
1945
1946      CheckImplicitConversions(RetValExp, ReturnLoc);
1947      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1948    }
1949    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1950  }
1951
1952  // If we need to check for the named return value optimization, save the
1953  // return statement in our scope for later processing.
1954  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1955      !CurContext->isDependentContext())
1956    FunctionScopes.back()->Returns.push_back(Result);
1957
1958  return Owned(Result);
1959}
1960
1961/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1962/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1963/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1964/// provide a strong guidance to not use it.
1965///
1966/// This method checks to see if the argument is an acceptable l-value and
1967/// returns false if it is a case we can handle.
1968static bool CheckAsmLValue(const Expr *E, Sema &S) {
1969  // Type dependent expressions will be checked during instantiation.
1970  if (E->isTypeDependent())
1971    return false;
1972
1973  if (E->isLValue())
1974    return false;  // Cool, this is an lvalue.
1975
1976  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1977  // are supposed to allow.
1978  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1979  if (E != E2 && E2->isLValue()) {
1980    if (!S.getLangOptions().HeinousExtensions)
1981      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1982        << E->getSourceRange();
1983    else
1984      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1985        << E->getSourceRange();
1986    // Accept, even if we emitted an error diagnostic.
1987    return false;
1988  }
1989
1990  // None of the above, just randomly invalid non-lvalue.
1991  return true;
1992}
1993
1994/// isOperandMentioned - Return true if the specified operand # is mentioned
1995/// anywhere in the decomposed asm string.
1996static bool isOperandMentioned(unsigned OpNo,
1997                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
1998  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
1999    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2000    if (!Piece.isOperand()) continue;
2001
2002    // If this is a reference to the input and if the input was the smaller
2003    // one, then we have to reject this asm.
2004    if (Piece.getOperandNo() == OpNo)
2005      return true;
2006  }
2007
2008  return false;
2009}
2010
2011StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2012                              bool IsVolatile, unsigned NumOutputs,
2013                              unsigned NumInputs, IdentifierInfo **Names,
2014                              MultiExprArg constraints, MultiExprArg exprs,
2015                              Expr *asmString, MultiExprArg clobbers,
2016                              SourceLocation RParenLoc, bool MSAsm) {
2017  unsigned NumClobbers = clobbers.size();
2018  StringLiteral **Constraints =
2019    reinterpret_cast<StringLiteral**>(constraints.get());
2020  Expr **Exprs = exprs.get();
2021  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2022  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2023
2024  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2025
2026  // The parser verifies that there is a string literal here.
2027  if (!AsmString->isAscii())
2028    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2029      << AsmString->getSourceRange());
2030
2031  for (unsigned i = 0; i != NumOutputs; i++) {
2032    StringLiteral *Literal = Constraints[i];
2033    if (!Literal->isAscii())
2034      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2035        << Literal->getSourceRange());
2036
2037    StringRef OutputName;
2038    if (Names[i])
2039      OutputName = Names[i]->getName();
2040
2041    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2042    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2043      return StmtError(Diag(Literal->getLocStart(),
2044                            diag::err_asm_invalid_output_constraint)
2045                       << Info.getConstraintStr());
2046
2047    // Check that the output exprs are valid lvalues.
2048    Expr *OutputExpr = Exprs[i];
2049    if (CheckAsmLValue(OutputExpr, *this)) {
2050      return StmtError(Diag(OutputExpr->getLocStart(),
2051                  diag::err_asm_invalid_lvalue_in_output)
2052        << OutputExpr->getSourceRange());
2053    }
2054
2055    OutputConstraintInfos.push_back(Info);
2056  }
2057
2058  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2059
2060  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2061    StringLiteral *Literal = Constraints[i];
2062    if (!Literal->isAscii())
2063      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2064        << Literal->getSourceRange());
2065
2066    StringRef InputName;
2067    if (Names[i])
2068      InputName = Names[i]->getName();
2069
2070    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2071    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2072                                                NumOutputs, Info)) {
2073      return StmtError(Diag(Literal->getLocStart(),
2074                            diag::err_asm_invalid_input_constraint)
2075                       << Info.getConstraintStr());
2076    }
2077
2078    Expr *InputExpr = Exprs[i];
2079
2080    // Only allow void types for memory constraints.
2081    if (Info.allowsMemory() && !Info.allowsRegister()) {
2082      if (CheckAsmLValue(InputExpr, *this))
2083        return StmtError(Diag(InputExpr->getLocStart(),
2084                              diag::err_asm_invalid_lvalue_in_input)
2085                         << Info.getConstraintStr()
2086                         << InputExpr->getSourceRange());
2087    }
2088
2089    if (Info.allowsRegister()) {
2090      if (InputExpr->getType()->isVoidType()) {
2091        return StmtError(Diag(InputExpr->getLocStart(),
2092                              diag::err_asm_invalid_type_in_input)
2093          << InputExpr->getType() << Info.getConstraintStr()
2094          << InputExpr->getSourceRange());
2095      }
2096    }
2097
2098    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2099    if (Result.isInvalid())
2100      return StmtError();
2101
2102    Exprs[i] = Result.take();
2103    InputConstraintInfos.push_back(Info);
2104  }
2105
2106  // Check that the clobbers are valid.
2107  for (unsigned i = 0; i != NumClobbers; i++) {
2108    StringLiteral *Literal = Clobbers[i];
2109    if (!Literal->isAscii())
2110      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2111        << Literal->getSourceRange());
2112
2113    StringRef Clobber = Literal->getString();
2114
2115    if (!Context.getTargetInfo().isValidClobber(Clobber))
2116      return StmtError(Diag(Literal->getLocStart(),
2117                  diag::err_asm_unknown_register_name) << Clobber);
2118  }
2119
2120  AsmStmt *NS =
2121    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2122                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2123                          AsmString, NumClobbers, Clobbers, RParenLoc);
2124  // Validate the asm string, ensuring it makes sense given the operands we
2125  // have.
2126  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2127  unsigned DiagOffs;
2128  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2129    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2130           << AsmString->getSourceRange();
2131    return StmtError();
2132  }
2133
2134  // Validate tied input operands for type mismatches.
2135  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2136    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2137
2138    // If this is a tied constraint, verify that the output and input have
2139    // either exactly the same type, or that they are int/ptr operands with the
2140    // same size (int/long, int*/long, are ok etc).
2141    if (!Info.hasTiedOperand()) continue;
2142
2143    unsigned TiedTo = Info.getTiedOperand();
2144    unsigned InputOpNo = i+NumOutputs;
2145    Expr *OutputExpr = Exprs[TiedTo];
2146    Expr *InputExpr = Exprs[InputOpNo];
2147
2148    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2149      continue;
2150
2151    QualType InTy = InputExpr->getType();
2152    QualType OutTy = OutputExpr->getType();
2153    if (Context.hasSameType(InTy, OutTy))
2154      continue;  // All types can be tied to themselves.
2155
2156    // Decide if the input and output are in the same domain (integer/ptr or
2157    // floating point.
2158    enum AsmDomain {
2159      AD_Int, AD_FP, AD_Other
2160    } InputDomain, OutputDomain;
2161
2162    if (InTy->isIntegerType() || InTy->isPointerType())
2163      InputDomain = AD_Int;
2164    else if (InTy->isRealFloatingType())
2165      InputDomain = AD_FP;
2166    else
2167      InputDomain = AD_Other;
2168
2169    if (OutTy->isIntegerType() || OutTy->isPointerType())
2170      OutputDomain = AD_Int;
2171    else if (OutTy->isRealFloatingType())
2172      OutputDomain = AD_FP;
2173    else
2174      OutputDomain = AD_Other;
2175
2176    // They are ok if they are the same size and in the same domain.  This
2177    // allows tying things like:
2178    //   void* to int*
2179    //   void* to int            if they are the same size.
2180    //   double to long double   if they are the same size.
2181    //
2182    uint64_t OutSize = Context.getTypeSize(OutTy);
2183    uint64_t InSize = Context.getTypeSize(InTy);
2184    if (OutSize == InSize && InputDomain == OutputDomain &&
2185        InputDomain != AD_Other)
2186      continue;
2187
2188    // If the smaller input/output operand is not mentioned in the asm string,
2189    // then we can promote the smaller one to a larger input and the asm string
2190    // won't notice.
2191    bool SmallerValueMentioned = false;
2192
2193    // If this is a reference to the input and if the input was the smaller
2194    // one, then we have to reject this asm.
2195    if (isOperandMentioned(InputOpNo, Pieces)) {
2196      // This is a use in the asm string of the smaller operand.  Since we
2197      // codegen this by promoting to a wider value, the asm will get printed
2198      // "wrong".
2199      SmallerValueMentioned |= InSize < OutSize;
2200    }
2201    if (isOperandMentioned(TiedTo, Pieces)) {
2202      // If this is a reference to the output, and if the output is the larger
2203      // value, then it's ok because we'll promote the input to the larger type.
2204      SmallerValueMentioned |= OutSize < InSize;
2205    }
2206
2207    // If the smaller value wasn't mentioned in the asm string, and if the
2208    // output was a register, just extend the shorter one to the size of the
2209    // larger one.
2210    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2211        OutputConstraintInfos[TiedTo].allowsRegister())
2212      continue;
2213
2214    // Either both of the operands were mentioned or the smaller one was
2215    // mentioned.  One more special case that we'll allow: if the tied input is
2216    // integer, unmentioned, and is a constant, then we'll allow truncating it
2217    // down to the size of the destination.
2218    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2219        !isOperandMentioned(InputOpNo, Pieces) &&
2220        InputExpr->isEvaluatable(Context)) {
2221      CastKind castKind =
2222        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2223      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2224      Exprs[InputOpNo] = InputExpr;
2225      NS->setInputExpr(i, InputExpr);
2226      continue;
2227    }
2228
2229    Diag(InputExpr->getLocStart(),
2230         diag::err_asm_tying_incompatible_types)
2231      << InTy << OutTy << OutputExpr->getSourceRange()
2232      << InputExpr->getSourceRange();
2233    return StmtError();
2234  }
2235
2236  return Owned(NS);
2237}
2238
2239StmtResult
2240Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2241                           SourceLocation RParen, Decl *Parm,
2242                           Stmt *Body) {
2243  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2244  if (Var && Var->isInvalidDecl())
2245    return StmtError();
2246
2247  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2248}
2249
2250StmtResult
2251Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2252  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2253}
2254
2255StmtResult
2256Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2257                         MultiStmtArg CatchStmts, Stmt *Finally) {
2258  if (!getLangOptions().ObjCExceptions)
2259    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2260
2261  getCurFunction()->setHasBranchProtectedScope();
2262  unsigned NumCatchStmts = CatchStmts.size();
2263  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2264                                     CatchStmts.release(),
2265                                     NumCatchStmts,
2266                                     Finally));
2267}
2268
2269StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2270                                                  Expr *Throw) {
2271  if (Throw) {
2272    Throw = MaybeCreateExprWithCleanups(Throw);
2273    ExprResult Result = DefaultLvalueConversion(Throw);
2274    if (Result.isInvalid())
2275      return StmtError();
2276
2277    Throw = Result.take();
2278    QualType ThrowType = Throw->getType();
2279    // Make sure the expression type is an ObjC pointer or "void *".
2280    if (!ThrowType->isDependentType() &&
2281        !ThrowType->isObjCObjectPointerType()) {
2282      const PointerType *PT = ThrowType->getAs<PointerType>();
2283      if (!PT || !PT->getPointeeType()->isVoidType())
2284        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2285                         << Throw->getType() << Throw->getSourceRange());
2286    }
2287  }
2288
2289  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2290}
2291
2292StmtResult
2293Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2294                           Scope *CurScope) {
2295  if (!getLangOptions().ObjCExceptions)
2296    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2297
2298  if (!Throw) {
2299    // @throw without an expression designates a rethrow (which much occur
2300    // in the context of an @catch clause).
2301    Scope *AtCatchParent = CurScope;
2302    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2303      AtCatchParent = AtCatchParent->getParent();
2304    if (!AtCatchParent)
2305      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2306  }
2307
2308  return BuildObjCAtThrowStmt(AtLoc, Throw);
2309}
2310
2311ExprResult
2312Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2313  ExprResult result = DefaultLvalueConversion(operand);
2314  if (result.isInvalid())
2315    return ExprError();
2316  operand = result.take();
2317
2318  // Make sure the expression type is an ObjC pointer or "void *".
2319  QualType type = operand->getType();
2320  if (!type->isDependentType() &&
2321      !type->isObjCObjectPointerType()) {
2322    const PointerType *pointerType = type->getAs<PointerType>();
2323    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2324      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2325               << type << operand->getSourceRange();
2326  }
2327
2328  // The operand to @synchronized is a full-expression.
2329  return MaybeCreateExprWithCleanups(operand);
2330}
2331
2332StmtResult
2333Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2334                                  Stmt *SyncBody) {
2335  // We can't jump into or indirect-jump out of a @synchronized block.
2336  getCurFunction()->setHasBranchProtectedScope();
2337  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2338}
2339
2340/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2341/// and creates a proper catch handler from them.
2342StmtResult
2343Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2344                         Stmt *HandlerBlock) {
2345  // There's nothing to test that ActOnExceptionDecl didn't already test.
2346  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2347                                          cast_or_null<VarDecl>(ExDecl),
2348                                          HandlerBlock));
2349}
2350
2351StmtResult
2352Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2353  getCurFunction()->setHasBranchProtectedScope();
2354  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2355}
2356
2357namespace {
2358
2359class TypeWithHandler {
2360  QualType t;
2361  CXXCatchStmt *stmt;
2362public:
2363  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2364  : t(type), stmt(statement) {}
2365
2366  // An arbitrary order is fine as long as it places identical
2367  // types next to each other.
2368  bool operator<(const TypeWithHandler &y) const {
2369    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2370      return true;
2371    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2372      return false;
2373    else
2374      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2375  }
2376
2377  bool operator==(const TypeWithHandler& other) const {
2378    return t == other.t;
2379  }
2380
2381  CXXCatchStmt *getCatchStmt() const { return stmt; }
2382  SourceLocation getTypeSpecStartLoc() const {
2383    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2384  }
2385};
2386
2387}
2388
2389/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2390/// handlers and creates a try statement from them.
2391StmtResult
2392Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2393                       MultiStmtArg RawHandlers) {
2394  // Don't report an error if 'try' is used in system headers.
2395  if (!getLangOptions().CXXExceptions &&
2396      !getSourceManager().isInSystemHeader(TryLoc))
2397      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2398
2399  unsigned NumHandlers = RawHandlers.size();
2400  assert(NumHandlers > 0 &&
2401         "The parser shouldn't call this if there are no handlers.");
2402  Stmt **Handlers = RawHandlers.get();
2403
2404  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2405
2406  for (unsigned i = 0; i < NumHandlers; ++i) {
2407    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2408    if (!Handler->getExceptionDecl()) {
2409      if (i < NumHandlers - 1)
2410        return StmtError(Diag(Handler->getLocStart(),
2411                              diag::err_early_catch_all));
2412
2413      continue;
2414    }
2415
2416    const QualType CaughtType = Handler->getCaughtType();
2417    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2418    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2419  }
2420
2421  // Detect handlers for the same type as an earlier one.
2422  if (NumHandlers > 1) {
2423    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2424
2425    TypeWithHandler prev = TypesWithHandlers[0];
2426    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2427      TypeWithHandler curr = TypesWithHandlers[i];
2428
2429      if (curr == prev) {
2430        Diag(curr.getTypeSpecStartLoc(),
2431             diag::warn_exception_caught_by_earlier_handler)
2432          << curr.getCatchStmt()->getCaughtType().getAsString();
2433        Diag(prev.getTypeSpecStartLoc(),
2434             diag::note_previous_exception_handler)
2435          << prev.getCatchStmt()->getCaughtType().getAsString();
2436      }
2437
2438      prev = curr;
2439    }
2440  }
2441
2442  getCurFunction()->setHasBranchProtectedScope();
2443
2444  // FIXME: We should detect handlers that cannot catch anything because an
2445  // earlier handler catches a superclass. Need to find a method that is not
2446  // quadratic for this.
2447  // Neither of these are explicitly forbidden, but every compiler detects them
2448  // and warns.
2449
2450  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2451                                  Handlers, NumHandlers));
2452}
2453
2454StmtResult
2455Sema::ActOnSEHTryBlock(bool IsCXXTry,
2456                       SourceLocation TryLoc,
2457                       Stmt *TryBlock,
2458                       Stmt *Handler) {
2459  assert(TryBlock && Handler);
2460
2461  getCurFunction()->setHasBranchProtectedScope();
2462
2463  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2464}
2465
2466StmtResult
2467Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2468                          Expr *FilterExpr,
2469                          Stmt *Block) {
2470  assert(FilterExpr && Block);
2471
2472  if(!FilterExpr->getType()->isIntegerType()) {
2473    return StmtError(Diag(FilterExpr->getExprLoc(),
2474                     diag::err_filter_expression_integral)
2475                     << FilterExpr->getType());
2476  }
2477
2478  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2479}
2480
2481StmtResult
2482Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2483                           Stmt *Block) {
2484  assert(Block);
2485  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2486}
2487
2488StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2489                                            bool IsIfExists,
2490                                            NestedNameSpecifierLoc QualifierLoc,
2491                                            DeclarationNameInfo NameInfo,
2492                                            Stmt *Nested)
2493{
2494  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2495                                             QualifierLoc, NameInfo,
2496                                             cast<CompoundStmt>(Nested));
2497}
2498
2499
2500StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2501                                            bool IsIfExists,
2502                                            CXXScopeSpec &SS,
2503                                            UnqualifiedId &Name,
2504                                            Stmt *Nested) {
2505  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2506                                    SS.getWithLocInContext(Context),
2507                                    GetNameFromUnqualifiedId(Name),
2508                                    Nested);
2509}
2510